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Glucocorticoids regulate kisspeptin neurons during stress and 

contribute to infertility and obesity in leptin-deficient mice 

 
 

Abstract 
 

Stressors generate adaptive responses, including transient suppression of reproductive function.  

Natural selection depends on successful reproduction, but inhibition of reproduction to survive 

famine or escape predation allows animals to survive to reproduce at a later time.  The cellular 

locations and mechanisms responsible for inhibiting and reactivating the reproductive axis 

during and after stress, respectively, are not well understood. 

 

We demonstrated that stress-induced elevation in glucocorticoids affects hypothalamic neurons 

that secrete kisspeptin (KISS1), an important reproductive hormone.  Stressors that stimulated 

glucocorticoid secretion, as well as glucocorticoid administration itself, inhibited Kiss1 mRNA 

expression, while conditions that did not change glucocorticoid secretion did not alter Kiss1 

mRNA expression.  In mice lacking glucocorticoid receptor specifically in kisspeptin-containing 

neurons, Kiss1 mRNA expression was no longer inhibited during restraint stress despite a rise in 

corticosterone, and both testosterone and copulatory behaviors showed accelerated recovery in 

the post-traumatic period. 
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We also demonstrated that increased glucocorticoid secretion contributed to infertility and 

obesity in leptin-deficient mice.  Leptin deficiency creates a chronic state of perceived starvation, 

and leptin-deficient mice exhibit elevated plasma glucocorticoid concentrations, morbid obesity, 

and infertility.  Leptin-deficient, glucocorticoid-deficient mice exhibited decreased body weight 

and fat composition, decreased hyperphagia, and normal fertility.  When supplemented with 

glucocorticoids back to the initial levels present in leptin deficiency, these mice gained weight 

and became infertile.  Thus, leptin is not required for fertility as previously believed, and 

glucocorticoids can contribute to obesity and suppress fertility independently of leptin signaling. 

 

Together, these findings implicate glucocorticoids in the regulation of obesity and reproductive 

inhibition during stress, including perceived starvation caused by leptin deficiency.  These 

studies may provide novel mechanisms and molecular targets in the reproductive and metabolic 

aspects of disorders characterized by glucocorticoid dysregulation, including post-traumatic 

stress disorder, anorexia nervosa, and mood disorders. 
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INTRODUCTION 
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1.1  STRESS 

The world is full of stressors, real or perceived, that challenge self-preservation:  predators, food 

shortages, wounds.  Such stressors disrupt homeostasis, and survival depends on the body’s 

ability to generate appropriate stress responses.  Adaptations include enhanced cognition, 

physical strength, and analgesia, along with inhibition of nonessential functions such as 

reproduction and growth.  Natural selection is driven by successful reproduction; yet first and 

foremost, successful reproduction depends on surviving to reproduce another day.  Thus acute 

stressors generate responses that improve the chances of immediate survival at the expense of 

immediate reproductive fitness.  Multiple stress systems coordinate these central and peripheral 

adaptive responses. 

 

1.1.1  HYPOTHALAMIC-PITUITARY-ADRENAL AXIS 

One important stress response is generated by the hypothalamic-pituitary-adrenal (HPA) axis.  A 

subset of paraventricular nucleus (PVN) neurons in the hypothalamus produces corticotropin-

releasing hormone (CRH).  Following exposure to stressors, CRH is secreted into the portal 

circulation and stimulates the pituitary to produce proopiomelanocortin, which is cleaved into 

adrenocorticotropic hormone (ACTH).  ACTH enters the general circulation and stimulates the 

zona fasciculata of the adrenal cortex to produce glucocorticoids [1].  Chromaffin cells in the 

adrenal medulla produce the catecholamines epinephrine and norepinephrine, which act as 

sympathetic nervous system (SNS) hormones [2].  Together, the HPA and SNS react to acute 

stressors by generating fight or flight responses:  increased heart rate, blood flow, oxygen flow, 

and nutrient release; decreased reproductive, gastrointestinal, and immune activities.  
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Subsequently, the same hormonal outputs inhibit CRH and ACTH production in an 

autoregulatory negative feedback loop. 

 

1.1.2  CORTICOTROPIN-RELEASING HORMONE 

CRH is a 41-amino acid peptide that regulates both basal and stress-induced HPA activity [3].  

CRH-secreting neurons are located throughout the brain, but primarily concentrated in the PVN.  

The PVN is a heterogeneous nucleus that comprises magnocellular, dorsal cap, medial 

parvocellular, and submagnocellular regions.  Magnocellular cells secrete vasopressin and 

oxytocin and send projections to posterior pituitary gland  [1].  The dorsal cap and 

submagnocellular regions project to the brainstem and spinal nuclei to control sympathetic and 

parasympathetic activity.  Parvocellular neurons release CRH into the portal blood system, which 

activates CRH type I receptors in the anterior pituitary.  To date, two CRH receptor genes have 

been identified in humans and other mammals, with a third additional one being described in the 

catfish [4].  The CRH type 1 receptor is expressed predominantly in anterior pituitary 

corticotroph cells, whereas the CRH type 2 receptor is more widely distributed in the brain and 

periphery [4].  The CRH type 1 receptor mediates fear and anxiety behaviors following stressors, 

even in CRH-deficient mice [5], suggesting that a CRH-related peptide can mediate fear 

responses via the CRH type 1 receptor.  Transient early-life CRH exposure in the forebrain 

changes Crhr1 expression and induces despair-like changes in adulthood [6].  In addition to 

stimulating ACTH expression and release, CRH can also directly stimulate secretion of 

glucocorticoids from the adrenal gland [7].  Deletion of Crh by homologous recombination in 

mice results in a phenotype largely a consequence of glucocorticoid deficiency [8] and suggests 
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that lifelong deficiency of CRH may not have important direct behavioral effects on the central 

nervous system [5].  

 

Several peptide antagonists to CRH receptors were synthesized in hopes of treating conditions 

from anxiety to depression, but these peptides were all unable to pass through the blood-brain 

barrier.  In 1996, a CRH type 1 receptor-specific antagonist was developed [9].  CP-154,526  is 

non-peptide, orally active, and features a central ring core with a basic nitrogen group that 

modulates the confirmation of an agonist binding site [9].  Male rhesus macaques treated with 

antalarmin, a related CRH type 1 receptor-specific antagonist, and challenged with an intense 

social stressor exhibited significantly decreased ACTH and cortisol responses [10].  

Additionally, behaviors typically associated with social stress, such as body tremors, grimacing, 

teeth gnashing, urination, and defecation, were decreased in antalarmin-treated males.  

Exploratory and sexual behaviors that are typically suppressed during stress were increased in 

antalarmin-treated primates. 

 

Arginine vasopressin (AVP) is expressed in the supraoptic nucleus and cosecreted by PVN CRH 

neurons.  AVP amplifies the CRH effect at the pituitary [11].  Stress, circadian rhythms, and 

glucocorticoids also influence CRH release.  Afferent inputs to the PVN may mediate the action 

of stressors by controlling the release of CRH [12].  Sources of neuronal afferents to the 

hypothalamus include the amygdala, hippocampus, and brainstem regions involved in autonomic 

functions [12].  Acetylcholine, norephinephrine, angiotensin II, and possibly CRH itself, increase 

CRH concentrations in the hypophyseal portal plasma.  CRH, vasopressin, and glucocorticoids 
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all inhibit expression of Crhr1 mRNA, which may limit the effect of these agents during the 

stress response.   

 

1.1.3  ADRENOCORTICOTROPIC HORMONE 

ACTH is derived from a 266-amino acid precursor, proopiomelanocortin (POMC), so named 

because it encodes opioid, melanotropic, and corticotropic activities [13].  The human POMC 

gene is a single copy gene located on chromosome 2p23, and the murine Pomc gene is located on 

chromosome 12.  It and the genes encoding the highly homologous opioid peptides, 

preproenkephalin A and preproenkephalin B (dynorphin), are all located on different 

chromosomes.   

 

The human POMC gene is 8 kb long.  It consists of a promoter of at least 400 bp at the 5' end of 

the gene, followed by an untranslated 86-bp exon 1, 152-bp exon 2, 833-bp exon 3, and two 

introns, 3708 and 2886 bp in length.  The initiator methionine is located 20 bp into exon 2 and 

followed by a 26 amino acid hydrophobic signal peptide.  Except for the signal peptide and 18 

amino acids of the amino-terminal glycopeptide, the majority of the POMC precursor is encoded 

by exon 3 [13].  Exon 1 of the human and other mammalian POMC genes are less than 50% 

identical.  Exon 2 is close to 90% identical between the POMC genes of humans and other 

mammals.  Within exon 3 of POMC are all known peptide products of the POMC gene, 

including N-terminal glycopeptide, γ-MSH, joining peptide, ACTH, α-MSH, corticotropin-like 

intermediate lobe peptide (CLIP), ß-lipotropin  (ß-LPH), ß-MSH, and ß-endorphin.  The regions 

encoding the N-terminal glycopeptide, α-MSH, ACTH, and ß-endorphin, are greater than 95% 

identical between humans and other mammals.  In contrast, joining peptide, the region between 
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the N-terminal glycopeptide and ACTH, is very poorly conserved among mammals, which 

suggests that it does not encode a biologically important function [13]. 

 
 
The CRH-induced rise in cAMP is responsible for both the increase in POMC transcription and 

peptide synthesis as well as for the rise in intracellular calcium which results in ACTH secretion 

[14].  CRH mediates its stimulation of POMC transcription via the POMC CRH responsive 

element (PCRH-RE), which binds PCRH-RE binding protein [14].  The negative effect of 

glucocorticoids upon POMC gene transcription is thought to be mediated by a glucocorticoid-

glucocorticoid receptor complex binding to cis-acting DNA sequences within the POMC 

promoter.  The possibility exists that the glucocorticoid receptor complex does not bind directly 

to the POMC gene, but instead to another protein such as a positive transcription factor, and in 

this way mediates its negative effect on POMC gene expression.  Glucocorticoid stimulates, 

rather than inhibits, POMC gene expression in the arcuate nucleus of the hypothalamus, the site 

of α-MSH production.   

 

Release of ACTH from the corticortroph is mediated by second messengers through signal 

transduction pathways, involving protein kinase A, protein kinase C, glucocorticoids, or the 

Janus kinase/STAT system.  These pathways result in changes in the phosphorylation pattern of 

specific cellular proteins, and/or in intracellular calcium levels, impacting on ACTH synthesis 

and release.  Circulating ACTH then binds to the G-protein coupled type 2 melanocortin 

receptors (MC2R) in the adrenal gland, leading to steroid biosynthesis [1].   
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1.1.4  GLUCOCORTICOID RECEPTOR SIGNALING 

Glucocorticoids are an important output of the HPA axis, and classical actions of glucocorticoids 

are exerted through glucocorticoid receptors (GRs) expressed throughout the body and brain.  

GR is a steroid hormone receptor that is encoded by the Nr3c1, or nuclear receptor subfamily 3, 

group C, number 1, gene.  GR is part of the nuclear receptor family of transcription factors and is 

related to the mineralocorticoid, androgen, estrogen, progesterone, vitamin D, and retinoic acid 

steroid receptors [15].  GRs and related steroid receptors are thought to have originated from 

gene duplications over 400 million years ago and are highly conserved in mammals [15]. 

 

The murine GR gene is located on chromosome 18, and the human GR gene is located on 

chromosome 5.  The gene contains 9 untranslated alternative first exons and 8 translated exons.  

GR transcription is regulated by the 5’ untranslated region, and the multitude of possible first 

exons is thought to be a mechanism for local fine-tuning of GR levels  [16].  GR also has a 

variable 3’ region, which encodes splice variants, including GRα, GRβ, and GR-P [16].  GRα 

and GRβ are generated by two spliced 3’ exons, 9α and 9β.  The predominant isoform is GRα, a 

777-amino acid protein, whereas GRβ, a 742-amino acid protein, is expressed at much lower 

levels [15].  GR-P lacks both exons 8 and 9, and the translated protein is a truncated ligand 

binding domain that is thought to enhance GRα activity. 

 

The endogenous ligands of GR are the glucocorticoids cortisol in humans and corticosterone in 

rodents.  Upon glucocorticoid binding, GR translocates to the nucleus from its inactive 

cytoplasmic localization and regulates the activity of specific target genes.  GR interacts with 

DNA sequence-specific glucocorticoid responsive elements (GREs) and negative GREs (nGREs) 
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to cause transcriptional changes in target genes.  The DNA-binding domain of GRα contains two 

zinc finger motifs that bind GREs in the promoter region of target genes  [17].  GREs are 

characterized by a 15-bp consensus sequence 5’-AGAACAnnnTGTTCT-3’.  nGREs repress the 

expression of certain transcripts [18, 19].  Despite the fact that the majority of genes regulated by 

glucocorticoids are repressed, very few nGREs have been identified in these genes [19].  Known 

genes with nGREs include CRH, prolactin, proopiomelanocortin, and osteocalcin.  In the 

osteocalcin promoter, the nGRE sequence overlaps with the TATA box, and gene silencing is the 

result of competition for binding sites with other transcription factors [15].  GR can exert non-

genomic effects through protein-protein interactions.  Glucocorticoids also bind 

mineralocorticoid receptors with higher affinity than GR, such that mineralocorticoid receptors 

are occupied under basal conditions and GRs are only occupied during stress [1]. 

 

The PVN is a major site for glucocorticoid negative feedback via GR.  Dexamethasone, a potent 

synthetic glucocorticoid, decreases the amount of basal CRH in hypothalamic explants and CRH 

responsiveness to stress.  Glucocorticoids also decrease Crh mRNA expression and prevent the 

rise in CRH and AVP usually seen after adrenalectomy.  Additionally, glucocorticoids increase 

the amount of GABA in the hypothalamus and thus inhibit CRH release.  In the anterior 

pituitary, glucocorticoid inhibition of ACTH secretion in vitro is mediated via GR.   

 

In animal models, acute glucocorticoid exposure can cause chronic changes, including a decrease 

in neurogenesis as a result of epigenetic changes on gene transcription [20, 21] and long-lasting 

alterations in calcium influx in the hippocampus [22, 23].  Acutely, brain-specific deletion of GR 

results in decreased anxiety in forced-swim and dark-light box tests [24].  Removing GR in 
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dopamine receptor-expressing neurons causes decreased motivation to self-administer cocaine 

[25].  Deletion of central amygdala GR causes changes in conditioned fear behaviors [26] .  

Forebrain-specific disruption of GR produces alterations in stress-induced locomotor activation 

[27].  Inactivation of GR in macrophages and neutrophils abolishes downregulation of 

inflammatory response [28].  GR inactivation in hepatocytes causes a reduction in body size 

[29].  T-cell inactivation of GR results in significant mortality after immune activation [30].  

Lung epithelial-specific GR deletion leads to impaired epithelial differentiation and reduced 

viability [31].  Osteoclast-specific GR deletion enhances osteoclast survival but decreases their 

bone-degrading capacity [32].  GR is essential for life, and global deletion of the gene results in 

death hours after birth [33].   

 

1.1.5  AFFERENTS AND EFFERENTS OF THE STRESS RESPONSE 

Many areas of the central nervous system are involved in the regulation of stress responses.  

Afferent inputs diverse mechanisms of action that can blunt or promote the stress response via 

direct and indirect pathways.  The HPA axis, described above, is an important stress output, and 

in the hypothalamus, CRH neurons of the PVN activate this axis.  The PVN receives major direct 

catecholaminergic inputs from the nucleus of the solitary tract.  Catecholamines activate the 

HPA axis, and destroying ascending norepinephrine or epinephrine neurons reduces the HPA 

axis response to physical but not psychogenic stressors [34].  Norepinephrine and epinephrine 

inputs from the A2/C2 region innervate the medial parvocellular area of the PVN [35] .  These 

projections also release neuropeptide Y, glucagon-like peptide 1, inhibin-β, somatostatin, and 

enkephalin [36-38], which can regulate HPA axis activity.   
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Serotonin stimulates the HPA axis, and serotonergic fibers from the dorsal and median raphe 

nucleus project to the PVN [39].  Lesions of the raphe nuclei decrease HPA responses to restraint 

stress [40].  Serotonin has been shown to stimulate ACTH and corticosterone via 5HT2A and 

possibly 5HT2B receptors in the PVN.  Many serotonergic fibers innervate the peri-PVN region, 

which is dense in GABAergic cells, as well as forebrain stress-related structures, including the 

hippocampus, prefrontal cortex, and amygdala. 

 

Projections from the subfornical organ and lamina terminalis target the medial parvocellular 

PVN neurons and convey information on blood pressure, fluid balance, and electrolyte status 

[41, 42].  The system is critical in the central regulation of blood pressure by angiotensin II [34].  

Direct angiotensin II-containing projections from the subfornical organ reach the medial 

parvocellular PVN, where they activate the angiotensin II type I receptor [43]. 

 

Direct inputs to the PVN from the bed nucleus of the stria terminalis and parastrial nucleus 

contain predominantly GABAergic neurons [44].  The anteroventral bed nucleus of the stria 

terminalis activates the HPA axis, and lesions here reduce the activation of the PVN following 

restraint [45, 46].  The anteroventral region also contains CRH neurons that project to the PVN, 

supporting a central excitatory role on the HPA axis.  By contrast, the posteromedial bed nucleus 

of the stria terminalis is inhibitory for the HPA axis, and lesions to the posterior bed nucleus of 

the stria terminalis enhance expression of CRH in the PVN [47].  Regulation of neurons in the 

bed nucleus of the stria terminalis by dopamingergic pathways may also contribute to CRH-

dependent affective states [48]. 
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The PVN may also receive inputs from the thalamic sensory nuclei, including the 

subparagascicular and posterior intralaminar regions, which are thought to relay audiogenic 

stressors to the medial parvocellular PVN [49, 50].  This region of the PVN is also innervated by 

dopaminergic neurons from the anteromedial zona incerta  [42, 51, 52], though the role of 

dopaminergic neurons as a PVN afferent remains controversial.  It is thought that PVN neurons 

are well-positioned to receive direct information from the blood and CSF.  This region is clearly 

able to access blood-brain barrier permeable factors, including steroid hormones, though there is 

no evidence that the capillary plexus surrounding the PVN is fenestrated. 

 

Physical, systemic stressors are thought to be relayed directly to the PVN, while stressors 

requiring interpretation by higher brain structures (e.g., psychological stress) are thought to be 

channeled through the limbic system [53].  The PVN is densely surrounded by GABAergic 

neurons that provide significant inhibitory tone [44, 54, 55].  These peri-PVN GABAergic 

neurons receive inputs from the limbic system and modulate both autonomic and HPA axis stress 

responses. 

 

Multiple indirect pathways connect the limbic structures of the brain to the PVN.  The 

hippocampus is involved in inhibiting the HPA axis response via trans-synaptic mechanisms 

[56].  Hippocampal lesions lead to elevated basal glucocorticoid levels [57, 58], and 

hippocampal stimulation decreases glucocorticoid secretion in rats and humans [59, 60].  Both 

GR and mineralocorticoid receptors are expressed abundantly in the hippocampus and allow the 

region to modulate negative feedback by stress levels of glucocorticoids [56]. 
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The medial prefrontal cortex (mPFC) also provides negative regulation of the HPA axis.  Both c-

fos expression and glucose utilization are enhanced in this region after acute exposure to 

stressors [61-64].  Lesions in the mPFC enhance ACTH and corticosterone responses [65-67].  

Raphe efferents to the mPFC are activated by CRH pathways in anxiety [68].  Both the 

hippocampus and mPFC regulate the duration of the HPA response but not the peak of 

glucocorticoid secretion  [34].  Additionally, the mPFC is thought to modulate chronic stress 

responses.  Chronic stress causes retraction of mPFC dendrites, reduction of prefrontal 

dopamine, and sensitization to norepinephrine [56]. 

