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Multivariate Outcomes

Abstract
It is well known that incorporating auxiliary covariates in the analysis of randomized

clinical trials (RCTs) can increase efficiency. Questions still remain regarding how to flex-

ibly incorporate baseline covariates while maintaining valid inference. Recent method-

ological advances that use semiparametric theory to develop covariate-adjusted inference

for RCTs have focused on independent outcomes. In biomedical research, however, clus-

ter randomized trials and longitudinal studies, characterized by correlated responses, are

commonly used. We develop methods that flexibly incorporate baseline covariates for

efficiency improvement in randomized studies with correlated outcomes.

In Chapter 1, we show how augmented estimators may be used for cluster random-

ized trials, in which treatments are assigned to groups of individuals. We demonstrate

the potential for imbalance correction and efficiency improvement through consideration

of both cluster- and individual-level covariates. To improve small-sample estimation, we

consider several variance adjustments. We evaluate this approach for continuous and

binary outcomes through simulation and apply it to the Young Citizens study, a cluster

randomized trial of a community behavioral intervention for HIV prevention in Tanza-

nia.

Chapter 2 builds upon the previous chapter by deriving semiparametric locally effi-

cient estimators of marginal mean treatment effects when outcomes are correlated. Esti-

mating equations are determined by the efficient score under a mean model for marginal

effects when data contain baseline covariates and exhibit correlation. Locally efficient es-
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timators are implemented for longitudinal data with continuous outcomes and clustered

data with binary outcomes. Methods are illustrated through application to AIDS Clinical

Trial Group Study 398, a longitudinal randomized study that compared various protease

inhibitors in HIV-positive subjects.

In Chapter 3, we empirically evaluate several covariate-adjusted tests of intervention

effects when baseline covariates are selected adaptively and the number of randomized

units is small. We demonstrate that randomization inference preserves type I error un-

der model selection while tests based on asymptotic theory break down. Additionally,

we show that covariate adjustment typically increases power, except at extremely small

sample sizes using liberal selection procedures. Properties of covariate-adjusted tests are

explored for independent and multivariate outcomes. We revisit Young Citizens to provide

further insight into the performance of various methods in small-sample settings.
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1.1 Introduction

1.1.1 Traditional and Cluster Randomized Trials

Randomized clinical trials (RCTs) are recognized as the gold standard in medical

research for evaluating new treatments. Cluster or group randomized trials (GRTs), which

assign treatment to groups of individuals, are advantageous when interaction among sub-

jects within a group may impact their respective outcomes. GRTs are therefore especially

relevant for assessing prevention and treatment methods for infectious diseases, where

subjects within a geographical unit such as a neighborhood, school, or workplace may

infect each other. For example, in vaccine studies, a subject’s vaccination status may im-

pact health outcomes not only for that subject but for others as well. Clustered designs

also have the advantage of reducing the potential for contamination of effects caused

by sharing of information or medication between treated and control subjects. Similarly,

group treatment assignment can enhance compliance as subjects within a group are given

the same regimen to follow. In some cases, the intervention may be administered at the

cluster-level, such as in studies involving schools or medical practices. Klar and Don-

ner provide several examples of intervention trials in which groups were randomized for

medical, political, or logistical reasons {Klar and Donner (2000)}.

Although intervention is assigned at the group level, interest often lies in perform-

ing inference on the individual. Generally, subjects within a group are expected to be

more similar than subjects in different groups, inducing dependence across study sub-

jects. Cluster randomized designs thus present the additional challenge of accounting for

correlation among group members. Standard approaches for estimating treatment effects

when responses are correlated include maximum likelihood for generalized linear mixed

models (GLMM) and generalized estimating equations (GEE) for restricted mean models

{Laird and Ware (1982); Liang and Zeger (1986)}. To estimate the marginal effect in a

binary treatment setting, one typically fits a model including an intercept and treatment

term. The relevant GLMM is defined by the model E(Yij|Ai, bi) = g(β0+β1cAi+bi),where
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Yij denotes the outcome for the jth individual in the ith cluster, Ai is an indicator for treat-

ment, bi is a random effect inducing correlation among subjects within a cluster, and g(·)

is a monotone link function. The outcome Yij and random effect bi are assumed to follow

a particular distribution. We note here that β1c is interpreted as a cluster-specific treat-

ment effect, but marginalizes over all other covariates. In the analogous GEE approach,

estimating equations are constructed following the mean model

E(Yij|Ai) = g(Ai; β) = g(β0 + β1Ai), (1.1)

where correlation is accounted for by incorporating a working covariance matrix Vw.

For cluster randomized designs, independence or exchangeable structure is generally as-

sumed. An advantage of the GEE approach is that consistency of β̂, the estimate of β,

only requires that the mean g(Ai; β) is correctly specified, in which case, β̂ is asymptoti-

cally normal for all Vw and efficient when Vw takes the true form of V, the variance of

response vector Yi. The exact form of the GEE is reviewed in the following section. GEE

differ from maximum likelihood estimation in mixed models by treating correlation as

a nuisance parameter. Additionally, GLMM require full specification of the distribution

of Yij , while GEE follow from semiparametric theory and only specify the first moment

of Yij while requiring the second moment to be finite. Unlike GLMM, GEE do not make

any assumptions about cluster effects, and thus provide a population-averaged effect es-

timate in contrast to the GLMM cluster-specific estimate. In either approach, treatment is

evaluated through inference on β1.

A second challenge presented by cluster randomized designs is that the number

of available experimental units may be fairly small. Inference for model-based methods

relies on asymptotic theory, which may not be applicable in trials with relatively few clus-

ters. For GEE, several studies have shown that the sandwich variance estimator typically

underestimates the variability of parameter estimates and consequently results in infer-

ence that is too liberal {Gunsolley et al. (1995)}. A number of adjustment methods for

small sample analysis have been proposed {Fay and Graubard (2001); Mancl and DeR-

ouen (2001); Pan and Wall (2002); Thornquist and Anderson (1992); Kauermann and Car-

roll (2001)}. These adjustments generally take one of two strategies; they account for the

3



variability in the sandwich estimator or correct for its small-sample bias. None of these

methods have been uniformly adopted.

The number of available experimental units also affects the degree to which ran-

domization successfully balances baseline characteristics across treatment groups. RCTs

with large sample sizes assure a reasonable degree of balance in covariate profiles with

high probability, but GRTs often have smaller numbers of experimental units, and there-

fore provide less assurance of balance Murray et al. (2004). GRTs are also likely to contain

subject heterogeneity in cluster-level and individual-level characteristics that can influ-

ence estimated treatment effects. Clustered designs therefore require methods that permit

controlling for imbalances at the cluster and subject levels.

1.1.2 Methods for Covariate Adjustment in Randomized Trials

Traditionally, adjustment for residual imbalance has been achieved by adding co-

variates Zi, Xij to a model for the effect of treatment on some outcome. The adjusted

model for Yij is defined by E(Yij|Ai, Zi, Xij) = g(β0 + β1∗Ai + βZZi + βXXij), where Zi

is a vector of covariates shared by all subjects within the ith cluster, and Xij is a subject-

specific vector of measurements. Standard approaches such as mixed models and GEE

can incorporate adjustment at both levels. With the exception of linear and log-linear

models, the conditional model differs from the marginal model (1.1) in the interpretation

of β1∗ . Inference on β1∗ is also affected by the presence of baseline covariates. For uncorre-

lated continuous outcomes and an identity link function relating covariates to the mean,

it has been shown that when X and Y are correlated, β1∗ is more precise than the unad-

justed estimator {Pocock et al. (2002); Tsiatis et al. (2008)}. No direct relationship between

the efficiency of β1 (1.1) and β1∗ has been established for non-linear models {Robinson

and Jewell (1991)} or correlated outcomes. To provide an alternative that makes fewer

parametric assumptions, Gail et al. (1996) proposed a permutation approach to covariate

adjustment in GRTs. Parametric models are used for adjustment, and permutation infer-

ence is conducted on the cluster-averaged model-based residuals. Permutation tests are
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guaranteed to be valid even for small samples, unlike modeling approaches. A similar

model-based permutation approach using an optimally weighted combination of residu-

als was developed by {Braun and Feng (2001)}.

Recent methodological developments in covariate adjustment for RCTs include

van der Laan’s Targeted Maximum Likelihood {van der Laan and Rubin (2006)} and

Tsiatis’ augmentation approach {Tsiatis et al. (2008); Zhang et al. (2008)}. These methods

adapt semiparametric theory developed by Robins (1999) and Robins et al. (1994) for ob-

servational studies with time-varying exposures and missing data problems, respectively.

RCTs may be conceptualized theoretically in either framework, with counterfactual out-

comes under the treatment not received considered missing, or as observational studies

with a known probability of point exposure. Robins et al. (1994) and Robins (1999) char-

acterize the efficient influence function in these settings. van der Laan and Tsiatis solve

the set of estimating functions determined by the efficient score using two different ap-

proaches, which are equivalent in the absence of model misspecification.

Targeted Maximum Likelihood Estimation (tMLE) is an iterative procedure that

involves adding a cleverly defined covariate to standard regression models. Upon con-

vergence, the tMLE estimator solves the efficient influence function for the parameter

of interest, resulting in bias reduction and efficiency improvement relative to maximum

likelihood. TMLE is currently available for independent binary, continuous, and time-to-

event outcomes {Moore and van der Laan (2009b,a)}. More recently it has been extended

to correlated data {Tuglus and van der Laan (2010)}. Tsiatis’ approach involves directly

solving a set of augmented estimating equations determined by the efficient influence

function for the marginal treatment effect {Zhang et al. (2008)}. This method has been

explored for continuous, binary, and discrete survival outcomes {Leon et al. (2003); Tsi-

atis et al. (2008); Zhang et al. (2008); Zhang and Gilbert (2010)}. Current applications of

the augmentation method have focused on independent outcomes, with the exception of

a simulation study based on the linear mixed model {Zhang et al. (2008)}.

While tMLE simultaneously uses baseline covariates from treatment and control

5



groups to target treatment effect estimation, Tsiatis’ method separates covariate adjust-

ment and treatment evaluation. It also has the added advantage of allowing separate

adjustment for baseline covariates within treatment arms. If done by separate statistical

groups that do not share data, this approach reduces the risk that adjustment models are

chosen to yield the most significant result. Even without decoupling of adjustment and

treatment effect estimation, all covariate adjustment methods can be made objective by

prespecifying the adjustment strategy.

1.2 The Simple Augmented GEE

This section demonstrates the use of augmented estimating equations in analyses

of cluster randomized trials. In such a trial, m clusters of size ni, i = 1, ...,m, are random-

ized to either treatment (Ai = 1) or control (Ai = 0) with probability P (Ai = 1) = π. To

motivate the augmented GEE, we first review Standard GEE. Let Yij denote the response

for the jth individual in the ith cluster. Yi = (Yi1, Yi2, ..., Yini
)T, where ni is the number of

subjects within the ith cluster. GEE for the marginal treatment effect are defined by the

mean model (1.1), where β is a p-dimensional parameter. An estimator for β is obtained

by solving the estimating equations

m∑
i=1

ψi(Y, A; β) =
m∑
i=1

DT
i V−1i {Yi − g(Ai; β)} = 0, (1.2)

where Di = ∂g(Ai;β)
∂βT ,Vi = V

1/2
φ R{α(Ai)}V 1/2

φ , and bold g(Ai; β) denotes the ni-

dimensional link function for the outcome vector Yi. Covariance matrix Vi is determined

by the ni × ni matrix function v(Ai). The variance function v(Ai) is a product of the diag-

onal matrix Vφ, where Vφi,i is the variance of Yij , and correlation matrix R{α(Ai)}, where

we allow α to be treatment specific. This differs from the usual presentation of GEE, in

which Vi is constant and does not depend on Ai. Because our model does not place any

restrictions on Vi, we generalize the usual approach to allow Vi to be more flexible. Vari-

ance parameters φ and αk, where k indexes treatment, are estimated by the method of

moments using β̂init, an initial estimator of β. To recover the GEE fit in standard software,
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the above expressions simplify such that v(Ai) = v(1) = v(0) = V, and a single correla-

tion parameter α is estimated across all clusters. In a slight abuse of notation, we take Vi

to be the matrix function v(Ai) and V the constant variance matrix.

For continuous outcomes with the identity link g(Ai; β) = A∗iβ, where A∗i is the

ni× 2 design matrix composed of rows (1, Ai), the solution to 1.2, β̂, exists in closed form,

with

β̂ =

(
m∑
i=1

A∗
T

i V−1i A∗i

)−1( m∑
i=1

A∗
T

i V−1i Yi

)
. (1.3)

For simple designs, a closed form solution for β̂ can also be derived for non-identity link

functions g(Ai; β) using the discreteness of A. The solution to 1.2 for the logit link is

given in Appendix A. Generally, for more complex models, GEE coefficient estimates are

found using an iterative procedure such as the Newton-Raphson method or Iteratively

Reweighted Least Squares (IRWLS).

Robins et al. (1994) and Robins (1999) established that in a model for data O =

(Y,A,X) in which πk = P (A = k|X) is known, any regular and asymptotically linear esti-

mator for β can be found as the solution to
∑

i ψiaug(Y,A,X; γ̄K) = 0 for a specific choice

of γ̄K(X). Zhang et al. (2008) demonstrated use of this theory in RCTs with univariate

outcomes. Applying these results to multivariate settings, β̂ may be improved by aug-

menting the Standard GEE with a function of baseline covariates X . The general form of

the augmented GEE for a K-level treatment is

m∑
i=1

ψiaug(Y, A,X; β, γ̄K) =
m∑
i=1

[
DT
i V−1i

{
Yi − g(Ai; β)

}
−

K∑
k=1

{Aki − πk}γk(Xi)

]
= 0,

(1.4)

where Aki = I(Ai = k)and γk(Xi) is a p-dimensional function of Xi.

It was further shown that for the class of estimating functions {ψaug(γ̄K) : γ̄K ∈

ΓK}, where ΓK is the set of all functions of X such that E[ψaug(γ̄K)Tψaug(γ̄K)] <

∞, the optimal estimator within this class for a fixed ψ(Y,A; β) is obtained by set-

ting γkopt(Xi) = E{ψi(Y,A; β)|Ai = k,Xi}{Robins et al. (1994); Robins (1999); Zhang

et al. (2008)}. When only two treatment arms are considered, the augmentation term

7



K∑
k=1

{I(Ai = k)− πk}γk(Xi) can be written as (Ai − π1)
[
Di(1)TVi(1)−1

{
E(Yi|Ai = 1,Xi)−

g(1; β)
}
− Di(0)TVi(0)−1

{
E(Yi|Ai = 0,Xi) − g(0; β)

}]
. The Simple Augmented GEE is

thus
m∑
i=1

ψiopt(Y, A,X; β) =
m∑
i=1

DT
i V−1i

{
Yi − g(Ai; β)

}
− (Ai − π)γ(Xi) = 0, (1.5)

where γ(Xi) =
[
Di(1)TVi(1)−1

{
E(Yi|Ai = 1,Xi) − g(1; β)

}
−Di(0)TVi(0)−1

{
E(Yi|Ai =

0,Xi)− g(0; β)
}]

.

Solving for β̂aug therefore requires knowledge of φ, αk, π, and E(Yi|Xi, Ai = k)

for k = 0, 1. Following standard practice, we estimate φ and αk using the residuals

from a GLM fit under independence. Specifically, φ is estimated by the Pearson Chi-

Square statistic, and αk is obtained by solving the treatment-specific moment equations
m∑
i=1

I(Ai = k)
{
ε̂ij ε̂ij − h(αk)

}
= 0, where ε̂ij = Yij − g(Ai; β̂init), and h(αk) is determined

by the correlation structure assumed.

For fixed ψi(Y, A; β), the optimality of the augmentation depends on correct esti-

mation of E(Yi|Xi, Ai = k)=fk(Xi; ηk). When E(Yi|Xi, Ai = k) is misspecified, asymp-

totic normality and consistency hold, but the resulting estimator does not achieve max-

imum asymptotic efficiency. Several options are available for estimating the conditional

mean E(Yi|Xi, Ai). We propose a strategy below which in large samples is guaranteed

to improve on Standard GEE. Following Tsiatis’ approach of estimating E(Yi|Xi, Ai) sep-

arately within each arm, estimation proceeds via ordinary least squares (OLS), or maxi-

mum likelihood (ML) on an appropriately defined generalized linear model. Although

the observations within a cluster are not independent, the predicted values from OLS

and ML fits remain consistent. For treatment-specific estimation, the argument in Leon

et al. (2003) may be generalized to GEE, guaranteeing that whenE(Yi|Xi, Ai) is estimated

with OLS, the augmented estimator is at least as efficient as the unaugmented estimator

for continuous and discrete outcomes. This property holds even if models are misspeci-

fied. To more correctly specify the mean function, one may opt to fit an appropriate GLM,

such as logistic regression for a binary outcome. We explore both approaches through
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simulation. It is also worthwhile to note that if the probability of treatment depends on

baseline covariates Xi such that πk = P (Ai = k|Xi), the Simple Augmented GEE does

provide a valid estimate of treatment effects, but OLS is no longer sufficient to guarantee

efficiency improvement over unaugmented methods. For continuous Yij and identity link

g(Ai; β), the improved estimator is

β̂aug =

[
m∑
i=1

A∗
T

i V−1i A∗i − (Ai − π)
{
A∗i (1)TVi(1)−1A∗(1)−A∗i (0)TVi(0)−1A∗(0)

}]−1
×[

m∑
i=1

A∗
T

i V−1i Yi − (Ai − π)
{
A∗i (1)TVi(1)−1Ê(Yi|Ai = 1,Xi)− (1.6)

A∗i (0)TVi(0)−1Ê(Yi|Ai = 0,Xi)
}]
.

As in the unaugmented case, a closed form solution can be derived for non-identity

links under a simple design. Solutions for the logit link may be found in Appendix A.

Implementation of the Simple Augmented GEE for inclusion of baselines covari-

ates in analysis of a cluster randomized trial is summarized in the following steps:

1. Determine Ê(Yi|Xi, Ai = k) = fk(Xi; η̂k) from OLS or ML regression of Y onto

baseline covariates X within each treatment arm.

2. Fit a GLM under independence to obtain β̂init.

3. Estimate φ and αk from ε̂ij of the initial fit.

4. Construct the augmented estimating equations ψaug(Y, A,X; β).

5. Solve for β̂aug.

The GEE was initially proposed as an iterative procedure, in which fitting involved

repeatedly estimating correlation parameters α and mean parameters β until conver-

gence. Since its inception, however, theoretical development and simulation studies have

shown that the one-step procedure, as we have proposed for the augmented estimator,

provides asymptotically equivalent estimates to the fully iterated approach, with similar

finite sample properties {Lipsitz et al. (1994)}.
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1.3 Variance Estimation

The asymptotic variance of β̂aug, under m → ∞, is derived through the usual M-

estimator Taylor expansion, accounting for the nuisance parameters η̂k involved in esti-

matingE(Y |X,A = k)=fk(Xi; ηk). We let ψ̂iopt(Y, A,X; β) be an estimate of (1.5) evaluated

at η̂. The familiar sandwich variance estimator var(β̂aug) = Γ−1∆Γ−1
T is obtained, where

Γ = E[
∂ψiopt (Y,A,X;β)

∂βT ], and ∆ = E[ψiopt(Y, A,X; β)
⊗

2], where U
⊗

2 = UUT. By random-

ization, the augmentation term has mean zero and does not contribute to Γ. We therefore

estimate Γ by Γ̂ = m−1
∑

i Di
TVi

−1Di. Estimation of ηk results in additional terms in our

expansion of ψ̂iopt(Y, A,X; β) shown below.

m∑
i=1

ψ̂iopt(Y, A,X; β) =

m∑
i=1

{
DT
i V−1i

{
Yi − g(Ai;β0)

}
− (Ai − π)×

[
Di(1)TVi(1)−1

{
f1(Xi; η̂1)− g(1; β0)

}
−Di(0)TVi(0)−1

{
f0(Xi; η̂0)− g(0; β0)

}]}
(1.7)

=
m∑
i=1

ψ̃iopt =
m∑
i=1

{
DT
i V−1i

{
Yi − g(Ai; β0)

}
− (Ai − π)

[
Di(1)TVi(1)−1

{
f1(Xi; η

∗
1)− g(1; β0)

}
−Di(0)TVi(0)−1

{
f0(Xi; η

∗
0)− g(0; β0)

}]
(a)

− (Ai − π)

[
Di(1)TVi(1)−1

{
f ′1(Xi; η

∗
1)
}

(η̂1 − η∗1)−Di(0)TVi(0)−1
{
f ′0(Xi; η

∗
0)
}

(η̂0 − η∗0)

]}
(b)

+ op(1)

where η̂k
P→ η∗k. By randomization (b) P→ 0 as m → ∞, showing that asymptotically

there is no additional variability associated with estimating ηk, even when fk(Xi; ηk) is

misspecified. For cluster randomized designs, however, the asymptotics may not hold,

as the number of experimental units may be fairly small. In small sample settings,

it is likely that var(β̂aug) is affected by estimation of ηk. We therefore estimate ∆ by
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∆̂ = m−1
∑

i ψ̃
⊗

2
iopt

, with and without term (b) and evaluate our variance estimator through

simulation. Specifically, we estimate (η̂k − η∗k) by its first order approximation and sub-

stitute estimated parameter values for the truth. Inclusion of (b) is not guaranteed to in-

crease the estimated variance but does provide a more unbiased estimate by accounting

for estimation of ηk.

The sandwich variance estimator of Standard GEE is known to often be biased

downward for inference involving relatively few independent units. We examine Fay’s

bias-correction approach to recover loss. We choose this approach because unlike other

methods which were derived for Standard GEE, Fay’s method is generalizable to any

M-estimator, including our augmented estimating equations. We apply Fay’s first correc-

tion, in which ∆ is estimated by ∆̂∗ = m−1
∑

i(Hiψ̂i)
⊗

2, where Hi is a diagonal matrix

with Hijj =
[
1−min{q, (∂ψi(Y,A,X;β)

∂βT × Γ̂)jj}
]−1/2

. Lower bound q is typically set to 0.75

to prevent gross inflation {Fay and Graubard (2001)}. In total, we consider four standard

error estimators for the Simple Augmented GEE: 1) unadjusted sandwich (SE1), 2) nui-

sance (η̂k)-adjusted sandwich [term (b)] (SE2), 3) sandwich with Fay’s small-sample bias

correction (SE3), and 4) sandwich with Fay’s small-sample bias correction and nuisance

adjustment (SE4), and evaluate each through simulation. Formulas for each estimator are

provided in Appendix B.

