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Abstract

We investigate some arithmetic orbit problems in representations of linear algebraic

groups arising from Vinberg theory. We aim to give a description of the orbits in these

representations using methods with an emphasis on representation theory rather than

algebraic geometry, in contrast to previous works of other authors.

It turns out that for the representations we consider, the orbits are related to the

arithmetic of the Jacobians of certain algebraic curves, which appear as the smooth

nearby fibers of deformations of simple singularities. We calculate these families

of algebraic curves, and show that the 2-torsion in their Jacobians is canonically

identified with the stabilizers of certain orbits in the corresponding representations.
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1. Introduction

This thesis is a contribution to arithmetic invariant theory. Let G be a reductive

group over a field k, and let V be a linear representation of G. Then the ring k[V ]G

is a k-algebra of finite type, and we can define the quotient V�G = Spec k[V ]G and

a quotient map π : V → V�G. The determination of the structure of k[V ]G and the

fibers of π falls under the rubric of geometric invariant theory, and is important in

algebraic geometry.

In the case where k is not algebraically closed, a further layer of difficulty is obtained

by considering the G(k)-orbits in the fibers of π over k-points of V�G. This problem

can be translated into the language in Galois cohomology, and as such often has close

ties to arithmetic.

Bhargava has singled out those representations which are coregular, in the sense

that k[V ]G is isomorphic to a polynomial ring, as promising candidates for repre-

sentations which may have interesting connections to arithmetic. For example, he

studies the case G = GL2 and V = Sym4(2)∨, the space of binary quartic forms. In

this case there are two independent polynomial invariants I and J , and k-rational

orbits with given values of I and J are related to classes in the Galois cohomology

group H1(k,E[2]) for the elliptic curve

E : y2 = x3 + Ix + J.

These considerations have had very striking applications; see [2], or [23] for a beautiful

summary. See also the work of Ho [13] for a variety of similar orbit parameterizations

associated to other representations. For each choice of pair (G, V ), one makes an ad

hoc construction in algebraic geometry which relates orbits in the given representation

to algebraic curves, possibly with marked points, given line bundles, or other types

of extra data.
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By contrast, this thesis represents a first effort to describe some of the phenomena

appearing in arithmetic invariant theory through the lens of representation theory.

We take as our starting point certain representations arising from Vinberg theory,

whose role in arithmetic invariant theory has been emphasized by Gross. If G is

a reductive group over k endowed with an automorphism θ of finite order m, then

the fixed group Gθ acts on the θ = ζ eigenspace g1 ⊂ g for any choice ζ ∈ k× of

primitive mth root of unity. Vinberg theory describes the geometric invariant theory

of these representations. In the case when θ is regular and elliptic, in the sense of

[12], the generic element of g1 will have a finite abelian stabilizer, and orbits in the

representation are thus related to interesting Galois cohomology.

If G is a split reductive group over k, then it has a unique Gad(k)-conjugacy class

of regular elliptic involutions θ, characterized by the requirement that g1 contain

a regular nilpotent element. It is the representations associated to these canonical

involutions for simple G of type A, D or E that we study in this thesis.

The geometric objects associated to our Vinberg representation are constructed

using deformation theory. It turns out that the nilpotent cone in g1 (namely, the

locus where all invariant polynomials vanish) is smoothly equivalent along the generic

point of the singular locus to a plane curve singularity of type A, D or E, the type

being that of the group G. (In fact, these are precisely the simple singularities of the

title).

Let X ⊂ g1 be a transverse slice to the Gθ-action at such a singular point. Re-

stricting the quotient map π : g1 → g1�Gθ to X realizes X as a family of curves

deforming the central fiber, the generic fiber of which is smooth. We are thus able to

associate to any point b ∈ g1�Gθ(k), at which a suitably defined discriminant does

not vanish, a canonical smooth projective curve Yb. The identification of the families

of curves obtained in this manner is given in Theorem 4.8. The families turn out to
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be universal families of curves of fixed genus and with certain kinds of marked points

at infinity.

The curves Xb ⊂ Yb come equipped with embeddings Xb �→ π−1(b). We show that

the 2-torsion of the Jacobian JYb
is canonically isomorphic to the stabilizer Zb ⊂ Gθ

of any point in π−1(b)(k), and that with these identifications the classifying maps

Xb(k) �→ JYb
(k) → H1(k, JYb

[2])

and

Xb(k) �→ π−1(b)(k) → H1(k, Zb)

coincide. Applying all this to the group G = PGL3, we obtain the orbit correspon-

dence used by Bhargava and Shankar in their work on the 2-Selmer groups of elliptic

curves over Q. (We note that we have neglected here the role played by the com-

ponent group of Gθ, and the variation of G within its isogeny class; for a precise

formulation, see Theorem 5.14).

Our methods are inspired primarily by work of Slodowy. Rational double point

singularities of surfaces can be classified in terms of the Dynkin diagrams of sim-

ply laced simple algebraic groups. Grothendieck conjectured that one could give a

representation-theoretic construction of this correspondence, by looking at the generic

singularity of the nilpotent cone of the corresponding group G. A proof of this con-

jecture was announced in a famous ICM lecture of Brieskorn [6], but the first detailed

proofs were given by Esnault and Slodowy in the respective works [10] and [28]. Our

work is what one obtains on combining the respective ideas of Slodowy and Vinberg.

Let us say a few words about the limits of our methods. Essential to our work is

the use of sl2-triples, whose existence relies in turn on the Jacobson-Morozov lemma.

We must therefore work over a field of sufficiently large characteristic, relative to the

Coxeter number of G. In this thesis we choose for simplicity to work over a field of

characteristic zero, but to extend to all characteristics will require new methods. (Of



4

course, there are other problems in very small characteristic; for example, Vinberg’s

description of the invariant polynomials also breaks down). For similar reasons, we

cannot say anything about orbits over Z.

More serious is the lack of information we obtain about the image of the map

π−1(b)(k) → H1(k, JYb
[2]) constructed above. It follows from the above considerations

that it contains the elements in the image under the 2-descent map δ of Xb(k); we

conjecture that it moreover contains the image under δ of the whole group JYb
(k) of

rational points of the Jacobian. In other words, we currently lack a way to construct

orbits in the representations we study. We hope to return to this question in future

work.

Let us now outline the contents of this thesis. In §2, we prove some basic properties

of the so-called stable involutions θ, and define the Vinberg representations to which

they correspond. An important point here is the calculation of the stabilizers of the

regular elements in g1 in terms of the root datum of the ambient reductive group

G. We also recall some basic facts about Galois cohomology, and the deformation

of singularities. In particular, we define the simple curve singularities that appear in

this thesis.

In §3, we introduce the subregular nilpotent elements, which appear in the singular

locus of the nilpotent cone of g1. We then address the question of when g1 contains

subregular nilpotent elements which are defined over the base field k. In §4, we

construct the families of curves mentioned above inside a suitable transverse slice to

the subregular nilpotent orbit.

Finally, in §5, we show how to relate the 2-torsion in the Jacobians of our curves

and the stabilizers of regular elements, and prove our main theorem relating the

2-descent map to the classifying map for orbits in non-abelian Galois cohomology.
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Notation. As mentioned above, we work throughout over a field k of characteristic

zero. We assume basic familiarity with the theory of reductive groups over k, as

studied for example in [14] or [30]. We assume that reductive groups are connected.

If G is a reductive group acting linearly on a k-vector space V , then the ring of

invariants k[V ]G is a k-algebra of finite type (see for example [29], Theorem 2.4.9).

We define V�G = Spec k[V ]G and call it the categorical quotient. It in fact satisfies a

universal property, but we will not need this here. We will write N (V ) for the closed

subscheme of V cut out by the augmentation ideal of k[V ]G.

If G, H, . . . are algebraic groups then we will use gothic letters g, h, . . . to denote

their Lie algebras. Let G be a reductive group, and T ⊂ G a split maximal torus.

Then we shall write Φt ⊂ X∗(T ) for the set of roots of T in g, and Φ∨
t ⊂ X∗(T )

for the set of coroots. The assignment α ∈ Φt �→ dα ∈ t∗ identifies Φt with the set

of roots of t in g, and we will use this identification without comment. We write

W (t) = NG(T )/T for the Weyl group of G with respect to t. We have the Cartan

decomposition

g = t⊕
�

α∈Φt

gα,

where dim gα = 1 for each α ∈ Φt. We write Uα ⊂ G for the unique T -invariant

closed subgroup with Lie algebra gα (see [14], 26.3, Theorem). The tuple

(X∗(T ), Φt, X∗(T ), Φ∨
t )

is a root datum in the sense of [30], 7.4.

We will write LG = ZΦt for the root lattice of G and ΛG ⊂ LG ⊗Z Q for the

weight lattice of LG. (These are the groups Q and P , respectively, of [4], Ch. VI,

§1.9). If the group G is clear from the context, we will omit the subscript G. We

understand these to depend only on G and not on T , so that LG and ΛG are defined

up to (non-unique) isomorphism. We write WG ⊂ Aut(LG) for the corresponding

Weyl group.
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If x ∈ g, we write ZG(x) for its centralizer in G under the adjoint representation,

and zg(x) for its centralizer in g. Since we work in characteristic zero, we have

Lie ZG(x) = zg(x) and this notation is consistent. We write AG for the center of G,

and ag for its Lie algebra.

2. Preliminaries

Throughout this section, G is a split reductive group over a field k of characteristic

zero. We recall without proof the following basic facts.

Proposition 2.1. (1) Any x ∈ g can be written uniquely as x = xs + xn, where

xs is semisimple and xn is nilpotent. Moreover we have [xs, xn] = 0.

(2) If k is algebraically closed then any semisimple element is contained in a

Cartan subalgebra and any two Cartan subalgebras of g are conjugate by an

element of G(k).

Theorem 2.2. (1) Let t ⊂ g be a Cartan subalgebra. Then the restriction map

k[g]G → k[t]W (t)
is an isomorphism. Moreover, k[t]W (t)

is a polynomial ring

over k in rank G indeterminates.

(2) Let p : g → g�G denote the adjoint quotient map. Then p is flat. If k

is algebraically closed, then for all x ∈ g, p−1p(x) consists of finitely many

G(k)-orbits.

Proposition 2.3. Let x ∈ g be semisimple. Then ZG(x) is reductive (and in par-

ticular, connected). Let T ⊂ G be a maximal torus, and suppose that x ∈ t. Then

T ⊂ ZG(x) is a maximal torus. Let

Φt(x) = {α ∈ Φt |α(x) = 0} and Φ∨
t (x) = {α∨ ∈ Φ∨

t |α ∈ Φt(x)}.

Let W (x) = ZW (t)(x).
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Then the root datum of ZG(x) is (X∗(T ), Φt(x), X∗(T ), Φ∨
t (x)). The Weyl group of

ZG(x) with respect to T can be identified in a natural way with W (x). Finally, ZG(x)

is generated by T and the groups Uα for α ∈ Φt(x).

We say that x ∈ g is regular if its centralizer zg(x) has the minimal possible

dimension, namely rank G. Equivalently, the orbit G · x should have the maximal

possible dimension.

Lemma 2.4. Let x ∈ g. The following are equivalent:

(1) x is regular.

(2) If x = xs + xn is the Jordan decomposition of x, then xn is regular in zg(xs).

(3) The quotient map p : g → g�G is smooth at x.