 

The amygdala activates the HPA axis.  GABAergic cells engrafted into the amygdala of young 

rats are anxiolytic [69].  Electrical stimulation of the amygdala increases glucocorticoid secretion 

in rats, monkeys, and humans [70-72].  Ablation of the amygdala produces reduced HPA 

responsiveness [58, 73].  Damage to the amygdala can suppress ACTH secretion following 

adrenalectomy [74, 75].  Discrete regions within the amygdala mediate different stressor-specific 

responses:  the central nucleus of the amygdala is sensitive to systemic, physical stressors, like 

hemorrhage and inflammation, but not restraint; the medial nucleus of the amygdala is 

responsive to restraint, forced swim, and noise, but not inflammation; and the basolateral nucleus 

of the amygdala is activated by psychological stressors [34].  The amygdala does not send many 

projections to the PVN and is thought to affect the PVN predominantly through indirect 

pathways involving the peri-PVN GABAergic neurons. 

 

Not all stress responses are relayed through the CRH neurons of the PVN.  Glucocorticoids exert 

a relatively protracted secretory effect, but the autonomic nervous system is able to respond to 
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stressors within seconds.  The autonomic nervous system is closely coupled with sensory 

systems that monitor homeostatic disruptions.  The brainstem, for example, receives information 

about major homeostatic disruptions, such as blood loss, pain, and respiratory distress [34].  

Sympathetic responses involve reflex arcs that communicate with the medulla and preganglionic 

sympathetic neurons in the spinal cord  [34].  The medulla and spinal cord systems also 

communicate with higher-order autonomic sites in the raphe pallidus, parabrachial nucleus, 

Kölliker-Fuse nucleus, midbrain, and forebrain.  These autonomic pathways, independent of 

hormonal inputs, exert integral stress responses that can generate important behavioral changes. 

The autonomic nervous system, hypothalamic-pituitary-adrenal axis, and possibly other 

uncharacterized sites generate stress responses, including the suppression of reproductive 

function, in response to homeostatic disruptions. 

 

1.2  REPRODUCTION 

Stress is a well-documented inhibitor of reproduction.  Offspring are unlikely to survive under 

conditions of food shortage or heightened predation, and in supporting pregnancy, parents may 

jeopardize their own chances of surviving to reproduce again under more favorable 

environmental conditions.  In juveniles, reproductive inhibition can manifest as delayed onset of 

puberty.  Even after sexual maturation, stress exerts control over reproduction, causing decreased 

reproductive hormone production, abnormal estrous cycling or amenorrhea in females.  How the 

reproductive axis senses extrinsic stressors remains a mystery.  Though it is clear that stress 

correlates with decreases in every reproductive hormone, it is unclear what stressors target in the 

first place and how the reproductive axis recovers in the post-traumatic period.  The discovery of 
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kisspeptin, an upstream and global regulator of the reproductive axis, raises the exciting 

possibility that it is through kisspeptin that stress interacts with the reproductive axis.  

 

1.2.1  HYPOTHALAMIC-PITUITARY-GONADAL AXIS 

For decades, the hypothalamic-pituitary-gonadal (HPG) reproductive axis was thought to consist 

of hypothalamic gonadotropin-releasing hormone (GnRH), which is secreted via the portal 

circulation to stimulate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the 

anterior pituitary.  The gonadotropins LH and FSH enter general circulation and stimulate the 

gonads to produce the sex steroids testosterone in males and estrogen in females.  The HPG axis 

is also carefully controlled by negative feedback loops:  sex steroids inhibit further GnRH, LH, 

and FSH release.  GnRH has two modes of secretion:  tonic secretion maintains follicle 

development and steroidogenesis, while cyclical GnRH surges are responsible for the LH surge 

that leads to ovulation.  GnRH is low in childhood and begins to rise immediately before 

puberty, when heightened reproductive hormone levels coincide with sexual maturation.  As late 

as the 1990s, experts in the field described GnRH as “the central core of the hypothalamic-

pituitary-gonadal axis” [76].  While GnRH may be a regulator in the HPG axis, it has become 

clear that an upstream molecule, kisspeptin, controls GnRH.  

 

1.2.2  ROLE OF KISSPEPTIN IN REPRODUCTIVE FUNCTION 

In 1996, cancer researchers in Hershey, Pennsylvania, discovered the KiSS-1 gene, a suppressor 

sequence that had anti-metastatic function in tumor cells.  By subtractive hybridization, KiSS-1 

was found to be upregulated nearly 10-fold in tumorigenic cells that never metastasized [77].  

Herein referred to as KISS1, the human gene was mapped to chromosome 1q32 and contains 4 
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exons [78]; the transcript that derives from exons 3 and 4 encodes a 145-amino acid precursor to 

the kisspeptin peptide.  The precursor is cleaved into several active C-terminus products, 

including kisspeptin-54, -14, -13, and -10, and the decapeptide is the most potent activator of the 

HPG axis.   

 

At the same time, independent researchers cloned a galanin receptor-like protein, GPR54 [79].  

The five-exon GPR54 gene localized to chromosome 19p13.3 and encoded a 396-amino acid G-

protein coupled receptor.  Despite its 45% homology to known galanin receptors, GPR54 did not 

bind galanin and remained an orphan receptor until groups discovered its remarkable binding 

affinity for kisspeptin [80-82].  In 2003, GPR54 (renamed KISS1R) became prominent in 

reproductive biology, when two independent groups discovered hypogonadotropic individuals 

with KISS1R mutations in large, consanguineous families [83, 84].  In the two families studied, 

an L148S mutation and 155-base pair deletion in the KISS1R gene, respectively, rendered 

affected individuals hypogonadotropic, prepubescent, and infertile.  Inactivating mutations in the 

KISS1 gene also rendered affected individuals infertile [85], and KISS1R gain-of-function 

mutations slowed receptor desensitization and resulted in precocious puberty [86].  Kisspeptin 

has also been identified as an HPG axis regulator in mice [83], rats [87], monkeys [88], fish [89], 

guinea pigs [90], sheep [91], pigs [92], and cows [92]. 

 

Kiss1R knockout mice exhibited hypogonadotropic hypogonadism, failure to undergo puberty, 

low reproductive hormones, small gonads, and infertility [83, 93].  Inactivating mutations in the 

Kiss1 gene also caused infertility in mice [94, 95], though hypogonadism was less severe in 

Kiss1 knockout than in Kiss1R knockout animals.  In Kiss1 but not Kiss1R knockout mice, 
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infusion of kisspeptin restored puberty and sexual maturation [94].  In wild-type rats, kisspeptin 

infusion in juvenile females caused advanced puberty [87].  While Kiss1R transcript levels were 

similar in juvenile and adult mice, Kiss1 transcript levels reached maximum levels at puberty in 

both males and females [87].  The number of Kiss1 mRNA-positive neurons increased 

postnatally until puberty [96]. 

 

In adult men, kisspeptin caused a dose-dependent increase in plasma LH and testosterone, while 

in adult women, kisspeptin caused a dose-dependent increase in plasma LH, with the greatest 

kisspeptin effect observed during the preovulatory phase; [97, 98].  Likewise in adult female rats, 

the maximal LH response to kisspeptin occurred at estrous [99]. 

 

In wild-type mice and rats, the stimulatory effects of kisspeptin were blocked by pretreatment 

with the GnRH antagonist, acyline [100-103].  This suggests that kisspeptin acts on GnRH 

neurons to stimulate LH/FSH in the HPG axis.  Kiss1R is expressed in GnRH neurons [104], and 

kisspeptin-positive fibers were found in close apposition to GnRH-positive neurons in the 

preoptic area and median eminence [91, 96, 105].  Direct electrophysiological recordings of 

GnRH neurons showed that kisspeptin causes increased firing in prepubertal males and 

proestrous females [106, 107].  In juvenile mice, kisspeptin activated roughly 30% of GnRH 

neurons, and this number increased during the prepubertal period; by adulthood, kisspeptin 

administration elicited depolarization of >90% of GnRH neurons in both males and females 

[106].  Exogenous GnRH or LH/FSH infusion increased downstream HPG output, but did not 

affect kisspeptin expression or activity [108].  Continuous administration of kisspeptin-10 led to 

LH peaks after 2-3 h and receptor desensitization thereafter in rhesus monkeys; desensitization 
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was associated with decreased LH and pituitary response to GnRH injection [109].  Tracing 

experiments have not provided conclusive evidence as to which population(s) of kisspeptin 

neurons project to GnRH neurons.   

 

Kisspeptin transcript and protein have been found in several places in the hypothalamus, 

including the anteroventral periventricular (AVPV), periventricular (PeN), anterodorsal preoptic 

nucleus, and arcuate nuclei [100, 110].  In the AVPV but not arcuate nucleus, kisspeptin 

expression is sexually dimorphic; females have more than 10-fold higher Kiss1 transcript [96].  

The AVPV and arcuate nuclei are differentially regulated by sex steroid feedback.  Castrated 

males and ovariectomized females, which have absent sex steroids, had increased arcuate and 

decreased AVPV nucleus Kiss1 transcript levels [111, 112].  Replacement testosterone or 

estradiol decreased arcuate and increased AVPV nucleus kisspeptin expression.  Taken together, 

sex steroids negatively regulate the arcuate and positively regulate the AVPV nucleus.  Arcuate 

nucleus kisspeptin neurons are thought to mediate traditional HPG axis negative feedback.  

Given the higher expression of Kiss1 mRNA in female AVPV nucleus and the positive feedback 

from sex steroids, AVPV nucleus kisspeptin neurons are thought to be responsible for the 

preovulatory surge in LH release [105, 113].  In mice, AVPV nucleus Kiss1 expression peaks 

while arcuate levels reach a nadir during proestrous, which coincides with the estrogen- and 

progesterone-induced LH surge [114].  AVPV nucleus but not arcuate kisspeptin neurons 

express c-Fos during the proestrous surge.  Thus, arcuate nucleus kisspeptin neurons are posited 

to underlie the tonic secretion of GnRH in males and females, while AVPV nucleus kisspeptin 

neurons may control the proestrous surge in females [115, 116].  Kisspeptin is the most upstream 
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regulator of the HPG axis known to date, and we hypothesize that the stress-induced elevation in 

glucocorticoids during stress regulates kisspeptin neurons (Figure 1).   

 

1.2.3  STRESS-INDUCED INHIBITION OF REPRODUCTIVE FUNCTION 

Environmental factors like food availability, predator population, photoperiod, and mate 

availability cause powerful reproductive changes, and even modify genetically programmed 

behaviors such as the timing of puberty or ovulation.  In female rodents, the presence of male 

pheromones accelerated puberty and promoted lordosis behavior [117].  In males, the presence 

of female pheromones led to increased testosterone, LH, and copulatory behaviors [117].  When 

housed only with other males, male mice delayed pubertal onset.  Mated females spontaneously 

aborted pregnancies when novel males were introduced. 

 

In humans, delayed puberty was observed in elite runners, ballet dancers, gymnasts, and girls 

with anorexia nervosa, who had elevated serum cortisol [118-122].  Even in healthy girls, 

elevated glucocorticoid levels in the high-normal range correlated with delayed puberty [123].  A 

study of rugby players found that cortisol rose and testosterone fell during exercise and both 

returned to normal after five days [124].  

 

Corticosterone pellets implanted in neonatal rats at P3, 6, 12, or 18 caused females to exhibit 

decreased lordosis behavior, prolonged estrous cyclicity, and decreased insemination by males 

[125, 126].  Neonatal treatment with ACTH and hypothalamic treatment with cortisol produced 

decreased sexual behaviors in adulthood [125, 126].  Treatment with a GR antagonist [127] and 

adrenalectomy [128] prevented stress-induced decreases in plasma LH.  
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Following immobilization stress, intratesticular and serum testosterone levels and cAMP content 

in Leydig cells fell more quickly than plasma LH levels do [129].  Inhibition of testosterone by 

corticosterone was due to increased apoptosis of Leydig cells [130].  Immobilization stress 

produced decreased plasma testosterone concentrations, and this effect was partially blocked by 

pre-treatment with the glucocorticoid receptor antagonist, RU486 [131].  Glucocorticoids act 

directly on GRs in testicular interstitial cells to suppress the testicular response to gonadotropins 

in vitro [131].  

 

CRH administration inhibited the secretion of GnRH [132] and synthesis of LH [133].  β-

endorphin inhibited GnRH secretion, and central CRH can regulate arcuate nucleus β-endorphin 

release [132].  CRH neurons indirectly regulate the HPG axis via downstream glucocorticoid 

production and directly regulate the HPG axis via synapses on GnRH neurons [132].  Stress-

induced reproductive inhibition by undernutrition was partially reversed by the administration of 

the CRH antagonist, astressin B [134].  

 

Throughout life, animals are confronted by stressors that inhibit the reproductive axis and must 

overcome this inhibition in order to reproduce subsequently.  The ability to adapt after acute 

stress promotes subsequent reproductive success, while dysregulation of the response can cause 

maladaptive changes, including long-term infertility.  Major depression, post-traumatic stress 

disorder (PTSD), and anorexia nervosa are all characterized by increased cortisol secretion, 

dysregulated HPA axis feedback, and suppression of fertility [132].  Reproductive inhibition 

during stress is not mediated by the HPA axis alone.  Glucocorticoids are not the primary 

mediator of cold stress, for example, in which norepinephrine is thought to mediate adaptive 
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thermoregulatory changes [135].    Restraint stress caused suppression of LH in rats, which was 

ameliorated by lesions in the medial amygdala [136].  The relationship between stress and 

reproduction is not unidirectional.  Testosterone can affect basal and stress-dependent HPA 

function, and several stress responses rely on the sex hormone milieu and are absent in 

ovarectomized rats [133].   

 

1.2.4  SEX STEROID-DEPENDENT REPRODUCTIVE BEHAVIORS 

Males and females of many species display strikingly different behavioral repertoires, especially 

in reproduction.  Many areas of the brain exhibit sexually dimorphic gene expression [137-141].  

Sex steroids, genetic programming, and social experience all contribute to the coordination of 

these dimorphisms.  Arnold Berthold was one of the earliest proponents of the hypothesis that 

sex steroid hormones organize and activate male- versus female-specific sexual behaviors.  

Using roosters, he demonstrated that castrated juvenile males exhibited decreased mating, 

aggression, and crowing as adults.  The effects of castration were reversed if the testes of another 

male were implanted in the body cavity of the juvenile [117].  Female guinea pigs exposed to 

perinatal androgens displayed increased male copulatory behaviors and failed to develop female 

sexual behaviors  [142].   

 

The presence or absence of the Y chromosome determines gonadal sex in mammals.  Sex-

specific gonadal differentiation is determined by the SRY gene on the Y chromosome, which 

directs undifferentiated gonads to form testes.  In mice, the sex of the gonad is specified by 

E14.5, and the testes begin to secrete testosterone during the remaining days of gestation [143, 

144].  Sex-specific traits in other tissues are then determined by sex steroids produced by the 
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developing gonad.  The rise in testosterone is responsible for the sexual differentiation of 

external genitalia in most mammals, and removing undifferentiated gonads of genetically male 

rabbit embryos resulted in the birth of female offspring [145].  By contrast, replacing the 

undifferentiated gonads with a testis in either genetically male or female embryos resulted in the 

birth of offspring with male genitalia [145].  Investigation of SRY-independent development was 

made possible by the generation of transgenic mice in which the sex of the brain is independent 

of the gonadal sex.  Animals that lacked the Sry gene on the Y chromosome were gonadally 

female but genetically male (XY).  These animals exhibited different mating and sniffing 

behaviors compared to genetically XY males that also had testes [146].   

 

Gonadectomy and sex steroid replacement in development and adulthood has been used to 

determine the role of hormones in the development of sex-specific behaviors.  Castrated male rat 

pups treated with testosterone displayed masculine behavior as adults only if testosterone was 

given during the first four days of life [147].  By contrast, males given testosterone after this 

critical period failed to show male sexual behavior as adults.  Female pups treated with either 

testosterone or estradiol exhibited masculine adult behavior [143].  Castrated male pups treated 

with estradiol showed partial restoration of normal male sexual behaviors [143].  Testosterone is 

aromatized to estradiol during fetal development [148], and fetal estradiol is thought to be 

responsible for sexual differentiation in the brain.  Both fetal males and females have aromatase 

expression in the preoptic area, a sexually dimorphic nucleus.  Concentrations of aromatase 

peaked with the critical period of sexual differentiation, and males had higher aromatase activity 

than females [149, 150].  Estrogen exerts its effects through estrogen receptors, the manipulation 

of which affects both male and females.  Estrogen receptor α (ERα) knockout males and females 
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were infertile, and females exhibited no lordosis [143, 151], and males had decreased mounting 

behavior, no ejaculation, and decreased preference for females in estrous [143]. 

 

Male sexual behavior is thought to be dependent on central actions of androgens acting through 

the estrogen receptors, whereas peripheral androgens exert effects through androgen receptors 

[143].  In castrated males, non-aromatizable androgens used in conjunction with estradiol were 

more effective at restoring male-specific sexual behaviors than administration of estradiol alone 

[152].  Central administration of an androgen receptor antagonist inhibited the restoration of 

male copulatory behaviors after castration and testosterone replacement [153].  Castrated males 

lost the preference for females in estrous, and testosterone replacement restored this preference 

[154].  Not only are male-specific copulatory behaviors restored in males treated with either 

estradiol or testosterone, ovariectomzied females that are treated with testosterone exhibited 

male-specific mounting and thrusting behaviors [143, 155].  

 

The medial preoptic nucleus is a site of sexually dimorphic kisspeptin expression.  In rodents, the 

medial preoptic nucleus is larger in adult males than in females, and progesterone receptor 

expression here is higher in males than in females, which may mediate the dimorphic 

development of the nucleus [137, 138].  Aromatization of testosterone into estradiol is critical for 

differential progesterone receptor expression [138], and progesterone receptor signaling is 

critical to the size of the adult preoptic nucleus [137].  Progesterone receptor sexual 

differentiation is controlled by gonadal and not genetic sex [140].  The Bax protein is required 

for cell death in developing neurons, a sexually dimorphic process, and Bax knockout mice did 

not exhibit sex differences in the normally dimorphic bed nucleus of the stria terminalis and 
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preoptic area [141]  Deletion of Bax did not diminish sex differences in kisspeptin expression in 

the AVPV, though arcuate kisspeptin expression was significantly increased in these mice [156].  

Bax knockout males exhibited normal aggression in resident/intruder tests, but did not exhibit the 

same preference for female-soiled bedding as wild-type males [157].  Together, these results 

demonstrate the importance of sex steroids in governing complex sexual behaviors in juveniles 

and adults of both sexes. 

 

1.3  LEPTIN 

Leptin is a 167-amino acid adipokine with a four-helix bundle motif similar to that of cytokines 

[158] and is produced by adipocytes in proportion to adipose mass [159].  Circulating leptin also 

fluctuates acutely with caloric intake and short-term fasting [160, 161].  Leptin binds at least six 

isoforms of the leptin receptor (ObR):  ObRa, ObRb, ObRc, ObRd, ObRe, and ObRf.  These 

isoforms have homologous extracellular but different intracellular domains due to alternative 

splicing [162].  The long isoform, ObRb, is primarily responsible for leptin signaling, while the 

short isoforms, ObRa and ObRc, are thought to function in the transport of leptin across the 

blood-brain barrier [163].  Leptin binding activates the Janus kinase 2/signal transducer and 

activator of transcription 3 (JAK2/STAT3) signal transduction pathway.  Activation of STAT3 

stimulates POMC mRNA transcription in the arcuate nucleus of the hypothalamus.  Disruption 

of STAT3 signaling via the intracellular tyrosine residue Tyr1138 of ObRb caused hyperphagia 

and obesity, but not infertility [164].   

 

Leptin conveys peripheral information about fat stores to central regulators of metabolism in the 

hypothalamus.  The hormone targets subsets of neurons in the arcuate nucleus of the 
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hypothalamus that produce POMC, neuropeptide Y (NPY), and agouti related-peptide (AGRP).  