An alternative estimate ˆvar(β̂aug) can be computed through a resampling tech-

nique such as the nonparametric bootstrap. To preserve the number of treated and control

clusters within any bootstrap sample, we resample clusters within treatment arm. We use

strategy 1 described by Davidson and Hinkley (1997), in which the composition of resam-

pled clusters is maintained, and demonstrate this approach through data analysis.

1.4 Application: YOUNG CITIZENS Study

We applied the Simple Augmented GEE to data from the Young Citizens study

Kamo et al. (2008). This trial involved a behavioral intervention designed to train chil-
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dren ages 10-14 to educate their communities about HIV. To facilitate randomization, 30

communities, were grouped into 15 pairs using a clustering algorithm involving several

demographic characteristics. One community per pair was randomly assigned to treat-

ment and the other to control. Residents within each community were surveyed post-

intervention regarding their beliefs about the ability of children to effectively teach their

peers and families about HIV. The primary outcome was a composite score reflecting

the strength of this belief (Y1). A secondary outcome measured residents’ beliefs regard-

ing whether or not the AIDS problem was getting worse in their communities. Resi-

dents responded on a 4-point scale with values ’strongly disagree’, ’disagree’, ’agree’,

and ’strongly agree’. Responses were dichotomized by collapsing ’strongly agree’ and

’agree’ into one category labeled ’agree’; ’strongly disagree’ and ’disagree’ were collapsed

similarly (Y2). The number of residents surveyed per community ranged from 16-80 by

multiples of 16.

We implemented Standard and Augmented GEE using the customary single cor-

relation parameter as well as the less restrictive approach of allowing treatment-specific

correlation. For augmented estimators, we also included estimation under independence

to further examine the impact of covariance selection on the efficiency of augmented infer-

ence. Adjustment models were determined separately for treatment and control groups

by various model selection procedures. The final models used in analysis were selected

via cross validation. For child efficacy (Y1), the adjustment model in the treatment arm

included the baseline covariates employment status, residential or urban community,

the number of relatives living in the community, age, religion, population density, and

whether or not the household had a flushing toilet, which was an indicator of house-

hold wealth. Among control communities, employment, age, and flushing toilet were in-

cluded. The baseline covariates that entered the adjustment models for beliefs about the

state of the HIV problem (Y2) were mean community wealth, ethnic group, and house-

hold wealth for the intervention arm, and only mean community wealth for the control

arm.

12



In analyzing our continuous outcome Y1, we evaluated the marginal treatment

effect by considering model (1.1), where g(Ai; β) was the identity link function. We

computed the standard error of β̂1 by the sandwich estimator and the nonparametric

bootstrap for each estimation procedure. The standard error modifications in section

3 were applied, namely: 1) unadjusted sandwich (SE1), 2) nuisance (η̂)-adjusted sand-

wich (term (b) above) (SE2), 3) sandwich with small-sample bias correction (SE3), and 4)

sandwich with bias correction and nuisance adjustment (SE4). In our second application,

we evaluated the marginal treatment effect on the binary secondary outcome Y2 and fit

model (1.1) with the inverse logit link. We compared estimates obtained from Standard

GEE, the Simple Augmented GEE, adjusted logistic GEE with standardization i.e. the G-

formula Robins (1986), and inverse probability of treatment weighted (IPTW) methods.

In the IPTW approach, we ignore that the treatment probability is known and estimate

P (A = 1|X) using a logistic regression model in which covariates were entered linearly.

In standard and augmented analyses, the intervention had a highly significant im-

pact on the perceived ability of children to be peer educators {95% CI Standard (0.182,

0.526), 95% CI Augmented (0.245, 0.482)}. The adjusted sandwich variance estimator sug-

gested over a 70% increase in efficiency resulting from covariate adjustment {RE, Table

1.1(a)}. Bootstrap estimates showed a similar efficiency gain under common correlation

(58%) and a much more modest gain using treatment specific correlation (5%) {’RE boot’,

Table 1.1(b)}. Comparing within unaugmented and augmented estimators, little differ-

ence in standard error was observed between estimators allowing for treatment-specific

correlation versus estimators assuming common correlation. Estimates of β1 were similar

across standard and augmented estimators with either correlation structure.

Examining our binary outcome, Y2, there was a marked difference in the estimated

parameters when comparing standard and augmented GEE (Table 1.2). The estimate β̂1

was -0.238 {95% CI (-0.777, 0.300) } using standard methods, compared to values in the

range (-0.079,-0.023) for all augmented GEE estimates. In either approach, the effect of

treatment on the perception of the AIDS epidemic was not significant at the p=0.05 level
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Table 1.1: Marginal Treatment Effect Analysis: Parameter estimates, sandwich standard
errors, and bootstrap standard error. Std: unaugmented GEE, Aug: augmented GEE. Ind:
independence, Exch: exchangeable correlation with single parameter, Exch-TS: exchangeable with
treatment-specific correlation parameters. SE1: unadjusted sandwich SE, SE2: sandwich with nui-
sance parameter adjustment, SE3: sandwich with small-sample adjustment, SE4: sandwich with
small-sample and nuisance adjustments. Exch: Exchangeable correlation with single parameter,
Exch-TS: Exchangeable with treatment-specific correlation parameters. RE: Relative efficiency,
square of the sandwich SE of the Std(Exch) estimator divided by the square of the sandwich SE
of the indicated estimator. RE boot: bootstrap relative efficiency, square of the bootstrap SE of the
Std(Exch) estimator divided by the square of the bootstrap SE of the indicated estimator. RE and
Confidence intervals(CIs) are based on SE3 and SE4 for unaugmented and augmented estimators,
respectively.

(a)

Estimate Sandwich Standard Error with Adjustments
Estimator β̂1 SE1 SE2 SE3 SE4 95% CI RE
Std (Exch) 0.354 0.082 - 0.088 - (0.182,0.526) 1.000

Std (Exch-TS) 0.355 0.082 - 0.086 - (0.186,0.525) 1.034
Aug (Ind) 0.360 0.066 0.060 0.071 0.064 (0.236,0.485) 1.528

Aug (Exch) 0.364 0.063 0.057 0.067 0.060 (0.245,0.482) 1.730
Aug (Exch-TS) 0.360 0.063 0.061 0.066 0.064 (0.234,0.485) 1.769

(b)

Bootstrap SE
Estimator SE boot RE boot
Std (Exch) 0.081 1.000

Std (Exch-TS) 0.085 0.910
Aug (Ind) 0.062 1.681

Aug (Exch) 0.064 1.582
Aug (Exch-TS) 0.082 0.966

{95% CI Augmented GEE=(-0.491,0.332)}. Estimates from the standardized adjusted lo-

gistic GEE were also closer to 0. Although effects were not significant at the p=0.05 level

for any of the approaches, confidence intervals for the augmented GEE were somewhat

tighter, as were those using standard methods of covariate adjustment.

Considering efficiency, for both outcomes the estimated variability was lower for

the augmented estimator compared to Standard GEE. Although there is some uncertainty

regarding the behavior of the sandwich estimator in small samples, these results suggest

that when the asymptotics hold, augmented GEE is a valid approach that may be substan-
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Table 1.2: Marginal Treatment Effect Analysis with Binary Outcome: Parameter sand-
wich standard error estimates. Std: unaugmented GEE, Aug: augmented GEE. Ind: in-
dependence, Exch: exchangeable correlation with single parameter, Exch-TS: exchangeable with
treatment-specific correlation parameters. GLM, OLS: generalized linear model or ordinary least
squares augmentation. RE: Relative efficiency, square of the sandwich SE of the Std(Exch) es-
timator divided by the square of the sandwich SE of the indicated estimator. Confidence in-
tervals (CIs) and RE based on adjusted sandwich standard errors. Adjusted Logistic GEE-
Model 1: logit(P (Yij = 1)) = η0 + η1Mean wealthi, Model 2: logit(P (Yij = 1)) =
η0 + η1Mean wealthi + η2I(Ethnicij = 1) + η3I(Wealthij = 0). IPTW: logit(P (Ai = 1)) =
η0 + η1Know leaderi + η2Good floori.

Estimator β̂1 SE 95%CI RE
Standard GEE

Std Exch -0.238 0.275 (-0.777,0.300) 1.000
Std Exch TS -0.219 0.266 (-0.74,0.301) 1.069

Augmented GEE
Aug Ind-GLM -0.062 0.215 (-0.484,0.361) 1.627

Aug Exch-GLM -0.079 0.21 (-0.491,0.332) 1.716
Aug Exch-TS-GLM -0.065 0.204 (-0.465,0.335) 1.811

AugInd-OLS -0.023 0.22 (-0.454,0.408) 1.561
AugExch-OLS -0.062 0.214 (-0.481,0.358) 1.648

AugExch-TS-OLS -0.047 0.206 (-0.451,0.358) 1.773
Adjusted Logistic GEE

Model 1 -0.093 0.167 (-0.420,0.234) 2.712
Model 2 -0.044 0.179 (-0.396,0.308) 2.349

IPTW Logistic GEE
Model 3 -0.293 0.236 ( -0.756,0.170) 1.354

tially more efficient than Standard GEE. Randomized trials involving longitudinal data

with many subjects or clustered designs with many smaller units, such as households or

offspring, are therefore ideal candidates for this method. We evaluate our method and the

behavior of the sandwich variance estimator through simulation in the following section.

1.5 Simulation Study

We assessed the performance of the Simple Augmented GEE in two sets of simu-

lations. The first investigates continuous outcomes with an identity link, and the second

set explores binary outcomes using an inverse logit link. We considered the impact of
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misspecification of the augmentation term and working covariance structure on the per-

formance of our estimator. Results are based on 1000 simulated datasets.

1.5.1 Continuous Outcomes

Cluster level covariates were treatment, density, wealth, and community type (eg.,

urban/rural, etc). Treatment assignment was completed by first fixing the number of

treated and control clusters to m/2, where m is the total number of clusters. Clusters

were then randomly assigned to treatment or control. Community type was generated

from a multinomial distribution. Density and wealth were generated from the exponen-

tial and normal distributions, respectively. Individual-level covariates age, employment,

security1, and security2 were simulated from normal and multinomial distributions with

age treated as continuous and other covariates categorical. Data were generated follow-

ing the means and variances of covariates in the Young Citizens data. Intracluster corre-

lation was induced by cluster-specific random effects and community-level covariates.

We considered varying levels of correlation for treated versus control clusters. To assess

small-sample performance, we compared scenarios of m = 30 and m = 100 clusters.

Outcomes were generated from the following models:

(Yij|Xij, Ai = 1) = 7.23 + 0.599employedij + 0.44mean wealthi− 0.22I(security1ij =

3)− 0.06ageij + 49.702densityi + b1i + εij , and (Yij|Xij, Ai = 0) = 2.56 + 0.245employedij +

0.691I(community typei = 4) + 0.921I(security2ij = 4) + 0.055ageij + b0i + εij , where

bki ∼ N(0, σ2
k), and εij ∼ N(0, σ2). Community-level and individual-level covariates

therefore contributed to heterogeneity in subject responses. Values of σ2
1 and σ2

0 were

selected to yield the desired within-cluster marginal correlation (ρk). For treatment and

control clusters alike, σ2 = 1.

We evaluated the effect of working covariance and augmentation misspecification

by estimating β1 and its variance under different covariance structures and augmentation

models. Two variations of Standard GEE were considered: Standard GEE with com-
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mon exchangeable correlation {Std(Exch)}, and Standard GEE with treatment-specific

exchangeable correlation {Std(Exch-TS)}. For the class of augmented GEE, we estimated

β̂aug with independence, exchangeable, and treatment-specific exchangeable correlation

structures. Each estimator was evaluated under several augmentation models. The esti-

mator resulting from fitting the true form of E(Yij|Xij, Ai = k) is denoted by ’C’ for ’Cor-

rect’. Alternative augmentation models were defined by forward (F) and backward (B)

selection, and a wrong (W) model. The wrong models were given by E(Yij|Xij, Ai = 1) =

η0+η1mean wealthi+η2I(community typei = 2)+η3I(security1ij = 2) andE(Yij|Xij, Ai =

0) = η0+η1densityi+η2ageij+η3I(community typei = 1)+η4I(security2ij = 4). Augmenta-

tion under the ’Correct’ model illustrates the largest possible efficiency gain. Alternative

model fitting techniques were chosen to be representative of methods commonly used

when performing covariate adjustment in analyzing clinical trial data. Forward or back-

ward stepwise selection may be used by analysts favoring more parsimonious or larger

models, respectively. The ’Wrong’ model was included for comparison using models that

contain some relevant covariates but omit others. To correct for small-sample variance un-

derestimation, we applied several modifications to the sandwich estimator as detailed in

Section 1.3. For the unaugmented estimators, we calculated the sandwich variance (SE1),

and the sandwich variance with bias correction (SE3). Standard errors for augmented

estimators were calculated using SE2 and SE4 as well, which account for ηk-estimation.

Table 1.3 shows results for m = 30 and 100, σ2
1 = 0.03, and σ2

0 = 0.025, which cor-

respond to approximately 10% and 5% within-cluster correlation in treated and control

clusters, respectively. For Table 1.4, we raise the level of unexplained similarity among

cluster members by setting σ2
1 = 0.23 and σ2

0 = 0.20 for the sample sizes previously con-

sidered.

For small-sample and large-sample inference, bias was similar across all estima-

tors. Working covariance specification affected the variance of the augmented estimator,

with exchangeable (true) correlation structures resulting in smaller average standard er-

rors than independence. Comparing estimators calculated with an exchangeable corre-
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lation structure, augmented estimators were often more efficient than the standard ap-

proach. Monte Carlo relative efficiency estimates suggest that in the small-sample set-

ting with low levels of unexplained intracommunity correlation, considerable improve-

ment (5-19%) is observed even when misspecifying the augmentation model (Table 1.3).

When intracluster correlation was larger, additional variability associated with auto-

mated model selection resulted in loss of efficiency associated with augmentation (Table

1.4). Average sandwich standard errors were overly optimistic in comparing augmented

GEE to Standard GEE in small samples, consistently estimating lower variability with

augmentation. For large samples, efficiency gains were not hindered by higher levels of

unexplained cluster similarity, with Monte Carlo efficiency improving by 5-40% (Table

1.4).
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Table 1.3: Standard vs. Augmented GEE, Continuous Outcome: 30 & 100 clusters,
ρ0 = 0.05, ρ1 = 0.10, β1 = 1.3239. Std: unaugmented. C,F,B,W: augmented with ’Correct’,
’Forward’ selected, ’Backward’ selected, or ’Wrong’ models. Ind: independence, Exch: exchange-
able with single correlation parameter. Exch-TS: exchangeable with treatment-specific parameter.
SE1: average unadjusted sandwich SE, SE2: average sandwich SE with nuisance parameter ad-
justment, SE3: average sandwich SE with small-sample adjustment, SE4: average sandwich SE
with small-sample and nuisance adjustments. MC SE: Monte Carlo standard deviation. MC RE:
square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte Carlo SE for the
indicated estimator. Cov. U: SE1 coverage, Cov. A: SE3 and SE4 coverage for unaugmented and
augmented GEE, respectively.

m=30 Bias SE1 SE2 SE3 SE4 MC SE MC RE Cov. U Cov. A
Std(Exch) 0.000 0.156 - 0.165 - 0.165 1.000 0.933 0.949

Std(Exch-TS) -0.001 0.158 - 0.166 - 0.164 1.004 0.934 0.949
C(Ind) -0.001 0.135 0.138 0.140 0.144 0.151 1.194 0.912 0.929
F(Ind) -0.001 0.132 0.136 0.137 0.142 0.153 1.162 0.895 0.922
B(Ind) -0.001 0.132 0.137 0.137 0.142 0.154 1.149 0.893 0.918
W(Ind) 0.003 0.143 0.151 0.150 0.158 0.160 1.057 0.911 0.937
C(Exch) -0.004 0.130 0.132 0.134 0.137 0.147 1.248 0.909 0.927
F(Exch) -0.004 0.128 0.131 0.132 0.135 0.149 1.219 0.898 0.917
B(Exch) -0.004 0.128 0.131 0.132 0.135 0.150 1.205 0.893 0.915
W(Exch) -0.002 0.139 0.145 0.144 0.150 0.156 1.110 0.904 0.928

C(Exch-TS) -0.005 0.134 0.138 0.137 0.143 0.149 1.223 0.914 0.925
F(Exch-TS) -0.005 0.133 0.137 0.135 0.142 0.151 1.198 0.895 0.915
B(Exch-TS) -0.005 0.132 0.137 0.135 0.142 0.151 1.186 0.890 0.910
W(Exch-TS) -0.004 0.142 0.148 0.146 0.154 0.159 1.078 0.900 0.927

m=100 Bias SE1 SE2 SE3 SE4 MC SE MC RE Cov. U Cov. A
Std(Exch) -0.002 0.088 - 0.090 - 0.090 1.000 0.943 0.946

Std(Exch-TS) -0.003 0.088 - 0.089 - 0.090 1.001 0.942 0.945
C(Ind) -0.004 0.077 0.077 0.078 0.078 0.078 1.333 0.942 0.947
F(Ind) -0.004 0.076 0.077 0.077 0.078 0.079 1.296 0.937 0.943
B(Ind) -0.004 0.076 0.077 0.077 0.078 0.079 1.297 0.937 0.944
W(Ind) -0.003 0.083 0.084 0.084 0.085 0.088 1.048 0.935 0.945
C(Exch) -0.004 0.074 0.074 0.075 0.075 0.075 1.449 0.944 0.945

F(Exch) 6 -0.005 0.073 0.074 0.074 0.075 0.076 1.409 0.933 0.941
B(Exch) -0.005 0.073 0.074 0.074 0.075 0.076 1.410 0.932 0.94
W(Exch) -0.003 0.080 0.081 0.080 0.082 0.083 1.166 0.936 0.943

C(Exch-TS) -0.004 0.074 0.074 0.074 0.075 0.074 1.452 0.946 0.95
F(Exch-TS) -0.005 0.073 0.074 0.074 0.075 0.075 1.412 0.937 0.943
B(Exch-TS) -0.005 0.073 0.074 0.074 0.075 0.075 1.413 0.936 0.943
W(Exch-TS) -0.003 0.079 0.080 0.080 0.081 0.083 1.168 0.934 0.943
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Table 1.4: Standard vs. Augmented GEE, Continuous Outcome: 30 & 100 clusters,
ρ0 = 0.13, ρ1 = 0.17, β1 = 1.3239.. Std: unaugmented. C,F,B,W: augmented with ’Correct’,
’Forward’ selected, ’Backward’ selected, or ’Wrong’ models. Ind: independence, Exch: exchange-
able with single correlation parameter. Exch-TS: exchangeable with treatment-specific parameter.
SE1: average unadjusted sandwich SE, SE2: average sandwich SE with nuisance parameter ad-
justment, SE3: average sandwich SE with small-sample adjustment, SE4: average sandwich SE
with small-sample and nuisance adjustments. MC SE: Monte Carlo standard deviation. MC RE:
square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte Carlo SE for the
indicated estimator. Cov. U: SE1 coverage, Cov. A: SE3 and SE4 coverage for unaugmented and
augmented GEE, respectively.

m=30 Bias SE1 SE2 SE3 SE4 MC SE MC RE Cov. U Cov. A
Std(Exch) 0.012 0.217 - 0.229 - 0.233 1.000 0.933 0.937

Std(Exch-TS) 0.011 0.217 - 0.227 - 0.233 1.000 0.929 0.934
C(Ind) 0.007 0.209 0.219 0.221 0.232 0.234 0.989 0.907 0.934
F(Ind) 0.007 0.201 0.216 0.211 0.226 0.255 0.834 0.863 0.908
B(Ind) 0.007 0.202 0.216 0.211 0.227 0.256 0.828 0.861 0.911
W(Ind) 0.014 0.213 0.226 0.226 0.240 0.250 0.864 0.897 0.922
C(Exch) 0.005 0.199 0.206 0.207 0.214 0.215 1.170 0.912 0.934
F(Exch) 0.005 0.194 0.205 0.201 0.213 0.237 0.963 0.881 0.916
B(Exch) 0.005 0.194 0.206 0.201 0.213 0.238 0.954 0.879 0.915
W(Exch) 0.010 0.204 0.214 0.213 0.224 0.232 1.008 0.910 0.94

C(Exch-TS) 0.004 0.198 0.205 0.206 0.213 0.215 1.172 0.911 0.935
F(Exch-TS) 0.004 0.193 0.205 0.200 0.212 0.237 0.964 0.884 0.914
B(Exch-TS) 0.004 0.193 0.205 0.200 0.212 0.238 0.955 0.882 0.914
W(Exch-TS) 0.009 0.203 0.214 0.212 0.223 0.232 1.008 0.909 0.938

m=100 Bias SE1 SE2 SE3 SE4 MC SE MC RE Cov. U Cov. A
Std(Exch) 0.006 0.123 - 0.125 - 0.124 1.000 0.947 0.948

Std(Exch-TS) 0.006 0.123 - 0.125 - 0.123 1.004 0.947 0.949
C(Ind) 0.002 0.121 0.123 0.123 0.125 0.124 0.997 0.943 0.949
F(Ind) 0.003 0.118 0.121 0.120 0.123 0.125 0.979 0.935 0.941
B(Ind) 0.003 0.118 0.121 0.120 0.123 0.125 0.978 0.935 0.941
W(Ind) 0.004 0.124 0.127 0.127 0.129 0.128 0.931 0.935 0.944
C(Exch) 0.005 0.113 0.114 0.114 0.116 0.116 1.128 0.939 0.943
F(Exch) 0.006 0.112 0.114 0.113 0.115 0.118 1.102 0.929 0.937
B(Exch) 0.006 0.112 0.114 0.113 0.115 0.118 1.101 0.929 0.937
W(Exch) 0.007 0.117 0.118 0.118 0.120 0.120 1.056 0.934 0.944

C(Exch-TS) 0.005 0.113 0.114 0.114 0.115 0.116 1.133 0.941 0.945
F(Exch-TS) 0.006 0.111 0.114 0.113 0.115 0.118 1.106 0.931 0.939
B(Exch-TS) 0.006 0.111 0.114 0.113 0.115 0.118 1.105 0.931 0.939
W(Exch-TS) 0.007 0.116 0.118 0.118 0.120 0.120 1.061 0.935 0.942
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Coverage results show that for small samples, the uncorrected sandwich variance

underestimates the variability of the augmented estimator (Tables 1.3 & 1.4). Bias cor-

rection fully recovered small-sample loss of variance for Standard GEE. For augmented

estimators, correction was less effective. Coverage was slightly increased by accounting

for augmentation in the sandwich variance but did not quite reach nominal levels. For

large-sample inference, neither adjustment substantially increased coverage, which was

already close to nominal levels for the uncorrected sandwich variance without the nui-

sance term.