Elements of Vinberg theory. Let θ ∈ Aut(G) be an automorphism of exact order

m > 1, and let ζ ∈ k be a primitive mth root of unity. We will also write θ for the

induced automorphism of g. We associate to θ the grading g = ⊕i∈Z/mZ gi, where by

definition we have

gi = {x ∈ g | θ(x) = ζ ix}.

We write Gθ for the fixed subgroup of θ, and G0 for its connected component. Then

Lie G0 = g0, so the notation is consistent.

Lemma 2.5. The action of Gθ
on g leaves each gi invariant.

Proof. Immediate. �

In what follows, we shall consider the representation of G0 on the subspace g1 ⊂ g.

The study of such representations is what we call Vinberg theory. For the basic facts

about Vinberg theory, and in particular for proofs of the unproved assertions in this

section, we refer to the papers [33] or [18].

Lemma 2.6. Let x ∈ g1. Then x can be written uniquely as x = xs + xn, where

xs, xn both lie in g1 and are respectively semisimple and nilpotent.
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By definition, a Cartan subspace c ⊂ g1 is a maximal subalgebra consisting of

semisimple elements. Note that c is automatically abelian.

Proposition 2.7. Suppose that k is algebraically closed. Then an element x ∈ g1

is semisimple if and only if it is contained in a Cartan subspace, and all Cartan

subspaces are G0(k)-conjugate.

Let c ⊂ g1 be a Cartan subspace, and define W (c, θ) = NG0(c)/ZG0(c). This is the

‘little Weyl group’ of the pair (G, θ). We define rank θ = dim c. This is well-defined

by the above proposition.

Theorem 2.8. (1) Restriction of functions induces an isomorphism k[g1]G0 →

k[c]W (c,θ)
. Moreover, W (c, θ) is a reflection group and k[c]W (c,θ)

is a polynomial

ring in rank θ indeterminates.

(2) Let π : g1 → g1�G0 denote the quotient map. Then π is flat. If k is alge-

braically closed, then for all x ∈ g1, π−1π(x) consists of only finitely many

G(k)-orbits.

We say that v ∈ g1 is stable if G0 · v is closed in g1, and ZG0(v) is finite. We

say that θ is stable if g1 contains stable elements. The property of being stable is

hereditary, in the following sense.

Lemma 2.9. Suppose that θ is a stable automorphism. Let x ∈ g1 be semisimple.

Let H = ZG(x) and h = Lie H. Then θ(H) = H, and θ|H is a stable automorphism.

Proof. Lemma 5.6 of [12] states that v ∈ g1 is stable if and only if it is regular

semisimple, and the action of θ on the character group of the unique maximal torus

centralizing v is elliptic. Given x as in the lemma, choose a Cartan subspace c

containing it. Then c contains a stable vector, which is also stable when considered

as an element of h; the result follows. �
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Stable involutions. In this thesis we shall be particularly interested in the stable

involutions.

Lemma 2.10. Suppose that k is algebraically closed. There is a unique G(k)-

conjugacy class of stable involutions θ.

Proof. To show uniqueness, we reduce immediately to the case that G is adjoint. By

Lemma 5.6 of [12], any stable vector v ∈ g1 is regular semisimple, and θ acts as −1

on its centralizer c = zg(v). In particular, we have c ⊂ g1. It follows that the trace

of θ on g is equal to − dim c = − rank G, and a well-known theorem of E. Cartan

asserts that this determines θ up to G(k)-conjugacy. We can also reduce existence

to the case of G adjoint. We will prove existence (even when k is not algebraically

closed) in this case below. �

Lemma 2.11. Let θ be a stable involution of G. Then θ satisfies the following.

(1) rank θ = rank G.

(2) There exists a maximal torus C in G on which θ acts by x �→ x−1
.

(3) For all x ∈ AG, we have θ(x) = x−1
.

(4) Let c be a Cartan subspace (and hence, a Cartan subalgebra). Then the natural

map W (c, θ) → W (c) is an isomorphism.

Proof. The first and second properties follow from the proof of the previous lemma.

For the third property, we recall that AG is contained in any maximal torus of G.

The final property is [12], Corollary 7.4. �

Suppose for the rest of this section that θ is a stable involution.

Proposition 2.12. Let x = xs + xn ∈ g1 be a regular element. Then ZGθ(x) =

AZG(xs)[2]. In particular, this group is always finite and abelian.

Proof. We have ZG(x) = ZG(xs) ∩ ZG(xn), so after replacing G by ZG(xs), we may

assume that x = xn is a regular nilpotent element.
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Then ZG(x) = AG · ZU(x), a direct product, where U is the unipotent radical of

the unique Borel subgroup containing x. Quotienting by AG, we may suppose that

G is adjoint and must show that ZU(x)θ is trivial. But since x is regular, this is a

finite unipotent group, so the result follows. �

Corollary 2.13. Let x = xs +xn be a regular element, and let c be a Cartan subspace

containing xs. Let C ⊂ G denote the maximal torus with Lie algebra c. Then

ZGθ(x)
∼= Hom(X∗(C)/2X∗(C) + ZΦc(x), Gm).

Proof. For any reductive group G with root datum (X∗(T ), Φt, X∗(T ), Φ∨
t ), there is

a canonical isomorphism X∗(Z(G)) ∼= X∗(T )/ZΦt. Now apply the previous proposi-

tion. �

Corollary 2.14. Suppose that G is adjoint and that k is algebraically closed. Let

x ∈ g1 be a regular semisimple element. Let L denote the root lattice of G, and

Λ ⊂ L⊗Z Q the weight lattice. Then there is an isomorphism

ZG0(x) ∼= Hom(N, Gm),

well defined up to conjugacy by the Weyl group W of L, where N denotes the image

of L in Λ/2Λ.

Proof. Let Gsc denote the simply connected cover of G. Then θ acts on Gsc. A

theorem of Steinberg ([22], Chapter 4.4.8, Theorem 9) states that (Gsc)θ is connected,

and hence G0 is the image of the map (Gsc)θ → G. The present corollary now follows

from the previous one. �

Now suppose that the simple components of G are simply laced (that is, their root

systems are all of type A, D, or E), and let L, Λ and W be as in the statement of

the corollary. Then there is a W -invariant quadratic form �·, ·� : L×L → Z uniquely
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determined by the requirement that �α, α� = 2 for every root α. The pairing �·, ·�

on L induces a pairing (·, ·) : L/2L × L/2L → F2. An easy calculation shows this

pairing is alternating. In fact, we have the following:

Lemma 2.15. The pairing (·, ·) descends to a non-degenerate alternating pairing on

N .

Proof. Suppose x ∈ L. Then the image of x in L/2L lies in the radical of (·, ·) if and

only if �x, L� ⊂ 2Z, if and only if x ∈ 2Λ, since Λ is the Z-dual of L with respect

to the pairing �·, ·�. (Pairings of this type, associated to regular elliptic elements of

Weyl groups, were first considered by Reeder; compare [24]). �

Corollary 2.16. Suppose that G is an adjoint group, and that the simple components

of G are simply laced. Then for any regular semisimple element x ∈ g1, there is a

canonical non-degenerate alternating form (·, ·) : ZG0(x)× ZG0(x) → µ2.

We now show how to construct a stable involution over an arbitrary field k of

characteristic 0. We let G be a simple split adjoint group, and fix a split maximal

torus T and a Borel subgroup B containing it. This determines a set Φ+ ⊂ Φ = Φt

of positive roots, and a root basis R ⊂ Φ+. We fix moreover for each α ∈ R a basis

Xα of the one-dimensional vector space gα ⊂ g. The tuple (T,B, {Xα}α∈R) is called

a pinning of G.

This choice of data determines a splitting Aut(G) = G�Σ, where Σ is the group of

pinned automorphisms induced by automorphisms of the Dynkin diagram of G. On

the other hand, writing L = X∗(T ) = ZΦ for the root lattice of g, the choice of root

basis determines a splitting Aut(L) = W � Σ in a similar manner; see [5], Ch. VIII,

§5.2. We write σ ∈ Σ for the image of −1 ∈ Aut(L), and define θ = ρ∨(−1) � σ ∈

Aut(G)(k), where ρ∨ ∈ X∗(T ) is the sum of the fundamental coweights.

Lemma 2.17. θ is a stable involution.
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Proof. This follows immediately from Corollary 5.7 of [12]. �

This stable involution has good rationality properties. This is based on the follow-

ing fact.

Lemma 2.18. With θ as above, g1 contains a regular nilpotent element. All regular

nilpotent elements of g1 are conjugate by a unique element of Gθ(k).

Proof. The element
�

α∈R
Xα is regular nilpotent and, by construction, lies in g1. Fix

a separable closure K of k. If E,E � ∈ g1 are two regular nilpotent elements then they

are conjugate by an element of Gθ(K). (This follows from Theorem 5.16 of [17]).

We saw above that for any such E, ZGθ(E) is the trivial group. It follows that E,E �

are conjugate by a unique element of Gθ(K), which must therefore lie in Gθ(k). �

Corollary 2.19. There is a unique G(k)-conjugacy class of stable involutions θ1 of

G such that there exists a regular nilpotent element E1 ∈ g with θ1(E1) = −E1.

Proof. The existence has been shown above. For the uniqueness, fix again a separable

closure K of k. We have seen that G(K) acts transitively on pairs (θ1, E1). On the

other hand, the stabilizer of such a pair in G(K) is trivial. It follows that any two

such pairs are conjugate by a unique element of G(k). �

sl2-triples. We now suppose again that G is a general split reductive group over k.

A tuple (E,H, F ) of linearly independent elements of g is called an sl2-triple if it

satisfies the relations

[H, E] = 2E, [H,F ] = −2F, [E,F ] = H.

Lemma 2.20. (1) Any nilpotent element E ∈ g is contained in an sl2-triple.

(2) Any two sl2-triples (E,H, F ) and (E,H �, F �) are ZG(E)(k)-conjugate.

Proof. The first part is the well-known Jacobson-Morozov lemma, see [5], Ch. VIII,

§11.2, Proposition 2. The second part is [5], Ch. VIII, §11.1, Proposition 2. �
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Now suppose that θ is an involution of G. We call a tuple (E,H, F ) a normal

sl2-triple if it is an sl2-triple, and moreover we have E ∈ g1, H ∈ g0, and F ∈ g1.

(In particular, the restriction of θ to the subalgebra spanned by these elements is a

stable involution).

Lemma 2.21. (1) Any nilpotent element E ∈ g1 is contained in a normal sl2-

triple.

(2) Any two normal sl2-triples (E,H, F ) and (E,H �, F �) are ZG0(E)(k)-conjugate.

Proof. Fix a separable closure K of k. For the first part, choose an arbitrary sl2-triple

(E, h, f) containing E, and decompose h = h0+h1 into θ-eigenvectors. The argument

of [16], Proposition 4 implies that there is a unique F ∈ g1⊗k K such that (E, h0, F )

is an sl2-triple. But a sl2-triple is determined uniquely by any 2 of its 3 elements, so

descent implies that F ∈ g1, and (E, h0, F ) is the desired triple.

For the second part, we argue as in the proof of [16], Proposition 4, and apply [5],

Ch. VIII, §11.1, Lemma 4 to obtain the desired rationality property. �

Corollary 2.22. Suppose that G is adjoint. Then G(k) acts simply transitively on

the set of pairs ((θ1), (E,H, F )), where θ1 is a stable involution of G and (E,H, F )

is a normal sl2-triple with respect to θ1 in which E is a regular nilpotent element.