When POMC neurons are activated by leptin, POMC is transcribed and cleaved into α-

melanocyte stimulating hormone (α-MSH), an anorexigenic hormone.  NPY/AGRP neuron 

activation promotes orexigenic behavior [165].  Both POMC and NPY/AGRP neurons project to 

the PVN and target melanocortin 4 receptors (MC4R) , but the peptides α-MSH and AGRP have 

antagonistic effects [166, 167]:  α-MSH stimulates while AGRP is an inverse agonist of MC4Rs.  

MC4R is a G-protein coupled receptor that mediates anorexigenic effects [168].  The MC4R 

knockout was severely overweight [169], and conditional activation of MC4R in the PVN caused 

decreased food intake and body weight [170].   

 

1.3.1  LEPTIN DEFICIENCY 

Naturally-occurring murine mutations in the leptin gene (LepOb/Ob) and leptin receptor gene 

(LepRDb/Db) cause obesity and infertility [171, 172].  In 1949, researchers at The Jackson 

Laboratories in Bar Harbor, Maine, described a naturally-occurring strain of obese mice that was 

dubbed “ob,” short for obese.  Two theories were postulated to explain the morbid obesity.  First, 

it was possible that these obese animals had an extra hormone compared to normal mice.  The 

extra hormone would cause the obese animal to increase its food intake and gain weight.  By 

contrast, it was possible the obese animals lacked a hormone that normal mice produced.  This 

hormone would normally inform a mouse to stop eating when it had had enough.  In the 1950s 

and 1960s, researchers used a technique called parabiosis to conjoin pairs of animals, and when 

ob/ob mice were conjoined with WT mice, they began to eat less and eventually became lean 

[173-175].  Scientists concluded the mystery mutation impeded the production of a “stop eating” 

hormone in obese mice, later identified by positional cloning as leptin [171]. 
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Human leptin mutations were first identified in a large, consanguineous Pakistani family [176].  

One child was 190 pounds at the age of eight and had undergone liposuction at the age of seven, 

while her cousin was 63 pounds at the age of two.  The eight-year old patient received one 

injection of leptin every morning for a year at a dose that would equal 10% the blood leptin 

levels of a normal, healthy child [177].  The first meal after treatment was 42% less than the 

patient’s usual food intake, and she went on to lose nearly five pounds of fat each month [177]. 

 

Leptin deficiency was not only associated with morbid obesity but with infertility and 

hypercortisolemia as well.  Leptin treatment restored fertility in LepOb/Ob mice and elicited 

advanced puberty in WT female mice [178].  As a result, leptin was widely considered to be 

required for fertility.  Leptin stimulated LH secretion in vitro and in vivo, but GnRH neurons did 

not express ObRb [179-182].  Some studies implicated preoptic area neurons that send afferent 

projections to GnRH neurons as mediators of leptin-induced activation of the reproductive axis  

[183].  Strain differences can also be important in the regulation of fertility, and leptin-deficient 

BALB/cJ mice were more fertile than leptin-deficient C57BL/6J mice [184].  Lack of leptin 

action causes a failure to stimulate anorexigenic α-MSH and suppress orexigenic AGRP/NPY, 

and LepOb/Ob animals are understandably obese.  But why are they infertile?   
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1.3.2  FERTILITY 

Food availability is a dramatic regulator of fertility.  When food is plentiful, both parents and 

offspring have better chances of surviving the pregnancy.  When food is scarce and the 

energetically costly pregnancy is unlikely to result in healthy offspring, however, females inhibit 

reproductive function.  Anorexic women classically become amenorrheic, and pubertal delay is 

seen in children who undergo severe stress.  Adult female mice develop abnormal estrous 

cycling and juveniles delay vaginal opening after severe stress.  Thus energy metabolism is a 

potent regulator of reproduction, yet the means by which energy balance is communicated to the 

HPG axis remains unknown.   

 

For many years, investigators have tried to identify mechanistic connections between energy 

metabolism and reproduction.  Leptin is a crucial signal of full energy stores, and many have 

correlated decreased leptin with decreased fertility.  Despite the insights that have been achieved 

in leptin action and HPG signaling independently, no direct molecular pathways have been 

implicated to connect starvation and infertility.  Several groups have hypothesized a direct 

interaction between kisspeptin and leptin.  Food deprivation induced a decrease in rat 

hypothalamic Kiss1 mRNA transcripts [185].  Exogenous kisspeptin administration did not affect 

food intake after food deprivation but did elicit vaginal opening in females despite undernutrition 

[185].  Others hypothesized that leptin receptors were present in kisspeptin neurons based on 

evidence that fasting inhibited the HPG axis along with kisspeptin expression and that both 

LepOb/Ob- and fasting-induced inhibition of gonadotropin secretion were rescued by 

administration of kisspeptin [186].  Smith et al. reported coexpression of Kiss1 and ObR mRNAs 

in 40% of neurons in the arcuate nucleus of the hypothalamus by double-label in situ 
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hybridization [186], but so far no other groups have repeated this finding.  Additionally, these 

experiments were conducted in tissues collected from gonadectomized animals, in which arcuate 

nucleus Kiss1 mRNA was significantly upregulated, possibly in cells that would not express 

kisspeptin under intact conditions.  Decreased Kiss1 mRNA expression in these LepOb/Ob mice 

was reported to be reversed by leptin infusion [186].  Selective deletion of leptin receptors in 

kisspeptin neurons had no effect on fertility or body weight, and it was reported that only 4% of 

kisspeptin neurons in non-gonadectomized conditions expressed leptin receptor.  It is likely that 

interactions between energy metabolism and reproduction are more complex than direct ObR 

expression in kisspeptin neurons. 

 

Using LepOb/Ob and diet-induced obese animals, others have found no changes in hypothalamic 

Kiss1 mRNA expression; leptin infusion in LepOb/Ob mice, however, induced an increase in Kiss1 

mRNA levels [187].  One group reported that Kiss1 mRNA was present in adipose tissue [188].  

Given its potent role in stimulating the HPG axis, kisspeptin is still being explored as a potential 

candidate for translating nutritional status to reproductive function.  But is food deprivation 

simple a metabolic cue, or does it represent stress in general?  The LepOb/Ob mouse is not only 

obese and infertile but hypercortisolemic as well.  Could increased glucocorticoid secretion 

cause infertility or obesity in LepOb/Ob mice?   

 

1.3.3  HYPERCORTISOLEMIA 

Cushing’s syndrome 

Reproductive disturbances, including menstrual cycle abnormalities and loss of libido, often 

occur in patients with Cushing’s syndrome, a disease characterized by elevated secretion of 
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cortisol.  Men with Cushing’s syndrome due to adrenal hyperplasia or adenoma exhibit low 

plasma testosterone, and a majority of these men complain of impotence or loss of libido  [189].  

Adrenalectomy restores the decreased plasma testosterone levels to normal [189].  Men with 

Cushing’s syndrome have subnormal testosterone production rates, concomitant with 

endogenous hypercortisolism [190].  No differences in testosterone production are observed in 

women with Cushing’s syndrome, suggesting that gonadal testosterone production is suppressed 

by glucocorticoids [190].  Patients with Cushing’s disease also have increased risk of developing 

major depressive disorder, which may be related to elevated plasma cortisol levels [191, 192].  

Chronic hypercortisolemia in Cushing’s syndrome does not appear to directly affect plasma 

leptin levels [193]. 

 

Type 2 diabetes 

Plasma cortisol is increased in patients with type 2 diabetes [194, 195].  Hypogonadotropic 

hypogonadism is common in type 2 diabetes, and LH, FSH, and testosterone are lower in male 

patients [196].  Testosterone correlates negatively with BMI, though not with cortisol [197], and 

several studies have found that higher baseline levels of leptin are correlated with increased risk 

of type 2 diabetes [198, 199].  

 

Anorexia nervosa 

One diagnostic criterion of anorexia nervosa, a psychiatric illness characterized by severe self-

imposed malnutrition, is amenorrhea, or the cessation of menstruation.  Amenorrhea in anorexia 

nervosa may be a protective adaptation that prevents pregnancy in times of insufficient nutrition.  

Patients with anorexia nervosa maximize the stress response to chronic starvation and exhibit 
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high levels of glucocorticoids [200].  In its maladaptive form, anorexia-induced infertility causes 

long-term infertility even after weight restoration, although most patients do regain fertility 

[201]. 

 

Elite athletes 

Hypogonadotropic hypogonadism is common in male and female elite athletes, and cortisol is 

significantly elevated in these athletes during exercise [118].  Both LH pulse frequency and 

amplitude are suppressed, and the LH response to GnRH is decreased in these athletes [118].   

19% of female Olympic marathon runners are amenorrheic, and these amenorrheic runners have 

higher basal serum cortisol compared to eumenorrheic marathon runners [202].  Menstrual 

frequency in atheletes is negatively correlated with glucocorticoid levels [200].  Cortisol is 

increased and testosterone decreased immediately after running a marathon in men, and while 

cortisol returns to baseline after 24 h, testosterone only partial recovers after 24 h [203].  In non-

elite athletes monitored during the Athens marathon, serum cortisol was increased and 

testosterone decreased 1 h after the race, and both returned to baseline 1 week thereafter [204].  

Ultra-marathon runners monitored at the start of a race, 33 km, 75 km, and after completion of 

110 km had increased cortisol and β-endorphin levels, while testosterone and LH decreased 

throughout the race [205, 206].  Both chronic and acute increases in cortisol appear to suppress 

reproductive axis function.  Elite marathoners also exhibit very low levels of serum leptin [207]. 

 

Post-traumatic stress disorder 

PTSD affects 70% of prisoner of war survivors and 30% of combat veterans, and nearly 70-80% 

of these individuals report impaired libido [208].  In a study of Operation Iraqi Freedom veterans 
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with PTSD, 39 of 53 patients reported diminished libido; 26 reported erectile dysfunction; and 8 

reported ejaculatory dysfunction [209].  Elite soldiers participating in psychologically stressful 

exercises have lower testosterone levels immediately after training [210].  British and Australian 

veterans of the first Gulf war have increased risk of infertility and longer time to conception 

[211], and individuals with PTSD have lower levels of testosterone compared to healthy controls 

[212].  The mechanisms by which acute stress can cause these consequences long after the initial 

stressor has subsided are not well-understood. 

 

In patient populations, it is difficult to isolate cortisol as a causal rather than correlative feature in 

these disorders.  Many of the diseases associated with dysregulated cortisol secretion have 

complex, interrelated symptoms and etiology.  Cushing’s syndrome is associated with increased 

obesity; type 2 diabetes is associated with metabolic syndrome; endurance athletes have 

extraordinarily low fat mass; and anorexia nervosa is a psychiatric disorder characterized by 

extreme weight loss.  It is clear that elevated cortisol, whether associated with weight gain or 

loss, correlates with suppressed reproductive function.  Using genetically engineered mouse 

models to disrupt glucocorticoid secretion or signaling, we aimed to study the contribution of 

glucocorticoids to these disorders, specifically the role of glucocorticoids in the regulation of 

kisspeptin neurons during stress and infertility in normal mice, and of infertility and obesity in 

leptin-deficient mice. 
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Figure 1 
In the hypothalamus, kisspeptin is produced in the anteroventral periventricular (AVPV) and 
arcuate nuclei.  Kisspeptin stimulates gonadotropin-releasing hormone (GnRH) release, which 
causes the secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) by the 
pituitary.  Circulating LH and FSH stimulate the release of sex steroids from the gonads.  Sex 
steroids feed back to inhibit kisspeptin neurons in the arcuate nucleus and to stimulate kisspeptin 
neurons in the AVPV.  
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Drs. Lanjuin and Dulac generated the Kiss1CreBAC transgenic mouse.  Dr. Basko-Plluska 
investigated the use of restraint as a psychological stressor.  Dr. Muglia generated the GRflox/flox 
mouse.  

CHAPTER 2  

 

 

 

STRESS-INDUCED GLUCOCORTICOID RECEPTOR 

SIGNALING REGULATES KISSPEPTIN NEURONS 

 

 

 

 

 

 

This chapter is based on: 

Oulu Wang, Anne Lanjuin, Juliana Basko-Plluska, Louis Muglia, Catherine Dulac, and Joseph 
Majzoub.  Disruption of glucocorticoid receptor signaling in kisspeptin neurons accelerates the 
recovery of reproductive function in the post-traumatic stress period.  In preparation, 2012. 
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2.1  ABSTRACT 

Stressors generate adaptive responses to facilitate the return to homeostasis.  Dysregulation of 

this process can cause maladaptive responses, including cessation of reproductive function that 

persists long after the stressor has subsided, through mechanisms that are not well understood.  

Kisspeptin (KISS1) is required for the activation of the hypothalamic-pituitary-gonadal 

reproductive axis in humans and mice.  We hypothesized that acute stress in mice, acting through 

the stress hormone, corticosterone, transiently inhibits kisspeptin neurons and downstream 

reproductive capacity, and that the restoration of kisspeptin signaling is necessary for normal 

reactivation of the reproductive axis.  We examined the response of hypothalamic Kiss1 mRNA 

expression and hormones of the reproductive and stress axes to different stressors.  Stressors that 

stimulated glucocorticoid secretion, as well as glucocorticoid administration itself, inhibited 

Kiss1 mRNA expression, while conditions that did not change glucocorticoid secretion did not 

alter Kiss1 mRNA expression.  In mice lacking glucocorticoid receptor specifically in kisspeptin-

containing neurons, Kiss1 mRNA expression was no longer inhibited during restraint stress 

despite a rise in corticosterone, and both testosterone and copulatory behaviors showed 

accelerated recovery in the post-traumatic stress period.  Blockade of glucocorticoid receptor 

signaling in kisspeptin neurons during stress accelerates the recovery of reproductive function 

during the post-traumatic stress period, a finding that may have therapeutic implications in 

humans with post-traumatic stress disorders. 
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2.2  INTRODUCTION 

Stress responses to acute stressors improve the chances of immediate survival, even at the 

expense of immediate reproductive fitness [213].  Stressors can generate adaptive stress 

responses that prepare for the return to homeostasis, but also maladaptive responses, including 

the cessation of reproductive function long after the stressor has subsided.  In patients with post-

traumatic stress disorder (PTSD), reproductive inhibition can persist long after the initial trauma 

[208, 209].  The mechanisms by which acute stress can result in these maladaptive, post-

traumatic consequences are not well understood.   

 

In 2003, two independent groups discovered hypogonadotropic individuals with kisspeptin 

receptor mutations in large, consanguineous families [83, 84], and in humans and mouse models, 

loss-of-function mutations in either the kisspeptin receptor or ligand block the onset of puberty 

[83, 85, 93-95].  Conversely, gain-of-function mutations in the human receptor result in 

precocious puberty [86], and administration of kisspeptin accelerates the onset of puberty in 

juvenile rats [214].  Kisspeptin-secreting neurons in the arcuate and anteroventral periventricular 

nuclei of the rodent hypothalamus stimulate gonadotropin-releasing hormone neurons, which 

promote the release of luteinizing hormone (LH) and follicle-stimulating hormone in the anterior 

pituitary [96, 100, 106, 215].  These gonadotropins stimulate the production of testosterone in 

males and estrogen in females.  Acute diphtheria toxin-mediated ablation of kisspeptin neurons 

in adult mice inhibits fertility, indicating that kisspeptin neurons continue to regulate 

reproduction in adults [216]. 
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The impact of acute disruption of kisspeptin activity in adulthood may have a physiologic 

correlate in the acute stress response.  We hypothesized that acute stress transiently inhibits 

kisspeptin neurons and the downstream hypothalamic-pituitary-gonadal (HPG) axis, and that 

reactivation of kisspeptin signaling is necessary to reactivate the HPG axis, much as kisspeptin is 

needed to turn on the HPG axis during puberty.  Because activation of the adrenal axis is an 

important part of the mammalian stress response, and adrenal steroids are known to inhibit the 

HPG axis [125, 129, 189, 190, 217], we further proposed that this stress-induced inhibition of 

kisspeptin expression was caused by the concomitant elevation of glucocorticoids, with their 

subsequent fall after stress restoring kisspeptin expression and reproductive function.  To test our 

hypothesis, we examined the response of kisspeptin expression, plasma corticosterone, and the 

HPG axis to different stressors in mice, and we generated mice lacking glucocorticoid receptor 

(GR) specifically in kisspeptin-containing neurons. 
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2.3  MATERIALS AND METHODS 

Animals and tissue preparation 

All experiments were conducted in compliance with the Institutional Animal Care and Use 

Committee guidelines of Children’s Hospital Boston.  Adult C57BL/6J male mice were 

purchased from The Jackson Laboratory (Bar Harbor, ME; 000664) and tested at 10-14 weeks of 

age.  All experiments concluded between 2-4PM.  Animals were maintained on a 12 h light/dark 

cycle with access to chow and water ad libitum and tested between 10-14 weeks of age.  Before 

experiments, animals were transferred to a quiet procedure room and allowed to acclimate for 7 

d.  Retroorbital blood samples were collected from unanesthetized animals within 1 min of cage 

handling in all conditions and centrifuged at 3,000 rpm for 10 min at 4°C.  Retroorbital 

phlebotomy was used to collect sufficient volumes of blood in non-terminal experiments.  

Animals were sacrificed by rapid decapitation without anesthesia, and dissected brains were 

embedded in OCT and stored at -80°C.  Brains were sectioned coronally at 20 µm from the 

anteroventral periventricular nucleus to mammillary bodies (Figure 2.1) in four sets, thaw-

mounted onto 25 mm x75 mm slides, and returned to -80°C until further processing.   
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Figure 2.1 
Anatomical landmarks of the arcuate nucleus by darkfield 
microscopy (no staining for kisspeptin was performed).  
Asterisks denote sections that were collected for analyses of 
kisspeptin expression, beginning with sections in which the 
optic chiasm and subsequent bifurcation were visible and 
ending with sections in which the mammillary bodies were 
visible. 
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Luteinizing hormone was assayed by the UVA Center for Research in Reproduction Ligand 

Assay and Analysis Core.  Plasma corticosterone and testosterone were measured by 

radioimmunoassay (MP Biomedicals) with the following modifications:  to minimize the amount 

of plasma used in the corticosterone radioimmunoassay, we generated 1:200 dilutions using 

either 1 µL of plasma with 199 µL of steroid diluent or 5 µL of plasma with 995 µL of steroid 

diluent.  In general, aliquots containing 1 µL were more variable in corticosterone 

concentrations, likely due to pipetting error, and unless blood volume was a major constraint, we 

used 5 µL of plasma for corticosterone assays.  The dynamic range for the corticosterone assay 

was 25 ng/mL to 1,000 ng/mL.  To minimize the amount of plasma used in the testosterone 

radioimmunoassay, we used 25 µL of plasma in singlet.  In pilots, this volume was as effective 

in identifying stress-induced testosterone suppression as 50 µL of plasma in duplicate.  The 

dynamic range for this assay was 0.1 ng/mL to 10 ng/mL. 

 

Transgenic mice and breeding strategy 

To study the effects of GR deletion in kisspeptin neurons, we generated Kiss1CreBAC::GRflox/flox 

mice as well as Kiss1CreBAC, GRflox/flox, and WT controls.  GRflox/flox animals were previously 

validated and generously provided by Louis Muglia [30].  Briefly, loxP sites were targeted 

upstream of exon 1C and in intron 2 of the GR gene, Nr3c1.  Exon 2 contains the ATG initiation 

site, and the exon and start sequence are excised by Cre-mediated recombination.  GRflox/flox 

animals were on a C57B background.  To genetically target kisspeptin neurons, Drs. Lanjuin and 

Dulac generated a Kiss1CreBAC mouse line using a BAC transgenic approach [218].  Briefly, Cre 

cDNA sequences including a bGH polyA tail were recombined after the Kiss1 translational start 

ATG on BAC RP23-240P23.  The modified BAC was confirmed to be free of gross 
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rearrangements, linearized with Not1 to release a 102kb fragment containing the modified 

Kiss1CreBAC locus (including 65kb of upstream sequences), and injected into B6/CBA oocytes.  