1.5.2 Binary Outcomes

To explore the performance of the augmented GEE for clustered binary outcomes,

we again generated datasets of m clusters with probability of treatment P (A = 1) = 1/2.

Cluster-level variables X1 and X2 were simulated from exponential and multinomial dis-

tributions with mean 0.002 and probabilities p=(0.46, 0.27, 0.07, 0.17, 0.03), respectively.

Individual-level covariates X3, X4, X5, and X6 were generated such that (X3, X4) ∼

Normal

((
0 0

)
,

(
4 6
6 25

))
, X5 ∼ Bernoulli(p = 0.28), and X6 ∼ Multinomial{1, p =

(0.45, 0.15, 0.30, 0.10)}. We used the random intercept logistic model to simulate corre-

lated binary outcomes Y. Random intercepts bi were drawn from the bridge distribu-

tion for the logit link {Wang and Louis (2003)}, Bl(0, 1 − ρ), where 0 is the mean and

ρ is the desired correlation. The bridge distribution was selected to preserve the lo-

gistic shape after marginalizing over random effects and provide a simple scaling rela-

tionship between parameters of the models for E(Y|X, A, b) and E(Y|X, A). Outcome

generating models were: logit{E(Yij|Xij, Ai = 1, b)} = η10 + η11X3ij + η12X4ij + bi, and

logit{E(Yij|Xij, Ai = 0, b)} = η00 + η01X4ij + η02X
2
4ij

+ η03X5ij + bi.

For low association between Y and X , we set η0 = (3.4,−0.6, 0.03, 0.5)T and η1 =

(2.5,−0.62, 0.86)T. Coefficients η0 = c(2.0,−0.9, 0.03, 0.5)T and η1 = (1.5,−0.62, 0.86)T

were used for a high association. We again compared small-sample versus large-sample

performance by implementing standard and augmented GEE under m = 30, m = 100,
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and m = 250 clusters. We also considered two levels of intracluster correlation (ρ=0.05,

0.20). Results for m = 250 are included in Appendix C.

We applied the augmented GEE under independent and exchangeable correla-

tion structures and evaluated different methods of fitting the augmentation term. To

guarantee improved efficiency relative to Standard GEE, we fit augmentation models

E(Y|X, A = k) using OLS. We contrast this approach with logistic regression, which

correctly specifies the form of the relationship between Y and X , but is not guaran-

teed to improve efficiency under model misspecification. For each model fitting tech-

nique, we fit the correct augmentation model (C), a forward selection model (F), and

two wrong models (O & W). Wrong models denoted by ’O’ contained one baseline co-

variate. Specifically, the models fit were E(Yij|Xij, A = 1) = g(α10 + α11X4ij) and

E(Yij|Xij, A = 0) = g(α00 +α01X3ij). Wrong models ’W’ are given by E(Yij|Xij, A = 1)} =

g(α10 + α11X5ij + α11X2i) and E(Yij|Xij, A = 0) = g(α00 + α01X4ij + α02X1ij + α03X5ij).

Results were similar to those obtained for the continuous outcomes in the first

set of simulations (Tables 1.5 - 1.8). Bias was similar across all methods of estimation

for small- and large-sample inference, and correct specification of the working covariance

resulted in more efficient estimation for augmented estimators. Small-sample results sug-

gested that for low association of baseline covariates and outcome, small gains are pos-

sible for reasonably specified models (2%-10%), but for automated model selection and

poorly specified models, efficiency loss occurs (-17%- -3%) because of additional variabil-

ity introduced by model selection and estimation of the augmentation terms. Efficiency

increased by 8%-35% when baseline covariates were more strongly related to the outcome,

and unexplained intracluster correlation was low. For higher intracluster correlation, effi-

ciency gains were lower (-5% - 12%, Table 1.7), with loss of efficiency for automated model

selection. Similar to the continuous outcome, standard error adjustments were partially

effective in recovering nominal coverage. When 100 clusters were sampled, augmenta-

tion increased efficiency by 1%-35% for high association or low intracluster correlation.

With low association between X and Y and high intracluster correlation, augmentation

22



decreased efficiency for poorly specified and automated models. Considering 250 clus-

ters, augmented estimators were more efficient than unaugmented estimators across the

levels of intracluster correlation, degree of X,Y association, and methods of model fitting

that were considered (Appendix C).

In summary, large-sample results suggest improvement with augmentation,

whereas results for small-sample estimation are less consistent. Across the number of

clusters evaluated, augmentation was less beneficial as the degree of intracluster cor-

relation increased. Regarding augmentation fit, the variability of β̂1 was similar when

comparing augmented estimators resulting from predictions from OLS and ML.

23



Ta
bl

e
1.

5:
St

an
da

rd
vs

.A
ug

m
en

te
d

G
EE

,B
in

ar
y

O
ut

co
m

e:
30

&
10

0
cl

us
te

rs
,l

ow
as

so
ci

at
io

n,
ρ

=
0.

05
,β

1
=
−

0.
29

59
lo

w
as

so
ci

at
io

n,
β
1

=
1.

13
62

hi
gh

as
so

ci
at

io
n.

St
d:

un
au

gm
en

te
d.

C
or

re
la

tio
n

ex
ch

an
ge

ab
le

un
le

ss
de

no
te

d
by

’In
d’

fo
r

in
de

pe
nd

en
ce

.
C

,F
,O

,W
:a

ug
m

en
ta

tio
n

w
ith

’C
or

re
ct

’,
’F

or
w

ar
d’

se
le

ct
ed

,’
O

ne
-v

ar
ia

bl
e’

,o
r

’W
ro

ng
’m

od
el

.
M

L,
O

LS
:a

ug
m

en
ta

tio
n

fit
w

ith
m

ax
i-

m
um

lik
el

ih
oo

d
or

or
di

na
ry

le
as

ts
qu

ar
es

.
SE

1
:a

ve
ra

ge
un

ad
ju

st
ed

sa
nd

w
ic

h
SE

,S
E 2

:a
ve

ra
ge

sa
nd

w
ic

h
SE

w
ith

nu
is

an
ce

pa
ra

m
et

er
ad

ju
st

m
en

t,
SE

3
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
ad

ju
st

m
en

t,
SE

4
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
an

d
nu

is
an

ce
ad

-
ju

st
m

en
ts

.M
C

R
E:

sq
ua

re
of

th
e

M
on

te
C

ar
lo

SE
of

th
e

St
d(

Ex
ch

)e
st

im
at

or
di

vi
de

d
by

th
e

M
on

te
C

ar
lo

SE
fo

r
th

e
in

di
ca

te
d

es
tim

at
or

.
C

ov
.U

:S
E 1

co
ve

ra
ge

,C
ov

.A
:S

E 3
an

d
SE

4
co

ve
ra

ge
fo

r
un

au
gm

en
te

d
an

d
au

gm
en

te
d

G
EE

,r
es

pe
ct

iv
el

y.

Lo
w

Es
ti

m
at

or
β̂
1

Bi
as

SE
1

SE
2

SE
3

SE
4

M
C

SE
M

C
R

E
C

ov
.U

C
ov

.A
m

=3
0

St
d

-0
.2

99
0.

00
3

0.
19

6
-

0.
20

9
-

0.
22

0
1.

00
0

0.
92

3
0.

94
5

C
-M

L
(I

nd
)

-0
.3

00
0.

00
4

0.
19

3
0.

19
6

0.
20

7
0.

21
0

0.
22

0
1.

00
2

0.
92

4
0.

94
2

C
-M

L
-0

.2
99

0.
00

3
0.

18
7

0.
18

9
0.

19
8

0.
20

0
0.

21
0

1.
10

1
0.

92
0

0.
93

7
C

-O
LS

-0
.3

00
0.

00
4

0.
18

8
0.

19
1

0.
20

0
0.

20
2

0.
21

3
1.

07
5

0.
91

9
0.

93
6

F
-M

L
-0

.2
98

0.
00

3
0.

17
8

0.
18

0
0.

18
7

0.
18

9
0.

22
5

0.
95

6
0.

88
0

0.
90

1
F

-O
LS

-0
.3

02
0.

00
6

0.
17

9
0.

18
3

0.
18

8
0.

19
2

0.
22

6
0.

94
8

0.
87

8
0.

90
6

O
-M

L
-0

.2
99

0.
00

3
0.

19
0

0.
19

2
0.

20
2

0.
20

4
0.

21
5

1.
05

1
0.

91
8

0.
93

5
O

-O
LS

-0
.2

99
0.

00
3

0.
19

0
0.

19
2

0.
20

2
0.

20
5

0.
21

5
1.

05
4

0.
91

4
0.

93
7

W
-M

L
-0

.2
95

-0
.0

01
0.

19
1

0.
19

5
0.

20
2

0.
20

6
0.

22
4

0.
97

1
0.

90
4

0.
92

9
W

-O
LS

-0
.2

98
0.

00
2

0.
19

1
0.

19
5

0.
20

2
0.

20
7

0.
22

4
0.

97
0

0.
90

2
0.

93
3

m
=1

00
St

d
-0

.2
93

-0
.0

03
0.

11
5

-
0.

11
7

-
0.

11
6

1.
00

0
0.

94
4

0.
94

7
C

-M
L

(I
nd

)
-0

.2
92

-0
.0

04
0.

11
3

0.
11

3
0.

11
5

0.
11

6
0.

11
7

0.
98

7
0.

94
1

0.
94

6
C

-M
L

-0
.2

93
-0

.0
03

0.
10

9
0.

10
9

0.
11

1
0.

11
1

0.
11

2
1.

08
9

0.
93

8
0.

94
0

C
-O

LS
-0

.2
93

-0
.0

03
0.

11
0

0.
11

0
0.

11
2

0.
11

2
0.

11
2

1.
07

7
0.

94
3

0.
94

5
F

-M
L

-0
.2

93
-0

.0
03

0.
10

7
0.

10
8

0.
10

9
0.

11
0

0.
11

3
1.

05
7

0.
93

4
0.

94
4

F
-O

LS
-0

.2
93

-0
.0

03
0.

10
8

0.
10

9
0.

10
9

0.
11

0
0.

11
4

1.
05

2
0.

93
7

0.
94

3
O

-M
L

-0
.2

93
-0

.0
03

0.
11

1
0.

11
1

0.
11

3
0.

11
3

0.
11

3
1.

07
0

0.
94

4
0.

95
0

O
-O

LS
-0

.2
93

-0
.0

03
0.

11
1

0.
11

1
0.

11
3

0.
11

3
0.

11
3

1.
07

0
0.

94
3

0.
94

8
W

-M
L

-0
.2

93
-0

.0
03

0.
11

3
0.

11
4

0.
11

5
0.

11
5

0.
11

6
1.

01
4

0.
93

5
0.

94
5

W
-O

LS
-0

.2
93

-0
.0

03
0.

11
3

0.
11

4
0.

11
5

0.
11

6
0.

11
6

1.
01

5
0.

93
7

0.
94

3

24



Ta
bl

e
1.

6:
St

an
da

rd
vs

.A
ug

m
en

te
d

G
EE

,B
in

ar
y

O
ut

co
m

e:
30

&
10

0
cl

us
te

rs
,h

ig
h

as
so

ci
at

io
n,
ρ

=
0.

05
,β

1
=
−

0.
29

59
lo

w
as

so
ci

at
io

n,
β
1

=
1.

13
62

hi
gh

as
so

ci
at

io
n.

St
d:

un
au

gm
en

te
d.

C
or

re
la

tio
n

ex
ch

an
ge

ab
le

un
le

ss
de

no
te

d
by

’In
d’

fo
r

in
de

pe
nd

en
ce

.
C

,F
,O

,W
:a

ug
m

en
ta

tio
n

w
ith

’C
or

re
ct

’,
’F

or
w

ar
d’

se
le

ct
ed

,’
O

ne
-v

ar
ia

bl
e’

,o
r

’W
ro

ng
’m

od
el

.
M

L,
O

LS
:a

ug
m

en
ta

tio
n

fit
w

ith
m

ax
i-

m
um

lik
el

ih
oo

d
or

or
di

na
ry

le
as

ts
qu

ar
es

.
SE

1
:a

ve
ra

ge
un

ad
ju

st
ed

sa
nd

w
ic

h
SE

,S
E 2

:a
ve

ra
ge

sa
nd

w
ic

h
SE

w
ith

nu
is

an
ce

pa
ra

m
et

er
ad

ju
st

m
en

t,
SE

3
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
ad

ju
st

m
en

t,
SE

4
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
an

d
nu

is
an

ce
ad

-
ju

st
m

en
ts

.M
C

R
E:

sq
ua

re
of

th
e

M
on

te
C

ar
lo

SE
of

th
e

St
d(

Ex
ch

)e
st

im
at

or
di

vi
de

d
by

th
e

M
on

te
C

ar
lo

SE
fo

r
th

e
in

di
ca

te
d

es
tim

at
or

.
C

ov
.U

:S
E 1

co
ve

ra
ge

,C
ov

.A
:S

E 3
an

d
SE

4
co

ve
ra

ge
fo

r
un

au
gm

en
te

d
an

d
au

gm
en

te
d

G
EE

,r
es

pe
ct

iv
el

y.

H
ig

h
Es

ti
m

at
or

β̂
1

Bi
as

SE
1

SE
2

SE
3

SE
4

M
C

SE
M

C
R

E
C

ov
.U

C
ov

.A
m

=3
0

St
d

1.
13

7
-0

.0
01

0.
15

3
-

0.
16

3
-

0.
16

9
1.

00
0

0.
92

5
0.

94
6

C
-M

L
(I

nd
)

1.
13

2
0.

00
4

0.
13

6
0.

13
8

0.
14

6
0.

14
9

0.
15

1
1.

25
4

0.
93

5
0.

94
8

C
-M

L
1.

13
5

0.
00

1
0.

13
2

0.
13

4
0.

14
0

0.
14

2
0.

14
4

1.
38

2
0.

93
2

0.
95

2
C

-O
LS

1.
13

4
0.

00
2

0.
13

4
0.

13
6

0.
14

3
0.

14
5

0.
14

6
1.

34
8

0.
93

8
0.

95
1

F
-M

L
1.

13
5

0.
00

2
0.

12
5

0.
12

8
0.

13
2

0.
13

5
0.

15
5

1.
19

5
0.

90
1

0.
92

1
F

-O
LS

1.
13

7
-0

.0
01

0.
12

7
0.

13
1

0.
13

4
0.

13
9

0.
15

6
1.

17
2

0.
89

6
0.

92
4

O
-M

L
1.

13
5

0.
00

1
0.

13
5

0.
13

7
0.

14
4

0.
14

6
0.

14
8

1.
30

6
0.

92
8

0.
95

5
O

-O
LS

1.
13

5
0.

00
1

0.
13

6
0.

13
9

0.
14

6
0.

14
8

0.
15

0
1.

27
8

0.
93

0
0.

95
0

W
-M

L
1.

13
7

-0
.0

01
0.

14
1

0.
14

5
0.

15
0

0.
15

4
0.

16
1

1.
10

1
0.

92
4

0.
94

7
W

-O
LS

1.
13

7
-0

.0
01

0.
14

1
0.

14
6

0.
15

0
0.

15
5

0.
16

3
1.

08
5

0.
92

1
0.

94
5

m
=1

00
St

d
1.

13
8

-0
.0

02
0.

08
9

-
0.

09
0

-
0.

09
0

1.
00

0
0.

94
6

0.
94

9
C

-M
L

(I
nd

)
1.

13
9

-0
.0

03
0.

07
9

0.
07

9
0.

08
0

0.
08

1
0.

08
3

1.
16

2
0.

93
4

0.
93

5
C

-M
L

1.
13

9
-0

.0
03

0.
07

6
0.

07
6

0.
07

8
0.

07
8

0.
08

0
1.

25
7

0.
93

6
0.

94
1

C
-O

LS
1.

14
0

-0
.0

04
0.

07
7

0.
07

8
0.

07
9

0.
07

9
0.

08
1

1.
23

4
0.

94
3

0.
94

5
F

-M
L

1.
13

8
-0

.0
02

0.
07

5
0.

07
5

0.
07

6
0.

07
6

0.
08

2
1.

21
0

0.
93

1
0.

93
5

F
-O

LS
1.

14
0

-0
.0

03
0.

07
6

0.
07

6
0.

07
7

0.
07

8
0.

08
2

1.
19

7
0.

93
4

0.
94

3
O

-M
L

1.
13

9
-0

.0
03

0.
07

8
0.

07
8

0.
08

0
0.

08
0

0.
08

1
1.

22
2

0.
94

3
0.

95
4

O
-O

LS
1.

14
0

-0
.0

04
0.

07
9

0.
07

9
0.

08
0

0.
08

1
0.

08
2

1.
20

3
0.

94
6

0.
95

2
W

-M
L

1.
13

9
-0

.0
03

0.
08

3
0.

08
3

0.
08

4
0.

08
5

0.
08

6
1.

09
8

0.
94

8
0.

95
4

W
-O

LS
1.

14
0

-0
.0

03
0.

08
3

0.
08

4
0.

08
4

0.
08

5
0.

08
6

1.
09

5
0.

94
5

0.
95

2

25



Ta
bl

e
1.

7:
St

an
da

rd
vs

.A
ug

m
en

te
d

G
EE

,B
in

ar
y

O
ut

co
m

e:
30

&
10

0
cl

us
te

rs
,l

ow
,ρ

=
0.

20
β
1

=
−

0.
21

64
lo

w
as

so
ci

at
io

n,
β
1

=
1.

05
01

hi
gh

as
so

ci
at

io
n.

St
d:

un
au

gm
en

te
d.

C
or

re
la

tio
n

ex
ch

an
ge

ab
le

un
le

ss
de

no
te

d
by

’In
d’

fo
r

in
de

pe
nd

en
ce

.C
,F

,O
,W

:a
ug

-
m

en
ta

tio
n

w
ith

’C
or

re
ct

’,
’F

or
w

ar
d’

se
le

ct
ed

,’
O

ne
-v

ar
ia

bl
e’

,o
r

’W
ro

ng
’m

od
el

.M
L,

O
LS

:a
ug

m
en

ta
tio

n
fit

w
ith

m
ax

im
um

lik
el

ih
oo

d
or

or
di

na
ry

le
as

ts
qu

ar
es

.S
E 1

:a
ve

ra
ge

un
ad

ju
st

ed
sa

nd
w

ic
h

SE
,S

E 2
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
nu

is
an

ce
pa

ra
m

et
er

ad
ju

st
m

en
t,

SE
3
:

av
er

ag
e

sa
nd

w
ic

h
SE

w
ith

sm
al

l-s
am

pl
e

ad
ju

st
m

en
t,

SE
4
:

av
er

ag
e

sa
nd

w
ic

h
SE

w
ith

sm
al

l-s
am

pl
e

an
d

nu
is

an
ce

ad
ju

st
m

en
ts

.
M

C
R

E:
sq

ua
re

of
th

e
M

on
te

C
ar

lo
SE

of
th

e
St

d(
Ex

ch
)e

st
im

at
or

di
vi

de
d

by
th

e
M

on
te

C
ar

lo
SE

fo
r

th
e

in
di

ca
te

d
es

tim
at

or
.

C
ov

.
U

:S
E 1

co
ve

ra
ge

,C
ov

.A
:S

E 3
an

d
SE

4
co

ve
ra

ge
fo

r
un

au
gm

en
te

d
an

d
au

gm
en

te
d

G
EE

,r
es

pe
ct

iv
el

y.

Lo
w

Bi
as

SE
1

SE
2

SE
3

SE
4

M
C

SE
M

C
R

E
C

ov
.U

C
ov

.A
m

=3
0

St
d

0.
01

2
0.

31
7

-
0.

33
5

-
0.

34
4

1.
00

0
0.

92
5

0.
93

5
C

-M
L

(I
nd

)
0.

01
9

0.
32

8
0.

33
2

0.
35

4
0.

35
8

0.
37

3
0.

85
5

0.
90

8
0.

93
4

C
-M

L
0.

01
3

0.
31

2
0.

31
3

0.
32

9
0.

33
0

0.
33

8
1.

04
1

0.
92

7
0.

93
9

C
-O

LS
0.

01
3

0.
31

3
0.

31
4

0.
33

0
0.

33
1

0.
33

9
1.

03
1

0.
93

1
0.

93
7

F
-M

L
0.

00
1

0.
29

4
0.

29
6

0.
30

8
0.

31
0

0.
36

5
0.

89
1

0.
89

2
0.

90
8

F
-O

LS
0.

00
8

0.
29

7
0.

30
3

0.
31

0
0.

31
7

0.
37

6
0.

83
8

0.
88

7
0.

90
5

O
-M

L
0.

01
5

0.
31

4
0.

31
5

0.
33

1
0.

33
2

0.
33

8
1.

03
6

0.
92

4
0.

93
5

O
-O

LS
0.

01
6

0.
31

4
0.

31
5

0.
33

1
0.

33
2

0.
33

9
1.

03
4

0.
92

6
0.

93
5

W
-M

L
0.

00
4

0.
31

1
0.

31
4

0.
32

8
0.

33
0

0.
35

0
0.

96
8

0.
91

5
0.

92
5

W
-O

LS
0.

00
9

0.
31

2
0.

31
5

0.
32

9
0.

33
2

0.
35

2
0.

95
8

0.
91

2
0.

92
6

m
=1

00
St

d
-0

.0
03

0.
18

3
-

0.
18

6
-

0.
18

8
1.

00
0

0.
93

7
0.

94
3

C
-M

L
(I

nd
)

-0
.0

03
0.

19
2

0.
19

3
0.

19
6

0.
19

7
0.

20
1

0.
86

8
0.

93
8

0.
94

3
C

-M
L

-0
.0

04
0.

18
0

0.
18

0
0.

18
2

0.
18

2
0.

18
5

1.
03

1
0.

93
9

0.
94

1
C

-O
LS

-0
.0

04
0.