Example 2.23. We illustrate some of the concepts introduced so far in the case

where G is a split adjoint group of type A2r. Let V be a vector space of dimension

2r +1, with basis {e1, e2, . . . , er, v, fr, . . . , f2, f1}. We define an inner product �·, ·� on

V by the formulae

�ei, ej� = 0 = �fi, fj� = �ei, v� = �fi, v�

for all i, j and

�v, v� = 1, �ei, fj� = δij.
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If T ∈ End(V ), write T ∗ for the adjoint of T with respect to this inner product.

Then we take G = PGL2r+1 = PGL(V ), and θ : sl2r+1 → sl2r+1 to be the involution

X �→ −X∗. It is easy to check that −θ is just reflection in the anti-diagonal. In

particular, fixing the standard pinning (T,B, {Xα}α∈R) of sl2r+1, this θ is exactly the

stable involution constructed above.

Then we see that Gθ = G0 = SO(V ) is connected, and we have

g = g0 ⊕ g1, g0 = {X ∈ End(V ) | tr X = 0, X = −X∗
} = so(V ).

In particular, g1 = {X ∈ End(V ) | tr X = 0, X = X∗} consists of the space of

operators self-adjoint with respect to �·, ·�.

The regular nilpotent element determined by the pinning is

E =





0 1 0 . . . 0

0 0 1 0
...

...
...

...
. . .

...

0 . . . 0 0 1

0 . . . 0 0 0





.

We end this section by recalling some basic facts about Galois cohomology and

deformations of singularities.

Galois cohomology. Let K be a separable closure of k. Consider an algebraic group

H acting on a variety X over k. Let x ∈ X(k). Then we can consider the set S of

elements in X(k) which become conjugate to x over K:

S = (H(K) · x) ∩X(k).

Proposition 2.24. There is a bijection, depending only on the H(k)-orbit of x:

S/H(k) ∼= ker(H1(k, ZH(x)) → H1(k,H)),



15

where the kernel is in the sense of pointed sets. The H(k)-orbit of x is mapped to the

distinguished element of H1(k, ZH(x)).

Here H1(k,−) = H1(Gal(K/k),−) denotes non-abelian continuous Galois coho-

mology as defined in [25], Ch. 1, §5.

Proof. We construct the maps in either direction. Given an element y ∈ (H(K) ·x)∩

X(k), we can choose h ∈ H(K) with h · x = y. Then we define a 1-cocycle valued

in ZH(x)(K) by the formula fσ = h−1σh ∈ ZH(x)(K) for any σ ∈ Gal(K/k). It is

easy to see that a different choice of h changes fσ by a coboundary, and a choice of

y� ∈ H(k) ·y does not change fσ at all. Furthermore, fσ is clearly a coboundary when

considered as being valued in H.

Conversely, let fσ be a 1-cocycle representing an element of the above kernel. We

can write fσ = h−1σh, and then y = h · x defines element of the left hand side

depending only on the cohomology class of fσ. �

Corollary 2.25. Suppose that H1(k, ZH(x)) is trivial. Then two points x, y ∈ X(k)

are conjugate by an element of H(k) if and only if they are conjugate by an element

of H(K).

Representations of Gm. Let U be a finite-dimensional k-vector space endowed with a

linear action of Gm. Then we can decompose U = ⊕i∈ZU(i), where U(i) denotes the

eigenspace of the character t �→ ti in U . We call those i for which U(i) is non-zero

the weights of U .

Now suppose that V, U are as above and let f : V → U be a regular map inter-

twining the two Gm-actions. If the weights of V are (with multiplicity) w1, . . . , wn

and the weights of U are d1, . . . , dm, then we say that f is quasi-homogeneous of

type (d1, . . . , dm; w1, . . . , wn). In particular, if f = f(x1, . . . , xn) is a polynomial in

n variables, we say that f is quasi-homogeneous of type (d; w1, . . . , wn) if it satisfies
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the identity

f(tw1x1, . . . , t
wnxn) = tdf(x1, . . . , xn)

for all t ∈ Gm.

Deformations of quasi-homogeneous singularities. Let f(x1, . . . , xn) be a non-zero

quasi-homogeneous polynomial of type (w; d1, . . . , dn). Then the hypersurface X0 =

f−1(0) in An receives an obvious action of Gm. We suppose that it has an isolated

singularity at the origin.

By a deformation of X0, we mean a pair (R,X ), where R is a complete Noether-

ian local k-algebra with residue field k, and X is a formal scheme, flat over Spf R,

equipped with an isomorphism ι : X ⊗R k ∼= X0. If moreover Spf R and X are

equipped with actions of Gm making the structure morphism X → Spf R equivari-

ant, and compatible with the standard action on X0, we say that the pair (R,X ) is a

Gm-deformation. A morphism (S,Y) → (R,X ) of Gm-deformations is a pair (φ, Φ)

of morphisms φ : Spf S → Spf R and Φ : Y → X such that the following diagram is

Cartesian and Gm-equivariant:

Y
Φ

��

��

X

��

Spf S
φ

�� Spf R.

Let Ck denote the category of complete Noetherian local k-algebras R with residue

field k, equipped with a Gm-action on Spf R. We define a functor DefX0 : Ck → Sets

by taking DefX0(R) to be the set of Gm-deformations (R,X ) of X0 up to isomorphism.

We say that a Gm-deformation (R,X ) of X0 is universal if it represents this functor.

It is said to be semi-universal if for any other Gm-deformation (S,Y), there exists a

morphism (S,Y) → (R,X ) and moreover the induced map on Zariski tangent spaces

(mS/m2
S
)∗ → (mR/m2

R
)∗ is uniquely determined.
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Proposition 2.26. A semi-universal Gm-deformation of X0 exists.

Proof. See [28], §2. �

Simple singularities. Let K be an algebraic closure of k, and let X be an algebraic

curve over k. We say that X has a simple singularity at x ∈ X(k) if the completed

local ring of X ⊗k K at x is either regular or isomorphic to K�x, y�/(f(x, y)), where

f is one of the functions appearing in the following table:

Type f(x, y)

Ar, r ≥ 1 y2 − xr+1

Dr, r ≥ 4 xy2 − xr−1

E6 y3 − x4

E7 y3 − x3y

E8 y3 − x5

This gives, by definition, a classification of the simple singularities by simply laced

Dynkin diagrams. Simple singularities admit a number of equivalent descriptions.

We list a few of them here:

• Suppose that X is Gorenstein. Then X has a simple singularity at x ∈ X(k)

if and only if the completed local ring of X ⊗k K at x has only finitely many

isomorphism classes of indecomposable torsion-free modules ([11]).

• If k = C, it makes sense to talk about the nearby fibers of a semi-universal

deformation, as in [1], Ch. 3. Then X has a simple singularity at x ∈ X(C)

if and only if only finitely many isomorphism classes of singularities appear

in the nearby fibers of the semi-universal deformation.

• If k = C, then X has a simple singularity at x ∈ X(C) if and only if the

symmetric intersection pairing on the homology of the smooth nearby fibers

of the singularity is positive definite ([9]).



18

3. Subregular elements

We continue to assume that G is a split reductive group. We have seen that if

x ∈ g, the minimal possible dimension of zg(x) is rank G (namely, this occurs when

x is a regular element). The next smallest possible dimension for zg(x) is rank G + 2,

by [31], III, 3.25. In this case, we say that x is a subregular element.

Lemma 3.1. Let x = xs +xn be the Jordan decomposition of x. Then x is subregular

if and only if xn is subregular in zg(xs).

Proof. This follows since ZG(xs) is reductive and rank ZG(xs) = rank G.

�

Of particular importance will be the subregular nilpotent elements.

Proposition 3.2. g contains subregular nilpotent elements. Suppose that G is simple

and that k is algebraically closed. Then there is a unique G(k)-orbit of subregular

nilpotent elements in g, and these are dense in the complement of the regular nilpotent

orbit in the nilpotent variety of g.

Proof. This follows from [32], 3.10, Theorem 1. �

Thus if g is simple, then its nilpotent variety has a unique open orbit, consisting of

regular nilpotent elements; its complement again has a unique open orbit, consisting

of the subregular nilpotents. If g = g1 × · · · × gs is a product of simple Lie algebras,

then any nilpotent element n can be written uniquely as a sum n = n1 + · · · + ns,

where ni ∈ gi. It is then easy to see that n is regular if and only if each ni is regular

in g; and n is subregular if and only if some ni is subregular in gi, and all other

nj are regular nilpotent elements. In particular, when k is algebraically closed there

are exactly s G(k)-orbits of subregular nilpotent elements, and there is a canonical

bijection between these and the set of connected components of the Dynkin diagram

of g.
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Now suppose that θ is stable involution of G. Before we continue, it is helpful to

note the following.

Lemma 3.3. Let x ∈ g1. Then dim zg0(x) = (dim zg(x)−rank G)/2, and dim G0 ·x =

(dim G · x)/2.

Proof. This follows from [16], Proposition 5. �

Our next goal is to show that g1 contains subregular nilpotent elements. We use a

trick, based on the Kostant-Sekiguchi correspondence.

Theorem 3.4. Suppose that k = R and that G is semisimple. Let τ be a Cartan

involution of G. Then there are bijections between the following three sets:

(1) The set of nilpotent G(R)0
-orbits in g.

(2) The set of nilpotent Gτ (C)0
-orbits in gτ=−1 ⊗R C.

(3) The set of nilpotent G0(C)-orbits in g1 ⊗R C.

The map G(R)0 ·X �→ Gτ (C)0 ·X �
satisfies G(C) ·X = G(C) ·X �

.

Proof. The bijection between the first two sets is constructed in [7], Section 9.5. The

existence of the bijection between the latter two follows since τ is a stable involution,

and all such are conjugate over C. �

Corollary 3.5. Suppose that k is algebraically closed. Then g1 contains subregular

nilpotent elements.

Proof. This is implied by the above theorem since, if k = R and g is split, all conjugacy

classes of nilpotent elements have an element defined over k. �

To obtain more information, we must argue on a case by case basis. For the rest

of this section, we assume that G is adjoint, and that g1 contains a regular nilpotent

element. We first recall the following (see [28], §7.5, Lemma 4).
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Proposition 3.6. Suppose that G is simple and simply laced, and let x ∈ g be a

subregular nilpotent element. Then ZG(x) is the semi-direct product of a unipotent

group with either Gm (if G is type Ar) or the trivial group (if G is of type Dr or Er).

In particular, this centralizer is connected.

In fact, the connectedness of the centralizer of the subregular nilpotent character-

izes the simply laced groups amongst the simple groups. The author does not know

a proof of this fact that avoids case-by-case analysis, which suggests why it may be

necessary here.

Corollary 3.7. Suppose that k is algebraically closed, and that G is of type Dr or

Er. Then (Gθ/G0)(k) acts simply transitively on the set of G0(k)-orbits of subregular

nilpotent elements of g1.

Proof. Let x be a subregular nilpotent element. Then ZGθ(x) = ZG0(x), by the

above. It therefore suffices to show that #(Gθ/G0)(k) is equal to the number of real

subregular nilpotent orbits. This can be accomplished, for example, by inspection of

the tables in [7]. �

Proposition 3.8. Suppose that k is algebraically closed, and that G is of type Ar.

Then there is a unique G0(k)-conjugacy class of subregular nilpotent elements in g1.

Proof. We note that there when k = R, there is a unique real orbit of subregular

nilpotents in g. �

We now treat the case where k is not necessarily algebraically closed.