Only one of six founder lines that we obtained showed expression in accordance with reported 

sites of endogenous Kiss1 expression by double-label in situ hybridization.  Kiss1CreBAC mice 

were on a C57BL/CBA mixed background.   

 

All animals used in experiments were males on a C57BL/CBA mixed background.  Crosses from 

Kiss1CreBAC::GRflox/+ x GRflox/+ breeders yielded Kiss1CreBAC::GRflox/flox, Kiss1CreBAC, GRflox/flox and 

WT male littermates at frequencies of 6.25% each.  Because these yields were insufficient to 

power our study, we crossed F1 littermates, Kiss1CreBAC x WT, and Kiss1CreBAC::GRflox/flox  x 

GRflox/flox, to produce all the F2 littermates used in this study.  Thus, in the F2 generation, 

Kiss1CreBAC and WT mice were littermates, Kiss1CreBAC::GRflox/flox  and GRflox/flox mice were 

littermates, and all four genotypes from the F2 generation were related, because all F1 breeders 

were littermates. 

 

Stressors 

Restraint causes minimal physical harm and is considered a psychological stressor [219].  

Animals were placed in ventilated restraint tubes for 5 h.  For food deprivation experiments, 

animals were placed in cages without food for 48 h, but had access to bedding and ad libitum 

water.  For cold exposure experiments, animals were housed at 4°C for 24 h with bedding, food, 

and water.  For intraperitoneal corticosterone injections, corticosterone (Sigma C2505, St. Louis, 

MO) was administered at 40 mg/kg body weight, and following decapitation, tissues were 

collected 5 h post-injection for the detection of mRNA changes in the hypothalamus.  In restraint 
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experiments, 14 male mice were tested per treatment (restrained or unrestrained).  In food 

deprivation experiments, 12 male mice were tested per treatment (food-deprived or fed).  In cold 

exposure experiments, 6 male mice were tested per treatment (housed at 4ºC or room 

temperature).  In i.p. corticosterone experiments, 7 male mice were tested per treatment 

(corticosterone or saline).   

 

In situ hybridization 

The Kiss1 mRNA probe was generously provided by Robert Steiner [100].  Sense and antisense 

Kiss1 probes spanning bases 76-486 of the murine Kiss1 gene were generated from a linearized 

pAMP1 plasmid containing Kiss1, SP6- and T7-binding sequences.  Radiolabeled probes were 

synthesized using 33P-UTP, and in situ hybridization was performed as previously described 

[100], with the following modifications.  Briefly, tissues were washed in 4% paraformaldehyde, 

acetic anhydride, 2X SSC, chloroform, and graded ethanols, then incubated in 12.7 million 

dpm/mL probe for 16 h at 55°C.  Slides were subsequently washed with 4X SSC, RNase, 2X 

SSC, 0.5X SSC at 62°C, and graded ethanols in ammonium acetate, then dipped in 

autoradiographic silver emulsion (Kodak NTB 8895666).  Silver grains in the hypothalamus 

were visualized by darkfield microscopy on the 10X objective of a Nikon Eclipse E800.  Using 

NIH ImageJ software (http://imagej.nih.gov/ij/), cells with ten-fold higher silver than 

background were identified as Kiss1 mRNA-positive by a blinded observer using a semi-

automated program (Figure 2.2).   
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Figure 2.2 
(A) Kiss1 mRNA-positive silver grains were visualized by darkfield microscopy on a Nikon 
Eclipse E800.  Using NIH ImageJ software (http://imagej.nih.gov/ij/), we coded a semi-
automated program to identify cells with ten-fold higher silver than background as Kiss1 mRNA-
positive.  (B) Background grayscale intensity from an area of the brain lacking silver cells was 
calculated.  (C) The background mean was subtracted from the original image, and binary 
thresholding was performed.  (D) Cells with intensity values above threshold, size larger than 
background noise particles, and corrected for empirically-determined single cell size were 
identified. 
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Immunohistochemical analyses 

Brains from Kiss1CreBAC::R26flox-stop-tdTomato animals were fixed in 4% paraformaldehyde, 

cryoprotected in 30% sucrose, and frozen in OCT.  10 µm coronal brain sections through the 

anteroventral periventricular and arcuate nuclei of the hypothalamus were stained using 

kisspeptin antiserum at a dilution of 1:5,000 for 7 d at 4ºC.  Kiss1CreBAC::R26flox-stop-tdTomato and 

Kiss1CreBAC::R26flox-stop-tdTomato::GRflox/flox brain sections treated in the same manner were stained 

with rabbit antiserum for mouse/rat glucocorticoid receptor (Santa Cruz 1004) at a dilution of 

1:2,000 overnight at 4ºC.  We validated the antiserum for glucocorticoid receptor by using a 

previously validated Cre construct to generate Sim1Cre::GRflox/flox mice, in which GR is 

selectively deleted in the paraventricular nucleus.  GR staining was robust in the PVN of WT 

mice and absent in the PVN of Sim1Cre::GRflox/flox mice, demonstrating that the rabbit antiserum 

is specific to GR (Figure 2.3).  Rabbit antiserum for mouse/rat/ovine kisspeptin was previously 

validated and generously provided by Alain Caraty [110].  In our experiments, kisspeptin 

staining was only detected in the arcuate nucleus, AVPV, and medial amygdala.  Images were 

captured using Nikon Eclipse E800, Zeiss LSM700 laser scanning, and Perkin Elmer UltraVIEW 

VoX spinning disk microscopes.  Colocalization was analyzed by calculating the overlap 

coefficient for each hypothalamic slice using NIH ImageJ software [220]. 
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Figure 2.3 
(A) Staining for glucocorticoid receptor expression in the paraventricular nucleus of the 
hypothalamus using rabbit antiserum for mouse/rat glucocorticoid receptor (Santa Cruz 1004).  
GR staining was robust in the PVN of WT mice.  (B) We used a previously validated Cre 
construct to generate Sim1Cre::GRflox/flox mice, in which GR is selectively deleted in the PVN.  
GR staining was absent in the PVN of Sim1Cre::GRflox/flox mice, demonstrating that the rabbit 
antiserum is specific to GR.   
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Behavioral analyses 

To examine copulatory behavior, each male was paired with one female with previously proven 

fertility.  Behavior was filmed using a Kodak Zx3 HD camera for 5 min starting at the time the 

female was introduced into the home cage of the male.  The amount of time the male spent 

sniffing the female and the incidence of copulatory behaviors were analyzed at 30 frames/s using 

VideoPad® software by a blinded observer.  Open-field testing was filmed in a 45 cm x 45 cm 

arena before stress, immediately after 5 h of restraint, and after 1 week of recovery.  Each animal 

was monitored for 5 min, and movement was tracked and analyzed using the Noldus 

EthoVision® XT system. 

 

Statistical analysis 

Two-tailed two-sample t-tests were performed to compare hormone (corticosterone, LH, 

testosterone) and Kiss1 mRNA expression levels between WT unstressed and restrained, food-

deprived, cold-exposed, or corticosterone-treated males.  Linear mixed model analyses were 

performed to compare changes in corticosterone, Kiss1 mRNA expression, and testosterone over 

time.  Linear mixed model analyses were performed and marginal means calculated for sniffing, 

mounting, thrusting, locomotion, and open-field behaviors over time.  Post-restraint, each of 

these parameters was compared across genotypes by using one-way ANOVA with post hoc least 

square difference (LSD) pairwise tests. 

 

Genotyping 

A list of genotyping primers and polymerase chain reaction protocols are detailed here for the 

mouse strains used in these experiments:  Kiss1CreBAC, GRflox/flox, tdTomato, mTomato/mGFP. 
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Kiss1CreBAC [221] 

Cre forward primer 5' - CGT ACT GAC GGT GGG AGA AT - 3' 

Cre reverse primer 5' - TGC ATG ATC TCC GGT ATT - 3' 

94°C for 2’, (94°C for 30”, 55°C for 30”, 72°C for 1’) x 30, 72°C for 5’, 4°C 

Cre band is 800 bp. 

 

GRflox/flox [30] 

GR forward primer 5' - AAT CAG AAT TGC TCA CTC ACA A - 3' 

GR reverse primer 5' - CAG TGT TAC TAC TTC CAG TTC - 3' 

LoxP reverse primer 5' - TGC TAT ACG AAG TTA TCA GTA C - 3'94°C for 3’, (52°C for 30”, 

72°C for 30”, 95°C for 30”) x 30, 52°C for 1’, 72°C for 5’, 4°C 

WT band is 200 bp, and floxed band is 290 bp. 

 

tdTomato [222] 

WT forward primer 5’ - AAG GGA GCT GCA GTG GAG TA - 3' 

WT reverse primer 5’ - CCG AAA ATC TGT GGG AAG TC - 3' 

tdTomato forward primer 5’ - CTG TTC CTG TAC GGC ATG G - 3' 

tdTomato reverse primer 5’ - GGC ATT AAA GCA GCG TAT CC - 3' 

95°C for 5’, (94°C for 30”, 56°C for 30”, 72°C for 1’) x 32, 72°C for 10’, 4°C 

WT band is 300 bp, and tdTomato band is 200 bp. 
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mTomato/mGFP  [223] 

Because mTomato is expressed in cells throughout the body, we determined mTomato/mGFP-

positive genotypes by visualizing mTomato fluorescence in a drop of blood, collected when 

obtaining tail biopsies, rather than by PCR.  The following primers may be used for genotyping 

by PCR: 

5' - TCA ATG GGC GGG GGT CGT T - 3' 

5' - CTC TGC TGC CTC CTG GCT TCT - 3' 

5' - CGA GGC GGA TCA CAA GCA ATA - 3' 

WT band is 330 bp, and mT/mG band is 250 bp.   
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2.4  RESULTS 

Effects of stress on the reproductive axis 

To test the effects of stress on Kiss1 mRNA expression, we subjected adult male mice to 5 h of 

restraint, which produces psychological trauma without causing physical pain [219].  Compared 

to unstressed controls, restrained animals had increased plasma corticosterone concentrations 

(Figure 2.4a), concomitant with suppression of Kiss1 mRNA expression in the arcuate nucleus 

of the hypothalamus (Figure 2.4b-d).  LH and testosterone were inhibited following restraint 

(Figure 2.4e-f).  Kiss1 mRNA expression in the anteroventral periventricular nucleus and medial 

amygdala remained unchanged (Figure 2.5).  Food deprivation also inhibits reproductive 

function [224].  Body weight was measured to confirm food deprivation in each animal (Figure 

2.6).  When mice were food deprived for 48 h, plasma corticosterone was increased compared to 

in fed controls (Figure 2.7a), concomitant with suppression of Kiss1 mRNA expression in the 

arcuate nucleus (Figure 2.7b-d), a trend towards suppression of LH, and significant suppression 

of testosterone (Figure 2.7e-f).  Restraint and food deprivation induced similar increases in 

plasma corticosterone and decreases in Kiss1 mRNA expression. 
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Figure 2.4 
Adult male mice were subjected to 5 h of restraint (n=14 per treatment).  (A) Plasma 
corticosterone levels were increased after restraint (p=1.1x10-15).  (B-D) Kiss1 mRNA expression 
was quantified by in situ hybridization, and darkfield autoradiographs of Kiss1 mRNA-positive 
silver cells showed decreased expression in the arcuate nucleus of restrained males (p=0.018).  
(E-F) LH (p=0.04) and testosterone (p=0.002) levels were decreased after restraint.  Error bars, 
s.e.m; scale bar, 100µm; 3V, third ventricle. 
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Figure 2.5 
Adult male mice were subjected to 5 h of restraint.  Kiss1 mRNA expression was quantified by 
in situ hybridization, and darkfield autoradiographs of Kiss1 mRNA-positive silver cells showed 
(A) no change in Kiss1 mRNA expression in the anteroventral periventricular nucleus (p=0.31) 
after restraint and (B) no change in Kiss1 mRNA expression in medial amygdala (p=0.60) after 
restraint.  
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Figure 2.6 
The efficacy of food deprivation was 
examined by measuring change in body 
weight.  Animals were placed in cages without 
food for 48 h, but had access to bedding and 
ad libitum water.  Decreased body weight 
(p=7.7x10-8) was observed in the food-
deprived animals compared to fed controls.   

 

50



 

Figure 2.7 
Adult male mice were subjected to 48 h of food deprivation (n=12 per treatment).  (A) Plasma 
corticosterone levels were elevated after food deprivation (p=6.7x10-13).  (B-D) Kiss1 mRNA 
expression was significantly decreased following food deprivation (p=0.03).  (E-F) LH trended 
downward (p=0.06), and testosterone was significantly suppressed (p=0.001) after food 
deprivation. Error bars, s.e.m; scale bar, 100µm; 3V, third ventricle.   
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To determine whether inhibition of Kiss1 mRNA expression occurs in the absence of stress-

induced elevation of glucocorticoids, we subjected mice to 24 h of cold (4°C) exposure, because 

this condition does not induce an increase in plasma corticosterone levels [225].  Core body 

temperature was measured by rectal probe to confirm cold exposure in each animal (Figure 2.8).  

After 24 h of cold exposure, mice had no significant change in plasma corticosterone compared 

to controls housed at room temperature (Figure 2.9a), and Kiss1 mRNA expression was 

unchanged (Figure 2.9b-d).  LH trended downward and testosterone decreased significantly 

following cold exposure (Figure 2.9e-f).  Thus with cold exposure, inhibition of the reproductive 

axis occurs without an elevation in corticosterone or a suppression of Kiss1 mRNA expression. 

 

 

 
 

Figure 2.8 
The efficacy of cold exposure was examined 
by measuring change in core body temperature. 
For cold exposure experiments, animals were 
housed at 4°C for 24 h with bedding, food, and 
water.  Core body temperature, measured by 
rectal probe, was significantly decreased 
(p=0.006) in cold-exposed animals. 
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Figure 2.9 
Adult male mice were subjected to 24 h of cold exposure (n=6 per treatment).  (A) Cold 
exposure did not produce a significant increase in corticosterone levels after 24 h (p=0.23).  (B-
D) Kiss1 mRNA expression was also unchanged after 24 h of cold exposure (p=0.99).  (E-F) LH 
was unchanged (p=0.35), and testosterone was significantly decreased in cold-exposed males 
(p=0.02). Error bars, s.e.m; scale bar, 100µm; 3V, third ventricle.  
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With the above three stressors, the consistent relationship between a rise in corticosterone and 

fall in Kiss1 mRNA expression suggested that elevated corticosterone inhibits Kiss1 expression.  

To test this directly, we injected adult male mice with a stress level dose of corticosterone [226] 

or saline.  To mimic the time course of mRNA changes in the restraint condition, we analyzed 

tissues 5 h post-injection.  As expected, corticosterone levels were elevated (Figure 2.10a), and 

administration of corticosterone alone was sufficient to inhibit Kiss1 mRNA expression (Figure 

2.10b-d).  LH trended downward, and testosterone decreased following corticosterone 

administration (Figure 2.10e-f).  This suppression of Kiss1 mRNA expression indicates that a 

rise in plasma glucocorticoid concentration can affect kisspeptin neurons, either directly or 

indirectly, and may cause the inhibition of the reproductive axis after exposure to psychological 

trauma and food withdrawal stressors, but not cold exposure. 
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Figure 2.10 
Adult male mice were subjected to I.P. corticosterone (n=7 per treatment).  (A) I.P. 
corticosterone injection caused an increase in glucocorticoid levels compared with levels in I.P. 
saline injection (p=9.5x10-11).  (B-D) Administration of corticosterone was sufficient to inhibit 
Kiss1 mRNA expression (p=0.036).  (E-F) LH trended downward (p=0.08), and testosterone 
decreased significantly in corticosterone-treated males (p=0.04). Error bars, s.e.m; scale bar, 
100µm; 3V, third ventricle. 
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Kisspeptin neuron-specific deletion of glucocorticoid receptors 

To directly evaluate the role of GR signaling in kisspeptin neurons, we selectively deleted GR 

from these neurons in Kiss1CreBAC::GRflox/flox animals.  GRflox/flox mice [227] were bred to 

Kiss1CreBAC mice [221].  In Kiss1CreBAC::R26flox-stop-tdTomato reporter mice, in which tdTomato 

expression is induced by Cre-mediated recombination, and Kiss1CreBAC::R26mTomato/mGFP reporter 

mice, in which mGFP expression is induced by Cre-mediated recombination, greater than 95% 

of hypothalamic kisspeptin neurons identified by immunostaining coexpressed tdTomato 

(Figures 2.11, 2.12).  In Kiss1CreBAC::R26flox-stop-tdTomato animals, 72% of tdTomato neurons in the 

arcuate nucleus expressed GR (Figure 2.13a, c), whereas in Kiss1CreBAC::R26flox-stop-

tdTomato::GRflox/flox animals, less than 6% of tdTomato neurons expressed GR (Figure 2.13b, c).  

The overall number of kisspeptin neurons in the arcuate nucleus was similar in animals with or 

without GR in kisspeptin neurons (Figure 2.13d), indicating that their ontogeny was not 

affected.  Cre expression was limited to the AVPV, arcuate, and medial amygdala (Figures 2.14, 

2.15). 

56



 
 

Figure 2.11 
In Kiss1CreBAC::R26flox-stop-tdTomato reporter 
animals, 95% (±0.8%) of kisspeptin neurons 
(anti-kisspeptin, green) in the hypothalamus 
expressed tdTomato (magenta).  Arrows 
indicate examples of kisspeptin-positive and 
tdTomato-positive cells.  Asterisk indicates 
example of kisspeptin-positive, but tdTomato-
negative cell. Scale bar, 25 µm. 
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Figure 2.12 
Kisspeptin staining in the arcuate nucleus preferentially stains fibers, 
so Kiss1CreBAC::R26mTomato/mGFP reporter animals (green) were 
generated to evaluate colocalization (white) with endogenous 
kisspeptin (magenta).  Greater than 95% of kisspeptin fibers (magenta) 
in the arcuate nucleus expressed driven mGFP (green).  Representative 
images of the anterior arcuate nucleus (A-D) and posterior arcuate 
nucleus (E-H) from two Kiss1CreBAC::R26mTomato/mGFP animals are 
shown.  Scale bar, 100µm; 3V, third ventricle. 

58



 
Figure 2.13 
Kiss1CreBAC::R26flox-stop-tdTomato reporter animals were generated to evaluate efficiency of GR 
deletion. (A, C) 72% (±2.6%) of tdTomato neurons (magenta) in the hypothalamus also 
expressed GR (green).  Arrows indicate examples of tdTomato- and GR-positive cells.  (B, C) In 
Kiss1CreBAC::R26flox-stop-tdTomato::GRflox/flox animals, 6% (±0.9%) of tdTomato neurons (magenta) 
expressed GR (green).  Asterisks indicate examples of tdTomato-positive and GR-negative cells.  
(D) The total number of kisspeptin cells per arcuate nucleus was similar in Kiss1CreBAC::R26flox-

stop-tdTomato and Kiss1CreBAC::R26flox-stop-tdTomato::GRflox/flox hypothalami.  Scale bars, 25µm. 
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Figure 2.14 
Kiss1CreBAC::R26flox-stop-tdTomato reporter animals were generated 
to evaluate the distribution of Cre expression.  tdTomato was 
expressed in the AVPV and arcuate nuclei of the hypothalamus 
and medial amygdala, as previously reported.  In the brain, no 
tdTomato expression was observed in the cerebellum, cortex, 
hippocampus, paraventricular nucleus, suprachiasmatic nucleus. 
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Figure 2.15 
Kiss1CreBAC::R26flox-stop-tdTomato reporter animals 
were generated to evaluate the distribution of Cre 
expression.  In peripheral tissues, no tdTomato 
expression was observed in the adrenal gland, 
kidney, liver, spleen, or testis. 
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HPG axis function in the absence of GR signaling in kisspeptin neurons 

Since arcuate nucleus Kiss1 mRNA expression is inhibited by elevated glucocorticoid 

concentrations, we asked whether GR deletion in kisspeptin neurons affects the HPG axis, either 

during the acute exposure to psychological trauma or during the recovery of the axis from stress 

in the post-traumatic period.  In the former case, the reproductive function of 

Kiss1CreBAC::GRflox/flox animals should be preserved during and after acute stress, whereas in the 

latter case, reproductive function of Kiss1CreBAC::GRflox/flox animals should decline during stress 

but recover more rapidly thereafter. 