18
0

0.
18

0
0.

18
3

0.
18

3
0.

18
5

1.
02

3
0.

93
0

0.
93

5
F

-M
L

-0
.0

03
0.

17
6

0.
17

7
0.

17
9

0.
17

9
0.

19
0

0.
97

5
0.

92
5

0.
93

0
F

-O
LS

-0
.0

03
0.

17
6

0.
17

8
0.

17
9

0.
18

0
0.

19
1

0.
96

8
0.

93
0

0.
93

3
O

-M
L

-0
.0

03
0.

18
1

0.
18

1
0.

18
4

0.
18

4
0.

18
6

1.
02

1
0.

93
0

0.
93

6
O

-O
LS

-0
.0

04
0.

18
1

0.
18

1
0.

18
4

0.
18

4
0.

18
6

1.
01

8
0.

93
0

0.
93

6
W

-M
L

-0
.0

04
0.

18
1

0.
18

2
0.

18
4

0.
18

5
0.

18
8

0.
99

6
0.

93
7

0.
94

3
W

-O
LS

-0
.0

03
0.

18
1

0.
18

2
0.

18
4

0.
18

5
0.

18
8

0.
99

5
0.

93
5

0.
94

3

26



Ta
bl

e
1.

8:
St

an
da

rd
vs

.A
ug

m
en

te
d

G
EE

,B
in

ar
y

O
ut

co
m

e:
30

&
10

0
cl

us
te

rs
,h

ig
h

as
so

ci
at

io
n,
ρ

=
0.

20
β
1

=
−

0.
21

64
lo

w
as

so
ci

at
io

n,
β
1

=
1.

05
01

hi
gh

as
so

ci
at

io
n.

St
d:

un
au

gm
en

te
d.

C
or

re
la

tio
n

ex
ch

an
ge

ab
le

un
le

ss
de

no
te

d
by

’In
d’

fo
r

in
de

pe
nd

en
ce

.
C

,F
,O

,W
:a

ug
m

en
ta

tio
n

w
ith

’C
or

re
ct

’,
’F

or
w

ar
d’

se
le

ct
ed

,’
O

ne
-v

ar
ia

bl
e’

,o
r

’W
ro

ng
’m

od
el

.
M

L,
O

LS
:a

ug
m

en
ta

tio
n

fit
w

ith
m

ax
i-

m
um

lik
el

ih
oo

d
or

or
di

na
ry

le
as

ts
qu

ar
es

.
SE

1
:a

ve
ra

ge
un

ad
ju

st
ed

sa
nd

w
ic

h
SE

,S
E 2

:a
ve

ra
ge

sa
nd

w
ic

h
SE

w
ith

nu
is

an
ce

pa
ra

m
et

er
ad

ju
st

m
en

t,
SE

3
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
ad

ju
st

m
en

t,
SE

4
:a

ve
ra

ge
sa

nd
w

ic
h

SE
w

ith
sm

al
l-s

am
pl

e
an

d
nu

is
an

ce
ad

-
ju

st
m

en
ts

.M
C

R
E:

sq
ua

re
of

th
e

M
on

te
C

ar
lo

SE
of

th
e

St
d(

Ex
ch

)e
st

im
at

or
di

vi
de

d
by

th
e

M
on

te
C

ar
lo

SE
fo

r
th

e
in

di
ca

te
d

es
tim

at
or

.
C

ov
.U

:S
E 1

co
ve

ra
ge

,C
ov

.A
:S

E 3
an

d
SE

4
co

ve
ra

ge
fo

r
un

au
gm

en
te

d
an

d
au

gm
en

te
d

G
EE

,r
es

pe
ct

iv
el

y.

H
ig

h
Es

ti
m

at
or

Bi
as

SE
1

SE
2

SE
3

SE
4

M
C

SE
M

C
R

E
C

ov
.U

C
ov

.A
m

=3
0

St
d

-0
.0

17
0.

24
4

-
0.

25
8

-
0.

25
1

1.
00

0
0.

93
4

0.
94

8
C

-M
L

(I
nd

)
-0

.0
15

0.
24

4
0.

24
7

0.
26

4
0.

26
7

0.
25

8
0.

94
1

0.
92

3
0.

94
9

C
-M

L
-0

.0
19

0.
23

0
0.

23
1

0.
24

3
0.

24
4

0.
23

5
1.

13
2

0.
93

5
0.

95
0

C
-O

LS
-0

.0
19

0.
23

1
0.

23
2

0.
24

5
0.

24
6

0.
23

7
1.

12
0

0.
93

4
0.

94
7

F
-M

L
-0

.0
15

0.
21

7
0.

21
9

0.
22

8
0.

23
0

0.
25

7
0.

95
2

0.
88

9
0.

90
9

F
-O

LS
-0

.0
19

0.
21

9
0.

22
4

0.
23

0
0.

23
5

0.
26

2
0.

91
4

0.
89

5
0.

91
3

O
-M

L
-0

.0
24

0.
23

3
0.

23
4

0.
24

7
0.

24
7

0.
24

3
1.

06
1

0.
93

1
0.

94
1

O
-O

LS
-0

.0
25

0.
23

4
0.

23
5

0.
24

7
0.

24
8

0.
24

4
1.

05
2

0.
92

8
0.

94
3

W
-M

L
-0

.0
16

0.
23

4
0.

23
7

0.
24

8
0.

25
0

0.
24

8
1.

02
1

0.
93

1
0.

94
2

W
-O

LS
-0

.0
17

0.
23

5
0.

23
7

0.
24

8
0.

25
0

0.
24

8
1.

01
8

0.
93

2
0.

94
4

m
=1

00
St

d
-0

.0
12

0.
13

8
-

0.
14

0
-

0.
13

7
1.

00
0

0.
94

6
0.

94
9

C
-M

L
(I

nd
)

-0
.0

09
0.

14
0

0.
14

0
0.

14
3

0.
14

4
0.

14
3

0.
92

8
0.

94
1

0.
95

0
C

-M
L

-0
.0

09
0.

13
0

0.
13

0
0.

13
3

0.
13

3
0.

12
9

1.
12

4
0.

95
2

0.
95

8
C

-O
LS

-0
.0

09
0.

13
1

0.
13

1
0.

13
3

0.
13

3
0.

13
0

1.
11

7
0.

95
3

0.
95

6
F

-M
L

-0
.0

07
0.

12
8

0.
12

9
0.

13
0

0.
13

1
0.

13
2

1.
07

6
0.

94
4

0.
94

8
F

-O
LS

-0
.0

07
0.

12
8

0.
13

0
0.

13
0

0.
13

2
0.

13
3

1.
07

0
0.

94
6

0.
95

3
O

-M
L

-0
.0

10
0.

13
2

0.
13

2
0.

13
4

0.
13

4
0.

13
1

1.
09

6
0.

94
7

0.
95

2
O

-O
LS

-0
.0

10
0.

13
2

0.
13

2
0.

13
4

0.
13

4
0.

13
1

1.
09

5
0.

95
0

0.
95

3
W

-M
L

-0
.0

11
0.

13
4

0.
13

5
0.

13
6

0.
13

7
0.

13
5

1.
04

1
0.

94
3

0.
94

9
W

-O
LS

-0
.0

11
0.

13
4

0.
13

5
0.

13
6

0.
13

7
0.

13
4

1.
04

4
0.

94
5

0.
95

1

27



1.6 Discussion

This paper demonstrates the use of methodology based on semiparametric the-

ory to improve efficiency of inferences in randomized studies with correlated outcomes

through augmenting the Standard GEE. This method extends the work of Zhang et al.

(2008) by focusing on multivariate outcomes, and is the first application of this approach

to a cluster randomized trial.

The binary outcome analysis illustrates an additional advantage of augmented

GEE - double robustness. Results from Standard GEE may result in misleading estimates

in settings where randomization has led to imbalance in important predictors. Aug-

mentation involves specifying a conditional model E(Y|X, A) that corrects for imbalances

and therefore recovers unbiased estimates of treatment effects, even when randomization

does not result in independence of X andA in the observed data. Alternative methods for

correction, such as IPTW using a predictive model for the probability of treatment given

baseline covariates, may not perform well given the cluster-level assignment. Predictive

models for treatment only make use of cluster-level information; individual-level covari-

ates may be averaged by cluster to create cluster-level covariates, but this data-coarsened

approach can lead to poorly specified models. Generally, inference on the probability of

treatment will be poor given the small number of randomized units. Alternatively, aug-

mentation exploits relationships among individual-level covariates and outcomes. Since

there are multiple individuals per cluster, there is more information available for esti-

mating E(Y|X, A) compared to P (A = 1|X). Estimation of E(Y|X, A) may consequently

result in a better estimator of β1.

Simulation studies explored the possibility of efficiency gains using the augmented

GEE in small- and large-sample settings. For large samples, the augmented GEE im-

proved efficiency compared to the Standard GEE for marginal treatment effects, which ig-

nores baseline covariates. In the small-sample setting, efficiency gain was less consistent;

low levels of between-community heterogeneity and high degrees of association between
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baseline covariates and outcomes were required to benefit from augmentation. Gail et al.

(1996) found a similar trend in their studies of permutation inference, noting that co-

variate adjustment did not improve efficiency when between-community variability was

high. These results highlight the importance of measuring all covariates that contribute

to within-community similarities in response. Interpreting the results from the Young

Citizens study using the insight obtained through simulations, the low intracluster corre-

lation ( 0.02) suggests improvement in efficiency when adjusting for baseline covariates.

The degree of improvement, however, may be overstated by sandwich standard errors.

Small-sample estimation also resulted in coverage slightly below nominal levels, even

after standard error adjustment. The standard error modifications used only consider

first-order approximations to the sandwich variance and nuisance parameter distribu-

tions. The simulation results suggest second order effects of nuisance parameter estima-

tion may impact variance underestimation. The shortcomings of this approach in small

samples motivate investigation into the use of augmented estimators with permutation-

based inference.

We implemented augmentation using separate models for treatment and control,

with ML and OLS for binary outcomes, and OLS for continuous outcomes. Asymptot-

ically, treatment-specific OLS including an intercept term is guaranteed to be at least as

efficient as the unadjusted estimator {Leon et al. (2003); Tsiatis et al. (2008)}. As discussed

by Zhang and Gilbert, data splitting can be inefficient in finite samples compared to fit-

ting a common model for E(Y|X, A). For studies involving relatively few randomized

units, fitting a common conditional model may better utilize covariate information. The

effect of data splitting in finite sample inference has not yet been examined in practice. To

guarantee efficiency gain over unadjusted methods when fitting a common model, van

der Laan’s empirical efficiency maximization approach {Rubin and van der Laan (2008)}

may be used. This method estimates nuisance parameters by empirically minimizing the

asymptotic variance of a scalar targeted parameter. It results in fitting adjustment models

with a weighted least squares procedure, in which weights depend on treatment proba-

bilities.
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Although the Simple Augmented GEE improves estimation in large samples, it is

not the semiparametric efficient estimator for our restricted mean model for multivariate

outcome data, even under correct specification of E(Y|A,X). Nonetheless, the Simple

Augmented GEE builds upon Standard GEE in an intuitive way and provides insight

into how augmentation may be used with multivariate data to improve efficiency. De-

velopment of a locally semiparametric efficient estimator for restricted mean models for

multivariate data and an understanding of its behavior remain important research ques-

tions. A locally efficient estimator is an estimator that remains consistent and asymp-

totically normal under the restricted mean model, and that achieves the semiparametric

efficiency bound for the model at the submodel where nuisance parameters are correctly

specified. When model misspecification of nuisance parameters is present, it is not clear

whether the locally efficient estimator will still improve efficiency compared to standard

techniques. Additional modification of the locally efficient estimator is needed to ensure

improvement relative to Standard GEE. Further research is warranted in this area.
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2.1 Introduction

Semiparametric estimators are appealing for their robustness to distributional as-

sumptions and model misspecification. In the analysis of randomized trials, semipara-

metric theory has been used to develop estimators of treatment effects that improve effi-

ciency of inferences by incorporating baseline covariates, where ’baseline’ describes data

measured prior to randomization. In this paper, we present a semiparametric locally ef-

ficient estimator to improve efficiency of inferences in randomized trials with correlated

outcomes when baseline covariates are available. We begin with a review of current esti-

mators for multivariate outcomes and then introduce our locally efficient estimator.

Cluster randomized and longitudinal trials, which are widespread in medical re-

search, are two examples of randomized studies that have correlated outcomes. The out-

come for the ith independent randomized unit, i = 1, ...,m, in such studies is denoted by

the ni-dimensional response vector Yi = (Yi1, Yi2, ..., Yini
)T, which may represent longitu-

dinal measurements taken on the same individual or a set of responses from individuals

within a common cluster such as a family, hospital, or class. Considering the substantial

costs incurred by randomizing groups or following subjects over time, it is of interest to

determine how to most efficiently estimate treatment effects using all available data.

Generally, i.i.d. data Oi = (Yi, Ai,Xi) are observed, where Ai denotes a scalar

treatment assignment for 1 of K possible treatments, and Xi is a matrix of baseline co-

variates. Throughout we allow ni to be random but assume it is ignorable. Longitudinal

data also consist of a time variable ti = (ti1, ti2, ..., tini
)T denoting time points at which out-

comes are measured. As in the case of unit size ni, we allow ti to be random but assume it

is ignorable. When repeated measures are taken on the same subject, baseline covariates

are measured at tij = 0; thus Xij = Xi for all j = 1, 2, ..., ni, resulting in a single level of

baseline covariate information. Clustered data, however, may include pre-treatment co-

variates at the level of the group or the individual, creating two layers of auxiliary data.

In the longitudinal context, we refer to the vector Yi as the subject, or independent unit
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and Yij as observation- or measurement-level data. For clustered data, we refer to Yi as

cluster-level and Yij as individual-level.

Classical approaches to estimation of marginal effects often involve specifying a

restricted mean model for expected outcomes given treatment assignment, and there-

fore only use data on treatment and outcome in estimation. Specifically, in longitudinal

studies, the marginal effect of treatment over time may be measured by assuming the

restricted mean model

E(Yij|Ai, tij) = g{β0 + βAAi + βT
t f1(tij) + βT

A,tAif1(tij)}, (2.1)

where f1(tij) is a choice of function of ti. The main effect βA, which measures imbalance

in E(Yij|Ai, tij) at baseline, is expected to be zero when randomization successfully bal-

ances covariate profiles across treatment arms. The post-baseline effect of treatment is

measured by βA,t. Parameters βt and βA,t may be multivariate, as the effect of time on

expected outcomes may be of some polynomial form. Similarly, for clustered data, the

semiparametric model

E(Yij|Ai) = g(β0 + β1Ai) (2.2)

may be assumed, with treatment effects determined by inference on β1.

Semiparametric estimates of treatment effects may be obtained by solving general-

ized estimating equations (GEE), as introduced by Liang and Zeger (1986). Given model

(2.1) and data Wi = (Yi, Ai), the p-dimensional coefficient vector β = (β0, β1, ..., βp) may

be estimated by solving the GEE

m∑
i=1

ψ(Wi;h, β) =
m∑
i=1

h(Ai, ti){Yi − g(Ai, ti; β)} = 0, (2.3)

where the index or weight h(Ai, ti) is a p × ni function of a random treatment variable

Ai and time ti, and g(Ai, ti; β) = {g(Ai, t0; β), g(Ai, t1; β), ..., g(Ai, tni
; β)}T. We use bold

g(Ai, ti; β) to denote the vector-valued mean function and g(Ai, tij; β) to represent its

scalar components. In semiparametric theory, the set {ψ(h;Wi) : h}, indexed by h, is de-

rived as the orthogonal complement of the nuisance tangent space of model (2.1), Λ⊥nuis,
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where Λnuis is defined as the closure of the linear span of all nuisance scores correspond-

ing to smooth parametric submodels {Bickel et al. (1993)}. Here a nuisance parameter t

under a smooth parametric submodel Ft(O) satisfies ∂β(Ft)
∂t

= 0, where β(Ft) is the param-

eter of interest under Ft, and F0 = F, the data generating mechanism. The orthogonal

complement, Λ⊥nuis, contains the set of all estimating functions of β {Bickel et al. (1993);

van der Vaart (1998)}. When no baseline covariates are observed, Chamberlain (1986)

shows that the efficient score of β, is obtained by setting h(Ai, ti) = DT
i V−1i , where Vi is

the ni × ni variance-covariance matrix of Yi, and Di = ∂g(Ai,ti;β)
∂β

.

Considering data Oi, which contain covariates Xi, recent developments have re-

sulted in a class of estimators that improve efficiency by augmenting standard estimating

equations. When baseline covariates are predictive of the outcome these estimators re-

duce variability in estimated treatment effects, irrespective of the outcome distribution.

Augmented estimators are constructed by starting with a standard estimating function

and subtracting the orthogonal projection of the standard estimating function onto the

span of the scores of the treatment mechanism {Robins et al. (1994), Robins (1999)}. For

correlated outcomes, Λ⊥nuis = {ψ(Oi, h, γ, β) : h, γ}, and augmented GEE are

m∑
i=1

ψi(Oi; β, h, γ) =
m∑
i=1


Standard GEE︷ ︸︸ ︷

h(Ai, t){Yi − g(Ai, ti; β)}−

arbitrary score of [A|X]︷ ︸︸ ︷
K−1∑
k=0

{I(Ai = k)− πk}γk(Xi)

 = 0,

(2.4)

where for K-level treatment Ai, P (Ai = k) = πk. Fixing h(Ai, ti), the most efficient esti-

mating function sets γk(Xi) = γkopt(Xi) = h(k, t){E(Y |Ai = k,Xi, t) − g(k, t; β)} {Robins

et al. (1994), Robins (2000); van der Laan and Robins (2003); Zhang et al. (2008)}. The

augmentation therefore involves estimation of the conditional mean outcome regression

model E(Yi|Xi, Ai). Recalling longitudinal marginal model (2.1), if outcomes Yij are re-

stricted to post-baseline measurements, the baseline measurement Yi0 may be utilized as

a baseline covariate and included in Xi. The interpretation of model parameters then

changes, with the effect of treatment over time evaluated through βA and βA,t. In contrast

to the previous interpretation, βA now measures a constant shift in g−1{E(Yij|Aij, tij)}
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due to treatment, while nonzero βA,t indicates a change in the impact of treatment on

g−1{E(Yij|Aij, tij)} over time.

Given a semiparametric model, a locally efficient estimator is defined as an estima-

tor that achieves the semiparametric efficiency bound at a given submodel for the data-

generating law, but remains consistent outside of the data-generating submodel {Bickel

et al. (1993)}. Locally efficient estimators of parameters in restricted mean models of

marginal treatment effects have been implemented for univariate data in the presence

of baseline covariates by Robins (2000); Bang and Robins (2005); van der Laan and Ru-

bin (2006); Tsiatis et al. (2008); Zhang et al. (2008); Moore and van der Laan (2009b), and

Moore and van der Laan (2009a). For a univariate outcome, the model gs(Ai; β) contain-

ing a unique parameter for each treatment level is saturated. Under a saturated model,

the choice of the index function h(·) has no impact on the resulting asymptotic variance

and is therefore not considered for deriving efficient estimators. When Yi is multivariate,

gs(Ai; β) is not saturated, as the saturated model would allow different mean models for

each element of the vector. As a result, Λ⊥nuis provides a larger set of estimating functions

indexed by h(·), where the choice of h(·) impacts efficiency. One particular index func-

tion, referred to as the optimal index, defines the efficient score and corresponding locally

efficient estimator.

Robins (1999) established general theory for deriving locally efficient estimators

of treatment effects in marginal structural models (MSMs) of time-dependent exposures,

including the case of multivariate outcomes. These estimators, however, were not imple-

mented nor evaluated in practice. Models (2.1) and (2.2) may be viewed as examples of

MSMs for a point exposure; the Robins (1999) theory therefore equally applies. The locally

efficient augmented estimator does not generally have the same optimal index h(Ai, ti) as

the standard, unaugmented estimator. When incorporating auxiliary covariates in the es-

timation of marginal treatment effects via augmented GEE, the choice h(Ai, ti) = DT
i V−1i ,

while resulting in a consistent estimator, is therefore no longer optimal. The semipara-

metric efficient estimator is determined by optimizing over all p × ni index functions
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h(Ai, ti) {Robins et al. (1994); Robins (1999); van der Laan and Robins (2003)}. Although

semiparametric efficient estimators may be obtained theoretically, they are often compu-

tationally intensive to calculate. Consequently, inefficient estimators are typically used.

The suboptimal estimator based on augmenting GEE with the standard index function

was shown to improve efficiency by Stephens et al. (2012a). In subsequent text, we re-

fer to unaugmented GEE (2.3) with the index function h(Ai, ti) = DT
i V−1i as Standard

GEE, and the suboptimal estimator obtained by augmenting Standard GEE is referred

to as Simple Augmented GEE. Here we further improve on Simple Augmented GEE by

deriving the corresponding semiparametric locally efficient estimator.

The following section presents the locally efficient estimator of marginal treatment

effects in randomized trials with correlated outcomes when auxiliary data are available.

Our estimator builds upon Standard GEE using principles from semiparametric theory.

We construct these estimators by deriving a closed form expression of the efficient score

for a variety of restricted mean models for the marginal treatment effect. We also discuss

an implementation procedure detailing how to appropriately estimate each component

of the efficient score. In Sections 2.3 and 2.4 we compare the derived semiparametric

locally efficient estimator to standard and Simple Augmented GEE through simulations

and application to the AIDS Clinical Trial Group study 398, a randomized longitudinal

HIV intervention trial.

2.2 Methods

2.2.1 The Efficient Score

We consider the setting of longitudinal data and note that results follow analo-

gously for clustered data by omitting ti. Before presenting the main result, some ad-

ditional notation is required. Conditioning on ti, the matrix h(Ai, ti) takes K possible

values, which may be denoted by K p × ni constant matrices h0(ti), h1(ti), ..., hK−1(ti).