Proposition 3.9. g1 contains a subregular nilpotent element. In particular, we can

find subregular normal sl2-triples (e, h, f) in g.

Proof. Let K denote a separable closure of k. It suffices to find a normal sl2-triple

(e, h, f) in g⊗k K such that e is subregular nilpotent and h ∈ g. For then the set of
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subregular elements is Zariski dense in gad h=2
1 (see [8], Proposition 7) and our chosen

field k is infinite.

Since g1 contains a regular nilpotent element, we may assume that G is equipped

with a pinning (T,B, {Xα}α∈R) and that θ is the involution above constructed in

terms of this pinning. In particular, t0 = tθ ⊂ g0 is a split Cartan subalgebra of G0.

Let (e, h, f) be a subregular normal sl2-triple in g⊗k K. After conjugating by an

element of G0(K), we can assume that h lies in t0 ⊗k K ⊂ t ⊗k K. Now we have

α(h) ∈ Z for every root α, since h embeds in an sl2-triple, and hence h lies in t0. The

result follows. �

Proposition 3.10. (1) Suppose that G is of type Dr or Er. Then all subregular

nilpotent elements in g1 are Gθ(k)-conjugate.

(2) Suppose that G is of type A2r. Then there is a bijection between k×/(k×)2
and

the set of G0(k)-orbits of subregular nilpotent elements in g1, given by sending

d · (k×)2
to the orbit of the element (in the notation of Example 2.23 above):

(f1 �→ f2 �→ f3 �→ . . . �→ fn �→ den, en �→ en−1 �→ . . . �→ e1, v �→ 0).

(3) Suppose that G is of type A2r+1. Then all subregular nilpotent elements in g1

are G0(k)-conjugate.

Proof. Let x ∈ g1 be a subregular nilpotent element. The first part follows since

ZGθ(x) is a unipotent group, hence has vanishing first Galois cohomology, and we

can apply Corollary 2.25. To prove the second and third parts, we make an explicit

calculation using the results of Kawanaka [15]. Briefly, if (e, h, f) is a normal sl2-

triple, let G0 denote the connected subgroup of G with Lie algebra g0∩gad h=0. Then

Kawanaka shows that ZG0(e) has the form C � R , where R is connected unipotent

and C = Z
G0

(e) has reductive connected component. We summarize the results of

this calculation here.
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If g is of type A2r, a choice of subregular nilpotent x is the transformation given

by the formula (in the notation of Example 2.23 above):

f1 �→ f2 �→ f3 �→ . . . �→ fn �→ en �→ en−1 �→ . . . �→ e1, v �→ 0.

If d ∈ k×, we define another element xd by the formula

f1 �→ f2 �→ f3 �→ . . . �→ fn �→ den, en �→ en−1 �→ . . . �→ e1, v �→ 0.

One calculates that ZG0(e) is a semi-direct product of µ2 by a connected unipo-

tent group, with Galois cohomology isomorphic (via the Kummer isomorphism) to

k×/(k×)2. With appropriate identifications the element d ∈ k×/(k×)2 corresponds to

the G0(k)-orbit of the element xd.

If g is of type A2r+1, then one calculates that ZG0(e) is connected unipotent, so

has vanishing first Galois cohomology. �

Proposition 3.11. Suppose that k is algebraically closed. If G is of type Ar, D2r+1

or Er then the closure of every regular nilpotent G0(k)-orbit in g1 contains every

subregular nilpotent orbit. If G is of type D2r, then the closure of each regular nilpotent

G0(k)-orbit contains exactly 3 subregular nilpotent orbits. Conversely, each subregular

nilpotent orbit is contained in the closure of exactly 3 regular nilpotent orbits.

Proof. The only cases needing proof are A2r+1, Dr, and E7. The case of A2r+1 follows

immediately, since (Gθ/G0)(k) permutes the regular nilpotent orbits. The cases of Dr

and E7 follow from the descriptions given in the works [21] and [20], respectively. �

4. Subregular curves

For the rest of this thesis, we fix the following notation. We suppose that G is a

split simple group over k, of type Ar, Dr or Er. We fix also a stable involution θ of G

and a regular nilpotent element E ∈ g1. We recall that the pair (θ, E) is determined
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uniquely up to Gad(k)-conjugacy. In this section we construct a family of curves over

the categorical quotient g1�G0. The construction is based on the notion of transverse

slice to the action of an algebraic group, which we now briefly review.

Transverse slices. For the moment, let H be an algebraic group acting on a variety

X, both defined over k. Let x ∈ X(k). By a transverse slice in X to the orbit of x

(or more simply, a transverse slice at x), we mean a locally closed subvariety S ⊂ X

satisfying the following:

(1) x ∈ S(k).

(2) The orbit map H × S → X, (h, s) �→ h · s, is smooth.

(3) S has minimal dimension with respect to the above properties.

It is easy to show that if X is smooth, then transverse slices of the above kind

always exist and have dimension equal to the codimension of the orbit H · x in X.

(Here we use that k is of characteristic zero; in general, one should assume also that

the orbit maps are separable). An important property of transverse slices is the

following slight extension of [28], §5.2, Lemma 3:

Proposition 4.1. Let H, X be as above, and let S1, S2 be transverse slices at points

x1, x2, respectively, where x1, x2 lie in the same H(k)-orbit of X. Suppose that X is

smooth. Let f : X → Y be a H-equivariant morphism, where H acts trivially on Y .

Then:

• S1, S2 are étale locally isomorphic over Y in the sense that there exists a

variety S over Y with a geometric point s and étale Y -morphisms φ1 : S →

S1, φ2 : S → S2 with φ1(s) = x1, φ2(s) = x2.

• Suppose further that k = C. Then S1(C), S2(C) are locally isomorphic over

Y (C) in the analytic topology. Furthermore, there exist arbitrarily small

neighborhoods U1 ⊂ S1(C), U2 ⊂ S2(C) of x and homeomorphisms ψ : U1 →
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U2 over Y (C) such that the induced maps U1 �→ X(C), U1
∼= U2 �→ X(C) are

homotopic over Y (C).

Proof. After translating, we can assume that x1 = x2 = x, say. We can choose a

projection π : H → h which takes e to 0 and is étale at the identity. Choose a direct

sum decomposition h = zh(x) ⊕ V and let C1 = π−1(V ), C2 = C−1
1 = {c−1|c ∈ C1}.

Then the two maps

m1 : C1 × S1 → X, m2 : C2 × S2 → X

are étale at (e, x). We set M1 = m−1
2 (S1), M2 = m−1

1 (S2). Thus we have Cartesian

diagrams

M1
��

��

S2

��

M2

��

�� S1

��

C1 × S1
�� X C2 × S2

�� X,

and the arrows in the top row are étale at (e, x). Furthermore, M1 and M2 are

isomorphic via the map

ψ : M1 → M2 : (c, s) �→ (c−1, cs).

The first part of the proposition follows on taking S to be an open neighborhood of

x in M1 = M2 which is étale over both S1 and S2.

We now prove the second part. To simplify notation, let us identify the varieties

with their complex points. Let W ⊂ C1 × S1 be a neighborhood of x such that

W → X is an open embedding, and let U2 = M1 ∩W . We let U1 = ψ(U2). After

possibly shrinking U1 and U2, we can suppose that the map m2|U1 : U1 → X is also

an embedding. We can then identify the Ui with their images in the respective Si.

We may suppose that the projection of W to C1 is contained in a contractible

subset, and let ft : W → C1 denote a contraction to the identity. We now define
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gt : U2 → X by gt(c, s) = m1(ft(c), s). Then g1 is equal to the restriction of m1 to

U2, and g0(c, s) = s = m2(ψ(c, s)). The result follows. �

An important special case where we can construct transverse slices explicitly is the

case of a reductive group H acting via the adjoint representation on its Lie algebra

h. The construction uses the theory of sl2-triples. We first recall some basic facts

about representations of sl2. This simple Lie algebra has a basis {x, t, y} consisting

of the elements

x =



 0 1

0 0



 , t =



 1 0

0 −1



 , and y =



 0 0

1 0



 .

In particular, the tuple (x, t, y) is an sl2-triple.

Proposition 4.2. (1) For each integer m ≥ 1, there is a unique simple sl2-

module V (m) of dimension m, up to isomorphism. All of the eigenvalues

of h on V (m) are integers, and the non-zero weight spaces V (m)t=i
are 1-

dimensional. The space V (m)t=i
is non-zero exactly for i = 1 − m, 3 −

m, . . . ,m − 3, m − 1. We call V (m)t=m−1
the highest weight space, and

V (m)t=1−m
the lowest weight space.

(2) Suppose that V (m)t=i
is non-zero. Then we have x · V (m)t=i = V (m)t=i+2

and y · V (m)t=i = V (m)t=i−2
.

(3) Any finite-dimensional sl2-module V decomposes as a direct sum V = ⊕Vi of

simple submodules.

Proof. See [5], Ch. VIII, §1. �

Now let us take e ∈ h to be a non-zero nilpotent element, and complete e to an

sl2-triple (e, h, f). We view h as an sl2-module by restricting the adjoint action to the

subalgebra spanned by these elements, and choose a decomposition V = ⊕iVi into a

direct sum of simple sl2-modules.
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Now, the affine tangent space to the orbit H · e at e is given by e + [e, h] ⊂ h

(see [3], I.3.10). Using the above decomposition, we have [e, h] = ⊕i[e, Vi], and

[e, Vi] is just the t-equivariant complement of the lowest weight space in Vi, namely

ker ad f : Vi → Vi. It follows that zh(f) is a complement to [e, h] in h, and hence the

affine linear subspace e + zh(f) ⊂ h is a transverse slice at e.

Proposition 4.3. S = e+zh(f) is a transverse slice to the action of H at every point

of S. In other words, the multiplication map µ : H × S → h is everywhere smooth.

The proof is based on the following construction of Slodowy. We let λ : Gm →

H be the cocharacter with dλ(1) = h. Let p1, . . . , pr be algebraically independent

homogeneous polynomials generating the ring of invariants k[h]H . We suppose that

they have degrees d1, . . . , dr. We suppose that Vi has dimension mi, and choose for

each i a basis vector vi of the lowest weight space of Vi.

A general element v ∈ S can be written in the form v = e +
�

i
xivi, and we have

λ(t)(v) = t2e +
�

i

t1−mixivi, t · v = te +
�

i

txivi

and

pi(λ(t)(v)) = pi(v), pi(t · v) = tdipi(v).

Defining an action ρ of Gm on h by ρ(t)(v) = t2λ(t−1) ·v, we see that S is ρ-invariant,

and the ρ-action contracts S to e. If we let Gm act on h�H by the square of its usual

action, then the composite S �→ h → h�H becomes Gm-equivariant. In other words,

writing w1, . . . , wn for the weights of the ρ-action on S, the morphism S → h�H is

quasi-homogeneous of type (d1, . . . , dr; w1, . . . , wn). The weights wi are given by the

formula wi = mi + 1.

Proof of Proposition 4.3. Define an action of Gm × H on H × S by (t, g) · (k, s) =

(gkλ(t), ρ(t)s), and let Gm ×H act on h by (t, g) ·X = t2 Ad(g)(X). Then the map

µ : H × S → h is equivariant for these actions, and smooth in a neighborhood of
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H × {x} ⊂ H × S; since the Gm-actions are contracting, it follows that µ is smooth

everywhere. �

Corollary 4.4. The composite S �→ h → h�H is faithfully flat.