 

Kiss1CreBAC::GRflox/flox, GRflox/flox, Kiss1CreBAC, and WT males were subjected to 5 h of restraint 

and monitored after release.  All genotypes had comparable concentrations of plasma 

corticosterone throughout the experiment, including at baseline, during the rise throughout 

restraint, the decrease after release, and the return to baseline after 1 week (Figure 2.16a).  Kiss1 

mRNA levels were comparably high at baseline in all genotypes (Figure 2.16b).  After 5 h of 

restraint, Kiss1 mRNA levels in WT, GRflox/flox, and Kiss1CreBAC controls were significantly 

decreased (Figure 2.16b), consistent with our previous results (Figure 2.4), while expression 

remained unsuppressed in Kiss1CreBAC::GRflox/flox mice.  After 1 week of recovery, Kiss1 mRNA 

levels had increased in all animals (Figure 2.16c).  Thus, GR signaling in kisspeptin neurons 

causes the fall in Kiss1 mRNA expression during restraint stress.  Testosterone concentrations 

were comparable at baseline, fell precipitously at 1 h and 5 h of restraint, and began to increase 

similarly 4 h after release in all genotypes (Figure 2.16c).  However, 1 week following restraint, 

testosterone concentrations had recovered to normal only in Kiss1CreBAC::GRflox/flox animals 

(Figure 2.16c).  Thus, GR signaling in kisspeptin neurons is not required for the acute 

62



suppression of the HPG axis during stress, but is required for the regulation of reproductive 

recovery following stress.   
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Figure 2.16 
(A) All males showed an increase in corticosterone levels that peaked at 5 h of restraint.  
Corticosterone levels began to decrease after release from restraint, and after 1 week of recovery, 
these had returned to baseline in all animals.  Changes over time were significant (p=3.3x10-36), 
and no significant differences were observed between genotypes.  (B)  Kiss1 mRNA levels were 
comparably high at baseline in all animals.  Kiss1 mRNA levels were not suppressed in 
Kiss1CreBAC::GRflox/flox mice at 5 h of restraint (one-way ANOVA, p=0.008), compared to 
GRflox/flox (p=0.001, LSD post hoc test), Kiss1CreBAC (p=0.013, LSD post hoc test), and WT 
(p=0.027, LSD post hoc test) controls.  After 1 week, Kiss1 mRNA levels were comparably 
elevated in all animals.   (C) Testosterone levels were high at baseline and fell precipitously at 1 
h and 5 h of restraint in all genotypes.  After 4 h of recovery, testosterone levels began to recover 
in all genotypes.  Changes were significant over time (p=0.001).  1 week after restraint, 
testosterone levels in Kiss1CreBAC::GRflox/flox males were no longer suppressed (one-way ANOVA, 
p=0.04) compared to GRflox/flox (p=0.03, LSD post hoc test), Kiss1CreBAC (p=0.01, LSD post hoc 
test), and WT (p=0.02, LSD post hoc test) controls. 
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Effects of stress on reproductive behaviors in the absence of GR signaling in kisspeptin neurons 

To determine the impact of kisspeptin neuron-specific GR deletion on reproductive behaviors 

during and after stress, we examined copulatory behaviors before and after 5 h of restraint.  

Immediately after restraint, all genotypes exhibited comparable suppression of the copulatory 

behaviors, mounting and thrusting, compared to baseline (Figure 2.17a, b), consistent with the 

decrease in testosterone observed in all genotypes (Figure 2.16c).  In Kiss1CreBAC::GRflox/flox 

mice, however, both mounting and thrusting behaviors were fully recovered 1 week after 

restraint, while copulatory activity remained low at this time in GRflox/flox, Kiss1CreBAC, and WT 

controls (Figure 2.17a, b).  From these studies of Kiss1CreBAC::GRflox/flox mice, we conclude that 

immediately following restraint stress, GR signaling within kisspeptin neurons causes the fall in 

Kiss1 mRNA, though not the inhibition of hormonal and behavioral components of the HPG 

axis.  GR-dependent inhibition of kisspeptin neurons during acute stress is required for regulates 

the time course of recovery from stress-induced reproductive inhibition. 
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Figure 2.17 
(A) Immediately after restraint, all genotypes exhibited a 
comparable decrease in mounting behavior (p=5.0x10-5).  In 
Kiss1CreBAC::GRflox/flox mice, mounting was fully recovered 
after 1 week (p=0.017, one-way ANOVA), compared to 
GRflox/flox (p=0.018, LSD post hoc test), Kiss1CreBAC (p=0.007, 
LSD post hoc test), and WT (p=0.011, LSD post hoc test) 
controls in which the incidence remained low.  (B) All 
genotypes exhibited decreased thrusting behavior after 
restraint (p=7.0x10-5).  In Kiss1CreBAC::GRflox/flox mice, 
thrusting was fully recovered after 1 week (p=0.012, one-way 
ANOVA), compared to GRflox/flox (p=0.006, LSD post hoc 
test), Kiss1CreBAC (p=0.007, LSD post hoc test), and WT 
(p=0.011, LSD post hoc test) controls in which the incidence 
remained low. 

 

 

  

66



Finally, we examined the specificity of the behavioral consequences of deleting GR from 

kisspeptin neurons.  While testosterone and copulatory behaviors recovered more quickly after 

stress in Kiss1CreBAC::GRflox/flox males, behaviors such as sniffing, locomotor activity, and general 

anxiety were unaffected by deletion of GR.  Kiss1CreBAC::GRflox/flox, GRflox/flox, Kiss1CreBAC, and 

WT animals spent similar amounts of time sniffing females at baseline, and all mice exhibited 

decreased sniffing behavior immediately after restraint, but recovered this behavior at 1 week 

(Figure 2.18a).  Likewise, all genotypes exhibited decreased locomotor activity after 5 h 

restraint compared to baseline and recovered after 1 week (Figure 2.18b).  All animals spent less 

time in the center of an open-field test immediately after restraint, a sign of increased general 

anxiety [228], which was not fully recovered after 1 week (Figure 2.18c), though this may have 

been due to increased time spent in the center by WT males.  Thus, deletion of GR in kisspeptin 

neurons selectively impacts reproductive behaviors. 
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Figure 2.18 
(A) All animals spent similar amounts of time sniffing 
females at baseline.  Sniffing decreased immediately after 
restraint and recovered after 1 week in all animals (p=1.9x10-

11).  (B) All animals exhibited decreased locomotor activity 
after restraint compared to baseline and recovered after 1 
week (p=1.8x10-6).  (C) All animals spent less time in the 
center of an open-field test immediately after restraint, which 
did not recovery after 1 week (p=2.5x10-6), though this may 
be due to increased time spent in the center by WT males. 
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2.5  DISCUSSION 

Natural selection depends on successful reproduction, but inhibition of reproduction to survive 

famine or escape predation allows animals to survive to reproduce at a later time.  The cellular 

locations and mechanisms responsible for inhibiting and reactivating the HPG axis during and 

after stress, respectively, are not well understood.  We examined the suppression of the HPG axis 

to multiple stressors in male mice:  restraint, food deprivation, cold exposure, and corticosterone 

administration.  In all cases, there was an inverse relationship between plasma corticosterone and 

Kiss1 mRNA content, but even with cold exposure, when plasma corticosterone and Kiss1 

mRNA were not affected, plasma testosterone was acutely inhibited.   

 

We generated mice lacking GR specifically in kisspeptin-containing neurons.  In these animals, 

Kiss1 mRNA expression was no longer inhibited during restraint stress, even though 

corticosterone was increased, and both testosterone and copulatory behaviors showed accelerated 

recovery in the post-traumatic stress period.  Neither systemic glucocorticoid levels nor general 

anxiety were affected in these animals, demonstrating the hormonal and behavioral specificity of 

the targeted disruption of GR signaling in kisspeptin neurons.  

 

Stress, and glucocorticoids in particular, are known to inhibit the HPG axis.  Men with Cushing’s 

syndrome, a condition characterized by hypercortisolemia, and men treated with exogenous 

glucocorticoid therapy experience decreased testosterone levels and loss of libido [189, 190, 

217].  PTSD and other psychiatric disorders are characterized by HPA axis hyperactivity and 

HPG axis suppression [208, 209].  Stress-induced elevation of corticosterone in male mice can 

lead to decreased testosterone secretion [129], and male mice treated with exogenous 

corticosterone exhibit decreased copulatory behaviors [125].  Food deprivation suppresses Kiss1 
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mRNA expression in rats and macaques [185, 229-231], but undernutrition delays puberty 

without affecting Kiss1 mRNA expression [232].  Although stressful conditions correlate with 

decreased Kiss1 mRNA expression, GR signaling in kisspeptin neurons is unlikely to be the sole 

“stop” signal to the HPG axis, as there are multiple other glucocorticoid-dependent and -

independent stress pathways that inhibit the reproductive axis acutely [233-235].   

 

While multiple stress pathways and stress-responsive cells can turn off the HPG axis during 

stress, kisspeptin neurons, which are critical to activate the HPG axis during puberty, may also 

serve in adults as the primary reactivation switch to turn on the HPG axis after the termination of 

stress.  Removing GR signaling from kisspeptin neurons during stress, therefore, may not protect 

the HPG axis from inhibition, since multiple non-GR and non-kisspeptin mechanisms also 

suppress reproductive function.  However, preservation of kisspeptin signaling during stress may 

permit faster kisspeptin neuron-mediated reactivation of the reproductive axis after stress, 

allowing for testosterone to rise and copulatory behaviors to recover.  Thus, while kisspeptin is 

not the sole reproductive “stop” signal during stress, it is a critical “go” signal for the HPG axis 

during the recovery from stress.   

 

We have rendered kisspeptin neurons insensitive to GR signaling and demonstrated that this 

abolishes stress-induced inhibition of Kiss1 mRNA expression, but we cannot exclude the 

possibility that the acceleration of reproductive recovery after stress is conferred by other gene 

products within the neuron rather than by kisspeptin itself.  Kisspeptin neurons in the 

hypothalamus co-express dynorphin, an endogenous opioid, and neurokinin B, a tachykinin 

peptide [236, 237].  Stress responses are known to interact with endogenous opioid systems, and 
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dynorphin, in particular, is responsive to stress and activates ĸ-opioid receptors in the amygdala, 

nucleus accumbens, dorsal raphe, and hippocampus [238-242].  It is possible that these gene 

products are also protected from stress-induced GR signaling in Kiss1CreBAC::GRflox/flox mice and 

contribute to the recovery of the reproductive axis.  

 

In Kiss1CreBAC::GRflox/flox mice, Kiss1 mRNA expression was maintained at normal levels despite 

elevated glucocorticoid levels during restraint stress.  After 5 h of restraint, elevated Kiss1 

mRNA expression in Kiss1CreBAC::GRflox/flox mice did not immediately restore HPG axis function.  

One week after restraint, testosterone and copulatory behaviors recovered only in 

Kiss1CreBAC::GRflox/flox but not control mice, even though Kiss1 mRNA expression had returned to 

normal levels in all animals at this time.  By two weeks after restraint, copulatory behaviors were 

recovered in all animals, including those with intact GR signaling (OW and JM, unpublished 

observations).  During adulthood, humans experience a similar delay in reproductive restoration 

after stress.  Testosterone is suppressed during athletic competition and returns to baseline only 

after five to seven days [124, 204].  During puberty in mice, the gradual increase in 

hypothalamic kisspeptin precedes pubertal onset and HPG axis activation [96].  In animal models 

of pubertal onset and recovery from stress, and possibly in humans, an increase in Kiss1 mRNA 

expression precedes activation of the HPG axis, consistent with the former contributing to the 

latter.  

 

Acute stress responses are generally transient, with the short-term elevation in glucocorticoid 

secretion subsiding with the stressor.  Exaggerated stress responses, including decreased 

reproductive function after a traumatic stressor has subsided, are clinically important features of 

71



PTSD [208, 209], which may be mediated by persistently elevated glucocorticoid secretion 

[243].  Our findings indicate not only that kisspeptin neurons can be protected from stress by the 

removal of GR signaling, but that doing so has the ability to orchestrate a repertoire of complex 

behaviors leading to more rapid return of reproductive function, possibly by the downstream 

regulation of sex steroid secretion.  The requirement for glucocorticoid receptor signaling to 

regulate kisspeptin neurons during the acute stress response suggests molecular targets for the 

treatment of reproductive dysfunction in PTSD, such as the blockade of glucocorticoid receptor 

signaling in kisspeptin neurons. 
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CHAPTER 3  

 

 

 

 

LEPTIN IS NOT REQUIRED FOR FERTILITY 

 

 

 

 

 

 

 

 

This chapter is based on: 

Oulu Wang, Satoru Sakihara, Kolbein Gudmundsson, and Joseph Majzoub.  Leptin is not 
required for fertility  In preparation, 2012. 

Dr. Gudmundsson created CRHOB mice on a mixed background, and Dr. Sakihara initiated 
studies of metabolic phenotypes in the CRHOB mouse.  Oulu Wang created CRHOB mice on a 
B6 background and documented fertility and metabolic effects on this background. 
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3.1  ABSTRACT 

Leptin is widely considered to be required for fertility.  Leptin deficiency causes obesity and 

infertility, and both conditions are ameliorated by leptin treatment.  Leptin-deficient mice also 

exhibit elevated glucocorticoid secretion, and excess glucocorticoids, independent of leptin 

signaling, are associated with suppression of reproductive function.  We hypothesized that 

elevated glucocorticoids inhibit fertility in leptin-deficient mice.  To evaluate the role of 

glucocorticoids in leptin deficiency, we generated mice that were genetically leptin-deficient and 

glucocorticoid-deficient.  Leptin-deficient, glucocorticoid-deficient mice were fertile and 

exhibited decreased body weight, fat composition, and food intake.  When supplemented with 

corticosterone to physiologic levels, only the leptin-deficient, glucocorticoid-deficient mice 

became infertile.  When corticosterone was removed, these mice regained reproductive capacity.  

Rescuing hypercortisolemia in leptin-deficient mice was sufficient to restore reproductive 

function, and thus, leptin is not required for fertility.  These finding may provide novel 

mechanisms of glucocorticoids affecting fertility, not only in leptin deficiency, but also in 

multiple disorders characterized by hypercortisolemia, such as Cushing’s disease, anorexia 

nervosa, and mood disorders. 
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3.2  INTRODUCTION 

Leptin deficient LepOb/Ob mice are morbidly obese and infertile [171].  LepOb/Ob mice pair-fed to 

achieve wild-type body weights do not regain reproductive function [244].  Leptin replacement 

restores fertility in LepOb/Ob [244] and elicits advanced puberty in wild-type [178] mice, giving 

rise to the tenet that leptin is required for fertility. 

 

LepOb/Ob mice are also hypercortisolemic [245].  Leptin deficiency creates a state of perceived 

starvation, and starvation is known to induce glucocorticoid secretion [246] (Figure 2.7).  The 

hypothalamic-pituitary-adrenal stress axis comprises corticotropin-releasing hormone (CRH) 

neurons that stimulate pituitary adrenocorticotropic hormone (ACTH) release, which causes 

adrenal glucocorticoid secretion.  Negative feedback by glucocorticoids then suppresses CRH 

and ACTH production.  Excess glucocorticoid concentrations, independent of leptin signaling, 

are associated with reproductive inhibition in Cushing’s disease, anorexia nervosa, exercise-

induced amenorrhea, glucocorticoid therapy, and other conditions characterized by 

glucocorticoid dysregulation [132, 189, 217].  Adrenalectomy ameliorates obesity in LepOb/Ob 

mice [247], a phenomenon that was ascribed to disinhibition of CRH, itself an anorectic hormone 

[248].  Adrenalectomy did not reverse sterility in LepOb/Ob mice [249].  Using surgical 

adrenalectomy to study the effects of glucocorticoids is confounded by upregulation of CRH, 

surgical stress, and the regenerative capacity of adrenal tissue. 

 

We hypothesized that glucocorticoids contribute to infertility in LepOb/Ob mice.  We generated 

LepOb/Ob mice that were genetically CRH- and glucocorticoid-deficient (CRHOB) to study the 

role of glucocorticoids on fertility.  Compared to LepOb/Ob controls, CRHOB mice displayed 
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normal fertility, normal reproductive organs and hormone secretion, and decreased body weight, 

fat composition, and hyperphagia.  When supplemented with glucocorticoids to levels present in 

leptin deficiency, CRHOB but not wild-type mice became infertile, and regained reproductive 

function after the termination of glucocorticoid treatment.  Thus, leptin is not directly required 

for fertility as previously postulated, and glucocorticoids contribute to infertility and obesity 

downstream of leptin signaling.  These studies may provide novel molecular targets in the 

reproductive and metabolic aspects of disorders characterized by glucocorticoid dysregulation, 

including leptin deficiency, Cushing’s disease, anorexia nervosa, and mood disorders. 
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3.3  MATERIAL AND METHODS 

Animal husbandry and breeding strategy 

All experiments were conducted in compliance with the Institutional Animal Care and Use 

Committee guidelines of Children’s Hospital Boston.  Animals were maintained on a 12 h 

light/dark cycle with access to chow and water ad libitum and tested between 5-20 weeks of age.  

Crh-/- mice were previously generated in our laboratory [8].  LepOb/+ mice were purchased from 

The Jackson Laboratory (Bar Harbor, ME).  Crosses from ♀ Crh+/- LepOb/+ x ♂ Crh-/- LepOb/+ 

breeders yielded Crh-/- LepOb/Ob and Crh-/- progeny at a frequency of 12.5% each.  Crosses from 

LepOb/+ x LepOb/+ breeders yielded LepOb/Ob and WT progeny at a frequency of 25% each.  Thus, 

Crh-/- LepOb/Ob and Crh-/- progeny were littermates, and LepOb/Ob and WT progeny were 

littermates.  All animals were backcrossed >10 generations onto a C57BL/6 background.  5-10 

males and 5-10 females per genotype (WT, Crh-/-, LepOb/Ob, and Crh-/- LepOb/Ob) were generated 

and analyzed. 

 

Tissue preparation 

Retroorbital blood samples were collected from unanesthetized animals within 1 min of cage 

handling in all conditions and centrifuged at 3,000 rpm for 10 min at 4°C.  At 7AM (lights on) at 

6 weeks of age, blood samples were collected for analysis of corticosterone, triglycerides, and 

testosterone.  At 7PM (lights off) at 20 weeks of age, blood samples were collected for analysis 

of corticosterone, luteinizing hormone, and estradiol.  Animals were sacrificed by rapid 

decapitation without anesthesia at 20 weeks, and dissected brains were embedded in OCT and 

stored at -80°C.  Brains were sectioned coronally at 10 µm through the hypothalamus in eight 

sets, thaw-mounted onto 25 mm x75 mm slides, and returned to -80°C until further processing, 
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and slide mounted for in situ hybridization.  Testes, ovaries, uteri, liver, pancreas, and adrenal 

glands were fixed in 10% formalin and embedded in paraffin.  10 µm midline sections were 

obtained for each tissue and stained by hematoxylin and eosin (Harvard Medical School, Rodent 

Histopathology Core).  Histological sections were visualized and analyzed by brightfield 

microscopy on the 2X, 4X, and 10X objective of a Nikon Eclipse E800.   

 

Luteinizing hormone was assayed by the UVA Center for Research in Reproduction Ligand 

Assay and Analysis Core.  Plasma triglycerides were analyzed by ELISA (Crystal Chemical).  