For binary treatment, we have h1 = h1(ti) and h0 = h0(ti), which denote the index func-
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tions under treatment (A = 1) and control (A = 0), respectively. Let ∆ki(X) = E(Yi|Ai =

k,Xi, ti) − g(k, ti; β), the ni-dimensional vector of the difference in the conditional and

marginal mean outcomes given time. Using this construction, let h = [h0,h1, ...,hK−1],

the complete index matrix of dimension p × Kni. Using a result from Newey and Mc-

Fadden (1994), we show in Appendix D that the optimal index hopt(A, t) and resulting

efficient score may be determined by solving a generalized information equality. Here we

present our main result:

Proposition 1. The efficient score for model (2.1) given data O = (Y, A,X) is

hopt =

[
π0
∂g(0, t; β)

∂βT
, π1

∂g(1, t; β)

∂βT
, ..., πK−1

∂g(K − 1, t; β)

∂βT

]T
C−, (2.5)

C = C1 −C2, where

C1 =


π0V (Y|A = 0) 0 · · · 0

0 π1V (Y|A = 1) · · · 0
...

... . . . ...
0 0 · · · πK−1V (Y|A = K − 1)

 ,
and

C2 =


π0(1− π0)EX

[
∆0(X)∆T

0 (X)
]
· · · −π0πK−1EX

[
∆0(X)∆T

K−1(X)
]

−π1π0EX
[
∆1(X)∆T

0 (X)
] . . . −π1πK−1EX

[
∆1(X)∆T

K−1(X)
]

... . . . ...
−πK−1π0EX

[
∆K−1(X)∆T

0 (X)
]
· · · πK−1(1− πK−1)EX

[
∆K−1(X)∆T

K−1(X)
]
 .

As shown above, C is of dimension Kni × Kni and may be decomposed into

the difference C = C1 − C2, where C1 is a block diagonal matrix with diago-

nal components πkV (Y |A = k, t). The block diagonal of C2 contains the matrices

πk(1 − πk)EX
[
∆k(X)∆T

k (X)
]
, and off-diagonal block components are determined by

−πkπk′EX
[
∆k(X)∆T

k′(X)
]
.

When treatment is binary, C simplifies to

C =

[
π1V (Y |A = 1, t)− π1π0ζ1,1 π1π0ζ

1,0

π1π0ζ
0,1 π0V (Y |A = 0, t)− π1π0ζ0,0

]
, (2.6)
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where π0 = 1− π1, and ζa,a
′
= EX

[
∆a(X)∆T

a′(X)
]
. Inverting C analytically,

hopt(A) =

{
DT(A)− π1−A

1 (1− π1)ADT(1− A)×

[
V (1− A)− πA1 (1− π1)1−Aζ1−A,1−A

]T−1

ζ1−A,A

}
×{

V (A)− π1−A
1 (1− π1)A×(

ζA,A + ζA,1−A
[

V (1− A)

πA1 (1− π1)1−A
− ζ1−A,1−A

]−1
ζA,1−A

T

)}−
. (2.7)

Expressing the optimal index as in (2.7), it is clear that hopt incorporates infor-

mation on the treatment assignment and auxiliary covariates X through ζa,a
′ , while the

standard index hstd = DT(A)V (A)−1, does not. The matrix ζa,a′ is by definition the covari-

ance of E(Yi|Xi, a, ti) and E(Yi|Xi, a
′, ti), the expected outcomes given baseline covari-

ates and treatment assignment to a and a′, respectively. The optimal index hopt therefore

boosts efficiency by incorporating information on the covariance in expected outcomes

when weighting the residuals Yi − g(Ai; β) in the marginal model estimating equations.

To implement Locally Efficient GEE, estimates of V (Yi|Ai, ti), E[Yi|Xi, Ai, ti], and ζa,a′ for

all unique pairs of treatment levels {a, a′}, including a = a′, are needed. The next section

details an estimation procedure for each component of hopt when Yi is continuous and

g(·) is the identity link, or Yi is binary and g(·) is the inverse logit link.

2.2.2 Estimation of hopt

The semiparametric locally efficient estimator requires estimates ofE[Yi|Xi, Ai, ti],

ζa,a
′
= Cov{E(Yi|Xi, Ai = a, ti), E(Yi|Xi, Ai = a′, ti)|Ai, ti}, and V (Yi|Ai, ti). These quan-

tities may be linked by the law of total variance, V (Yi|Ai, ti) = E[V (Yi|Xi, Ai, ti)|Ai, ti]+

V (E[Yi|Xi, Ai, ti]|Ai, ti). For the ith independent unit, the ni-dimensional vector

E[Yi|Xi, Ai, ti] determines the ni × ni matrix V (E[Yi|Xi, Ai, ti]|Ai, ti) and ultimately im-

pacts the form of the marginal variance matrix V (Yi|Ai, ti). Observing the relation-

ship among each of these parameters provides guidance for model selection. For ex-
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ample, the working marginal covariance selected must be compatible with the work-

ing model chosen for E[Yi|Xi, Ai, ti]. More generally, the models for each component

of hopt must be specified so that the model selected for one component does not pre-

clude the model chosen for another. One approach that ensures compatibility is to first

estimate E(Yij|Xij, Ai, tij) through an appropriate regression technique to provide an es-

timate Ê(Yi|Xi, Ai = a, ti). The conditional mean outcome may be modeled by

E[Yij|Xij, Ai, tij] = g{η0+ηAAi+η
T
t f(tij)+ηTA,tAif(tij)+ηTXXij+η

T
X,tXijf(tij)+ηTA,XAiXij},

(2.8)

where Xij respresents the collection of covariates for the jth measurement in the ith

unit. Second, the covariance of the conditional expectation is estimated by noting

how the model of E(Yij|Xij, Ai = a, ti) impacts the form of the matrix ζa,a
′ . Fi-

nally, V (Yi|Ai, ti) is estimated incorporating the estimates of E[V (Yi|Xi, Ai, ti)|Ai, ti] and

V (E[Yi|Xi, Ai, ti]|Ai, ti).

General estimation of ζa,a′ and V (Y|A)

Generally, ζa,a′ may be estimated in a similar fashion to estimates of the correlation

parameters in Standard GEE. Let ζa,a′ = R1/2SR1/2, where R is a ni × ni diagonal matrix

with the jth diagonal componentRj,j = V (E[Yij|Xij, Ai, tij]|Ai, tij) = νa,a
′

j , and S is a ni×ni
correlation matrix with Sj,j = 1 and Sj,j′ = f(τa,a

′
). Parameter τa,a′ , which may be mul-

tivariate, and νa,a
′

= (νa,a
′

1 , νa,a
′

2 , ..., νa,a
′

ni
) characterize the covariance in conditional mean

outcomes under treatments a and a′. Letting ∆̂aij = Ê(Yij|Xij, Ai = a, tij) − g(a, tij; β̂init),

where β̂init is an initial estimate of β, νa,a
′

j may be estimated by

ν̂a,a
′

j =
1

m− pη

m∑
i=1

∆̂aij∆̂a′ij
, (2.9)

where pη is the dimension of the outcome regression parameter η. The correlation param-

eter τa,a′ is then estimated by the moment equations

m∑
i=1

∑
j<j′

 ∆̂aij√
ν̂a,a

′

j

∆̂a′
ij′√
ν̂a,a

′

j′

− f(τa,a
′
)

 = 0. (2.10)

39



For a = a′, we obtain an estimate of ζa,a = V (E[Yi|Xi, Ai = a, ti]).

As an alternative approach, one may also derive a complex expression of ζa,a′ that

depends on η = (η0, ηA, η
T
t , η

T
A,t, η

T
X , η

T
X,t, η

T
A,X)T and the covariance in baseline covariates.

An empirical estimate of Cov(Xi) may then be substituted into this expression.

After estimating ζa,a, the conditional variance of Yi, V (Yi|Xi, Ai, ti), may be esti-

mated using the correlation parameters from GEE based on the conditional mean model

(2.8). Under homoscedasticity V (Yi|Xi, Ai, ti) = λ for all i. The marginal variance

V (Yi|Ai, ti) is then estimated by V̂ (Yi|Ai, ti) = ζ̂a,a + λ̂, where ζ̂a,a and λ̂ are estimates

of ζa,a and λ, respectively.

Practical estimation of ζa,a′

For clustered data and longitudinal data with ηX,t = 0 in (2.8), calculating ζa,a′ is

straightforward. When data are clustered, ηt = ηA,t = ηX,t = 0, leaving E[Yij|Xij, Ai] =

g(η0 +ηAAi+ηTXXij +ηTA,XAiXij). In this setting, ζa,a
′

j,j′ , the j, j′ element of ζa,a′ , is calculated

as ζa,a
′

j,j′ = CovX{g(η0 + ηAa + ηTXXij + ηTA,XaXij), g(η0 + ηAa
′ + ηTXXij′ + ηTA,Xa

′Xij′)}. If

auxiliary covariates Xij, Xij′ are equally correlated among subjects within a cluster ζa,a
′

j,j′ =

ρa,a′ for all j, j′. This holds for all link functions g(·). For longitudinal data when ηX,t = 0

(i.e. the effects of baseline covariates on the conditional mean outcome do not vary over

time) ζa,a
′

j,j′ = CovX{g(η0 + ηAa + ηTt f(tij) + ηTA,taf(tij) + ηTXXi + ηTA,XaXi), g(η0 + ηAa
′ +

ηTt tij′ + ηTA,ta
′f(tij′) + ηTXXi + ηTA,Xa

′Xi}. If g(·) is the identity link, this reduces to ζa,a
′

j,j′ =

Cov(ηTXXi + ηTA,XaXi, η
T
XXi + ηTA,Xa

′Xi) = ρa,a′ for all j, j′, since Xij = Xi for all j.

Practical estimation of V (Yi|Ai = a)

In some special cases where summing E[V (Yi|Xi, Ai, ti)|Ai, ti] and

V (E[Yi|Xi, Ai, ti]|Ai, ti) results in a marginal covariance matrix V (Yi|Ai, ti) with a

standard form, e.g., exchangeable, V (Yi|Ai, ti) may be estimated directly while maintain-

ing compatibility with E[Yi|Xi, Ai, ti]. As stated above, if individual-level covariates Xij
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are equally correlated among subjects within the ith cluster, the model E[Yij|Xij, Ai = a]

imposes compound symmetry on ζa,a′ , where diagonal components depend on V ar(Xij)

and off-diagonal components are determined by Cov(Xij, Xij′). If the conditional vari-

ance V (Yi|Xi, Ai) is also exchangeable, V (Yi|A, ti) will have an exchangeable structure.

The optimal index hopt may then be calculated by estimating V (Yi|Ai, ti) directly as in

Standard or Simple Augmented GEE and using the above procedure to estimate ζa,a′ .

A consistent estimator of the asymptotic variance of β̂opt, the solution to the aug-

mented estimating equations (2.4) evaluated under (2.5), may be calculated using the

sandwich variance formula of Huber (1964).

2.3 Simulation Study

Semiparametric Locally Efficient GEE were compared to Standard and Simple

Augmented GEE through a simulation study. Simulations were completed for clustered

data with continuous and binary outcomes and longitudinal data with continuous out-

comes. Results are based on 1,000 Monte Carlo datasets.

2.3.1 Continuous Outcomes

Clustered Data

Data for m = 500 clusters were generated, with ni=2,4,6,8,10,12 with equal prob-

ability for the first set of simulations and ni=10,20,30,40,50 in the second set. Auxiliary

covariates Xij1, Xij2, and Xij3 were each generated from a multivariate normal distribu-

tion with V ar(Xij1)=2, V ar(Xij2)=6, and V ar(Xij3)=5. Correlation was induced among

individual-level covariates within the same cluster by setting Cov(Xij1, Xij′1) = ςX1 ,

Cov(Xij2, Xij′2) = ςX2 , and Cov(Xij3, Xij′3)=1. Covariance terms ςX1 and ςX2 were varied

from 0.5 to 2 and 1.5 to 6, respectively, to evaluate the effect of auxiliary covariate corre-

lation on the performance of Locally Efficient Augmented GEE. At ςX1=0.5 and ςX2=1.5

41



covariates were weakly correlated among individuals in the same cluster, while at ςX1=5

and ςX2,4=6, covariates were perfectly correlated, thereby becoming cluster-level. The ex-

act values considered for ςX1 and ςX2 were (0.5, 1, 1.5, 2) and (1.5, 3, 4.5, 6), for simulation

sets 1-4 at each set of cluster sizes. Within the jth individual in the ith cluster, auxiliary

covariates were independent. The treatment variable Ai was drawn from the Bernoulli

distribution with p=1/2. Clustered responses were generated from the following model,

with individual-level error terms εij ∼ N(0, 40) and cluster-level effects bi ∼ N(0, σ2
b ):

Yij|Ai, Xij, bi = 1.0 + 1.1X2
ij1 + 0.9Xij2 + 0.5Ai + bi + εij . The proportion of variability in Yij

explained by auxiliary covariates Xij was held fixed at roughly 25%. Simulations were

completed with σ2
b = 0 and σ2

b = 6, representing the case in which covariates account

for all between-cluster heterogeneity and the alternative of some intracluster correlation

caused by an unmeasured variable, respectively.

For each dataset, the marginal effect of treatment was estimated by fitting model

(2.2) through Standard, Simple Augmented, and Locally Efficient Augmented GEE. The

impact of misspecification on the locally efficient estimator and its efficiency relative to

Simple Augmented and Standard GEE was evaluated by fitting various models to esti-

mate E(Y|X, A). The correct model for E(Y|X, A), denoted by ’C’ in tables and figures,

was E(Yij|Xij, Ai) = η0 + η1X
2
ij1 + η2Xij2 + η3Ai, and two incorrect models were Wrong

1, ’W1’=E(Yij|Xij, Ai) = η0 + η1Xij1 + η2Xij2 + η3Ai and Wrong 2, ’W2’=E(Yij|Xij, Ai) =

η0 + η1X
2
ij1 + η2Xij2 + η3Xij3 + η4Ai. ’Wrong 1’ evaluated the impact of misspecifying

the functional form of Xij1, while ’Wrong 2’ examined the effect of adding noise to the

outcome regression model. All working covariance matrices were fit under exchangeable

structure.

Large cluster efficiency comparisons relative to Standard GEE are summarized in

Figure 2.1, while the Monte Carlo Relative Efficiency (MCRE) of the locally efficient es-

timator to Simple Augmented GEE may be found in Tables 2.1(a)-2.1(b). Small cluster

results are presented in Figure 2.2. Across all levels of correlation, augmented estimators

resulted in increased efficiency compared to the unaugmented estimator (MCRE 1.25-
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Table 2.1: Monte Carlo Relative Efficiency of Locally Efficient Augmented GEE to Sub-
optimal Augmented GEE: Continuous clustered outcomes. Working Marginal Covari-
ance (WMCov): Exchangeable (Exch). Outcome Regression (OR): Correct (C), Wrong
1(W1), Wrong 2 (W2). First entry σ2

b = 0, second entry σ2
b = 6. All estimators use ex-

changable working covariance for V (Y |A) and V {E(Y |X,A)}.

(a) Cluster Size = 2,4,6,8,10,12

Correlation among Xij

WMCov/OR 0.25 0.50 0.75 1.00
Exch/C 1.0115 1.0450 1.0907 1.1464

1.0036 0.9991 1.0010 1.0085
Exch/W1 1.0062 1.0089 1.0064 1.0038

1.0006 1.0008 1.0018 1.0019
Exch/W2 1.0114 1.0448 1.0905 1.1462

1.0036 0.9990 1.0009 1.0083
(b) Cluster Size = 10,20,30,40,50

Correlation among Xij

Cov/OR 0.25 0.50 0.75 1.00
Exch C 1.0356 1.1096 1.1563 1.2259

1.0005 0.9999 1.0002 1.0011
Exch W1 1.0126 1.0081 1.0050 1.0032

1.0000 1.0000 1.0001 1.0003
Exch W2 1.0352 1.1090 1.1556 1.2247

1.0006 0.9998 1.0001 1.0009

11.6). For low correlation among Xij simple augmented and locally efficient estimators

performed similarly. When correlation was increased among Xij within a cluster, Locally

Efficient GEE gained in efficiency over Simple Augmented GEE (MCRE Locally Efficient

to Simple Augmented GEE 1.01-1.22). Increased covariance among auxiliary covariates

also resulted in greater efficiency gains for any augmented GEE relative to the standard

estimator. Trends were more pronounced for large average cluster size (average ni=30 vs.

average ni=7).

43



Figure 2.1: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE: Continuous clustered outcomes, large clusters. Estima-
tors corresponding to each curve are denoted by ’Estimator-Outcome Regression’ using
the abbreviations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-
Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working covariance
for V (Y |A) and V {E(Y |X,A)}. The order of curves in the legend follows the order of
curves on the figure, with sets of superimposed curves denoted by ’()’, ’[]’, or’{}’.
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Figure 2.1(Continued)

(a) ni=(10,20,30,40,50), σ2
b = 0

(b) ni=(10,20,30,40,50), σ2
b = 6
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Figure 2.2: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE: Continuous clustered outcomes, small clusters. Estima-
tors corresponding to each curve are denoted by ’Estimator-Outcome Regression’ using
the abbreviations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-
Correct, W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working covariance
for V (Y |A) and V {E(Y |X,A)}. The order of curves in the legend follows the order of
curves on the figure, with sets of superimposed curves denoted by ’()’ and ’[]’.
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Figure 2.2(Continued)

(a) ni=(2,4,6,8,10,12), σ2
b = 0

(b) ni=(2,4,6,8,10,12), σ2
b = 6
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Longitudinal Responses

For each Monte Carlo dataset, m=500 longitudinal response vectors Yi were gener-

ated from the model Yij = 1.5 + 1.1X2
i1 + 0.9Xi2 + 1.0tij + 1.0Ai + εij , where εij ∼ N(0, σ2

ε),

and Cov(εij, εij′) had an AR-1 structure with correlation parameter α = 0.1, 0.3, or 0.5

for different sets of simulations. Covariates Xi1 and Xi2 were normally distributed with

mean 0 and variance σ2
X1 and σ2

X2, respectively. Variance parameters σ2
ε , σ2

X1, and σ2
X2

were varied so that baseline covariates accounted for 10-60% of the variability in Y|A in

increments of 10%. Subjects were randomly assigned to treatment (Ai=1) with probability

1/2. For each subject ti = (ti1 = 1, ti2 = 2, ..., tini
= ni), where ni varied from 1 to 8, as

might be the case in a longitudinal study with staggered entry.

Standard GEE, Simple Augmented GEE, and Locally Efficient Augmented GEE

were applied to each Monte Carlo dataset to estimate marginal treatment effects. All

GEE were fit based on the marginal mean model E(Yij|Ai) = β0 + β1Ai + β2tij with

inferences on the treatment effect completed through β1. Standard and Simple Aug-

mented GEE were applied to each Monte Carlo dataset with AR-1, exchangeable, and

true working covariance structures, with the true structure under the marginal model be-

ing a summation of AR-1 and exchangeable matrices as described in section 2.2. Locally

efficient augmented GEE were fit under the true covariance structure and a misspecified

marginal AR-1 working covariance. Baseline covariates were incorporated fitting several

outcome regression models. We use ’C’ to denote the correct model E(Yij|Xij, Ai, tij) =

η0 + η1Ai + η2tij + η3X
2
i1 + η4Xi2, which corresponds to the true data generating mecha-

nism; ’W1’ indicates the modelE(Yij|Xi, Ai, tij) = η0+η1Ai+η2tij+η3Xi1+η4Xi2, omitting

the exponent on Xi1; and ’W2’ is the model that includes a noisy covariate Xi3, such that

E(Yij|Xi, Ai, tij) = η0 + η1Ai + η2tij + η3X
2
i1 + η4Xi2 + η5Xi3.

Efficiency comparisons are summarized in Figure 2.3 and Table 2.2. The differ-

ence in the performance of locally efficient versus Simple Augmented GEE increased with

the percent variability explained by Xi (MCRE of Locally Efficient to Simple Augmented

GEE 1.0-1.15). Similarly, efficiency gains from augmenting increased with variability in
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Table 2.2: Monte Carlo Relative Efficiency of Locally Efficient Augmented GEE to Sub-
optimal Augmented GEE: Continuous longitudinal outcomes. Working Marginal Co-
variance (WMCov): 1) True, exchangeable for V (E(Y |X,A)|A) and AR1 for V (Y |X,A) 2)
AR1 for V(Y—A). Outcome Regression (OR): Correct (C), Wrong 1(W1), Wrong 2 (W2).
First entry α = 0.1, second entry α = 0.3, third entry α = 0.5.

Correlation between Y and X
WMCov/OR 10 20 30 40 50 60

True/C 1.0281 1.0700 1.1168 1.1662 1.2175 1.2702
1.0166 1.0425 1.0728 1.1055 1.1398 1.1752
1.0090 1.0234 1.0409 1.0603 1.0811 1.1028

True/W1 0.9995 0.9929 0.9851 0.9783 0.9735 0.9717
1.0006 0.9974 0.9930 0.9887 0.9854 0.9837
1.0009 0.9999 0.9982 0.9961 0.9943 0.9931

True/W2 1.0284 1.0703 1.1171 1.1664 1.2176 1.2701
1.0168 1.0428 1.0731 1.1058 1.1401 1.1754
1.0092 1.0237 1.0412 1.0606 1.0814 1.1031

AR1/W1 0.9916 0.9645 0.9300 0.8902 0.8832 0.8887
0.9972 0.9858 0.9707 0.9567 0.9481 0.9481
0.9996 0.9958 0.9903 0.9849 0.9811 0.9802

Xi (MCRE of Augmented GEE to Standard GEE 1.36-5.28). Among the simple augmented

estimators, the estimator with the incorrect marginal AR-1 working covariance resulted

in the β1 estimate with the lowest variability. This illustrates an important distinction

between locally efficient and suboptimal estimating functions. Among estimators using

a suboptimal index, misspecified models for parameters in the index may result in more

efficient inferences than correctly specified models. For the locally efficient estimator,

asymptotic efficiency is achieved only in the absence of model misspecification for all pa-

rameters in the index function. It is also worthwhile to note that the simple augmented

estimator with the marginal AR-1 covariance was slightly more efficient than the locally

efficient GEE under the same misspecified marginal working covariance. This demon-

strates that the locally efficent efficient GEE is a bit more sensitive to working marginal

covariance misspecification than Simple Augmented GEE.
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Figure 2.3: MCRE of Locally Efficient and Simple Augmented GEE Relative to
Standard (Unaugmented) GEE: Continuous longitudinal outcomes. Estimators cor-
responding to each curve are denoted by ’Estimator (Marginal Working Covariance)
Outcome Regression’ using the abbreviations: Loc Eff-Locally Efficient, Simp-Simple
Augmented, Std-Standard; AR1-Autoregressive(1) V (Y |A), True-Exchangeable/AR1 for
V {E(Y |X,A)} and V (Y |X,A), respectively; C-Correct, W1-Wrong 1, W2-Wrong 2;α=0.3.
The order of curves in the legend follows the order of curves on the figure, with the set of
superimposed curves denoted by ’[]’ and ’{}’.
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Figure 2.3(Continued)

(a) α=0.1

(b) α=0.3

51



Figure 2.3(Continued)

(c) α=0.5

2.3.2 Clustered Binary Outcomes

As for continuous outcomes, data for m=500 clusters of variable size were gen-

erated with ni=2,4,6,8,10,12 for small cluster settings and ni=10,20,30,40,50 for the large

cluster scenario. The binary treatment variable Ai was simulated from the Bernoulli(1/2)

distribution. Individual-level covariates Xij1, Xij2, and Xij3 were each generated from

a multivariate normal distribution with µXijk
= 0, σ2

Xij1
= σ2

Xij3
=2, σ2

Xij2
= 5, and

Cov(Xijk, Xij′k) = ςXk
, inducing marginal correlation among individuals within the same

cluster. Covariance parameters ςXk
were varied to evaluate the impact of covariance

in auxiliary covariates on the performance of augmented estimators, with ςX1 = ςX3 =

0.5, 1.0, 1.5, 2.0 and ςX3 = 1.25, 2.5, 3.75, 5.0 for different sets of simulations. For low

levels of ςXk
, covariates were weakly correlated, while for ςXk

= σ2
Xijk

, covariates were

cluster-level. Binary outcomes were simulated from the model logit[E(Yij|Xij, Ai, bi)] =

0.7Xij1
2 + 0.4Xij2 − 0.5Ai + bi, where bi was drawn from the bridge distribution for the

logit link {Wang and Louis (2003)} with scale parameter θ. Simulations were completed
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with two values of the bridge distribution scale parameter, θ = 1 and θ = 0.8, represent-

ing settings in which all sources of between-cluster heterogeneity are measured through

auxiliary covariates, or when unmeasured sources of between-cluster heterogeneity are

present. A total of 16 sets of simulations were done, varying cluster size, correlation in X,

and θ.