Proof. The composite H × S → S → h�H is equal to the composite H × S → h →

h�H, which is a composition of flat morphisms, hence flat (H × S → h is flat since

we have just proved it to be smooth). Since the second projection H ×S → S is flat,

S → h�H must also be flat.

The image is a Gm-stable open subset of h�H containing the origin, hence the

whole of h�H. The faithful flatness follows. �

Let us now return to our group G with stable involution θ, and let (e, h, f) now

denote a normal sl2-triple. From the above, we see that there is a direct sum de-

composition g = [e, g] ⊕ zg(f). Both summands are θ-stable so we deduce that

g1 = [e, g0] ⊕ zg(f)1, where by definition zg(f)1 = zg(f) ∩ g1. It follows that

X = e + zg(f)1 is a transverse slice at e ∈ g1, and identical arguments to those

above now prove the following.

Proposition 4.5. The map µ : G0 × X → g1 is smooth and the composite X �→

g1 → g1�G0 is faithfully flat.

We now examine two special cases of this construction in more detail.

The regular sl2 and the Kostant section. Let d1, . . . , dr denote the degrees of alge-

braically independent homogeneous generators of the polynomial ring k[g1]G0 . We

let (E,H, F ) be the unique normal sl2-triple containing the element E, and set

κ = E + zg(F )1. We call κ the Kostant section. It has the following remarkable

properties.

Lemma 4.6. The composite κ �→ g1 → g1�G0 is an isomorphism. Every element

of κ is regular. In particular, the map g1(k) → (g1�G0)(k) is surjective, and if k is
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algebraically closed then κ meets every G0(k)-conjugacy class of regular semisimple

elements.

Proof. It is well known that g decomposes under the action of a regular sl2 as g ∼=

⊕r

i=1V (2di − 1). By the above, the map κ → g1�G0 is faithfully flat, and quasi-

homogeneous of type (2d1, . . . , 2dr; 2d1, . . . , 2dr). Lemma 4.14 below now implies

that it must be an isomorphism. The remaining claims are immediate. �

A subregular sl2. Now fix a normal subregular sl2-triple (e, h, f), and set X = e +

zg(f)1. (Note that if G is of type A1, then there is no non-zero subregular nilpotent

element, and therefore no subregular sl2-triple, since we have defined an sl2-triple to

consist of 3 linearly independent elements. In this case, we just take X = g1). Recall

that we have defined an action of Gm on X.

Proposition 4.7. We have dim X = r + 1. We write w1, . . . , wr+1 for the weights

of the Gm-action. After re-ordering, we have wi = 2di for i = 1, . . . , r − 1. The

2di, i = 1, . . . , r − 1 and wr and wr+1 are given in the following table:

2d1 2d2 2d3 . . . . . . 2dr−2 2dr−1 2dr wr wr+1

Ar 4 6 8 . . . . . . 2r − 2 2r 2r + 2 2 r + 1

Dr 4 8 12 . . . . . . 4r − 8 2r 4r − 4 4 2r − 4

E6 4 10 12 16 18 24 6 8

E7 4 12 16 20 24 28 36 8 12

E8 4 16 24 28 36 40 48 60 12 20

Proof. The proof is by explicit calculation, along similar lines to the proof of [28],

§7.4, Proposition 2. We describe the method. If V ⊂ g is a θ-stable simple sl2-

submodule, then its highest weight space is θ-invariant. Moreover, the eigenvalue of

θ on this highest weight space determines the action of θ on every weight space. We

can calculate a decomposition of g into a direct sum of θ-stable simple sl2-modules by

calculating the dimension of each weight space of h, and the trace of θ on each weight
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space. This can be accomplished by using the explicit θ constructed in Lemma 2.17

and a list of the roots of g. We can then fill in the table by reading off the lowest

weight spaces which have θ-eigenvalue equal to -1.

For example, suppose that G is of type A2. Then a choice of h is

h =





1 0 0

0 0 0

0 0 −1




,

in the notation of Example 2.23. We can write the weights of h on g with multiplicity

as follows:

−2 0 2

−1 1

−1 1

0

Thus g decomposes as a direct sum V (3)⊕V (2)⊕V (2)⊕V (1). In this case −1 is an

eigenvalue of θ of multiplicity 1 on each weight space. (Recall that −θ is reflection in

the anti-diagonal). We can now decorate each weight space with a + or −, according

to its θ-eigenvalue:

−2− 0+ 2−

−1+ 1−

−1− 1+

0−

It follows that dim zg(f)1 = 3, as expected, and the eigenvalues of h on zg(f)1 are

−2,−1 and 0, hence the weights on e + zg(f)1 are 2, 3, and 4, as claimed above. �

Henceforth we write g1�G0 = B, and ϕ : X → B for the restriction of the quotient

map π : g1 → g1�G0 to X. The main result of this section is the following.
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Theorem 4.8. The fibers of ϕ are reduced curves. The central fiber X0 = ϕ−1(0)

has a unique singular point which is a simple singularity of type Ar, Dr, Er, corre-

sponding to that of G. We can choose homogeneous co-ordinates (pd1 , . . . , pdr) on B

and (pd1 , . . . , pdr−1 , x, y) on X such that the family X → B of curves is as given by

the following table:

G X

Ar y2 = xr+1 + p2xr−1 + · · ·+ pr+1

Dr y(xy + pr) = xr−1 + p2xr−2 + · · ·+ p2r−2

E6 y3 = x4 + y(p2x2 + p5x + p8) + p6x2 + p9x + p12

E7 y3 = x3y + p10x2 + x(p2y2 + p8y2 + p14) + p6y2 + p12y + p18

E8 y3 = x5 + y(p2x3 + p8x2 + p14x + p20) + p12x3 + p18x2 + p24x + p30.

(This means, for example, that when G is of type Ar, the relation pr+1 = y2 −

(xr+1 +p2xr−1 + · · ·+prx) holds on X). The proof of Theorem 4.8 follows closely the

work of Slodowy [28], with some simplifications due to the fact that we work with

curves, rather than surfaces. We begin with some general considerations, and reduce

to a case by case calculation using the invariant degrees of G.

The possibility of choosing co-ordinates as above is a consequence of the following

general lemma.

Lemma 4.9 ([28], §8.1, Lemma 2). Let V, U be k-vector spaces of dimensions m, n

respectively, on which Gm acts linearly. Let φ : V → U be a morphism equivariant

for these actions. Suppose that dφ0 has rank s and that Gm acts with strictly positive

weights on U and V .

Then there exist Gm-invariant decompositions V = V0⊕W , U = U0⊕W , dim W =

s, and a regular automorphism α of V such that φ ◦ α has the form (v0, w) �→

(ψ(v0, w), w) for some ψ.

To apply this to the map ϕ : X → B, we need the following result.
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Proposition 4.10. Let x ∈ X. Then dϕx has maximal rank r = rank G if and only

if x is a regular element. The map dϕ0 : TeX → T0B has rank r − 1.

Proof. Let p : g → g�G denote the adjoint quotient map. For any y ∈ g1, we have

dpy(g0) = 0. This is true if y is regular, since then g0 = [y, g1] ⊂ [y, g] is contained in

the tangent space to the orbit G · y. It then follows for any y ∈ g1, since the regular

elements are dense. In particular, for any y ∈ X, we have rank dpy = rank dπy =

rank dϕy. The first part of the proposition now follows, since y ∈ g1 is regular if and

only if dpy has maximal rank.

For the second part, we remark that rank dpe = r − 1 if e is subregular nilpotent,

by [28], §8.3, Proposition 1. �

We thus obtain a decomposition of affine spaces X = V0⊕W , B = U0⊕W , where

dim W = r − 1, dim V0 = 2, and dim U0 = 1. With respect to these decompositions

we write

ϕ : (v0, w) �→ (ψ(v0, w), w), V0 ⊕W → U0 ⊕W.

Recall that ϕ is Gm-equivariant of type (2d1, . . . , 2dr; w1, . . . , wr+1). By inspection

of the tables above, we have 2dr > wi, each i = 1, . . . , r + 1, and hence the weights

occurring in W are 2d1, . . . , 2dr−1. Moreover, the unique weight of U0 is given by

2dr and the weights of V0 are wr, wr+1. Let x, y be homogeneous co-ordinates on

V0 of weight wr and wr+1, respectively. It follows that X0 ⊂ V0 is cut out by a

quasi-homogeneous polynomial f(x, y) of type (2dr; wr, wr+1).

Proposition 4.11. After possibly making a linear change of variables, the polynomial

f(x, y) is as given by the following table.
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G f(x, y)

Ar, r ≥ 1 y2 − xr+1

Dr, r ≥ 4 xy2 − xr−1

E6 y3 − x4

E7 y3 − x3y

E8 y3 − x5

Proof. We suppose first that k is algebraically closed. Then the induced map G0 ×

X0 → π−1(0) is smooth, since X is a transverse slice and this property is preserved un-

der passage to fibers (see [28], §5, Lemma 2). Since π−1(0) is smooth along the regular

locus, X0 is generically smooth, hence reduced. We now proceed by direct computa-

tion. Let us treat for example the case of Ar. Then f(x, y) is quasi-homogeneous of

type (2r + 2; 2, r + 1), where we suppose that the weights of x and y are 2 and r + 1,

respectively.

Since f defines a reduced curve, it must have the form ay2 − bxr+1, with a, b non-

zero constants. After rescaling we may assume that f has the form given in the

statement of the proposition. The same argument works for the other cases as well.

Now suppose that k is not algebraically closed. The same argument suffices, except

in the cases A2r+1 and D2r. For example, in case A2r+1 one must rule out the

possibility f(x, y) = y2−ax2r+2, where a ∈ k× is a non-square. But the natural action

map G0 × X0 → π−1(0) induces an injection on geometric irreducible components,

see Lemma 5.13 below. The irreducible components of π−1(0) are geometrically

irreducible, so it follows that the same must be true for X0, hence a must be a

square. The same argument works for the case of type D2r. �

At this point we have identified the central fiber of ϕ with the desired curve. We

will obtain the identification over the whole of B via a deformation argument. Before

doing this, we must determine the singularities appearing in the other fibers of ϕ.
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Proposition 4.12. Let t ∈ g1 be a semisimple element, and let b denote its image

in B. Let D denote the Dynkin diagram of ZG(t), and write it as a disjoint union

D = D1 ∪ · · · ∪Dk of its connected components.

Let y ∈ ϕ−1(b)(k) = Xb(k) be a singular point. Then y is a simple singularity of

type Di for some i = 1, . . . , s.

Proof. We have an isomorphism

G0 ×
ZG0 (t) (t +N (zg(t)1)) ∼= π−1(b),

induced by the map (g, t + n) �→ g · (t + n). Let y have Jordan decomposition

y = ys +yn. Without loss of generality, we may suppose that k is algebraically closed

and that ys = t. Then yn ∈ zg(t) is a subregular nilpotent element. If we decompose

[zg(t), zg(t)] = l1 × · · · × lk into a product of simple, θ-stable subalgebras then yn

has a decomposition yn = y1 + · · · + yk, where yi ∈ li is a nilpotent element. After

re-numbering, we can assume that y1 ∈ l1 is a subregular nilpotent element, and all

of the other yi ∈ li are regular nilpotent. Moreover, the restriction of θ to each li is

a stable involution.