Plasma corticosterone and testosterone were measured by radioimmunoassay (MP Biomedicals) 

with the following modifications:  to minimize the amount of plasma used in the corticosterone 

radioimmunoassay, we generated 1:200 dilutions using either 1 µL of plasma with 199 µL of 

steroid diluent or 5 µL of plasma with 995 µL of steroid diluent.  In general, aliquots containing 

1 µL were more variable in corticosterone concentrations, likely due to pipetting error, and 

unless blood volume was a major constraint, we used 5 µL of plasma for corticosterone assays.  

The dynamic range for the corticosterone assay was 25 ng/mL to 1,000 ng/mL.  To minimize the 

amount of plasma used in the testosterone radioimmunoassay, we used 25 µL of plasma in 

singlet.  In pilots, this volume was as effective in identifying stress-induced testosterone 

suppression as 50 µL of plasma in duplicate.  The dynamic range for this assay was 0.1 ng/mL to 

10 ng/mL. 

 

In situ hybridization 

The Kiss1 mRNA probe was generously provided by Robert Steiner [100], and the Crh mRNA 

probe was previously synthesized in our laboratory [5].   Radiolabeled probes were synthesized 
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using 33P-UTP, and in situ hybridization was performed as previously described [5, 100], with 

the following modifications.  Briefly, tissues were washed in 4% paraformaldehyde, acetic 

anhydride, 2X SSC, chloroform, and graded ethanols, then incubated in 12.7 million dpm/mL 

probe for 16 h at 55°C.  Slides were subsequently washed with 4X SSC, RNase, 2X SSC, 0.5X 

SSC at 62°C, and graded ethanols in ammonium acetate, then exposed to autoradiographic film 

(Kodak XAR 1651579) or silver emulsion (Kodak NTB 8895666).  Silver grains in the 

hypothalamus were visualized by darkfield microscopy on the 10X objective of a Nikon Eclipse 

E800.  Silver-positive cell counts were analyzed by using NIH ImageJ software 

(http://imagej.nih.gov/ij/), as described in Chapter 2 (Figure 2.2).  Film densitometry was 

analyzed using NIH ImageJ software:  autoradiographic films were scanned at 2,400 dpi, and a 

region-of-interest (ROI) was cropped from images of the hypothalamus (Figure 3.1a).  Intensity 

was maintained within a linear dynamic range (0.002 - 3.58 nCi/mg) by comparing our in situ 

hybridization slides a control 14C standard slide (American Radiolabeled Chemicals 0146E) such 

that low intensities were identifiable and high intensities were not oversaturated.  An adjacent 

section without probe labeling (“background”) was also cropped (Figure 3.1b).  The mean 

intensity of the background section was measured using NIH ImageJ (Figure 3.1c) and applied 

uniformly to a newly generated image (Figure 3.1d).  This background (Figure 3.1d) was 

subtracted from the ROI (Figure 3.1a) to yield a resultant background-corrected image (Figure 

3.1e).  The background-corrected image can be inverted for visual contrast (Figure 3.1e’).  

Pixels with ten-fold higher intensity than background were identified (Figure 3.1f).  Multiple 

sections from two brains were obtained (Figure 3.1g, h).  Brain H had noticeably higher 

background intensity than Brain G.  After background subtraction, these ROIs were comparable 
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in intensity (Figure 3.1g’ , h’).  Densitometric measurements were calculated based on the 

[mean intensity within ROI] x [area of ROI] and summed across all brain sections. 

 

  

81



 
 
Figure 3.1 
To develop a method for automated analysis of film densitometry, we performed in situ 
hybridization for Kiss1 mRNA expression.  Autoradiographic films were scanned at 2,400 dpi, 
and a region-of-interest (ROI) was cropped from the hypothalamus (A).  An adjacent section 
without Kiss1 mRNA labeling (background) was also obtained (B).  The mean intensity of the 
background section (C) was measured using NIH ImageJ and applied uniformly to a newly 
generated section (D).  The background (D) was then subtracted from the ROI (A) to yield a 
resultant background-corrected image (E).  The background-corrected image can be inverted for 
visual contrast (E’).  Pixels with ten-fold higher intensity than background were identified (F). 
Multiple sections from two brains were obtained (G, H).  (H) had noticeably higher background 
intensity than (G).  After background subtraction, these ROIs were comparable in intensity (G’ 
and H’).  Densitometric measurements were calculated based on the [mean intensity within ROI] 
x [area of ROI] and summed across all brain sections. 
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We compared quantification of mRNA expression by autoradiographic emulsion versus film.  

We used Kiss1 mRNA expression to validate the densitometric quantification methodology.  By 

autoradiographic emulsion, Kiss1 mRNA levels were decreased 3.3-fold after stress (Figure 

3.2a), and by film densitometry, Kiss1 mRNA levels were decreased 2.8-fold after stress (Figure 

3.2b).  We also used a physiologic system to study the validity of densitometric quantification.  

The AVPV nucleus is sexually dimorphic, and the number of kisspeptin neurons in the AVPV is 

higher in females than in males [96].  We performed in situ hybridization for Kiss1 mRNA in the 

AVPV of male and female mice and quantified expression by autoradiographic film 

densitometry.  Expression of Kiss1 mRNA was significantly higher in the female compared to 

male AVPV nucleus (Figure 3.2c). 

 

  

83



 
Figure 3.2 
We used quantitative densitometry to measure Kiss1 mRNA expression by in situ hybridization 
and verified the technique by using two physiologic models.  (A) By autoradiographic emulsion, 
a well-established technique for quantification of Kiss1 mRNA, Kiss1 mRNA levels were 3.3 
times lower in stressed compared to unstressed mice.  (B) By quantitative densitometry, Kiss1 
mRNA was 2.8 times lower in stressed compared to unstressed mice.  (C) Kisspeptin expression 
is sexually dimorphic, and kisspeptin expression is significantly higher in the female AVPV.  By 
quantitative film densitometry, Kiss1 mRNA expression was significantly higher in female than 
male AVPV. 
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Fertility assays 

Testosterone was assyed at 6 weeks of age in males.  Because of the large plasma volume 

required for LH and estradiol assays required terminal experiments, phlebotomies were 

conducted at 20 weeks.  Vaginal lavages were obtained from adult females, slide mounted, and 

Geimsa stained (Fisher 22122911) for estrous cycle analysis.  At 10 weeks of age, each 

experimental animal was paired 1:1 with a WT mate that had previously proven fertile.  

Parturition was monitored daily, and pups were euthanized at P1-3 and genotyped to confirm 

parentage.   

 

Metabolic assays 

Body weight was monitored from 5-18 weeks in males and 5-10 weeks in females.  Because 

mating assays were conducted at 10 weeks of age and females gained weight during pregnancy 

thereafter, female body weight was not analyzed after 10 weeks.  We also assayed body weight 

in adrenalectomized mice.  We performed bilateral adrenalectomy on leptin-deficient (OBADX) 

and WT mice at 4 weeks of age, obtained plasma at 6 weeks of age, and sacrificed animals at 10 

weeks of age.  Dual-energy X-ray absorptiometry scans were performed on mice anesthetized by 

isoflurane at 5 and 10 weeks, and body fat composition was analyzed by using Lunar PIXImus 

software.  Food intake was measured over a 24 h period at 5 and 10 weeks of age.  Rebound 

hyperphagia is a phenomenon whereby an animal eats more than typical after a bout of food 

deprivation.  In pilot studies, we measured baseline food intake in CRHOB and OB mice for 24 

h, fasted animals for 24 h, then measured food intake for 24 h in the rebound period [250].  

Animals were tested at 10 weeks of age. 
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In pilot studies, we examined energy metabolism by using the Comprehensive Laboratory 

Animal Monitoring System (CLAMS), which monitors oxygen consumption, carbon dioxide 

release, food and water consumption, and beam break activity.  Monitoring occured in single-

animal metabolic cages, and mice were acclimated to single housing in home cages for 3 d, then 

acclimated to metabolic cages for 2 d, and monitored subsequently for 48 h.  Measurements were 

binned into and averaged as 12 h light and 12 h dark periods.  We assessed energy metabolism 

by indirect calorimetry based on calculations of the respiratory exchange ratio (RER) for 

carbohydrate versus fatty acid oxidation: 

 

Carbohydrate oxidation 

6 O2 + C6H12O6 → 6 CO2 + 6 H2O + 38 ATP 

RER = VCO2/VO2 = 6 CO2/6 O2 = 1.0 

 

Fatty acid oxidation 

23 O2 + C16H32O2 → 16 CO2 + 16 H2O + 129 ATP 

RER = VCO2/VO2 = 16CO2/12O2 = 0.7 

 

Corticosterone treatment 

From 6 – 8 weeks, male mice were administered 30 µg/mL corticosterone (Sigma C2505, St. 

Louis, MO) in drinking water.  After 1 week of corticosterone treatment, plasma was collected 

by retroorbital phlebotomy at 7AM (lights on) in unanesthetized animals and analyzed for 

corticosterone and triglyceride concentrations.  Body weight was measured before and after 

corticosterone treatment.  Males treated with corticosterone were paired 1:1 with a females that 
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had previously proven fertile.  After corticosterone treatment was terminated, animals were again 

paired 1:1 with a WT mate.  Parturition was monitored daily, and pups were euthanized at P1-3 

and genotyped to confirm parentage.   

 

Transgenic mice and breeding strategy 

To study the role of GR in kisspeptin neurons in leptin deficiency, we generated 

Kiss1CreBAC::GRflox/flox::LepOb/Ob mice.  Generation and validation of Kiss1CreBAC::GRflox/flox mice 

were described in Chapter 2.  All animals used in experiments were on a C57BL/CBA mixed 

background.  Crosses from Kiss1CreBAC::GRflox/flox::LepOb/+ x GRflox/flox::LepOb/+ breeders yielded 

Kiss1CreBAC::GRflox/flox::LepOb/Ob males and females at frequencies of 6.25% each.  6 male 

Kiss1CreBAC::GRflox/flox::LepOb/Ob and 2 female Kiss1CreBAC::GRflox/flox::LepOb/Ob mice were 

generated and studied.   

 

To study the role of GR in the brain in leptin deficiency, we generated 

BlbpCre::GRflox/flox::LepOb/Ob mice.  BlbpCre mice, in which Cre recombinase expression is driven 

by the brain lipid binding protein promoter, were generously provided by David Gutmann [251].  

All animals used in experiments were on a C57BL background.  Crosses from 

BlbpCre::GRflox/flox::LepOb/+ x GRflox/flox::LepOb/+ breeders yielded BlbpCre::GRflox/flox::LepOb/Ob 

males and females at frequencies of 6.25% each.  4 male BlbpCre::GRflox/flox::LepOb/Ob and 6 

female BlbpCre::GRflox/flox::LepOb/Ob mice were generated and studied.   
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Statistical tests 

One-way ANOVA with post hoc least significant difference (LSD) pairwise testing was 

performed to compare adrenal cortex width, plasma corticosterone, plasma leptin, food intake, 

body fat composition, testicular weight, plasma testosterone, corpora lutea number, uterine 

width, plasma LH, and plasma estradiol.  Linear mixed model analyses were performed to 

compare changes in body weight over time by genotype.  Two-tailed two-sample t-tests were 

performed to compare plasma corticosterone in corticosterone-treated versus untreated mice.  

Fisher’s exact test was performed to compare fertility in males, females, and corticosterone-

treated males.  

 

Genotyping 

Kiss1CreBAC and GRflox/flox PCR protocols were described in Chapter 2.  CRHKO and OB 

genotyping primers and polymerase chain reaction protocols are described: 

 

CRHKO 

Crh+/+ forward primer 5’ - GAG CTT ACA CAT TTC GTC C - 3' 

Crh+/+ reverse primer 5’ - GCT CAG CAA GCT CAC AGC - 3' 

Crh-/- reverse primer 5’ - ATC GCC TTC TTG ACG AGT T- 3' 

96°C for 1’, (96°C for 30”, 62°C for 30”, 72°C for 1’30”) x 34, 72°C for 5’, 4°C 

WT band is 450 bp, and CRHKO band is 600 bp. 
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OB 

Ob forward primer 5’ - ACT GGT CTG AGG CAG GGA GCA - 3' 

Ob reverse primer 5’ - TGT CCA AGA TGG ACC AGA CTC - 3' 

94°C for 3’, (94°C for 30”, 62°C for 1”, 72°C for 45”) x 36, 72°C for 2’, 10°C 

Amplicon is digested with the restriction enzyme Dde I overnight at 37°C. 

WT band is 155 bp, and OB band is 100 bp and 55 bp. 
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3.4  RESULTS 

To study the role of glucocorticoids in leptin deficiency, we generated CRH-, glucocorticoid-, 

and leptin-deficient Crh-/- LepOb/Ob (CRHOB) mice for comparison to wild-type (WT), Crh-/- 

(CRHKO), and LepOb/Ob (OB) controls.  Compared to WT mice, the adrenal cortex was 

hypertrophied in OB mice (Figure 3.3a, b), consistent with hypercortisolism in these mice 

(Figure 3.3c).  Adrenal cortex size and plasma corticosterone concentrations were comparable in 

CRHKO and CRHOB mice and significantly decreased compared to OB and WT mice (Figure 

3.3a-c).  Plasma leptin was undetectable in OB and CRHOB and significantly decreased 

compared to WT and CRHKO mice (Figure 3.3d). 
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Figure 3.3 
Adrenal development, plasma glucocorticoids, and plasma leptin were evaluated in WT, 
CRHKO, OB, and CRHOB mice.  (A) Midline adrenal sections of the adrenal gland were stained 
by H&E.  Scale bar, 250 µm.  (B) Adrenal cortex width was significantly decreased in CRHKO 
(p=0.02, LSD post hoc test) and CRHOB (p=0.03, LSD post hoc test) compared to WT mice 
(p=6.5x10-6, one-way ANOVA) and significantly increased in OB mice (p=1.9x10-4, LSD post 
hoc test).  Adrenal cortex width was significantly decreased in CRHOB compared to OB mice 
(p=2.2x10-5, LSD post hoc test).  (C)  Glucocorticoid concentrations were significantly 
decreased in CRHKO (p=0.003, LSD post hoc test) and CRHOB (p=0.01, LSD post hoc test) 
compared to WT mice (p=3.0x10-5, one-way ANOVA) and significantly increased in OB mice 
(p=0.006, LSD post hoc test).  Plasma corticosterone was significantly decreased in CRHOB 
compared to OB mice (p=8.5x10-5, LSD post hoc test).  (D)  Plasma leptin was undetectable in 
OB (p=7.0x10-6, LSD post hoc test) and CRHOB (p=3.0x10-5, LSD post hoc test) compared to 
WT animals (1.2x10-5, one-way ANOVA) and not different from one another (p=1.0, LSD post 
hoc test). 
 
  

91



Figure 3.3, continued 
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Patients with Cushing’s disease, a condition characterized by hypercortisolemia, and those 

treated with exogenous glucocorticoids experience weight gain, and we hypothesized that 

elevated glucocorticoids in OB mice contribute to obesity.  Body weight was significantly 

decreased in CRHOB compared to OB males and females (Figure 3.4a, b).  Body weight in 

CRHOB males was comparable to that of adrenalectomized OB males (Figure 3.5).  

Hyperphagia was reduced in CRHOB compared to OB males and females (Figure 3.6a, c).  

Body fat composition was reduced in CRHOB compared to OB males and females (Figure 3.6b, 

d, e).  Body weight, food intake, and body fat composition were comparable in WT and CRHKO 

animals, and CRHOB animals did not completely normalize to WT and CRHKO levels. 

 

The weight loss observed in CRHOB animals was due, at least in part, to decreased food intake, 

and in pilot studies, we examined whether basal metabolic rate, estimated by the respiratory 

exchange ratio (RER), was normalized as well.  Because sample sizes were small (n=2-3) and 

not all genotypes were represented, we did not perform statistical analyses for these pilot studies.  

Mice are nocturnally active, and during the night, preferentially oxidize carbohydrates as an 

energy source (i.e., RER ≈ 1).  During the day, mice shift towards fatty acid oxidation (i.e., RER 

≈ 0.7).  Control CRHKO animals exhibited this circadian change in energy utilization, but OB 

animals did not (Figure 3.7a).  In OB mice, energy utilization was skewed towards fatty acid 

oxidation (RER ≈ 0.7) in the nocturnal activity period (Figure 3.7a), consistent with lower RER 

observed in leptin receptor-deficient db/db animals during the dark period [252].  CRHOB mice 

were more similar to CRHKO controls, oxidizing carbohydrates in the activity period and fatty 

acids in the quiescent period (Figure 3.7a).  Locomotor activity at night, assayed as the sum of 

beam breaks in the x-, y-, and z-axes, was significantly lower in OB mice compared to in 
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CRHKO controls (Figure 3.7b).  CRHOB animals had slightly elevated locomotor activity 

compared to OB but not CRHKO animals.  These preliminary results suggested that the 

amelioration of body weight in CRHOB mice was due in part to changes in basal energy 

metabolism. 

 

Rebound hyperphagia is a phenomenon whereby an animal eats more than typical after a bout of 

food deprivation.  Food deprivation is known to cause a rise in plasma corticosterone (Figure 

2.7), and we hypothesized that increased glucocorticoid and decreased leptin levels together 

facilitate rebound hyperphagia.  Thus, the leptin-deficient animal may be considered to be in a 

chronic state of perceived starvation, which would elicit chronic rebound hyperphagia.  In 

CRHOB animals with decreased leptin but without increased glucocorticoids, we predicted that 

rebound hyperphagia would be ameliorated, both at baseline and following food deprivation.  

This diminution of rebound hyperphagia, perhaps as a result of reduced glucocorticoid secretion, 

would partly explain the body weight reduction in CRHOB animals.  In WT mice, 24 h food 

intake after a 24 h fast was increased by 50% compared to baseline [250].  In pilot studies, we 

found that in leptin-deficient mice with intact glucocorticoid secretion, rebound feeding was also 

50% higher than baseline (Figure 3.8).  In leptin-deficient, glucocorticoid-deficient mice, 

rebound feeding was only 28% higher than at baseline (Figure 3.8).  Rebound hyperphagia is 

reduced in CRHOB mice, and glucocorticoid-deficiency may ameliorate hyperphagia in leptin-

deficient animals.  Because sample sizes were small (n=1-3) and not all genotypes were 

represented, we did not perform statistical analyses for these pilot studies.   
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Figure 3.4 
(A) Body weight was significantly decreased in CRHOB compared to OB males 
(p=1.4x10-5, linear mixed model F13, 94=4.3). (B) Body weight was significantly 
decreased in CRHOB compared to OB females (p=4.8x10-4, linear mixed model F5, 

80=5.0).  
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Figure 3.5 
In pilot studies, we performed bilateral adrenalectomy on leptin-deficient (OBADX) at 
4 weeks of age.  Surgical adrenalectomy was reported to cause weight loss in OB 
mice.  Body weight was decreased in OBADX compared to OB animals (p<0.05) and 
comparable to levels seen in CRHOB animals (p>0.05).   
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Figure 3.6 
(A) Hyperphagia was reduced in CRHOB compared to OB males (p=4.9x10-4, LSD post hoc 
test).  (B) Body fat composition was reduced in CRHOB compared to OB males (p=1.7x10-11, 
LSD post hoc test). (C) Hyperphagia was reduced in CRHOB compared to OB females 
(p=0.002, LSD post hoc test).  (D) Body fat composition was reduced in CRHOB compared to 
OB females (p=1.7x10-13, LSD post hoc test). (E) Representative DEXA body scans.   
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Figure 3.7 
In pilot studies, CRHOB mice were monitored in metabolic cages.  (A) 
CRHKO control animals oxidized carbohydrates during the night 
(RER ≈ 1) and fatty acids during the day (RER ≈ 0.7), but OB animals 
did not exhibit this circadian change in energy utilization.  Energy 
utilization was skewed towards fatty acid oxidation during the 
nocturnal activity period in OB mice.  CRHOB were more similar to 
CRHKO controls, oxidizing carbohydrates in the activity period and 
fatty acids in the quiescent period.  (B) Locomotor activity at night, 
assayed as the sum of beam breaks in the x-, y-, and z-axes, was 
significantly lower in OB mice compared to in CRHKO controls.  
CRHOB animals had slightly elevated locomotor activity compared to 
OB but not CRHKO animals.  Because sample sizes were small (n=2-
3) and not all genotypes were represented, we did not perform 
statistical analyses for these pilot studies.   
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Figure 3.8 
In pilot studies, food intake was measured in CRHOB and OB mice for 24 h at baseline 
(“normal”) and after a 24 h fast (“rebound”).  It has been shown that in WT mice, 24 h food 
intake after a 24 h fast is 50% increased compared to baseline.  In leptin-deficient mice with 
intact glucocorticoid secretion, rebound feeding was about 50% higher than baseline food intake.  
In leptin-deficient, glucocorticoid-deficient mice, rebound feeding was only 28% higher than 
baseline.  Because sample sizes were small (n=1-3) and not all genotypes were represented, we 
did not perform statistical analyses for these pilot studies.   
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Glucocorticoid excess also correlates with reproductive axis suppression [125, 129-131, 217], 

and we hypothesized that increased glucocorticoid secretion in OB mice contributes to infertility.  