Standard, Simple Augmented, and Locally Efficient Augmented GEE were applied

to each dataset and compared for efficiency. For each estimator, the model of interest

was model (2.2) with g(·) the inverse logit link and β1 measuring the marginal effect of

treatment. Among augmented estimators, four outcome regression models were con-

sidered: 1) ’C’-Correct, E(Yij|Xij, Ai) = g(η0 + η1X
2
ij1 + η2Xij2 + η3Ai); 2) ’W1’-Wrong

1, E(Yij|Xij, Ai) = g(η0 + η1Xij1 + η2Xij2 + η3Ai); 3) ’W2’-Wrong 2, E(Yij|Xij, Ai) =

g(η0 + η1X
2
ij1 + η2Xij2 + η3Xij3 + η4Ai); and 4)’W1 OLS’-Wrong 1 OLS, E(Yij|Xij, Ai) =

η0 + η1Xij1 + η2Xij2 + η3Xij3 + η4Ai. With the exception of model 4, which was fit through

ordinary least squares (OLS), all outcome regression models were fit by logistic regres-

sion. All estimators were fit with exchangeable working covariances.

Large cluster results are shown in Figure 2.4 and Table 2.3. Figure 2.5 contains

small cluster results. Conclusions are similar to those obtained for continuous outcomes.

Efficiency improvement with augmented estimators relative to Standard GEE increased

with correlation in auxiliary covariates (MCRE 1.10-10.54), as did the additional efficiency

gains for the locally efficient GEE over Simple Augmented GEE (MCRE 1.0-1.23). Simple

and locally efficient augmented estimators were equally efficient for θ = 0.8, but differ-

ences in efficiency favoring the optimal estimator were observed for θ = 1.
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Table 2.3: Monte Carlo Relative Efficiency of Locally Efficient Augmented GEE to Sub-
optimal Augmented GEE: Binary clustered outcomes. Working Marginal Covariance
(WMCov): Exch-Exchangeable. Outcome Regression (OR): Correct (C), Wrong 1 (W1),
Wrong 2 (W2), Wrong 1 Linear Model (W1-LM). First entry θ = 1, second entry θ = 0.8.
All estimators use exchangable working covariance for V (Y |A) and V {E(Y |X,A)}.

Correlation between Y and X
WMCov/OR 0.25 0.50 0.75 1.00

Exch/C 1.0624 1.1068 1.2113 1.2329
0.9996 1.0009 1.0025 1.0057

Exch/W1 1.0247 1.0179 1.0025 1.0015
1.0001 1.0003 1.0002 1.0001

Exch/W2 1.0630 1.1072 1.2080 1.2353
0.9995 1.0009 1.0024 1.0056

Exch/W1-LM 1.0238 1.0171 1.0016 1.0008
1.0001 1.0003 1.0001 1.0000
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Figure 2.4: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE: Binary clustered outcomes, large clusters. Estimators corre-
sponding to each curve are denoted by ’Estimator-Outcome Regression’ using the abbre-
viations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-Correct,
W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working covariance for
V (Y |A) and V {E(Y |X,A)}. The order of curves in the legend follows the order of curves
on the figure, with sets of superimposed curves denoted by ’()’and ’[]’.
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Figure 2.4(Continued)

(a) ni=(10,20,30,40,50), θ = 1

(b) ni=(10,20,30,40,50), θ = 0.8
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Figure 2.5: MCRE of Locally Efficient and Simple Augmented GEE Relative to Stan-
dard (Unaugmented) GEE: Binary clustered outcomes, small clusters. Estimators corre-
sponding to each curve are denoted by ’Estimator-Outcome Regression’ using the abbre-
viations: Loc Eff-Locally Efficient, Simp-Simple Augmented, Std-Standard; C-Correct,
W1-Wrong 1, W2-Wrong 2. All estimators use exchangable working covariance for
V (Y |A) and V {E(Y |X,A)}. The order of curves in the legend follows the order of curves
on the figure, with sets of superimposed curves denoted by ’()’.
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Figure 2.5(Continued)

(a) ni=(2,4,6,8,10,12), θ = 1

(b) ni=(2,4,6,8,10,12), θ = 0.8
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2.4 Application: AIDS Clinical Trial Group Study 398

The semiparametric locally efficient estimator of marginal treatment effects for cor-

related outcomes was applied to data from AIDS Clinical Trial Group Study 398 (ACTG

398) {Hammer et al. (2002)}. ACTG 398 was a multicenter, double-blind trial, in which

481 HIV-infected patients were randomized to one of four arms, A) saquinavir, B) indi-

navir, C) nelfinavir, or D) placebo based on their past protease inhibitor (PI) treatment.

Patients were only randomized to drugs to which they had no prior exposure. Random-

ized treatments were given to all participants in combination with antiretroviral therapy.

Subjects’ CD4 was measured at weeks 0 (baseline), 4, 8, and every 8 weeks thereafter until

48 weeks or dropout. GEE estimators were applied to compare the nelfinavir and placebo

arms among patients who were eligible for both according to the stratified randomization

scheme. Additional baseline covariates were age, sex, past PI use, past non-nucleoside

reverse transcriptase inhibitor (NNRTI) exposure, weight, Karnofsky score, intravenous

drug use, and race/ethnicity. Weeks 4-32 of followup were included for analysis, with

CD4 measurements at week 4 and beyond included as outcomes and week 0 CD4 in-

cluded as a baseline covariate. Data were approximately 90% complete through week

32. In evaluating the effect of treatment on CD4, the best fitting marginal model was

E(Yij|Ai) = β0 + β1Ai + β2tij , where tij indicates the week of the jth measurement on the

ith individual, and Ai was an indicator for the placebo arm. Since only follow-up mea-

surements were modeled as outcomes and no interaction was detected between treatment

and time, the effect of treatment was captured by β1.

Standard, Simple Augmented, and Locally Efficient Augmented GEE were applied

to estimate β1. Several candidate outcome regression models for augmented GEE were

identified through model selection procedures. Cross validation was used to select the

final model, E(Yij|Ai, Xi, ti) = η0 + η1Ai + η2tij + η3CD40i + η4Sexi, where CD40 is base-

line CD4. The QIC goodness-of-fit statistic {Pan and Wall (2002)} was compared among

GEE fit to unaugmented marginal and conditional models to provide insight into the best

fitting working covariance structures. To enforce compatibility of the marginal variance,
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conditional variance, and outcome regression in fitting Locally Efficient Augmented GEE,

the additive estimate of the marginal covariance was used. The working conditional vari-

ance was chosen by selecting the covariance structure resulting in the lowest QIC when

fitting GEE on the conditional mean model. Simple augmented GEE were computed un-

der all possible working marginal covariance structures, including the additive estimator

motivated by the locally efficient GEE.

Table 2.4: QIC for selecting working covariance structures. Conditional model:
E(CD4ij|Trti,Weekij,Xi) = η0 + η1Ai + η2Weekij + η3Sexi + η4CD40i . Marginal model:
E(CD4ij|Trti,Weekij) = η0 + η1Trti + η2Weekij

Conditional Model
Working Covariance Structure QIC
Independence 1053.44
Exchangeable 1051.9
AR1 1052.29
Unstructured 1049.72

Marginal Model
Working Covariance Structure QIC
Independence 1047.59
Exchangeable 1047.1
AR1 1046.56
Unstructured 1049.35

Regarding covariance selection, unstructured working covariance resulted in the

lowest QIC for the conditional model (Table 2.4), suggesting the locally efficient estima-

tor should be fit assuming an unstructured form of V (Yi|Xi, Ai). Results of the primary

analysis are shown in Table 2.5. Several other covariance structures were also imple-

mented for the locally efficient estimator to explore variance misspecification. Among

simple augmented estimators, the additive marginal covariance resulted in lower vari-

ability than estimators using standard marginal covariance structures. Among Standard

GEE with different working covariance models, the estimated difference in average CD4

for the placebo arm versus nelfinavir ranged from 9.9 to 20.17. The direction of the effect

was reversed for estimators that incorporated baseline covariates, with average CD4 on

the placebo arm 0.07 to 8.11 units lower than the nelfinavir arm. Treatment did not have

a significant impact on CD4 at the 0.05 level for any of the estimators considered.

60



Estimators that incorporated baseline covariates greatly increased efficiency, with

SE(β̂1) ≈ 20 for Standard GEE and SE(β̂1) ≈ 9 among augmented estimators (Relative

Efficiency Augmented to Standard GEE ≈ 5.0). Simple augmented and locally efficient

GEE resulted in similar efficiency. This may be due to the difficulty of correctly specifying

all components of hopt, or because subjects had the same number of follow-up visits.

As a benchmark for efficiency, we also fit unaugmented GEE assuming the conditional

mean model E(Yij|Ai, Xi, ti) = β0 + β1Ai + β2tij + β3CD40i + β4Sexi with an unstructured

working covariance. This estimator represents the most efficient estimator of β1 that may

be obtained using Xi, which requires assuming the more restrictive conditional mean

model is correct. From this estimator, we can determine that for this particular case, there

is little additional efficiency to be gained by locally efficient GEE if Simple Augmented

GEE are fit under the best working covariance (Table 2.5)
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Table 2.5: Application of Standard, Simple Augmented, and Locally Efficient Aug-
mented GEE to AIDS Clinical Trial Group Study 398. Estimator (Working Marginal
Covariance). Estimator: Unaugmented GEE (Standard), Simple Augmented GEE (Simple
Aug. GEE), Locally Efficient Augmented GEE (Loc. Eff.). Working Marginal Covari-
ance: Independence (Ind), Exchangeable (Exch), Autoregressive(1) (AR1), Unstructured
(Un), Exchangeable for V (E(Y |X,A)|A) and Unstructured for V (Y |X,A)(Exch/Un), Ex-
changeable for V (E(Y |X,A)|A) and AR1 for V (Y |X,A)(Exch/AR1). Sandwich Standard
Error (SE). Relative Efficiency (RE).

Estimator β̂1 SE RE
Standard (Ind) 9.971 20.772 0.942
Standard (Exch) 14.182 20.593 0.958
Standard (AR1) 16.977 20.222 0.993
Standard (Un) 20.173 20.156 1.000
Standard (Exch/Un) 14.615 20.347 0.981
Simple Aug. (Ind) -8.110 9.203 4.797
Simple Aug. (Exch) -6.385 8.904 5.124
Simple Aug. (AR1) -3.059 9.244 4.754
Simple Aug. (Un) -0.079 9.411 4.587
Simple Aug. (Exch/Un) -5.972 8.571 5.530
Simple Aug. (Exch/AR1) -5.048 8.920 5.106
Loc. Eff. (Ind) -8.110 9.203 4.797
Loc. Eff. (Exch) -6.821 8.953 5.068
Loc. Eff. (Exch/AR1) -5.715 9.073 4.936
Loc. Eff. (Exch/Un) -6.277 8.601 5.492
Adjusted (Un) -6.649 8.621 5.467
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2.5 Discussion

We derived and implemented a closed-form semiparametric locally efficient es-

timator of marginal treatment effects for correlated outcomes using baseline covariates.

Through simulation, we demonstrated that our estimator is more efficient than corre-

sponding suboptimal estimators in certain settings, particularly when randomized units

vary in size and baseline covariates account for a large portion of the within-unit correla-

tion. In longitudinal studies, variable size may occur when studies have staggered entry

or as subjects are lost to follow-up. The estimator derived is only semiparametric locally

efficient in the first case, as the locally efficient estimator for incomplete data incorpo-

rates information on the missingness process. More generally, large efficiency gains were

shown for longitudinal analysis when the baseline level of the outcome was incorporated

in estimation as an auxiliary covariate. Baseline levels of outcomes can be highly predic-

tive of followup levels, suggesting that in the analysis of data from longitudinal studies,

failing to incorporate baseline covariates in analysis can be extremely inefficient. More-

over, this motivates interest in developing methods for designing studies to incorporate

baseline covariates in interim and final analyses.
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3.1 Introduction

In randomized trials the primary goal is to evaluate the effect of a novel interven-

tion on some outcome of interest. In addition to the treatment assignment and outcome,

data on baseline covariates, such as demographics or biomarkers, are typically collected.

To protect type I error, methods for including baseline covariates in analyses, whether as

stratification factors or in regression models, are generally precisely defined. Recently,

methods have been developed to allow for more flexible model selection without loss of

protection of type error, at least asymptotically {Tsiatis et al. (2008); Zhang et al. (2008);

Stephens et al. (2012a)}. Several studies have demonstrated that new methods permit-

ting flexible use of baseline correlates of the outcome in analysis improve power and

efficiency in treatment effect estimation {Tsiatis et al. (2008); Zhang et al. (2008); Stephens

et al. (2012a)}. Nonetheless, in small samples, additional variability introduced by flexi-

ble model selection may fail to preserve type I error and also result in loss of power and

efficiency compared to unadjusted analyses. In this paper, we evaluate several flexible

covariate adjustment methods for studies with small numbers of randomized units. We

examine the validity of adjusted tests through investigation of type I error and measure

improvement over unadjusted tests by comparing power.

Consider a randomized trial in which n independent and identically distributed

units Oi = (Yi, Ai,Xi) are sampled from a population, where Yi denotes the outcome of

interest, Ai the random treatment assignment such thatAi=1, ..., K, and Xi the set of base-

line covariates. For cluster-randomized or longitudinal trials, bold Yi represents a mul-

tivariate outcome vector for individuals within the same randomized group or repeated

measurements on a single randomized subject, respectively. In the context of multivariate

outcomes, we consider settings where the treatment assignment is a scalar shared by mea-

surements within the same cluster or subject. The primary analysis for most randomized

trials compares outcomes Yi among subjects assigned to different levels of treatment Ai.

For scalar outcomes, tests comparing some feature of fa∗(Y ), the distribution of Y under

treatment a∗, are used to assess the statistical significance of observed differences in out-
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comes across treatment groups. The two-sample t-test, Wilcoxon test, and their extensions

for more than two groups are examples of commonly used methods. When outcomes are

multivariate, modified versions of these tests are available to adjust standard errors for

correlation among multiple measurements within the same randomized unit {Klar and

Donner (2000)}.

Regression analysis may also be used to evaluate treatment effects. The effect of

a binary treatment on the marginal mean of Y may be assessed through assuming the

generalized linear model

E[Yi|Xi, Ai] = g(β0 + β1Ai), (3.1)

where g−1 is a link function, and β is estimated through semiparametric estimating equa-

tions or fully parametric maximum likelihood inference. The effect of treatment on the

marginal mean outcome E[Yi|Ai = a] is evaluated through testingH0 : β1 = 0. Under ran-

domization, this effect is equivalent to no average causal effect of treatment on Yi. When

outcomes are multivariate, Yi in (3.1) is replaced by Yij , denoting the jth outcome of the ith

randomized unit for i = 1, 2, ..., n and j = 1, ...mi, where M =
n∑
i=1

mi is the total number

of observations. For a semiparametric approach, generalized estimating equations (GEE)

that account for correlation in responses may be used to obtain consistent parameter and

standard error estimates. Regression methods naturally incorporate baseline covariates

by assuming the adjusted mean model (AMM)

E[Yi|Xi, Ai] = g(β0 + β∗1Ai + βT
XXi). (3.2)

When g is the identity link and the true model does not contain any treatment-

covariate interactions, independence of Ai and Xi resulting from randomization guaran-

tees that the adjusted estimator β̂∗1 is a consistent estimator of β1. Moreover, it can be

shown that var(β̂∗1) ≤ var(β̂1), where β̂1 is the unadjusted estimator, even under misspec-

ification of the exact form of βT
XXi in (3.2). For other link functions β̂∗1 is not consistent

for β1, nor does the addition of baseline covariates to the assumed mean model guar-

66



antee efficiency improvement. As a result, Zhang et al. (2008) advocate using a class of

augmented estimators. Augmented estimators are derived from semiparametric theory

and involve augmenting standard estimating functions by subtracting their Hilbert space

projection onto the span of the scores of the treatment mechanism. Semiparametric the-

ory provides theoretical justification for efficiency improvement of augmented estimators

in large samples irrespective of the link function g and only assuming model (3.1) holds.

Stephens et al. (2012a) demonstrated how augmentation may be used for clustered or lon-

gitudinal data by augmenting generalized estimating equations. The same authors also

presented the locally efficient augmented estimator Stephens et al. (2012b) under model

(3.1). Augmented inference relies on asymptotic theory and therefore requires a fairly

large number of randomized units. In large samples, model selection variability for base-

line covariates is small provided the number of covariates is not large; in small samples,

however, flexible covariate selection induces additional variability that may lead to vari-

ance underestimation and loss of efficiency.

In contrast, Rosenbaum (2002) extended the randomization theory of Fisher (1935)

to propose an exact covariate-adjusted test that does not assume a particular distribu-

tion for outcomes or that the observed data are a random sample from some unobserved

population of independent units. Randomization inference considers independent units

Õi = (yi, Ai,xi), where the lowercase notation emphasizes that only the treatment as-

signment Ai is random, and outcomes yi and baseline covariates xi are fixed. The exact

method tests the sharp null hypothesis H0 : ya = y∗ for all a, where ya is a subject’s po-

tential outcome under treatment a. Rosenbaum (2002) discussed the potential outcomes

framework in detail. The null distribution of the test statistic is obtained through permu-

tation of Ai. The test proposed by Gail et al. (1988) approximates the exact test by stan-

dardizing the observed test statistic by its randomization-based variance and comparing

to the standard normal distribution. Post model-selection inference based on the Gail et

al. and Rosenbaum approaches have not been investigated; we consider settings where

model selection is used to determine covariates that explain variability in yi. Adaptive se-

lection of baseline covariates may be particularly useful when xi is high-dimensional or
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prior knowledge is not available to inform covariate adjustment. Further improvement in

small-sample inference may be possible from higher order approximations of the distri-

bution of a class of randomization test statistics {Bickel and Zwet (1978)}, but this theory

has not yet been evaluated in practice.

Details of the four covariate-adjusted tests: I) Adjusted mean models (AMM), II)

Augmented marginal model, III) Approximate exact, and IV) Exact (permutation) are dis-

cussed in Section 3.2. Inference for independent and correlated outcomes is presented. In

Section 3.3, the small sample properties of covariate-adjusted tests are evaluated through

simulation. Methods are illustrated through application to the Young Citizens study in

Section 3.4. Finally, we summarize our results and provide recommendations for practi-

cal use in Section 3.5.

3.2 Methods

We consider four methods of covariate-adjusted hypothesis testing: I) Wald test of

β∗1 in the adjusted mean model (3.2), II) Wald test of β1 in marginal model (3.1), in which

estimating equations are augmented to include baseline covariates, III) approximate ex-

act test, and IV) the exact test. The presentation is not exhaustive for covariate-adjusted

inference but considers widely recognized classical and modern methods. Each test is

first presented for independent outcomes and followed by generalizations for dependent

data.

3.2.1 Independent Outcomes

Method Ia: Wald test of β∗1 in model (3.2)

Assuming model (3.2) holds, parameters β and respective standard errors are

estimated via maximum likelihood or semiparametric estimating equations. The null

hypothesis H0 : β∗1 = 0 is evaluated through the test statistic Tc = β̂1
∗

SE(β̂1
∗
)
.
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Method IIa: Wald test of β1 in model (3.1) with augmented estimating equations

{Tsiatis et al. (2008),Zhang et al. (2008)}

Unlike inference on the AMM, the augmentation method assumes model (3.1).

Predicted values from a working model for the conditional mean E[Yi|Xi, Ai] are incor-

porated in estimating equations that are solved to estimate β. Consistent estimates of β1

are obtained even if E[Yi|X,Ai] is misspecified.

To test H0 : β1 = 0, the test statistic Ta = β̂1
ŜE(β̂1)

is considered, where β̂1 is the

solution of the augmented estimating equations
n∑
i=1

ψa(Oi; β) =
n∑
i=1

[
h(Ai; β){Yi − g(Ai; β)}−

K∑
a=1

{I(Ai = a)− πa}{h(a; β)(E[Yi|Xi, Ai = a]− g(a; β))}

]
= 0, (3.3)

where πa denotes P (Ai = a). In practice ψa is evaluated by ψ̂a, where the true regression

E[Yi|Xi, Ai = a] is approximated by the working model E[Yi|Xi, Ai = a] = d(Xi; ηa) eval-

uated under an estimate η̂a. The subscript a emphasizes that the regression for augmented

estimators conditions on the treatment assignment. Alternatively, E[Yi|Xi, A = a] may be

estimated separately in each treatment arm, resulting in K regression models that do not

contain indicators for treatment. The variance of β̂1 is estimated by the sandwich variance

estimator ˆV ar(β̂1) = C

( n∑
i=1

dh(Ai; β)

dβT
Di

)−1 n∑
i=1

[
ψa(Oi; β)

⊗
2
]( n∑

i=1

dh(Ai; β)

dβT
Di

)−1 ,
where Di = dg(Ai;β)

dβT , and C = {(n0 − p0 − 1)−1 + (n1 − p1 − 1)−1}/{(n0 − 1)−1 + (n1 − 1)−1}

is incorporated to account for finite-sample variability attributable to augmenting. In C,

na is the sample size in treatment arm a and pa is the dimension of ηa for the working

covariate-adjustment model.