Now fix a transverse slice S1 to the ZG0(t)-orbit of y1 in l11. It then follows that

S1 +
�

j≥2 yj is a transverse slice to the ZG0(t)-orbit of yn in N (l11) and hence X1 =

t + S1 +
�

j≥2 yj is a transverse slice at y to the G0 action in π−1(b), as the above

isomorphism makes π−1(b) into a fiber bundle over G0/ZG0(t) with fiber N (zg(t)1).

On the other hand, we know that Xb is also a transverse slice at y to the G0 action

in π−1(b). The result now follows from Proposition 4.1 and Proposition 4.11. �

Semi-universal deformations and the proof of Theorem 4.8. We can now

complete the proof of Theorem 4.8. By Proposition 2.26, there exists a semi-universal

deformation �Z → �D of the central fiber X0 as a Gm-scheme, where �Z → �D is a

morphism of formal schemes with underlying reduced schemes given by X0 → Spec k.
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The proof is based on the fact that, since X0 is given as the zero set of an explicit

polynomial f(x, y), �Z → �D admits a canonical algebraization Z → D which we can

calculate explicitly and then compare with X → B.

Proposition 4.13. Let f(x, y) be a polynomial in two variables, quasi-homogeneous

of type (d; w1, w2). Let X0 ⊂ A2
denote the closed subscheme defined by f , and

suppose that X0 has an isolated singularity at the origin. Then a semi-universal Gm-

deformation of X0 can be construction as follows: let J = (∂f/∂x, ∂f/∂y) ⊂ k[x, y]

denote the Jacobian ideal of f . Then k[x, y]/J is a finite-dimensional k-vector space,

and receives an action of Gm. Choose Gm-invariant polynomials g1(x, y), . . . , gn(x, y)

projecting to a k-basis of Gm-eigenvectors of k[x, y]/J . Now define

Z = {f + t1g1 + · · ·+ tngn = 0} ⊂ A2
× An,

and let Φ : Z → D denote the natural projection to the An
factor.

Suppose that gi has weight ri, and let Gm act on ti by the character t �→ td−ri.

Then Φ is a Gm-equivariant morphism, and the formal completion �Φ : �Z → �D of this

morphism is a semi-universal Gm-deformation of X0.

Proof. See [28], §2.4. �

Applying this our fixed polynomial f , we obtain a family of curves Z → D, where

D is an affine space of dimension n, and a Cartesian diagram of formal schemes

�X

��

�� �Z

��

�B �� �D

.

An elementary (and enjoyable) calculation shows that in each case Ar, Dr, Er, n = r

and Z → D is the family of curves appearing in the statement of Theorem 4.8.

Let us do the example where G is of type E6 here. Then we can take f(x, y) =
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y3 − x4, a quasi-homogeneous polynomial of type (24; 6, 8). The Jacobian ideal is

J = (x3, y2). A basis of the ring k[x, y]/J can be taken to be the classes of the

polynomials 1, x, x2, y, xy, x2y mod J . Our family of curves thus takes the form

y3
− x4 + t24 + t18x + t12x

2 + y(t16 + t10x + t4x
2) = 0,

where Gm acts on ti now by the character t �→ ti. Renaming the variables, we obtain

the family of curves listed above.

The morphism �B → �D is given by power series and respects the Gm-actions on

either side, which both have strictly positive weights; it follows that these power

series are in fact polynomials, so this morphism has a canonical algebraization. We

obtain a second Cartesian diagram

X

��

�� Z

��

B �� D.

Now the bottom horizontal arrow is a Gm-equivariant polynomial map between affine

spaces of the same dimension and the weights on the domain and codomain are the

same. We now apply the following lemma.

Lemma 4.14 ([28], §8.1, Lemma 3). Let Gm act on affine spaces V, U of dimension

n, and let φ : V → U be an equivariant morphism. Suppose that:

• Gm acts on V and U with the same strictly positive weights.

• The central fiber φ−1(0) is zero dimensional.

Then φ is an isomorphism.

We must verify that the second condition holds. If b ∈ B is mapped to 0 ∈ D,

then Xb
∼= X0. Proposition 4.12 implies that all singularities in the non-central fibers
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of ϕ are simple singularities belonging to simply laced root systems of rank strictly

less than r, and so we must have b = 0. This completes the proof of Theorem 4.8.

Let S = e + zg(f), and let τ denote the involution of S induced by −θ. Thus S is

an affine space of dimension r + 2, and we have Sτ = X.

Lemma 4.15. We can choose global co-ordinates z1, . . . , zr+2 on S, w1, . . . , wr on

B such that z1, . . . , zr+1 are fixed by τ , τ(zr+2) = −zr+2, and such that the following

holds: the morphism X → B is given by the formula

(z1, . . . , zr+1) �→ (z1, . . . , zr−1, f(z1, . . . , zr+1))

for some polynomial function f , and the morphism S → B is given by the formula

(z1, . . . , zr+2) �→ (z1, . . . , zr−1, f(z1, . . . , zr+1) + z2
r+2).

Proof. We recall that there is a contracting action of Gm on S, and that this action

sends X to itself. Applying Lemma 4.9, we see that we can find Gm and τ -invariant

decompositions S = V0 ⊕ V1 ⊕W , B = U0 ⊕W such that the map S → B is given

by (v0, v1, w) �→ (ψ(v0, v1, w), w) for some Gm-equivariant morphism ψ. Moreover, τ

acts trivially on V0⊕W and as −1 on V1. We have dim V0 = 2, dim V1 = dim U0 = 1,

dim W = r − 1. Moreover, ψ is quasi-homogeneous of some degree.

We choose co-ordinates as follows: let z1, . . . , zr−1 be arbitrary co-ordinates on

W , zr, zr+1 co-ordinates which are eigenfunctions for the Gm-action, and zr+2 an

arbitrary linear co-ordinate on V1. Proposition 2 of [28], §7.4 now implies that zr+2

has degree equal to half the degree of ψ. It follows that we must have ψ(v0, v1, w) =

ψ(v0, 0, w) + z2
r+2, after possibly rescaling co-ordinates. (The coefficient of zr+2 must

be non-zero since S0 has a unique isolated singularity). �

Corollary 4.16. Let b ∈ B(k), and let t ∈ π−1(b)(k) be a semisimple element.

Then there is a bijection between the connected components of the Dynkin diagram of
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ZG(t) and the singularities of the fiber Xb, which takes each (connected, simply laced)

Dynkin diagram to a singularity of corresponding type.

Proof. The above lemma implies that the singular locus of Sb is equal to the singular

locus of Xb. We have seen that the singular points of Xb are precisely the subregular

elements of Xb. It therefore suffices to show that Xb meets each G-orbit of subreg-

ular elements in p−1(b) exactly once, or equivalently that Sb meets each G-orbit of

subregular elements in p−1(b) exactly once. This follows immediately from [28], §6.6,

Proposition 2 and the remark following.

�

5. Jacobians and stabilizers of regular elements

We continue with the notation of the previous section. Thus G is a split simple

group of type Ar, Dr, or Er, and (θ, E) is a pair of stable involution of G, together

with a regular nilpotent element E ∈ g1. The pair (θ, E) is uniquely determined up

to Gad(k)-conjugacy. This data determines a regular normal sl2-triple (E,H, F ). We

choose further a subregular normal sl2-triple (e, h, f). Our chosen sl2-triples give two

special transverse slices. First, the Kostant section κ = E +zg(F )1, which is a section

of the quotient map π : g1 → B by regular elements. Second, a transverse slice to

the G0-orbit of e, X = e + zg(f)1. The fibers of the induced map ϕ : X → B are

reduced connected curves.

In this section we shall write grs
1 for the open subvariety of regular semisimple

elements, and Brs for its image in B. For any variety Z → B we will write Zrs =

Z ×B Brs. Thus the morphism Xrs → Brs is a family of smooth curves.

Homology. Fix a separable closure K of k. In the following if X is a k-scheme of

finite type, we will write H1(X, F2) for H1
ét(X ⊗k K, F2)∗, the dual of the first étale

cohomology of X ⊗k K. This is a finite group, and receives an action of the Galois

group Gal(K/k).
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Suppose that A is a finite group scheme over k, and that Y → X is an A-torsor.

This defines a class in H1
ét(X ⊗k K, A ⊗k K) ∼= Hom(H1(X, F2), A(K)). View-

ing H1(X, F2) as a finite group scheme over k, this class defines a homomorphism

H1(X, F2) → A.

Now suppose given an embedding K �→ C. Then there is a canonical isomorphism

H1(X, F2) ∼= H1(X(C), F2) with the topological homology. If X(C) is connected

and x ∈ X(C), then the homomorphism π1(X(C), x) → A(C) factors through the

Hurewicz map π1(X(C), x) → H1(X(C), F2) and the induced map H1(X(C), F2) →

A(C) agrees with the previous one, up to applying the comparison isomorphism. In

particular, this map does not depend on the choice of basepoint.

If X is a geometrically connected smooth projective curve over k, then there is

a canonical isomorphism H1(X, F2) ∼= JX [2], where JX denotes the Jacobian of the

curve X.

Stabilizers of regular elements. Let greg
1 ⊂ g1 denote the open subset of regular

elements. We write Z → greg
1 for the stabilizer scheme, defined as the equalizer of the

following diagram:

G0 × greg
1

(g,x) �→g·x
��

(g,x) �→x

�� greg
1

Proposition 5.1. (1) Z is a commutative group scheme, quasi-finite over greg
1 .

(2) Z admits a canonical descent to B. In particular, for any two x, y ∈ greg
1 with

the same image in B, there is a canonical isomorphism ZG0(x) ∼= ZG0(y).

Proof. The first part can be checked on geometric fibers.

For the second part, we show that κ∗Z is the sought-after descent. The map

(Gad)θ × κ → greg
1 is faithfully flat. In fact, it is étale, and [16], Theorem 7 shows

it to be surjective. It is now easy to construct an isomorphism between π∗κ∗Z and

Z over this faithfully flat cover. This defines a morphism of descent data since Z is

commutative. �
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We will henceforth write Z for the descent to a commutative group scheme over B

constructed above. Consider the orbit map µrs : G0 × κrs → grs
1 . This map is finite

and étale, and we can form the pullback square:

Γ ��

��

G0 × κrs

��

Xrs �� grs
1 .

Concretely, for b ∈ Brs(k), Γb → Xb is the Zb-torsor given by

Γb = {g ∈ G0 | g · κ(b) ∈ Xb}.

We thus obtain a Galois-equivariant map H1(Xb, F2) → Zb.

Theorem 5.2. Suppose that G is simply connected. Then this map is an isomor-

phism.

Let us first illustrate the theorem in the case G = SL2. We can take θ to be

conjugation by the matrix



 1 0

0 −1



. Then we have

h0 =








 a 0

0 −a








 and h1 =








 0 x

y 0








 .

The regular nilpotents in h1 are those with x or y zero but not both, and the only

subregular nilpotent element in h1 is zero. The quotient map h1 → h1�H0
∼= A1 sends

the above matrix to xy ∈ A1. In particular X = h1 in this case, with the smooth

fibers of the map ϕ : X → h1�H0 isomorphic to the punctured affine line.

The group H0 is isomorphic to Gm, and t ∈ Gm acts by

t ·



 0 x

y 0



 =



 0 t2x

t−2y 0



 .



40

The stabilizer of any regular semisimple element is µ2 ⊂ Gm, and it is clear that for

any b ∈ A1 − {0}, the induced map H1(Xb, F2) → µ2 is an isomorphism.