Reproductive organs and hormones were evaluated in glucocorticoid-deficient, leptin-deficient 

mice.  Testis size was significantly increased in CRHOB compared to OB males (Figure 3.9a, 

b).  Testosterone trended upward in CRHOB compared to OB males (Figures 3.9c).  Ovarian 

and uterine morphologies were normalized in CRHOB compared to OB females (Figures 3.10, 

3.11).  The number of corpora lutea was increased in CRHOB compared to OB females (Figures 

3.10, 3.12a).  Uterine width, plasma luteinizing hormone, and plasma estradiol trended upward 

in CRHOB compared to OB females (Figure 3.12b-d).  CRHOB females exhibited normal 

estrous cycling (Figure 3.13).  Not only were reproductive organs and hormones normalized in 

leptin-deficient, glucocorticoid-deficient CRHOB mice, these mice were able to produce 

offspring.  CRHOB males sired litters more frequently than OB males (Figure 3.14a), and 

CRHOB females gave birth to litters more frequently than OB females (Figure 3.14b).  CRHOB 

males crossed with CRHOB females were also fertile (n=2). 
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Figure 3.9 
(A) Midline sections of the testis were stained by H&E.  Scale bar, 250 µm.  (B) Testis weight 
was significantly increased in CRHOB compared to OB males (p=0.04, LSD post hoc test; 
p=0.007, one-way ANOVA).  (C) Testosterone trended upward in CRHOB compared to OB 
males (p=0.14, one-way ANOVA). 
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Figure 3.10 
Midline sections of the ovary were stained by H&E.  Scale bar, 500 µm.  
Ovary size was increased in CRHOB compared to OB females. 
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Figure 3.11 
Midline sections of the uterus were stained by H&E.  Scale bar, 500 µm.  
Uterus width was increased in CRHOB females compared to the thread-
like uterus in OB females. 
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Figure 3.12 
Reproductive hormones were evaluated in WT, CRHKO, OB, and CRHOB 
mice.  (A) The number of corpora lutea in the ovary was significantly higher 
in CRHOB than OB females (p=1.6x10-6, LSD post hoc test; p=6.1x10-8, 
one-way ANOVA). (B) Uterine width was increased in CRHOB compared to 
OB females (p=0.001, LSD post hoc test; p=2.7x10-4, one-way ANOVA).  
(C) Luteinizing hormone trended upward in CRHOB compared to OB 
females (p=0.07, one-way ANOVA). (D) Estradiol trended upward in 
CRHOB compared to OB females (p=0.10, one-way ANOVA). 
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Figure 3.13 
CRHOB females underwent vaginal opening, a marker of puberty, and exhibited normal estrous 
cycling as adults.  Daily vaginal lavages were obtained, slide mounted, and Geimsa stained. 
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Figure 3.14 
(A) CRHOB males sired litters more often than OB males 
(p=0.01, Fisher’s exact test).  (B) CRHOB females gave 
birth to litters more often than OB females (p=0.004, 
Fisher’s exact test).  
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Surgical adrenalectomy, which removes the site of glucocorticoid synthesis, ameliorated obesity 

in leptin-deficient mice [247].  Adrenalectomy was previously reported to have no effect on LH, 

FSH, or testosterone [249].  We observed that testosterone was elevated in OBADX males 

(Figure 3.15).  However, none of these males were able to sire litters after being paired 1:1 with 

female mice.  By contrast, both WT adrenalectomized males and females successfully produced 

litters (n=6/6).  Upon necropsy 6 weeks after surgery, macroscopic adrenal glands were visible in 

all OBADX animals.  From these pilot studies, it was unclear whether glucocorticoid-mediated 

reproductive inhibition was rapidly restored following adrenalectomy and suppressed fertility.  

 
 

 
Figure 3.15 
In pilot studies, we performed bilateral adrenalectomy on leptin-
deficient (OBADX) at 4 weeks of age and obtained plasma at 6 weeks of 
age.  Testosterone trended upward in OBADX compared to OB males.  
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Because CRHOB mice are CRH- and glucocorticoid-deficient, it is possible that CRH 

contributes to infertility [132] in leptin deficiency.  However, in situ hybridization for Crh 

mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus showed no 

differences in Crh expression between WT and OB mice (Figure 3.16a).  To examine whether 

changes in fertility were glucocorticoid-dependent, we next treated mice with 30 µg/mL of 

corticosterone in drinking water, which produced physiologic concentrations of plasma 

corticosterone in WT, CRHKO, OB, and CRHOB males (Figure 3.16b).  Compared to untreated 

controls, plasma corticosterone was elevated only in corticosterone-treated CRHKO and 

CRHOB mice (Figure 3.16b).  After 1 week of corticosterone supplementation, CRHOB males 

were unable to sire litters and became as infertile as OB males (Figure 3.16c).  Following 

termination of corticosterone treatment, CRHOB males were fertile (Figure 3.16d). 
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Figure 3.16 
(A) In situ hybridization for Crh mRNA in the paraventricular nucleus (PVN) showed no 
differences between WT and OB mice (p>0.05; data courtesy of Satoru Sakihara).  Insets, in situ 
hybridization for Crh mRNA  in the PVN by autoradiographic film.  (B) Male mice were 
supplemented with 30 µg/mL of corticosterone in drinking water.  Compared to untreated 
controls, plasma corticosterone was elevated only in corticosterone-treated CRHKO (p=0.04, 
independent samples t-test) and CRHOB (p=0.008, independent samples t-test) mice.  (C) After 
1 week of supplementation with corticosterone, CRHOB males were unable to sire litters.  
Corticosterone-treated CRHOB males were as infertile as OB males (p=0.99, Fisher’s exact test).  
(D) Following withdrawal of corticosterone, CRHOB males were once again able to sire litters 
compared to OB males (p=0.008, Fisher’s exact test). 
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Because CRHOB mice are CRH- and glucocorticoid-deficient, it may be possible that CRH 

contributes to obesity in leptin deficient states.  This is unlikely, however, because CRH is a 

known anorectic [248, 253, 254], and thus, CRH deficiency should promote orexigenic effects.  

The effect of corticosterone on body weight was evaluated in WT, CRHKO, OB, and CRHOB 

mice.  Male mice were supplemented with 30 µg/mL of corticosterone in drinking water.  Body 

weight was unchanged in corticosterone-treated WT, CRHKO, and OB males compared to 

untreated controls.  Body weight was increased in corticosterone-treated compared to untreated 

CRHOB males (Figure 3.17).  This increase in body weight persisted even after termination of 

corticosterone treatment (Figure 3.17).  Plasma triglycerides were unchanged in corticosterone-

treated WT and OB males compared to untreated controls (Figure 3.18).  Plasma triglycerides 

were slightly but significantly elevated in corticosterone-treated CRHKO males (Figure 3.18).  

Plasma triglycerides increased approximately three-fold after corticosterone treatment in 

CRHOB males (Figure 3.18). 
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Figure 3.17 
In pilot studies, we evaluated the effect of glucocorticoid 
treatment on body weight in WT, CRHKO, OB, and CRHOB 
mice.  Male mice were supplemented with 30 µg/mL of 
corticosterone in drinking water.  Body weight was unchanged in 
corticosterone-treated WT, CRHKO, and OB males compared to 
untreated controls.  Body weight was increased in corticosterone-
treated compared to untreated CRHOB males.  This increase in 
body weight persisted even after termination of corticosterone 
treatment. 
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Figure 3.18 
The effect of glucocorticoids on plasma triglycerides was 
evaluated in WT, CRHKO, OB, and CRHOB mice.  Male mice 
were supplemented with 30 µg/mL of corticosterone in 
drinking water.  Plasma triglycerides were unchanged in 
corticosterone-treated WT and OB males compared to 
untreated controls.  Plasma triglycerides were slightly but 
significantly elevated in corticosterone-treated CRHKO males.  
Plasma triglycerides increased approximately three-fold after 1 
week of corticosterone treatment in CRHOB males.  * p<0.05. 
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To evaluate the role of kisspeptin neurons in the infertile and obese LepOb/Ob mouse, we first 

measured Kiss1 mRNA expression in WT, CRHKO, OB, and CRHOB males.  Kiss1 mRNA 

expression trended downward in OB and CRHOB males compared to WT and CRHKO controls 

(Figure 3.19a).  We generated leptin-deficient mice in which GR signaling was selective deleted 

from kisspeptin neurons.  Thread-like uteri were observed in Kiss1CreBAC::GRflox/flox::LepOb/Ob 

(Kiss GR OB) females, and neither males nor females were fertile (Figure 3.19b).  Body weights 

(Figure 3.19c) and food intake (Figure 3.19d) in Kiss1CreBAC::GRflox/flox::LepOb/Ob mice were 

comparable to those of LepOb/Ob controls. 
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Figure 3.19 
In pilot studies, we examined the role of kisspeptin neurons in mediating fertility in CRHOB 
animals.  (A) Kiss1 mRNA expression trended downward in OB and CRHOB males compared to 
WT and CRHKO controls (n=5-6 per genotype).  (B) We generated 
Kiss1CreBAC::GRflox/flox::LepOb/Ob (Kiss GR OB) animals, in which GR was excised from 
kisspeptin neurons in leptin-deficient animals.  Thread-like uteri were observed in Kiss GR OB 
females (n=2), and neither males nor females were fertile.  (C) Body weight and (D) food intake 
in Kiss1CreBAC::GRflox/flox::LepOb/Ob male mice (n=6) were comparable to those of LepOb/Ob 
controls (n=5). 
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In studies of stress-induced reproductive inhibition in WT mice, we demonstrated that 

suppression of kisspeptin expression was not necessary for reproductive inhibition in cold stress 

(Chapter 2).  Conversely, maintaining Kiss1 mRNA expression at normal levels during stress in 

Kiss1CreBAC::GRflox/flox mice did not protect animals from stress-induced suppression of 

testosterone and copulatory behaviors immediately after acute stress.  GR signaling in kisspeptin 

neurons is unlikely to be the sole inhibitory signal to the HPG axis, as there are multiple 

glucocorticoid-dependent and -independent stress pathways that inhibit the reproductive axis 

acutely.  For example, catecholamines can mediate direct testicular inhibition [235, 255], which 

is independent of both glucocorticoid and kisspeptin signaling.  Such inhibitory inputs may 

suppress reproductive function in Kiss1CreBAC::GRflox/flox::LepOb/Ob mice despite the lack of GR-

mediated inhibition of kisspeptin neurons.  It may be interesting to assess whether Kiss1 mRNA 

expression is affected in Kiss1CreBAC::GRflox/flox::LepOb/Ob mice, as we would predict that Kiss1 

mRNA expression remains unsuppressed in this model compared to LepOb/Ob controls. 

 

Kiss1CreBAC::GRflox/flox::LepOb/Ob males and females were infertile and obese, suggesting that 

glucocorticoid receptor signaling in kisspeptin neurons did not regulate fertility or body weight 

in LepOb/Ob mice.  Since deletion of GR in kisspeptin neurons did not restore fertility in Lepob/ob 

mice, we examined whether neuronal glucocorticoid receptor signaling affected fertility or 

obesity.   We did not use NestinCre for Cre-mediated excision of GR in the brain, because 

NestinCre::GRflox/flox animals have decreased body weight [24] and would confound the 

interpretation of any body weight phenotype in a LepOb/Ob background.  Instead, we obtained 

transgenic BlbpCreBAC mice [251], in which the brain lipid binding protein promoter drives Cre 

expression in neural stem cells.  We aimed to determine whether BlbpCreBAC would be a suitable 
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brain-specific driver that did not produce body weight changes in controls.  Unlike 

NestinCre::GRflox/flox mice, neither BlbpCreBAC nor BlbpCreBAC::GRflox/flox animals had altered body 

weight compared to WT littermates.  We proceeded to generate BlbpCreBAC::GRflox/flox::LepOb/Ob 

animals, but body weight, food intake, and fertility were not normalized in these animals 

(Figures 3.20, 3.21).  Because not all neurons were targeted by BlbpCreBAC, however, it is unclear 

whether this reflects non-central mechanisms of glucocorticoid receptor signaling in fertility and 

obesity, or insufficient excision of GR in the brain by BlbpCreBAC. 
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Figure 3.20 
In pilot studies, we generated BlbpCreBAC::GRflox/flox::LepOb/Ob 
females (n=6), in which the brain lipid binding protein 
promoter drives Cre expression in neural stem cells and 
induces Cre-mediated GR excision in a leptin-deficient 
background.  In females, (A) body weight at 5 weeks, (B) 
body weight at 10 weeks, and (C) food intake were 
comparable to those of LepOb/Ob animals.  ★p<0.05. 
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Figure 3.21 
In pilot studies, we generated BlbpCreBAC::GRflox/flox::LepOb/Ob 
males (n=4), in which the brain lipid binding protein 
promoter drives Cre expression in neural stem cells and 
induces Cre-mediated GR excision in a leptin-deficient 
background.  In males, (A) body weight at 5 weeks, (B) body 
weight at 10 weeks, and (C) food intake were comparable to 
those of LepOb/Ob animals.  ★p<0.05. 
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3.5  DISCUSSION 

Leptin is a potent satiety hormone, and leptin deficiency creates a chronic state of perceived 

starvation.  Starvation causes increased glucocorticoid secretion [246], and glucocorticoids can 

inhibit reproduction through direct and indirect mechanisms that are leptin-independent [125, 

129-131, 256].  Excess glucocorticoids due to glucocorticoid therapy [217] and disease (e.g., 

Cushing’s, anorexia nervosa) correlate with suppressed fertility [132, 189].  Hypercortisolemia in 

anorexia nervosa and Cushing’s disease are both associated with reproductive inhibition, despite 

dramatic differences in body weight and leptin levels in these disorders. 

 

We hypothesized that elevated glucocorticoid secretion, rather than leptin deficiency per se, 

caused infertility in leptin-deficient mice.  To assess the role of glucocorticoids in fertility, we 

generated leptin-, CRH-, and glucocorticoid-deficient CRHOB mice.  Unlike OB mice, CRHOB 

mice were fertile and had normalized reproductive organs and hormones.  Body weight, fat 

composition, and food intake were also decreased in CRHOB compared to OB mice.  In pilot 

studies, basal metabolic rate, but not locomotor activity, was normalized in CRHOB animals.  In 

pilot studies, rebound hyperphagia was decreased in CRHOB compared to OB animals.  We 

hypothesized that low leptin and high corticosterone together signal starvation and stimulate 

rebound hyperphagia.  Thus, the OB animal is in a chronic state of perceived starvation and 

rebound hyperphagia, leading to its morbid obesity.  In CRHOB mice that lack excess 

glucocorticoids, this hyperphagia is ameliorated, and animals are significantly leaner than OB 

littermates.  Body weight in CRHOB animals was comparable to that of adrenalectomized OB 

animals.  In pilot studies, we found that adrenalectomized OB males were unable to sire 

offspring.  Within two weeks of adrenalectomy, macroscopic adrenal glands could be identified 
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in these animals; it is possible that rapid regeneration of adrenal tissue prevented further 

activation of the reproductive axis, and the CRHOB model allowed for more complete and 

permanent removal of glucocorticoid secretion. 

 

CRH is normally inhibited by glucocorticoids and disinhibited by adrenalectomy or 

glucocorticoid deficiency.  In studying the role of glucocorticoids in fertility, we aimed to avoid 

confounding the decrease in glucocorticoids with the increase in CRH.  However, by eliminating 

both CRH and glucocorticoids in CRHOB animals, it was possible that CRH deficiency, rather 

than glucocorticoid deficiency, restored fertility in leptin-deficient mice.  There is evidence that 

CRH can inhibit reproductive axis hormones [132, 133].  However, even significantly increased 

CRH, caused by primary adrenal insufficiency, produces only prolonged estrous cycling but not 

infertility [257].  Additionally, we demonstrated that Crh mRNA expression was not elevated in 

OB compared to WT animals.  We demonstrated that corticosterone supplementation was 

sufficient to elicit infertility in CRHOB mice that was comparable to that of OB controls.  When 

corticosterone treatment was terminated, CRHOB mice regained reproductive capacity.  This 

indicates that glucocorticoids and not CRH, perhaps in conjunction with low leptin, are 

responsible for inhibition of fertility in OB mice.  Corticosterone supplementation also caused 

weight gain and increased plasma triglyceride concentrations only in CRHOB mice. 

 

The cellular sites and mechanisms for leptin and glucocorticoid interaction are still unclear.  In 

pilot studies, we deleted glucocorticoid receptors from the brain, using a novel brain-specific Cre 

targeting strategy, and from kisspeptin neurons in the background of leptin-deficiency.  

Abrogating GR signaling in kisspeptin neurons did not restore fertility or decrease body weight 
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in leptin-deficient animals.  GR was not sufficiently deleted from all neurons in the brain, and 

these animals were infertile and obese.  It remains unclear whether the interaction between leptin 

and glucocorticoids occurs in the brain, and if so, which populations of neurons mediate this 

effect. 

 

Leptin deficiency on a C57BL/6J background produces more severe infertility than leptin 

deficiency on a BALB/cJ background [184].  Under normal conditions, it is possible that 

physiologic increases in glucocorticoids and CRH and decreases in leptin together contribute to 

the suppression of reproductive function.  In humans with leptin deficiency, plasma 

glucocorticoid concentrations are not strikingly elevated, and it is possible that glucocorticoids 

play a less important role in reproductive inhibition in humans.  In our model, mice with global 

leptin deficiency in conjunction with global glucocorticoid deficiency were fertile.  Eliminating 

hypercortisolism in leptin-deficient mice was sufficient to restore fertility, and leptin was not 

required for fertility.  Thus, glucocorticoids suppress fertility and contribute to obesity in the 

presence of leptin deficiency.  These findings may provide novel molecular targets in the 

reproductive and metabolic aspects of disorders characterized by glucocorticoid dysregulation, 

including leptin deficiency, Cushing’s disease, anorexia nervosa, and mood disorders. 
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CHAPTER 4  

 

 

 

 

CONCLUSIONS 
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Summary 

Glucocorticoids are an important output of the hypothalamic-pituitary-adrenal axis, and classical 

actions of glucocorticoids are exerted through glucocorticoid receptors expressed throughout the 

body and brain.  Stress responses, including increased glucocorticoid secretion, are adaptive and 

facilitate the return to homeostasis.  Adaptations include the suppression of non-essential 

activities, such as reproduction, growth, and immune reactions. 

 

Chronic or hyperactive stress responses, however, are associated with multiple pathological 

conditions, including Cushing’s disease, post-traumatic stress disorder, anorexia nervosa, major 

depression, and other affective disorders.  Reproductive function is negatively affected in these 

hypercortisolemic conditions, and glucocorticoid treatment is known to suppress the 

hypothalamic-pituitary-gonadal axis as well.  The cellular substrates and mechanisms 

responsible for inhibiting and reactivating the reproductive axis during and after stress, 

respectively, are not well understood. 