Method IIIa: Approximation of the Exact Test

The approximation of the exact test considers the H0 : ya = y∗ for all a. To test H0
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we construct the test statistic

Ts =
S√

V ar(S|y,x)
, where S =

n∑
i=1

(Ai − π)wi (3.4)

and V ar(S|y,x) is shown in (3.5). Baseline covariates are incorporated by setting wi =

ε̂i = yi − d(xi; η̂), the residual from the working mean model d(xi; η̂), which estimates the

true regression model E[yi|xi] = f(xi; η) under the sharp null. For unadjusted analysis,

wi=yi. We purposely omit the subscript a on the regression function as a reminder that

under the sharp null, yi cannot depend on treatment, so Ai is excluded from the proposed

working model. The variance of S is calculated by

V ar(S|y,x) = π(1− π)
n∑
i=1

w2
i +

(Q)︷ ︸︸ ︷(
π
n/2− 1

n− 1
− π2

)∑
i 6=i′

wiwi′ , (3.5)

and significance is determined by comparing |Ta| to the standard normal distribution.

Term Q in V ar(S|y,x) is nonzero when the total number of subjects assigned to

each treatment is fixed. This typically applies in trials with small samples, where match-

ing and blocked randomization strategies are employed to prevent imbalances in treat-

ment allocation that may occur with unrestricted random assignment. Under such ran-

domization, the vector A = (A1, A2, ..., An) follows a hypergeometric distribution, where

the probability of being assigned to treatment for a particular subject is affected by the

other subjects’ treatment assignments. When wi is the residual from a working model for

E[yi|xi], Q ≈ 0, as E[εi|xi]=0, and εi ⊥ εi′ . If considering the unadjusted outcomes Yi, fail-

ure to include Q may result in gross variance overestimation and extremely conservative

testing for small n. In large samples, Q ≈ 0 for wi = ε̂i or wi = yi.

For the class of statistics defined by T =
n∑
i=1

Aici, where ci is a score, Bickel and

Zwet (1978) determined a higher-order approximation for the distribution of the stan-

dardized statistic T ∗, given by
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P (T ∗ < t) = Φ(t)− φ(t)

π(1− π)

[
π(1− π)

2n
H1(t) +

√
π(1− π)(1− 2π)

6

n∑
i=1

(c− c·)3{
n∑
i=1

(c− c·)2
}3/2

H2(t)+


1− 6π + 6π2

24

n∑
i=1

(c− c·)4{
n∑
i=1

(c− c·)2
}2 −

(1− 2π)2

8n


H3(t) +

(1− 2π)2
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{
n∑
i=1

(c− c·)3
}2

{
n∑
i=1

(c− c·)2
}3H5(t)

]

(3.6)

The expansion suggests that a higher order accurate quantile of the distribution

of the test statistic may be found by solving for Z∗α such that P (T < Z∗α) = 1 − α/2 for

two-sided tests.

Method IVa: Exact Test

The exact test also applies to the hypothesis H0 : ya = y∗ for all a; the null distri-

bution of Tp = S is calculated by permuting the treatment assignment Ai among subjects.

For each permutation, the test statistic Tp is calculated under the permuted treatment as-

signment Ab, resulting in distribution of statistics Tp(Ab). The exact null distribution is

often estimated by considering B permutations for large B, and a p-value is obtained by

pB = 1
B

=
B∑
b=1

I(|Tp(Ab)| > |Tp|). For a level α test, we reject the sharp null of no treatment

effect when pB < α.

3.2.2 Dependent Outcomes

For clustered outcomes, we consider modifications of the univariate tests that ac-

commodate correlation in responses.

Method Ib: Wald test of β∗1 in model (3.2) using GEE {Liang and Zeger (1986)}
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To accommodate correlation in outcomes within a cluster, generalized estimating

equations may be constructed assuming model (3.2) holds. The adjusted treatment effect

β∗1 is estimated by solving the generalized estimating equations
n∑
i=1

DiV
−1
i [Yi − g(Ai,X; β)] = 0, (3.7)

where Di = dg(Ai,X;β))
dβT ,Vi = Vi(φ)1/2RVi(φ)1/2. The working covariance Vi is de-

termined by the mi × mi correlation matrix R and diagonal variance matrix Vi(φ). The

variance of β̂ is calculated by the sandwich variance estimator,

ˆvar(β̂) =

(
n∑
i=1

DiV
−1
i Di

)−1( n∑
i=1

[
DiV

−1
i {Y − g(Ai,X; β)}

]⊗ 2

)(
n∑
i=1

DiV
−1
i Di

)−1
,

(3.8)

and Tc is calculated to evaluate H0 : E[Yi|Xi, Ai = 1] = E[Yi|Xi, Ai = 0].

Method IIb: Wald test of β1 in model (3.1) using augmented GEE {Stephens et al.

(2012a)}

Assuming marginal model (3.1), augmented estimating equations are formed by

n∑
i=1

ψa(Oi; β, η) =
n∑
i=1

{
DiV

−1
i {Yi − g(Ai; β)}− (3.9)

K∑
a=1

{I(Ai = a)− πa}[Di(a)V−1i (a){d{Xi; ηa)− g(a; β)}]

}
= 0,

where d(Xi; ηa) is an estimate of E[Yi|Ai = a,Xi]. To estimate var(β̂), the standard

estimating function is replaced with the augmented estimating function ψa in the middle

term of (3.8).

Method IIIb: Approximation to the Exact Test (Multivariate)

Although responses yij and covariates xij are considered fixed for randomization

inference, the calculated covariance among yij in the ith cluster incorporates information
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on the difference in the between versus within sum of squares, which may increase power

in testing. A working covariance Vi as for GEE is incorporated into testing by

SD =
n∑
i=1

(Ai − π)1V−1i wi, (3.10)

where wi is the residual vector wi = (wi1, wi2, ..., wimi
)T determined by wij = ε̂ij = yij −

d(xij; η̂) and 1 is the mi−dimensional vector of 1s. To estimate correlation parameters, the

method of moments is used. We consider the moment estimating equations

n∑
i=1

∑
j<j′

{wijwij′
τ

− r(γ)
}
, (3.11)

where τ =
n∑
i=1

mi∑
j=1

w2
ij . The weight matrix Vi is given by Vi = L1/2UL1/2, where L is an

mi ×mi diagonal matrix with τ along the diagonal, and U is a correlation matrix, where

Qj,j′ = r(γ). For vector-valued outcomes Yi, the variance is

V ar(S|yi,xi) = π(1− π)
n∑
i=1

(1V−1i wi)
⊗

2 +

(
π
n/2− 1

n− 1
− π2

) Q∗︷ ︸︸ ︷∑
i 6=i′

(1V−1i wi)(1V−1i′ wi′)
T,

(3.12)

where Q∗ is the small sample correction for fixed treatment allocation. Bickel and

Zwet (1978) may be applied to dependent outcomes as well to ensure nominal type I error

levels in small samples.

Method IVb: Exact Test (Multivariate)

The null distribution of test statistic (3.10) is determined by permuting the cluster-

level treatment assignment Ai. Because outcomes and covariates are fixed, the residuals

ε̂ij = yij − d(xij; η̂) and working covariance Vi do not depend on the permuted treat-

ment assignment under H0. Working covariance parameters therefore only need to be

estimated once, and Vi is equal for all permutations Ab. Significance is established as in

section 3.2.1.
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3.2.3 Model Selection for Baseline Covariates

When the set of baseline covariates is high dimensional, adjusting for all avail-

able covariates may be inefficient. Prior knowledge may suggest the inclusion of some

covariates; among other covariates whose impact on Yi is not well understood model se-

lection may help to determine which covariates to include. Adjusted mean models and

augmented estimation require the conditional mean model E[Y |X, A], whereas random-

ization inference requires an estimate of E[Y |X]. Current literature provides a wide array

of methods for selection of baseline covariates, particularly for univariate outcomes. Step-

wise selection procedures based on some entry criterion may be used. Methods based on

penalized likelihoods such as LASSO {Tibshirani (1996)}, adaptive LASSO {Zou (2006)},

SCAD {Fan and Li (2001)}, and MC+ {Zhang (2010)} are equivalently applicable. Model

selection for multivariate outcomes is less developed, but extensions of available methods

are presented and discussed in Sofer et al. (2012). We consider two popular approaches,

forward selection by AIC or BIC, and adaptive LASSO, {Zou (2006)} where the tuning

parameter is selected by cross validation.

Forward selection is an example of a greedy algorithm, defined as an algorithm

that makes the locally optimal choice at each stage in search of a global optimum {Black

(2005)}. To find the best predictive model, forward selection starts with a generalized

linear model containing the intercept and at each step enters a single covariate according

to a prespecified criterion. Examples of entry criteria include minimizing p-values or an

information criterion such as AIC, or maximizing adjusted r2.

Model selection by penalized regression is derived by minimizing an objective

function

Ω(β) =
n∑
i=1

L{Yi, g(Ai,X; β)}+ Pλ(β), (3.13)

which consists of a loss function L{Yi, g(Ai,X; β)} and a penalty Pλ(β), where Pλ(β) is

indexed by a nonnegative tuning parameter λ. The form of Pλ(β) defines various reg-

ularized regression methods; for adaptive LASSO Pλ(β) = λ

p∑
k=1

ŵk|βk| with weights
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ŵk = 1/|β̂γk | derived from an initial fit of β. We consider an adaptive LASSO-hybrid imple-

mentation motivated by the LASSO-OLS hybrid {Efron et al. (2004)}, in which LASSO is

used to determine the covariates for which βk 6= 0, and the selected model is subsequently

fit by OLS.

When outcomes are multivariate Sofer et al. (2012) discusses that accounting for

correlation improves the efficiency of penalized regression estimates. In small samples,

it is especially desirable to reduce the variability in penalized regression since the num-

ber of units may not be sufficient to achieve consistency despite estimation under a mis-

specified independence correlation structure. The authors recommend scaling outcomes

and covariates by Λ1/2, where Λ=V−1i is a working precision matrix based on an initial

estimate of the coefficient vector. The initial estimate may be determined by a model se-

lection method that assumes independence. For validation-based penalized regression,

estimation proceeds as in the univariate case on the scaled outcomes Ỹi = Λ1/2Yi and co-

variates X̃i = Λ1/2Xi. We also consider forward selection of Ỹi on X̃i to evaluate possible

improvements in model selection and resulting power for testing treatment effects.

3.3 Simulation Study

3.3.1 Univariate

We first consider scalar outcomes Yi. For each simulated dataset 25 baseline

covariates Xi1 , ..., Xi25 were generated from the multivariate lognormal distribution

by exponentiating draws from the multivariate normal distribution with mean µ =

(0, 0, ..., 0) and covariance Σ, where Σ was defined such that corr(log(Xik),log(Xik′
)) =

0.5 for k, k′ = 1, ..., 10, corr(log(Xik),log(Xik′
)) = 0.2 for k = 1, ..., 10, k′ = 11, ..., 20,

corr(log(Xik),log(Xik′
) = 0 for k = 1, ..., 20, k′ = 2, ..., 25, and var(log(Xik)) = 1 for

k = 1, ..., 25. Treatment Ai was binary and simulated with a fixed, equal number of

subjects assigned to treatment or control. Outcomes were generated from the model

Yi = η0 + η1Ai + η2Xi1 + η3Xi2 + η4Xi10 + η5Xi11η6Xi12 + εi with log(εi) ∼ N(0, 1.9),
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η′ = (1, 0, 1, 1, 0.2, 0.2, 0.2) under the null and η′ = (1, 4, 1, 1, 0.2, 0.2, 0.2) under the al-

ternative. Sample sizes of na = 10, 15, 25, 50, 100 in each treatment arm were considered.

Under this design, baseline covariates accounted for roughly 30% of the variability in

Yi|Ai.

All four covariate-adjusted methods were applied to each dataset, and various

adaptive procedures were used to select among the 25 baseline covariates. Several vari-

ations for each covariate-adjusted test were considered, with each variation defined by

a different regression model. For adaptive approaches, selection of regression models

was based on three different methods: forward selection minimizing AIC, forward se-

lection minimizing BIC, and the adaptive LASSO-OLS hybrid. The adaptive LASSO

tuning parameter was selected by l-fold cross validation, where l = n/10. For Method

Ia, inference was performed by OLS on the model including Ai and covariates sug-

gested by the adaptive model selection procedure. Adaptively selected models were

compared to two fixed models: the data generating model, which serves as a benchmark

for the largest possible improvement in power, and an incorrect model, E[Yi|Xi, Ai] =

η0 + η1Xi1 + η2Xi3 + η3X10 + η4Xi13 + η5Xi21 , including two predictive covariates and

3 noisy covariates. Finally, each method was also applied to the unadjusted outcomes

Yi to assess whether incorporating baseline covariates improved power compared to no

adjustment. Treatment was forced into the regression model for Methods Ia and IIa. Con-

sidering Methods IIIa and IVa, treatment was omitted from covariate selection, as the

sharp null excludes any estimated effect of treatment, even if not significant. In addition

to assessing type I error and power when the true data-generating model was contained

in the set of candidate models, we assessed power when important transformations for

baseline covariates were not included. We modified the data generating mechanism to

include squared terms for Xi1 and Xi10 and changed the coefficient of Xi1 to η1 = 0.50.

As in the previous setting, model fitting algorithms for determining predictive covariates

only considered linear terms.
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Figure 3.1: Type I Error and Power of Univariate AMM and Augmented Tests. Adap-
tive regression model selection: AIC, BIC, Adaptive LASSO. Prespecified models: Cor-
rect, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate baseline
covariates.
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Figure 3.1(Continued)

(a) AMM

(b) Augmented
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Table 3.1: Type I Error of Univariate Covariate-adjusted Tests. Adjusted mean model
(AMM), Augmented, Approx. Exact (without Bickel adjustment), Approx. Exact (Sm)
(with Bickel adjustment) and Exact tests. Adaptive regression model selection: AIC, BIC,
Adaptive LASSO (A. LASSO). Prespecified models: Correct, Incorrect. ’Unadjusted’ de-
notes the test statistic that does not incorporate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0384 0.2089 0.1744 0.0505 0.0381 0.0311
15 0.0379 0.2224 0.1488 0.0526 0.037 0.0333
25 0.0414 0.1102 0.0792 0.0465 0.04 0.0344
50 0.0444 0.0679 0.055 0.0464 0.0407 0.0409

100 0.0445 0.053 0.0486 0.044 0.043 0.0425

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0384 0.4005 0.2874 0.0936 0.1228 0.1116
15 0.0379 0.3595 0.2143 0.0801 0.0846 0.0788
25 0.0414 0.1551 0.1036 0.0652 0.0645 0.0588
50 0.0444 0.082 0.0649 0.0559 0.0524 0.0493

100 0.0445 0.0585 0.051 0.0462 0.0486 0.0466

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0346 0.0368 0.0383 0.0356 0.0368 0.0356
15 0.0354 0.0446 0.0406 0.0375 0.0347 0.0375
25 0.0398 0.0375 0.0388 0.039 0.0389 0.039
50 0.0438 0.0415 0.0423 0.0417 0.0398 0.0417

100 0.0442 0.0421 0.0438 0.0418 0.043 0.0418

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.033 0.035 0.036 0.034 0.0347 0.034
15 0.0354 0.0442 0.0396 0.037 0.0345 0.037
25 0.0412 0.0384 0.0398 0.0403 0.0394 0.0403
50 0.0456 0.0433 0.0443 0.0432 0.0424 0.0432

100 0.0454 0.0432 0.0453 0.0433 0.0442 0.0433

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.0498 0.0487 0.0491 0.0489 0.0519 0.0486
15 0.0499 0.0543 0.0511 0.0491 0.0481 0.0495
25 0.0518 0.0456 0.0491 0.0492 0.0509 0.0494
50 0.0515 0.0517 0.0529 0.0541 0.0524 0.0546

100 0.0505 0.0483 0.0524 0.0489 0.0513 0.0504
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Table 3.2: Power of Univariate Covariate-adjusted Tests when the correct model is a
candidate model. Adjusted mean model (AMM), Augmented, Approx. Exact (without
Bickel adjustment), Approx. Exact (Sm) (with Bickel adjustment) and Exact tests. Adap-
tive regression model selection: AIC, BIC, Adaptive LASSO (A. LASSO). Prespecified
models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorpo-
rate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4204 0.6883 0.7182 0.5805 0.4999 0.5843
15 0.5224 0.7647 0.7758 0.6796 0.6226 0.6871
25 0.6532 0.8329 0.8362 0.791 0.7532 0.7912
50 0.8343 0.9139 0.9144 0.9035 0.8874 0.9029

100 0.9549 0.9706 0.971 0.9692 0.9658 0.9687

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4204 0.7991 0.7786 0.643 0.6448 0.7018
15 0.5224 0.8244 0.8095 0.7188 0.7012 0.7476
25 0.6532 0.8573 0.8523 0.8091 0.7911 0.82
50 0.8343 0.9206 0.9188 0.9102 0.8971 0.9096

100 0.9549 0.9722 0.9722 0.97 0.9679 0.9705

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4091 0.365 0.4649 0.5136 0.4761 0.5586
15 0.515 0.4567 0.6038 0.6316 0.6116 0.6793
25 0.6494 0.7351 0.7819 0.7718 0.7486 0.7891
50 0.8339 0.8957 0.9034 0.8983 0.8868 0.9029

100 0.9547 0.9683 0.9686 0.9682 0.9657 0.9686

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4051 0.3567 0.4552 0.5056 0.4681 0.5549
15 0.5139 0.4528 0.5996 0.6297 0.6107 0.6807
25 0.6516 0.7366 0.7831 0.7741 0.7515 0.7922
50 0.8358 0.898 0.9055 0.9014 0.8901 0.9054

100 0.9562 0.9695 0.971 0.9696 0.9676 0.97

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.4594 0.393 0.4951 0.5486 0.5104 0.5934
15 0.5529 0.4753 0.6198 0.6594 0.6409 0.7074
25 0.6781 0.752 0.7973 0.7955 0.7734 0.8151
50 0.8465 0.9059 0.914 0.9126 0.8998 0.9171

100 0.9618 0.9747 0.9752 0.9752 0.9734 0.9759
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Results for type I error are shown in Figure 3.1 and Table 3.1. Method Ia performed

poorly for small sample sizes with model selection, leading to type I error rates as large

as α=0.2. For fixed models chosen apriori, testing β∗1 preserves type I error, and is even

slightly conservative as a result of the skewness in the covariates and outcomes (α=0.0311-

0.043). The performance of asymptotically equivalent Method IIa varies over the choice

of model selection procedure. For adaptive LASSO, the augmented test resulted in type I

errors roughly twice the nominal level at na = 10. Adaptive selection of covariates by AIC

or BIC had even larger type I error inflation (α=0.40 for na=10). Type I error was still not

preserved when augmenting with fixed models (0.12 for na=10). By contrast, Methods IIIa

and IVa maintained type I error at all sample sizes considered. The approximate exact test

remained slightly conservative due to skewness, while the exact test achieved nominal

type I error levels. There are noteworthy differences in the behavior of the various model

selection procedures. As expected, BIC favored more parsimonious models than AIC:

AIC-based selection resulted in models with 5 to 7 baseline covariates on average; BIC, 3

to 4 covariates. Adaptive LASSO was the most conservative model selection procedure,

including 1 to 4 covariates on average, with the number of covariates selected increasing

with the sample size.

Table 3.2 provides simulation results demonstrating the impact of model selection

procedures on power. For na ≤ 50, covariate adjustment based on AIC and BIC resulted

in larger power than did the correct covariate adjustment model for Methods Ia and IIa

(Power=0.68-0.91 for AIC and BIC, Power=0.58-0.90 for the correct model), suggesting

that the former led to overfitting of the regression. The power of adjustment with adap-

tive LASSO did not exceed the power of adjustment under the correct model for any

covariate-adjusted test statistic considered. In general, Methods IIIa and IVa had lower

power than Methods Ia and IIa, reflecting the fact that the randomization-based tests pre-

serve type I error while adding covariates to the mean model and augmentation do not.

For very small sample sizes (na ≤ 15), covariate adjustment by AIC lost power relative to

the unadjusted test (Approx. Exact AIC = 0.36-0.46 , Approx. Exact Unadjusted 0.41-0.52

; Exact AIC = 0.49-0.57, Exact Unadjusted = 0.59-0.64 ). For na ≥ 25, AIC-based adjust-
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Table 3.3: Average Number of Baseline Covariates selected by AIC, BIC, and Adaptive
LASSO by sample size when candidate models include the correct model. First entry -
number of baseline covariates selected when treatment was forced into the model. Second
entry - number of baseline covariates when treatment was omitted from the model.

na AIC BIC A. LASSO
10 6.45 3.93 1.84

5.75 3.60 1.61
15 8.65 4.14 2.63

7.96 3.93 2.26
25 6.13 3.19 3.11

5.95 3.15 2.87
50 5.46 2.94 3.69

5.41 2.93 3.57
100 5.49 3.01 3.92

5.48 3.00 3.82

ment improved power compared to no adjustment. Model selection by BIC and adaptive

LASSO, which penalize more severely for model complexity than AIC, improved power

over unadjusted test statistics across all simulated sample sizes. Method IVa had higher

power than Method IIIa, with the difference in power increasing inversely with sample

size. Across all settings considered, Bickel’s adjustment for the distribution of the approx-

imate exact test had little impact on resulting inferences, suggesting even higher order

terms may be necessary to recover nominal type I error.