We now consider the proof of the theorem in the general case. It suffices to prove the

theorem when k = C, which we now assume. In what follows, we simplify notation by

identifying all varieties with their complex points. Fix a choice c of Cartan subspace,

and let C ⊂ G denote the corresponding maximal torus.

Now choose x ∈ c, and let b = π(x) ∈ B. Let H = ZG(x) and h = Lie H. We

write H1 for the derived group of ZG(x), which is simply connected, since G is. In

the following, given y ∈ c, we shall write Xy for the fiber of the map X ×c/W c → c

above y, and X1
y

for the fiber of the map X ×c/W (x) c → c above y. We define g1,y

and h1,y analogously.

Lemma 5.3. Let y ∈ crs. Then there is a commutative diagram

H1(h1,y, F2) ��

��

ZH
1
0
(y)

��

H1(g1,y, F2) �� ZG0(y)

Proof. This follows from the existence of a commutative diagram

H1 ��

��

h1,y

��

G �� g1,y.

�

Suppose that Xb has a singular point u = us + un. Choose g ∈ G0 such that

g ·us = x ∈ c, and set v = g ·u. The Jordan decomposition of v is v = vs+vn = x+vn.

Then vn ∈ h1 is a subregular nilpotent, corresponding to a connected component

D(vn) of the Dynkin diagram of H. We choose a normal subregular sl2-triple (vn, t, w)
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in h containing vn, and define X1 = vn + zh(w)1. X1 is a transverse slice to the H0-

orbit of v in h1, by Proposition 4.5.

Proposition 5.4. The dimension of X1
is rank G + 1. X1 ⊂ g1 is a transverse slice

to the G0-orbit of v in g1.

Proof. X1 has the correct dimension to be a transverse slice to the orbit of a subreg-

ular element, so it suffices to check the infinitesimal condition [v, g0]∩ zh(w)1 = 0. In

fact, we show that [v, g] ∩ zh(w) = 0. Define

V = ⊕ α∈Φc
α(x) �=0

gα.

Then V is the orthogonal complement of h with respect to the Killing form of g, and

so is h-invariant. It follows that [v, g] = [v, V ] ⊕ [vn, h] ⊂ V ⊕ [vn, h] ⊂ V ⊕ h. We

thus have [v, g] ∩ zh(w) = [vn, h] ∩ zh(w) = 0. �

Proposition 5.5. For all sufficiently small open neighborhoods U of u in Xb, there

exists an open neighborhood U0 of b ∈ c/W such that for all y ∈ π−1(U0) there is a

commutative diagram

H1(X1
y
, F2) ��

��

H1(h1,y, F2)

��

H1(Uy, F2) �� H1(g1,y, F2).

Proof. If U is a sufficiently small open set around u in X, then by Proposition 4.1 we

can find an isomorphism ψ between U and an open neighborhood V of v in X1 over

c/W , such that ψ(u) = v and the two induced maps V �→ h1 �→ g1 and V ∼= U �→ g1

are homotopic over c/W . After possibly shrinking U , we can assume that the image

of V in c/W (x) maps injectively to c/W .
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In particular, for c sufficiently close to b we have a commutative diagram

H1(Vc, F2) ��

��

H1(h1,c, F2)

��

H1(Uc, F2) �� H1(g1,c, F2).

To obtain the statement in the proposition, we note that for c sufficiently close to b

and y ∈ π−1(c), we can find an open subset V �
c
⊂ Vc such that the inclusion V �

c
⊂ X1

y

induces an isomorphism on H1. (Use the contracting Gm-action). This completes the

proof. �

Corollary 5.6. With hypotheses as above, suppose in addition that y ∈ crs. Let

C(x) ⊂ H1
be the maximal torus with Lie algebra c∩h1

. Then there is a commutative

diagram:

H1(X1
y
, F2)

��

�� X∗(C(x))/2X∗(C(x))

��

H1(Xy, F2) �� X∗(C)/2X∗(C).

Proof. It suffices to note that there is an isomorphism

ZG0(y) ∼= X∗(C)/2X∗(C),

and similarly for ZH
1
0
(y). �

To go further, it is helpful to compare this with another description of the homology

of the curves Xy.

Theorem 5.7. • The map Xrs → crs/W is a locally trivial fibration (in the

analytic topology), and so the homology groups H1(Xc, F2) for c ∈ Brs
fit into

a local system H1(X) over crs/W . The pullback of this local system to crs is

constant.
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• Suppose x ∈ c has been chosen so that α(x) = 0 for some α ∈ Φc, and the only

roots vanishing on x are ±α. Then for each y ∈ crs there is a vanishing cycle

γα ∈ H1(Xy, F2), associated to the specialization Xy → Xx. This element

defines a global section of the pullback of H1(X) to crs.

• Let Rc ⊂ Φc denote a choice of root basis. Then for each y ∈ crs the set

{γα |α ∈ Rc} is a basis of H1(Xy, F2).

It seems likely that this description of the local system H1(X) is well-known to

experts, but we have not been able to find an adequate reference in the literature.

For the definition of the vanishing cycle γα, and for the proof of this theorem, we

refer to the final section below.

Now suppose x ∈ c has been chosen so that α(x) = 0 for some α ∈ Φc, and the

only roots vanishing on x are ±α. Then the derived group of H is isomorphic to

SL2. By Corollary 4.16 above, the fiber Xx has a unique singularity of type A1. For

y ∈ crs sufficiently close to x, we have a diagram

H1(X1
y
, F2) ��

��

X∗(C(x))/2X∗(C(x))

��

H1(Xy, F2) �� X∗(C)/2X∗(C).

It follows from our above calculation for G = SL2 that the top arrow is an isomor-

phism, while the right vertical arrow has image equal to the image of the set {0, α∨}

in X∗(C)/2X∗(C). Moreover, it is clear from the proof of the proposition above that

the image of the non-trivial element of H1(X1
y
, F2) in H1(Xy, F2) is exactly the van-

ishing cycle γα. Applying the commutativity of the above diagram, we deduce that

the image of γα in X∗(C)/2X∗(C) is just α∨ mod 2X∗(C). Since γα comes from a

global section of the local system H1(X), we deduce the result for any y ∈ crs, not

just y sufficiently close to x.
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It follows that for any y ∈ crs, the map H1(Xy, F2) → ZG0(y) ∼= X∗(C)/2X∗(C)

takes a basis of H1(Xy, F2), namely the set of γα as α ranges over a set of simple

roots, to a basis of X∗(C)/2X∗(C), namely the corresponding set of simple coroots.

This completes the proof of the theorem.

The case of G adjoint. We now introduce a compactification of the family X → B

of affine curves.

Lemma 5.8. ϕ : X → B admits a compactification to a family Y → B of projective

curves. Endow Y \ X with its reduced closed subscheme structure. Then Y \ X is a

disjoint union of smooth non-intersecting open subschemes P1, . . . , Ps, each of which

maps isomorphically onto B. Moreover, Y → B is smooth in a Zariski neighborhood

of each Pi. For each b ∈ Brs(k), Yb is the unique smooth projective curve containing

Xb as a dense open subset. Each irreducible component of Y0 meets exactly one of

the sections Pi.

Proof. We take the projective closure of the equations given in Theorem 4.8, and

blow up any singularities at infinity. An easy calculation shows in each case that the

induced family Y → B satisfies the above properties. �

Let us now suppose that G is adjoint, and let Gsc → G denote its simply connected

cover. We write Zsc for the stabilizer scheme of Gsc over B. The natural map Zsc → Z

is fiberwise surjective. Fix b ∈ Brs(k). In the previous section, we saw that the

inclusion Xb �→ g1,b induces an isomorphism H1(Xb, F2) → Zsc
b

of finite k-groups. On

the other hand, we have a surjection H1(Xb, F2) → H1(Yb, F2).

Theorem 5.9. The composite

H1(Xb, F2) → Zsc
b
→ Zb

factors through this surjection, and induces an isomorphism H1(Yb, F2) ∼= Zb.
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By Corollary 2.16, there is a canonical alternating pairing on Zsc
b

, with radical

equal to the kernel of the map Zsc
b
→ Zb. On the other hand, there is a pairing (·, ·)

on H1(Xb, F2), namely the intersection product, whose radical is exactly the kernel

of the map H1(Xb, F2) → H1(Yb, F2). The theorem is therefore a consequence of the

following result.

Theorem 5.10. The isomorphism H1(Xb, F2) ∼= Zsc
b

preserves these alternating pair-

ings.

Corollary 5.11. There is an isomorphism JYb
[2] ∼= Zb of finite k-groups, that takes

the Weil pairing to the pairing on Zb defined above.

Proof of Theorem 5.10. We can again reduce to the case k = C. Fix a choice of

Cartan subspace c, and let C ⊂ Gsc be the corresponding maximal torus. Choose

y ∈ crs. Let γα ∈ H1(Xy, F2) be the element defined in the previous section. The

theorem will follow from the following statement: fix a root basis Rc of Φc, and let

α, β ∈ Rc. Then (γα, γβ) = 0 if α = β or if α, β are not adjacent in the Dynkin

diagram of g, and (γα, γβ) = 1 if they are adjacent.

Suppose first that α, β are distinct but adjacent in the Dynkin diagram of g. Then

we can choose x ∈ c such that the elements of Φc vanishing on x are exactly the linear

combinations of α and β. Let H = ZGsc(x) and H1 = Hder. Then H1 ∼= SL3, and

the root system Φc(x) ⊂ Φc is spanned by α and β. Moreover, we have by Corollary

5.6 for all y ∈ crs sufficiently close to x a commutative diagram

H1(X1
y
, F2)

��

�� X∗(C(x))/2X∗(C(x))

��

H1(Xy, F2) �� X∗(C)/2X∗(C),
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where C(x) ⊂ H1 is the maximal torus with Lie algebra c ∩ h1. We know that

the horizontal arrows are isomorphisms, and the vertical arrows are injective. The

vertical arrows preserve the corresponding intersection pairings.

Now, both of the objects in the top row of the above diagram are 2-dimensional

F2-vector spaces, and their corresponding pairings are non-degenerate. (This is easy

to see: the curve X1
y

is a smooth affine curve of the form y2 = x3 + ax + b). There

is a unique non-degenerate alternating pairing on any 2-dimensional F2-vector space,

so we deduce that (γα, γβ) = 1.

Now let α, β ∈ Rc be distinct roots which are not adjacent in the Dynkin diagram of

g. We can again choose x ∈ c such that the roots vanishing on x are exactly the linear

combinations of α and β. Let H = ZG(x) and H1 = Hder. Then H1 ∼= SL2 × SL2,

and Xy has exactly two singularities, each of type A1. We can choose disjoint open

neighborhoods U1, U2 of these singularities in X such that for each y ∈ crs suffciently

close to x, the map H1(U1,y ∪U2,y, F2) → H1(Xy, F2) is injective and has image equal

to the span of γα and γβ. We see that these homology classes can be represented by

cycles contained inside disjoint open sets of Xy. Therefore their intersection pairing

is zero, and the theorem follows. �

A parameterization of orbits. We suppose again that k is a general field of char-

acteristic 0. Before stating our last main theorem, we summarize our hypotheses.

We fix the following data:

• A split simple adjoint group G over k, of type Ar, Dr, or Er.

• A stable involution θ of G and a regular nilpotent element E ∈ g1.

• A choice of subregular normal sl2-triple (e, h, f).

In terms of these data, we have defined:

• The categorical quotient B = g1�G0.