 

In Chapter 2, we demonstrated that kisspeptin expression in the arcuate nucleus of the 

hypothalamus was sensitive to stress-induced changes in glucocorticoids.  We examined changes 

in kisspeptin and the reproductive axis in mice subjected to restraint, food deprivation, cold 

exposure, and corticosterone administration.  In all cases, there was an inverse relationship 

between plasma corticosterone concentrations and arcuate nucleus kisspeptin expression.  

Restraint and food deprivation caused increases in plasma corticosterone concentrations and 

decreases in Kiss1 mRNA expression.  Because these stressors likely elicited stress responses in 

addition to elevated glucocorticoid secretion, we treated mice with corticosterone to study the 
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isolated effects of glucocorticoids on kisspeptin neurons.  Kiss1 mRNA expression was 

decreased in mice treated with corticosterone. 

 

Genetic manipulation of kisspeptin neurons 

We next generated mice lacking glucocorticoid receptors specifically in kisspeptin-containing 

neurons.  In these animals, kisspeptin expression was no longer inhibited by restraint stress, and 

both testosterone and copulatory behaviors recovered faster following restraint.  However, male 

mice lacking glucocorticoid receptors in kisspeptin neurons still exhibited suppression of the 

reproductive axis immediately after restraint, consistent with the reproductive inhibition 

observed in male mice following cold exposure despite unsuppressed levels of corticosterone and 

Kiss1 mRNA, indicating that other glucocorticoid-dependent and -independent pathways can 

suppress the reproductive axis.  Thus, we conclude that glucocorticoid receptor signaling in 

kisspeptin neurons regulates the recovery of reproductive function following stress, but not the 

inhibition of the reproductive axis during stress. 

 

In the studies described above, we analyzed Kiss1 mRNA expression as a measure of kisspeptin 

neuron output.  Electrical activity, peptide release, and other important synaptic events cannot be 

captured by measurements of mRNA expression.  Changes in gene expression also occur on a 

slower time scale than changes in electrical activity.  Using optogenetic techniques, we could 

probe the immediate effects of manipulating kisspeptin neurons.  Channelrhodopsin (ChR) and 

halorhodopsin (HR) are microbial ion channels [258].  Channelrhodopsin is activated by blue 

light and conducts cations, while halorhodopsin is activated by yellow light and conducts 

chloride anions.  Neurons that express ChR are depolarized upon stimulation with blue light, 
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while neurons that express HR are hyperpolarized and inhibited by yellow light [259].  Delivery 

of these opsins can be mediated by lentiviral and adeno-associated viral vectors, in which ChR or 

HR is flanked by loxP sites, allowing for temporal and site-specific control of Cre-mediated 

recombination and expression [258].  Because these experiments require the implantation of site-

specific fiberoptic cables, ventral sites of the brain were relatively inaccessible for many years.  

Recently, however, optogenic targeting of the ventromedial nucleus of the hypothalamus [260] 

and orexin neurons of the lateral hypothalamus [261] successfully demonstrated that optogenetic 

control of ventral brain structures is possible. 

 

Our current findings indicate that kisspeptin neurons govern the time course of recovery from 

stress-induced reproductive inhibition.  We hypothesize that kisspeptin neurons must be 

reactivated following glucocorticoid-dependent inhibition to turn on the downstream 

hypothalamic-pituitary-reproductive axis.  In one potential experiment, we would induce Cre-

mediated expression of HR (e.g., eNpHR-eYFP) [262] in kisspeptin neurons in adult Kiss1Cre 

male mice.  We would subject these animals to restraint stress, and following release, deliver 

yellow light to hyperpolarize the kisspeptin neurons.  We predict that the inability of kisspeptin 

neurons to reactivate would prevent the restoration of testosterone and copulatory behaviors.  

With inhibition of kisspeptin neurons, we would expect copulatory behaviors to remain 

suppressed for longer than the one week time period described in Chapter 2.  Using the same 

optogenetic model, we could induce hyperpolarization of kisspeptin neurons in the absence of an 

external stressor to determine whether inhibition of kisspeptin neurons alone is sufficient to 

suppress reproductive function.  Lastly, we would hyperpolarize kisspeptin neurons in 

prepubertal Kiss1Cre mice to determine whether pubertal onset can be delayed, or whether 
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redundant, kisspeptin-independent mechanisms can elicit puberty.  If inhibition of kisspeptin 

neurons is sufficient to delay puberty, we would then induce acute halorhodopsin-mediated 

inhibition of these neurons at different prepubertal time points to determine the time course of, 

and perhaps a critical period for, kisspeptin neuron-dependent regulation of puberty. 

 

Our current findings also suggest that kisspeptin neurons do not wholly mediate the acute 

suppression of reproductive function during stress.  Mice subjected to cold exposure did not 

exhibit an increase in corticosterone or decrease in Kiss1 mRNA expression, but testosterone was 

still suppressed.  Male mice in which glucocorticoid receptors were deleted from kisspeptin 

neurons no longer exhibited a decrease in Kiss1 mRNA expression after restraint stress, but 

testosterone and copulatory behaviors were still suppressed immediately after the restraint.  We 

predict that preventing the suppression of kisspeptin neurons during acute stress would not 

preserve testosterone secretion or copulatory behaviors.  Stress levels of glucocorticoids, for 

example, can exert direct effects on the testis and induce apoptosis of Leydig cells [129, 130].  If 

one generated an animal in which kisspeptin neurons were constitutively active, for example, we 

would predict that testosterone and copulatory behaviors would still be suppressed following 

stress.  As a caveat, constitutive activity is not an ideal model, because kisspeptin is likely 

secreted in a pulsatile manner, much like GnRH, and continuous activation is more likely to 

suppress than activate the reproductive axis [263].  By using ChR, we could more precisely 

control the activity of kisspeptin neurons.  We hypothesize that 1) kisspeptin activity does not 

wholly mediate the inhibition of downstream reproductive function during acute stress, and 2) 

kisspeptin neuron reactivation governs the time course of recovery from stress-induced 

reproductive inhibition.  In potential experiments, we would induce Cre-mediated expression of 

126



ChR (e.g., ChR2-eYFP) [262] in kisspeptin neurons in adult Kiss1Cre male mice.  This would 

require preliminary studies to determine the appropriate pulse frequency of blue light in order to 

mimic physiologic kisspeptin pulsatile release, itself a parameter that has never been 

characterized.  We would subject these animals to restraint and deliver the appropriate frequency 

of blue light to depolarize the kisspeptin neurons throughout the stressor.  We predict that 

testosterone and copulatory behaviors would still be inhibited following stress, despite the 

continued activation of kisspeptin neurons, through inhibitory pathways at sites other than the 

kisspeptin neuron (e.g., direct glucocorticoid-mediated inhibition testosterone biosynthesis [129, 

130]).  Following restraint, however, we would predict that testosterone and copulatory 

behaviors would recover faster in mice that express ChR2-eYFP and receive blue light 

stimulation than in eYFP controls.  The accelerated recovery may be comparable to the one week 

time period observed in Kiss1CreBAC::GRflox/flox males.  In Kiss1CreBAC::GRflox/flox males, however, 

we had no control over the time course of kisspeptin neuron reactivation.  By continuing to 

induce optogenetic activation of kisspeptin neurons following restraint, we may be able to restore 

reproductive function even faster than one week following stress.  Using this model, we could 

also depolarize kisspeptin neurons in peripubertal mice to determine whether early activation of 

these neurons is sufficient to elicit advanced puberty. 

 

These optogenetic experiments would allow us to isolate the time course of activation and 

suppression of the reproductive axis, both in juveniles during puberty and in adults during stress-

induced reproductive inhibition. 
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Pharmacologic manipulation of kisspeptin neurons 

Our studies may lead to the study of drugs that have not been previously considered for the 

treatment of stress- and glucocorticoid-induced reproductive inhibition.  We would administer 

mifepristone (RU486) to male mice in order to evaluate the efficacy of possible pharmacological 

candidates to attenuate the inhibitory reproductive effects of stress on the hypothalamic-

pituitary-gonadal (HPG) axis.  Mifespristone is a non-specific glucocorticoid and progesterone 

antagonist that, through it action on progesterone receptors, is commonly known as the 

“morning-after pill” due to its use as an abortifactant in females [264-269].  Mifespristone may 

also be an attractive drug candidate to study the reversal of glucocorticoid-induced suppression 

of the reproductive axis in males.  We would predict that preventing glucocorticoid-mediated 

suppression of kisspeptin neurons would not prevent reproductive axis suppression acutely, but 

that the reproductive axis would recover relatively quickly following the termination of stress.  

This may also be achieved by manipulating kisspeptin secretion directly.  Kisspeptin-10 is the 

active decapeptide fragment of endogenous kisspeptin-54 and binds to the kisspeptin receptor 

with similar affinity but increased bioactivity [270, 271].  We would administer kisspeptin-10 to 

mice subjected to stress-induced reproductive inhibition and determine whether pre- or post-

stress treatment with kisspeptin can prevent prolonged suppression of the reproductive axis.  

These drugs may demonstrate novel utility in the treatment of the reproductive aspects of post-

traumatic stress disorder, mood disorders, and anorexia nervosa. 

 

Kisspeptin neurons contribute to reproductive behaviors 

We report that kisspeptin neurons can be protected from stress by the removal of glucocorticoid 

receptor signaling, and that doing so has the ability to orchestrate a repertoire of complex 
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behaviors leading to more rapid return of reproductive function, possibly by the downstream 

regulation of sex steroid secretion.  If the kisspeptin neuron-dependent recovery of the 

reproductive axis in males is mediated by changes in testosterone, we would expect multiple 

testosterone-dependent behaviors to be affected.  Aggression, for example, is a sexually 

dimorphic behavior widely considered to be mediated by testosterone in mammals [272].  If 

glucocorticoid receptor signaling in kisspeptin governs the time course of recovery of 

testosterone, which in turn governs the display of copulatory behaviors, then we would expect 

aggression to be altered in male mice in which glucocorticoid receptors are selectively deleted 

from kisspeptin neurons following stress.  To test this hypothesis, we would subject control and 

Kiss1CreBAC::GRflox/flox males to restraint stress and assay aggression using the resident-intruder 

paradigm [273].  The restrained male would serve as the resident in all cases, and age-matched 

males would serve as intruders.  Attack frequency, duration, and latency to first attack would be 

monitored at baseline, immediately after restraint, and following one week of restraint, consistent 

with the time course of our studies on copulatory behaviors.  We predict that all resident males 

would fail to attack intruders immediately after restraint, consistent with stress-induced 

inhibition of testosterone secretion.  Following one week of recovery, when 

Kiss1CreBAC::GRflox/flox males exhibited accelerated recovery of testosterone and copulatory 

behaviors, we predict that these animals would exhibit increased aggression towards intruders 

compared to control animals with intact glucocorticoid receptor signaling.  These experiments 

may demonstrate that kisspeptin neurons, through the action of testosterone, govern the recovery 

of multiple complex behaviors following stress. 
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We do not wish to oversimplify the relationship between glucocorticoids and reproductive axis 

hormones.  Elevated glucocorticoids do not always correlate with suppressed testosterone.  In the 

wild baboon colonies, for example, alpha males can exhibit high levels of testosterone, but also 

higher levels of glucocorticoids compared to beta males [274].  During times of hierarchy 

instability, glucocorticoids increase in alpha males, but testosterone is unaffected compared to 

during times of hierarchy stability [274].  In certain species, the reproductive system of seasonal 

breeders is also insensitive to glucocorticoids [275].  The mechanisms by which testosterone 

secretion, and possibly kisspeptin neurons, can become more or less sensitive to glucocorticoids 

by season or status within a social hierarchy may provide new insights into the glucocorticoid-

mediated inhibition of reproduction. 

 

Implications of kisspeptin neuron suppression 

Loss-of-function studies have demonstrated that kisspeptin signaling is crucial for pubertal 

development [83, 84].  Selective deletion of estrogen receptor alpha in kisspeptin neurons 

elicited advanced puberty [276].  Diphtheria toxin-mediated ablation of kisspeptin neurons in 

adult mice disrupted estrous cyclicity [216].  Our studies are the first to describe the targeted 

disruption of a signaling pathway within kisspeptin neurons that alters adult behaviors in mice.  

We also provide evidence that kisspeptin neurons are directly and potently regulated by an 

inhibitory input.  This insight may lead investigators to consider the role of inhibitory regulation 

in the characterization of kisspeptin neurons.  Much effort is directed towards identifying 

mechanisms by which kisspeptin neurons are activated during puberty.  It is possible that 

kisspeptin neurons receive tonic inhibitory inputs in prepubertal development, and puberty (like 

recovery from stress-induced reproductive inhibition) represents a release from inhibition.  There 
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is evidence that disinhibition of GABAergic inputs to LHRH neurons in the median eminence 

precedes the onset of puberty [277].  Tonic inhibition of kisspeptin neurons may be mediated by 

GABAergic neurons, the hypothalamic-pituitary-adrenal axis, or other inhibitory inputs.  

GABAergic networks are known to be plastic during embryonic and postnatal development, and 

the hypothalamic-pituitary-adrenal axis is especially plastic during the peripubertal period [278-

280].  Taking into consideration the mechanisms by which kisspeptin neurons can be disinhibited 

during puberty may prove to be a valuable complement to studies investigating the circuitry that 

activate these neurons during puberty. 

 

Model of pathological reproductive inhibition 

Our findings may suggest novel therapeutic targets for disorders characterized by dysregulated 

glucocorticoid secretion, such as mood disorders, anorexia nervosa, and post-traumatic stress 

disorder.  However, the weeklong suppression of reproduction following restraint should not 

necessarily be interpreted as a model of murine post-traumatic stress disorder.  Instead, this 

suppression could be an adaptive response by which animals, when faced with severely 

unfavorable conditions, avoid expending energy on reproduction for prolonged periods of time.  

During a protracted famine, for example, it may not be energetically favorable to reactivate the 

reproductive axis after finding and consuming just one meal.  Naturally slow recovery of 

kisspeptin neurons may facilitate the continued suppression of downstream reproductive axis 

signaling or render the axis more sensitive to additional stressors, until such a time when the 

animal has experienced a number of low-stress days (e.g., plentiful food, lack of predator 

presence).  In the case of starvation, signals such as low leptin and high glucocorticoids may 

collaborate to turn off the reproductive axis. 
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Hypercortisolemia in leptin deficiency 

Genetic leptin deficiency creates a chronic state of perceived starvation, and leptin-deficient 

mice exhibit elevated plasma glucocorticoid concentrations, morbid obesity, and infertility.  We 

hypothesized that glucocorticoid excess contributed to obesity and infertility in leptin-deficient 

mice.  In Chapter 3, we demonstrated that leptin-deficient, glucocorticoid-deficient mice 

exhibited decreased body weight and fat composition, decreased hyperphagia, and normal 

fertility.  When supplemented with glucocorticoids back to the initial levels present in leptin 

deficiency, these mice gained weight and became infertile.  Thus, leptin is not directly required 

for fertility as previously believed, and glucocorticoids can contribute to obesity and suppress 

fertility in leptin-deficient mice. 

 

We decreased systemic glucocorticoid secretion and restored fertility in the background of leptin 

deficiency.  The site(s) of glucocorticoid action remain unclear, and the mechanisms by which 

glucocorticoids and leptin interact are unknown.  After the initial discovery of kisspeptin, many 

investigators believed that kisspeptin neurons were the ideal candidate for the integration of 

metabolic and reproductive signals.  Kisspeptin expression was decreased following food 

deprivation in mice, rats, and macaques, and in leptin-deficient mice, and kisspeptin expression 

was restored following leptin replacement [185, 186, 224].  Kisspeptin neurons were 

hypothesized to be a direct target of leptin action.  However, very few kisspeptin neurons 

expressed leptin receptors, and mice in which leptin receptors were selectively deleted from 

kisspeptin neurons exhibited neither metabolic nor reproductive phenotypes (unpublished 

observations, Mayer et al., The Endocrine Society Annual Meeting, 2010). 
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Our results suggest that decreased Kiss1 mRNA expression following food deprivation and 

restraint correlate with, but is not the sole cause of downstream reproductive axis suppression.  

Mice subjected to cold exposure did not exhibit a decrease in Kiss1 mRNA expression, but did 

exhibit a decrease in testosterone.  Mice in which glucocorticoid receptors were deleted from 

kisspeptin neurons no longer exhibited a decrease in Kiss1 mRNA expression after restraint, but 

testosterone was still suppressed.  Thus, downregulation of kisspeptin expression following food 

deprivation or in leptin deficiency is not the only inhibitory input to the hypothalamic-pituitary-

gonadal reproductive axis.  We would predict that if one generated mice in which kisspeptin 

neurons remained unsuppressed by inducing appropriate pulsatile activation using optogenetic 

stimulation, the reproductive axis would still be suppressed by food deprivation and leptin 

deficiency through kisspeptin-independent mechanisms.  We generated an animal model in 

which glucocorticoid receptors were deleted from kisspeptin neurons in the background of leptin 

deficiency.  These mice were as obese and infertile as leptin-deficient controls.  It is possible that 

Kiss1 mRNA expression is unsuppressed in these animals, as with Kiss1CreBAC::GRflox/flox males 

following restraint stress, but even so, we predict that downstream reproductive axis sites could 

still be inhibited by other glucocorticoid-dependent and -independent mechanisms.  

Glucocorticoids exert numerous effects on peripheral tissues [227], and it is possible that the 

interaction between leptin and glucocorticoids does not occur wholly within the brain.  Because 

animals with brain-specific deletion of glucocorticoid receptors generated by using NestinCre 

were significantly runted compared to littermate controls [24], we do not consider this to be an 

ideal model in which to study the effects of body weight in the background of leptin deficiency.  

We attempted to generate animals with brain-specific deletion of glucocorticoid receptors in the 

background of leptin deficiency by using BlbpCre transgenic mice, but Cre expression in these 
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brains was incomplete, and BlbpCreBAC::GRflox/flox::LepOb/Ob mice were infertile and obese.  

Generating an animal in which glucocorticoid receptors are selectively deleted from the brain in 

the background of leptin deficiency may be possible if we were able to identify other brain-

specific Cre mice in which Cre expression is widespread, but glucocorticoid receptor deletion in 

itself does not produce a body weight phenotype. 

 

Sites of glucocorticoid and leptin interaction 

As we and others explore sites of glucocorticoid action in regulating fertility and energy 

metabolism, we bear in mind that the site of glucocorticoid and leptin interaction may remain 

elusive, because the site of leptin action itself is not clear.  Classically, first-order leptin-sensitive 

neurons are described to be the POMC/CART and AGRP/NPY neurons of the arcuate nucleus of 

the hypothalamus [281].  However, selective deletion of leptin receptors from POMC/CART and 

AGRP/NPY neurons produces only mild obesity compared to global leptin receptor knockout 

mice [282-284].  Selective deletion of leptin receptors from GABAergic neurons, however, 

produces mice with obesity as severe as that of global leptin receptor knockout mice [285].  In an 

initial effort to identify the site of interaction between leptin and glucocorticoids, we would 

generate Vgat-ires-Cre::GRflox/flox::LepOb/Ob and Vglut2-ires-Cre::GRflox/flox::LepOb/Ob mice in 

which glucocorticoid receptors are selectively deleted from GABAergic or glutamatergic 

neurons, respectively, in the background of leptin deficiency.  Identifying the site of 

glucocorticoid action could elucidate an important component of the circuitry of feeding and 

fertility.  Identifying systemic glucocorticoid action as an important contributor to energy 

metabolism and fertility in leptin-deficient mice introduces a novel therapeutic target in the 

treatment of obesity and infertility. 
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Our studies indicate a role for glucocorticoids in the regulation of obesity and reproductive 

inhibition caused by stress.  Together, these findings may provide novel mechanisms and 

molecular targets in the reproductive and metabolic aspects of disorders characterized by 

glucocorticoid dysregulation. 
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