• A family of reduced connected curves X → B.
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• A family of projective curves Y → B containing X as a fiberwise dense open

subset.

• A stabilizer scheme Z → B whose fiber over b ∈ B(k) is isomorphic to the

stabilizer of any regular element in g1,b.

• For each b ∈ Brs(k), a natural isomorphism JYb
[2] ∼= Zb, which takes the Weil

pairing to the non-degenerate alternating pairing on Zb defined above.

Proposition 5.12. For each b ∈ Brs(k), there is a canonical injection

g1,b(k)/G0(k) → H1(k, JYb
[2]).

Proof. There is a canonical bijection g1,b(k)/G0(k) ∼= ker (H1(k, Zb) → H1(k,G0))

(see Proposition 2.24), which takes the G0(k)-orbit of κb to the distinguished element

of H1(k, Zb). Combining this with the isomorphism Zb
∼= JYb

[2] gives the statement

in the proposition. �

To go further we want to interpret the relative position of the nilpotent elements

E and e geometrically.

Lemma 5.13. There are canonical bijections between the following sets:

(1) The set of irreducible components of X0.

(2) The set of G0-orbits of regular nilpotent elements in g1 containing the G0-orbit

of e in their closure.

(3) The set of connected components of Y \X.

Proof. The map µ0 : G0 × X0 → N (g1) is flat, and so has open image. This image

therefore contains all regular nilpotent G0-orbits whose closure meets e. On the other

hand, one checks using Proposition 3.11 that in each case that the number of regular

nilpotent G0-orbits containing e in their closure is equal to the number of irreducible

components of X0. We can therefore define a bijection between the first two sets by
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taking an irreducible component of X0 to the G0-orbit of any point on its smooth

locus.

We write Y \ X = P1 ∪ · · · ∪ Ps as a disjoint union of open subschemes, each of

which maps isomorphically onto B. By Lemma 5.8, each irreducible component of

Y0 meets a unique section Pi. We define a bijection between the first and third sets

above by taking an irreducible component of X0 to the unique section Pi meeting its

closure in Y0. �

We choose a section P ∼= B inside Y \X, and we suppose that E corresponds under

the bijection of Lemma 5.13 to the unique component of X0 whose closure in Y0 meets

P . For each b ∈ Brs(k), Pb ∈ Yb(k) defines an Abel-Jacobi map fPb : Yb �→ JYb
. (For

the definition of this map, see [19], §2).

Theorem 5.14. For every b ∈ Brs(k), there is a commutative diagram, functorial in

k, and depending only on e up to G0(k)-conjugacy:

Xb(k)
ι

��

g

��

g1,b(k)/G0(k)

γ

��

JYb
(k)

δ
�� H1(k, JYb

[2]).

The arrows in this diagram are defined as follows:

• ι is induced by the inclusion Xb �→ g1,b.

• g is the restriction of the Abel-Jacobi map fPb to Xb ⊂ Yb.

• δ is the usual 2-descent map in Galois cohomology associated to the exact

sequence

0 ��JYb
[2] ��JYb

[2]
��JYb

��0.

• γ is the classifying map of Proposition 5.12.

Proof. We think of the group H1(k, JYb
[2]) as classifying JYb

[2]-torsors over k. With b

as in the theorem, let Eb = [2]−1fPb(Yb) ⊂ JYb
. We write jb : Eb → Yb for the natural
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map. This is a JYb
[2]-torsor over Yb, and the composite δ ◦ g sends a point Q ∈ Xb(k)

to the class of the torsor j−1
b

(Q) ⊂ Eb.

On the other hand, we have constructed a JYb
[2]-torsor Γb → Xb above, which

extends uniquely to a torsor hb : Db → Yb, by Theorem 5.9. The composite γ ◦ ι

sends a point Q ∈ Xb(k) to the class of h−1
b

(Q). It follows from [19], Proposition

9.1 that the two covers Db → Yb and Eb → Yb become isomorphic as JYb
[2]-torsors

after extending scalars to a separable closure of k. To prove the theorem, it therefore

suffices to prove that Db and Eb are isomorphic as JYb
[2]-torsors over Yb, before

extending scalars. It even suffices to prove that h−1
b

(Pb) is always the split torsor, or

in other words that h−1
b

(Pb)(k) is not the empty set.

Let µ : G0×κ → g1 denote the orbit map, and let X � denote the intersection of X

with the image of µ. Because of the compatibility between E and P , the subset X �∪P

of the underlying topological space of Y is open; let Y � denote the corresponding open

subscheme. Then Y � contains a Zariski open neighborhood of P in Y .

Let Γ� = µ−1(X �); this is a Z-torsor over X �. We show that Γ� extends to Z-torsor

over Y �. In fact, there is a commutative diagram with exact rows:

0 �� H1
ét(Y

�, Z) ��

��

H1
ét(X

�, Z) ��

��

H0
ét(Y

�, R1j∗Z)

��

0 �� H1
ét(Y

�
K

, Z) �� H1
ét(X

�
K

, Z) �� H0
ét(Y

�
K

, R1jK,∗Z),

where j : X � → Y � is the obvious open immersion, and (·)K denotes base change to

the separable closure K/k. Let i : P �→ Y � denote the complementary closed immer-

sion. There is an isomorphism R1jK,∗(Z) ∼= iK,∗Z, and hence H0
ét(Y

�
K

, R1jK,∗(Z)) =

H0
ét(BK , Z) = 0. The rightmost vertical arrow in the above diagram is injective,

and so the class of Γ� in H1
ét(X

�, Z) lifts to H1
ét(Y

�, Z). We write D� → Y � for the

corresponding torsor.
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Let F � → B denote the pullback of D� to B ∼= P �→ Y �. We must show that for

b as in the theorem, F �
b

is the trivial Z-torsor over k. We claim that in fact, F � is

trivial. For we can choose a Zariski open neighborhood U0 of 0 ∈ B and a Galois

finite étale cover U → U0 such that F � ×B U has a trivialization as a Z-torsor. If

U is sufficiently small, then Z(U) �→ Z0 = 0 is trivial, so there is a unique such

trivialization. By descent, there exists a unique trivialization of F � over U0. The

existence of the contracting Gm-action on X → B now implies that F � must be

globally trivial, as required. This completes the proof of the theorem. �

The proof of Theorem 5.7. In this section we prove Theorem 5.7. Thus G is a

simple simply connected group over k = C, θ a stable involution, and c ⊂ g1 a Cartan

subspace. We fix a normal subregular sl2-triple (e, h, f) in g, and define S = e+zg(f),

X = e+zg(f)1 = S∩g1. Let τ denote the automorphism of S induced by −θ; we then

have Sτ = X. In what follows we identify all varieties with their complex points.

Lemma 5.15. Both Srs
and Xrs

are locally trivial fibrations (in the analytic topology)

over crs/W .

Proof. We combine the Ehresmann fibration theorem and the existence of a good

compactification for Xrs to see that it is a locally trivial fibration over crs/W . The

corresponding result for S follows from the simple relationship between S and X, see

Lemma 4.15. �

Corollary 5.16. The homology groups H2(Sb, F2) and H1(Xb, F2) for b ∈ crs/W

form local systems H2(S) and H1(X). Moreover, these local systems are canonically

isomorphic.

Proof. Only the second part needs proof. It follows either from a sheaf-theoretic

argument, or from the assertion that suspension does not change the monodromy

representation of a singularity, at least when one is working modulo 2; see [1], Theo-

rem 2.14. �
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Given y ∈ c we write Xy and Sy for the respective fibers over y of the maps

X ×c/W c → c and S ×c/W c → c.

Lemma 5.17. The local systems H1(X) and H2(S) become trivial after pullback to

crs.

Proof. In light of the corollary, it suffices to prove this assertion for H2(S). The

existence of the Springer resolution implies the existence of a proper morphism �S →

S×c/W c such that for every y ∈ c, the induced map �S → Sy is a minimal resolution of

singularities. Moreover, �S → c is a locally trivial fiber bundle and �S×ccrs → S×c/W crs

is an isomorphism. See [27] for more details. These facts imply the lemma. �

It follows that for any y, z ∈ crs, the groups H1(Xy, F2) and H1(Xz, F2) are canon-

ically isomorphic.

It is a consequence of Lemma 4.15 that given b ∈ c/W , a fiber Xb has a unique

non-degenerate critical point if and only if Sb does. Let γ : [0, 1] → c be a path such

that γ(t) is regular semisimple for 0 ≤ t < 1, but such that a unique pair of roots ±α

vanishes on γ(1) = x. Then Xx (or Sx) has a unique non-degenerate critical point, by

Corollary 4.16. Let y = γ(0). We define a homology class (that we call a vanishing

cycle) [γ]1 ∈ H1(Xy, F2) as follows.

We can find local holomorphic co-ordinates z1, . . . , zr+1 on X centered at the critical

point of Xb and local holomorphic co-ordinates w1, . . . , wr on c/W centered at b such

that the map X → c/W is locally of the form (z1, . . . , zr+1) �→ (z1, . . . , zr−1, z2
r
+z2

r+1).

For t close to 1, we can choose co-ordinates as above and define a sphere (for a suitable

continuous choice of branch of
�

wr(t) near t = 1):

S1(t) = ·{(w1(t), . . . , wr−1(t),
�

wr(t)zr,
�

wr(t)zr+1) | z
2
r

+ z2
r+1 = 1,�zi = 0}.
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We define a homology class in H1(Xy, F2) by transporting the class of S1(t) for t close

to 1 along the image of the path γ in c/W . An entirely analogous procedure defines

[γ]2 ∈ H2(Sx, F2).

Lemma 5.18. The homology class of the cycle [γ]1 ∈ H1(Xy, F2) (respectively, [γ]2 ∈

H2(Sy, F2)) is well-defined and depends only on α. Moreover, these classes correspond

under the isomorphism H1(Xy, F2) ∼= H2(Sy, F2) of the previous corollary.

Proof. It is well-known that the [γ]i are well-defined and depend only on the path

γ up to homotopy. It follows from the previous corollary that the [γ]i depend only

on the endpoint x = γ(1) and not on the choice of path. To prove the lemma

it suffices to show that [γ]2 depends only on α. In fact [γ]2 is, by construction,

the unique non-trivial element in the kernel of the map H2(Sy, F2) = H2(�Sy, F2) ∼=

H2(�Sx, F2) → H2(Sx, F2). The proof of [26], Theorem 3.4 implies that there is an

isomorphism of local systems H2(�S) ∼= X∗(C)/2X∗(C) over c, and that the kernel

of the map H2(�Sx, F2) → H2(Sx, F2) corresponds under this isomorphism to span in

X∗(C)/2X∗(C) of α∨. �

We can therefore define for each α ∈ Φc a global section γα of the pull-back of the

local system H1(X) to crs, namely the class [γ]1 constructed above. Theorem 5.7 now

follows from the above facts and the following result.

Lemma 5.19. Let Rc ⊂ Φc be a choice of root basis, and let x ∈ crs. Then the set

{γα |α ∈ Rc} is a basis of H1(Xx, F2) as F2-vector space.

Proof. This follows immediately from the corresponding fact for the simple coroots

{α∨ |α ∈ Rc}. �
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[21] D. Ž. D̄oković and M. Litvinov. The closure ordering of nilpotent orbits of the complex sym-
metric pair (SOp+q,SOp × SOq). Canad. J. Math., 55(6):1155–1190, 2003.
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