In the second set of power simulations, the data-generating model contained

quadratic terms that were not considered in covariate adjustment. Results are shown in

Figure 3.3-3.3 and Table 3.4. The relative performance of adaptive procedures remained

the same. At small samples sizes, exact inference AIC resulted in less power improve-

ment than the other adjustment methods. At na = 10, exact inference based on the AIC-

selected model mirrored unadjusted exact inference (Method IVa AIC = 0.27, Method IVa

Unadjusted=0.25). Considering Method IIIA, AIC-based inference increased power rela-

tive to not adjusting, but gains were limited compared to BIC selection, adaptive LASSO,

and the prespecified incorrect model (AIC =0.245, Unadjusted= 0.18, BIC=0.3166, adap-

tive LASSO=0.3541, Prespecified=0.3044). Increasing the sample size per arm to na = 25,

power for AIC-selected adjustment was more similar to the BIC and adaptive LASSO. At
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Figure 3.2: Power of Univariate Approx. Exact and Exact Tests when the correct model
is a candidate model. Adaptive regression model selection: AIC, BIC, Adaptive LASSO.
Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does
not incorporate baseline covariates.
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Figure 3.2(Continued)

(a) Approximate

(b) Exact
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na ≥ 50, all adaptive procedures resulted in similar power, while the incorrect prespeci-

fied model had lower power (Prespecified=0.49-0.75, Adaptive Methods = 0.54-0.84).
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Figure 3.3: Power of Univariate Approx. Exact and Exact Tests when the correct model
is not a candidate model. Adaptive model selection: AIC, BIC, Adaptive LASSO. Pre-
specified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not
incorporate baseline covariates.
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Figure 3.3(Continued)

(a) Approximate

(b) Exact
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Table 3.4: Power of Univariate Covariate-adjusted Tests when the correct model is not
a candidate model. Adjusted mean model (AMM), Augmented, Approx. Exact (without
Bickel adjustment), Approx. Exact (Sm) (with Bickel adjustment) and Exact tests. Adap-
tive regression model selection: AIC, BIC, Adaptive LASSO (A. LASSO). Prespecified
models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorpo-
rate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1880 0.5805 0.6094 0.4500 0.5883 0.3231
15 0.2132 0.6545 0.6557 0.5359 0.6894 0.3947
25 0.2544 0.6809 0.6692 0.6150 0.7919 0.4793
50 0.3305 0.7613 0.7554 0.7343 0.9030 0.6154

100 0.4413 0.8417 0.8412 0.8295 0.9714 0.7419

Augmented
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1880 0.7467 0.7057 0.5427 0.6054 0.4729
15 0.2132 0.7556 0.7143 0.6067 0.6397 0.4889
25 0.2544 0.7297 0.7078 0.6588 0.7134 0.5329
50 0.3305 0.7820 0.7701 0.7508 0.8196 0.6386

100 0.4413 0.8480 0.8476 0.8367 0.9071 0.7512

Approx. Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1815 0.2450 0.3166 0.3541 0.5680 0.3044
15 0.2075 0.3053 0.4161 0.4501 0.6800 0.3847
25 0.2512 0.5292 0.5724 0.5673 0.7884 0.4746
50 0.3290 0.7069 0.7204 0.7142 0.9025 0.6133

100 0.4401 0.8269 0.8322 0.8238 0.9710 0.7409

Approx. Exact (Sm)
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.1792 0.2380 0.3101 0.3452 0.5629 0.2995
15 0.2088 0.3020 0.4114 0.4479 0.6820 0.3829
25 0.2569 0.5284 0.5719 0.5676 0.7915 0.4760
50 0.3360 0.7075 0.7219 0.7153 0.9059 0.6166

100 0.4499 0.8289 0.8328 0.8250 0.9726 0.7442

Exact
na Unadjusted AIC BIC A. LASSO Incorrect Correct
10 0.2669 0.3412 0.3803 0.6056 0.3329 0.2551
15 0.3212 0.4298 0.4700 0.7127 0.4092 0.2793
25 0.5436 0.5866 0.5810 0.8157 0.4973 0.3135
50 0.7135 0.7263 0.7238 0.9165 0.6301 0.3824

100 0.8324 0.8367 0.8299 0.9788 0.7551 0.4882
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3.3.2 Multivariate

To evaluate clustered outcome data, values for covariates Xij1 , ..., Xij25 were gen-

erated, with Xijk = Xik for k = 1, ..., 10. For each cluster, (log(Xi1), ..., log(Xi10)) ∼

MVN(0,Σ2), where Σ2 was defined such that corr(log(Xik),log(Xik′
)) = 0.5 for k =

1, ..., 5, k′ = 1, ..., 5 and k = 6, ..., 10, k′ = 6, ..., 10, corr(log(Xik),log(Xik′
)) = 0.2 for

k = 1, ..., 5, k′ = 6, ..., 10. Each covariateXijk for k = 11, ..., 20 was simulated from the mul-

tivariate lognormal distribution with corr(log(Xijk), log(Xij′k))=0.2 independently across

k. Finally, for k = 21, ..., 25, log(Xijk) ∼ N(0, 25) with independence between and within

clusters. Binary treatment Ai was generated with P (A = 1) = 0.5, with the total number

of clusters assigned to each treatment level fixed accordingly. To induce unexplained cor-

relation within clusters, random cluster effects bi were simulated, with log(bi) ∼ N(0, ρσ2),

where ρwas varied to induce high or low intracluster correlation. Outcomes Yij were gen-

erated from the model Yij = η0+η1Ai+η2Xi1 +η3Xij11 +η4Xi3 +η5Xij12η6Xij15 +bi+εij , with

log(εij) ∼ N(0, σ2 = 1.9). We set the coefficient vector η = (1, 0, 1.25, 1.25, 0.2, 0.2, 0.2) un-

der the null hypothesis of no treatment effect, and η = (1, 2.2, 1.25, 1.25, 0.2, 0.2, 0.2) under

the alternative. Monte Carlo datasets consisted of n = 10, 15, 25 clusters of sizemi = 20, 30

or n = 25, 50, 100 clusters of size mi = 4, 6, 8 per treatment arm. Values of ρ considered

were ρ = 7/19 under the null, and ρ = 7/19, 1 under the alternative, corresponding to

corr(Yij, Yij′|Xi, Ai)=5% and 50%, respectively. At ρ = 7/19, the correlation between Yij

and baseline covariates was 0.28, whereas ρ = 1 reduced corr(Yij,Xij|Ai) to 0.17.

We first adaptively determined predictive models for the mean outcome condi-

tional on baseline covariates without consideration of correlation among outcomes within

a cluster. We then compared these results to the Monte Carlo power of adjusted tests

when model selection accounted for correlation in responses (Section 3.2.3). Selection

of baseline covariates for adjustment included forward selection by AIC, two modifi-

cations of BIC for multivariate data, and adaptive LASSO. All regression models were

ultimately fit by OLS. For BIC, two regression models were selected, the first consider-

ing the number of clusters in the penalty for model complexity(BICn), and the second
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calculating BIC based on the total number of individual-level observations(BICm). In de-

riving BIC for mixed models, Pauler (1998) showed that for a random intercept model

the true penalty is of the form Ωh =

p∑
k=1

log(N∗k ), where h indexes candidate models,

k indexes the p covariates in the hth model, N∗k = n for between-cluster effects, and

N∗k = M for within-cluster effects. BICm and BICn therefore correspond to models con-

taining entirely cluster-level covariates or individual-level covariates, respectively. Eval-

uating the true BIC for models including both types of covariates requires calculating

Ωh for each candidate model in the stepwise procedure by observing its cluster-level

and individual-level covariates. To ease computation, BICm and BICn were used. The

adaptive LASSO tuning parameter was selected based on five-fold cross validation. The

two fixed regression models included the data generating model and an incorrect model,

E[Yij|Xij, Ai] = η0 + η1Xi1 + η2Xi2 + η3Xi10 + η4Xij13 + η5Xij21 , including two predictive

covariates and 3 noisy covariates. For Methods Ib and IIb, treatment was forced into

the regression model; model selection and prespecified models for the randomization

tests omitted treatment. The null distribution of the observed test statistic under the ex-

act test was determined by permuting the treatment assignment across clusters b = 1000

times. Unadjusted tests were also performed for each method and compared to covariate-

adjusted tests. The impact of incorporating the covariance structure on randomization

tests was evaluated by conducting each test under both independence and exchangeable

correlation structures for each adjustment model. Specification of a covariance structure

for standard GEE and augmented GEE methods have been evaluated elsewhere {Wang

and Carey (2003),Stephens et al. (2012a)}.

Type I error for each method is presented in Tables 3.5-3.7. In small samples

(na ≤ 25) GEE methods fail to control type I error for all covariate-adjusted analyses.

Inflation of type I error reflects bias in variance estimation of the sandwich estimator in

small samples as well as additional variance induced by model selection. Under model

selection, type I error was as large as α = 0.24 for Method Ib and α = 0.31 for Meth-

ods IIb. When the number of clusters was large (na ≥ 50), nominal type I error levels

of α = 0.05 were achieved when covariates were not selected adaptively. Type I error
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Table 3.5: Type I Error of Multivariate AMM and Augmented tests. Adaptive regression
model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO).
Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does
not incorporate baseline covariates.

Adjusted Mean Model
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0692 0.2382 0.2100 0.1544 0.1566 0.0970 0.0958
15 0.0596 0.1504 0.1306 0.1052 0.1040 0.0688 0.0664
25 0.0548 0.1012 0.0946 0.0846 0.0904 0.0650 0.0676

Small mi 25 0.0589 0.1014 0.0831 0.0779 0.0747 0.0627 0.0639
50 0.0466 0.0642 0.0562 0.0526 0.0550 0.0470 0.0522

100 0.0483 0.0659 0.0601 0.0607 0.0601 0.0586 0.0556

Augmented
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0692 0.3076 0.2636 0.1824 0.1982 0.1204 0.1196
15 0.0596 0.1984 0.1650 0.1236 0.1394 0.0836 0.0838
25 0.0548 0.1244 0.1114 0.0964 0.1128 0.0752 0.0738

Small mi 25 0.0589 0.1234 0.0923 0.0817 0.0827 0.0710 0.0734
50 0.0466 0.0734 0.0620 0.0578 0.0602 0.0538 0.0560

100 0.0483 0.0665 0.0586 0.0580 0.0601 0.0601 0.0559

was still inflated under model selection for the large n considered (α = 0.05 − 0.068 for

na ≤ 25), but inflation was slight compared to that observed for small n (α=0.07-0.31).

For testing treatment effects, model selection by AIC resulted in the largest type I error,

followed by the BIC methods; the adaptive LASSO had the least type I error inflation. For

the randomization tests, the approximate exact test was generally conservative across all

outcomes. The Bickel adjustment for defining the rejection region increased type I error

levels of the approximate exact test closer to the nominal level. The exact test had nominal

type I error across selected and prespecified covariate-adjusted models.
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Table 3.6: Type I Error of (Multivariate) Approximate Exact Tests. Results based on
Bickel’s adjusted cdf are indicated by (Sm). Adaptive regression model selection: AIC,
BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO). Prespecified models:
Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorporate base-
line covariates.

Approximate Exact (Ind)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0406 0.0426 0.0384 0.0418 0.0380 0.0400 0.0438
15 0.0460 0.0378 0.0404 0.0406 0.0392 0.0382 0.0378
25 0.0430 0.0524 0.0514 0.0500 0.0496 0.0444 0.0484

Small mi 25 0.0443 0.0469 0.0443 0.0451 0.0471 0.0439 0.0413
50 0.0432 0.0408 0.0392 0.0404 0.0396 0.0386 0.0434

100 0.0428 0.0501 0.0516 0.0531 0.0528 0.0531 0.0492

Approximate Exact (Ind-Sm)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0412 0.0436 0.0400 0.0434 0.0392 0.0428 0.0454
15 0.0478 0.0400 0.0416 0.0432 0.0416 0.0392 0.0390
25 0.0444 0.0532 0.0522 0.0512 0.0516 0.0468 0.0496

Small mi 25 0.0453 0.0479 0.0473 0.0475 0.0488 0.0455 0.0429
50 0.0444 0.0422 0.0406 0.0414 0.0414 0.0400 0.0458

100 0.0431 0.0519 0.0537 0.0543 0.0549 0.0549 0.0507

Approximate Exact (Exch)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0392 0.0394 0.0384 0.0430 0.0384 0.0402 0.0434
15 0.0432 0.0396 0.0418 0.0412 0.0402 0.0384 0.0384
25 0.0430 0.0522 0.0518 0.0510 0.0510 0.0478 0.0480

Small mi 25 0.0439 0.0463 0.0455 0.0453 0.0477 0.0447 0.0447
50 0.0406 0.0412 0.0392 0.0404 0.0394 0.0390 0.0458

100 0.0434 0.0486 0.0525 0.0525 0.0528 0.0534 0.0495

Approximate Exact (Exch-Sm)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0394 0.0418 0.0404 0.0448 0.0402 0.0430 0.0456
15 0.0446 0.0406 0.0430 0.0428 0.0414 0.0402 0.0390
25 0.0440 0.0538 0.0530 0.0526 0.0528 0.0486 0.0490

Small mi 25 0.0451 0.0481 0.0475 0.0475 0.0496 0.0467 0.0461
50 0.0410 0.0430 0.0408 0.0418 0.0422 0.0410 0.0470

100 0.0443 0.0504 0.0528 0.0525 0.0534 0.0537 0.0510
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Table 3.7: Type I Error of Multivariate Exact Tests. Adaptive regression model selec-
tion: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. LASSO). Prespecified
models: Correct, Incorrect. ’Unadjusted’ denotes the test statistic that does not incorpo-
rate baseline covariates.

Exact (Ind)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0494 0.0496 0.0454 0.0480 0.0428 0.0490 0.0478
15 0.0526 0.0450 0.0450 0.0466 0.0434 0.0464 0.0434
25 0.0474 0.0568 0.0556 0.0528 0.0574 0.0510 0.0510

Small mi 25 0.0486 0.0512 0.0492 0.0500 0.0524 0.0488 0.0498
50 0.0466 0.0446 0.0396 0.0408 0.0420 0.0452 0.0474

100 0.0416 0.0553 0.0543 0.0556 0.0586 0.0562 0.0522

Exact (Exch)
na Unadjusted AIC BICn BICm A. LASSO Correct Incorrect

Large mi 10 0.0482 0.0460 0.0454 0.0486 0.0444 0.0494 0.0512
15 0.0500 0.0470 0.0474 0.0456 0.0456 0.0464 0.0436
25 0.0484 0.0558 0.0564 0.0560 0.0570 0.0530 0.0502

Small mi 25 0.0481 0.0520 0.0494 0.0492 0.0522 0.0518 0.0510
50 0.0444 0.0436 0.0408 0.0416 0.0432 0.0446 0.0476

100 0.0464 0.0534 0.0556 0.0556 0.0580 0.0565 0.0522
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Figure 3.4 and Tables 3.8-3.13 compare power across covariate-adjusted tests for

dependent outcomes. In most cases, covariate adjustment improved power compared to

the corresponding unadjusted approaches, regardless of the method of model selection

used. Precision matrix scaling seemed to reduce overfitting in model selection; adaptive

methods tended to select fewer covariates when outcomes and covariates were scaled

prior to adjustment in the setting where outcomes were highly correlated (Table 3.14).

Post-selection randomization tests also had larger power when outcomes and covariates

were scaled before selection versus not scaled.

Method IVb at na = 10 AIC and BICn selection strategies had lower power than

did strategies that did not adjust for baseline covariates when the exchangeable working

covariance was used and precision matrix scaling was not done prior to model selection

(Unadjusted 0.2170, AIC 0.1894, BICn 0.2014). Upon scaling outcomes and covariates

prior to model selection, post-selection by AIC or BICn tests were more powerful than

unadjusted tests (AIC 0.229, BICn 0.250). Of the adaptive methods considered, forward

selection by BICm resulted in the largest power for both levels of intracluster correlation.

Exchangeable working covariance specification improved power over working indepen-

dence only for randomization tests of the unadjusted outcomes yi.
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Figure 3.4: Type I Error and Power of Multivariate AMM and Augmented Tests. Adap-
tive regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive
LASSO (Lasso). Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test
statistic that does not incorporate baseline covariates.
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Figure 3.4(Continued)

(a) AMM

(b) Augmented
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Figure 3.5: Power of Multivariate Approx. Exact and Exact Tests: low correlation.
Adaptive regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adap-
tive LASSO (Lasso). Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the
test statistic that does not incorporate baseline covariates.
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Figure 3.5(Continued)

(a) Approximate

(b) Exact
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Figure 3.6: Power of Multivariate Approx. Exact and Exact Tests: high correlation.
Adaptive regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive
LASSO (Lasso). Prespecified models: Correct, Incorrect. ’Unadjusted’ denotes the test
statistic that does not incorporate baseline covariates.
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Figure 3.6(Continued)

(a) Approximate

(b) Exact

100



Table 3.8: Power of Multivariate AMM and Augmented Tests: low correlation. Rows
1-3 contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8).
(*) indicates model selection on precision matrix-transformed covariates and outcomes.
Adaptive regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive
LASSO (A. L.). Prespecified models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes
the test statistic that does not incorporate baseline covariates.

Adjusted Mean Model
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.422 0.834 0.832 0.837 0.832 0.837 0.829 0.803 0.797 0.802 0.684
15 0.515 0.899 0.901 0.901 0.903 0.905 0.905 0.889 0.884 0.895 0.818
25 0.640 0.960 0.962 0.963 0.965 0.966 0.967 0.957 0.954 0.964 0.922
25 0.505 0.829 0.830 0.825 0.826 0.823 0.822 0.806 0.806 0.813 0.721
50 0.758 0.953 0.950 0.953 0.952 0.953 0.952 0.949 0.948 0.949 0.917
100 0.945 0.993 0.994 0.993 0.993 0.993 0.993 0.992 0.993 0.994 0.993

Augmented
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.422 0.869 0.863 0.863 0.858 0.854 0.847 0.836 0.833 0.829 0.724
15 0.515 0.915 0.914 0.914 0.915 0.914 0.912 0.904 0.905 0.907 0.836
25 0.640 0.970 0.969 0.970 0.970 0.969 0.968 0.968 0.965 0.967 0.928
25 0.505 0.836 0.837 0.832 0.832 0.827 0.824 0.813 0.812 0.822 0.736
50 0.758 0.953 0.952 0.950 0.949 0.950 0.950 0.948 0.947 0.948 0.915
100 0.945 0.994 0.994 0.993 0.994 0.993 0.994 0.993 0.994 0.993 0.993
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Table 3.9: Power of Multivariate Approximate Exact Tests: low correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8).
(*) indicates model selection on precision matrix-transformed covariates and outcomes.
Results based on Bickel’s adjusted CDF are indicated by (Sm). Adaptive regression model
selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. L.). Prespecified
models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not
incorporate baseline covariates.

Approximate Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.221 0.453 0.482 0.496 0.530 0.566 0.604 0.495 0.494 0.686 0.529
15 0.325 0.740 0.777 0.769 0.806 0.802 0.829 0.759 0.762 0.853 0.738
25 0.465 0.923 0.935 0.930 0.943 0.939 0.948 0.925 0.927 0.952 0.897
25 0.322 0.725 0.735 0.754 0.760 0.763 0.766 0.748 0.748 0.769 0.671
50 0.564 0.933 0.935 0.938 0.939 0.939 0.939 0.935 0.937 0.941 0.905
100 0.827 0.992 0.993 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.992

Approximate Exact (Ind-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.226 0.460 0.491 0.503 0.539 0.574 0.612 0.501 0.500 0.692 0.536
15 0.328 0.744 0.780 0.773 0.810 0.807 0.833 0.764 0.768 0.856 0.743
25 0.467 0.925 0.937 0.931 0.944 0.940 0.949 0.926 0.928 0.953 0.901
25 0.326 0.730 0.741 0.759 0.767 0.769 0.772 0.753 0.752 0.776 0.675
50 0.568 0.936 0.938 0.941 0.942 0.943 0.942 0.938 0.940 0.943 0.907
100 0.831 0.993 0.994 0.993 0.994 0.993 0.994 0.994 0.994 0.994 0.992

Approximate Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.315 0.450 0.484 0.493 0.531 0.568 0.606 0.493 0.495 0.690 0.536
15 0.445 0.739 0.777 0.769 0.809 0.806 0.832 0.760 0.763 0.855 0.748
25 0.602 0.925 0.938 0.930 0.944 0.940 0.950 0.927 0.927 0.955 0.898
25 0.425 0.726 0.733 0.753 0.760 0.762 0.766 0.746 0.747 0.771 0.674
50 0.712 0.935 0.936 0.937 0.939 0.939 0.940 0.937 0.937 0.942 0.906
100 0.930 0.992 0.994 0.993 0.994 0.993 0.994 0.993 0.994 0.993 0.992

Approximate Exact (Exch-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.319 0.458 0.489 0.500 0.539 0.577 0.613 0.501 0.502 0.696 0.540
15 0.449 0.744 0.781 0.774 0.812 0.810 0.837 0.764 0.768 0.858 0.751
25 0.604 0.927 0.940 0.932 0.946 0.941 0.951 0.928 0.929 0.956 0.901
25 0.430 0.730 0.739 0.758 0.766 0.768 0.772 0.751 0.752 0.777 0.678
50 0.714 0.937 0.938 0.940 0.941 0.942 0.942 0.941 0.940 0.945 0.908
100 0.931 0.993 0.994 0.993 0.994 0.994 0.994 0.994 0.994 0.993 0.993
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Table 3.10: Power of Multivariate Exact Tests: low correlation. Rows 1-3 contain results
for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). Adaptive regres-
sion model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. L.).
Prespecified models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic
that does not incorporate baseline covariates.

Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.246 0.472 0.502 0.512 0.548 0.587 0.622 0.510 0.513 0.705 0.550
15 0.338 0.751 0.785 0.776 0.815 0.811 0.836 0.767 0.770 0.862 0.751
25 0.473 0.927 0.938 0.934 0.945 0.940 0.950 0.929 0.929 0.956 0.902
25 0.335 0.735 0.744 0.763 0.771 0.773 0.776 0.759 0.759 0.785 0.681
50 0.570 0.940 0.940 0.943 0.944 0.944 0.944 0.942 0.943 0.948 0.909
100 0.830 0.994 0.995 0.994 0.995 0.995 0.995 0.995 0.995 0.994 0.992

Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.347 0.470 0.504 0.512 0.550 0.587 0.622 0.512 0.515 0.709 0.553
15 0.465 0.750 0.785 0.780 0.817 0.813 0.837 0.769 0.772 0.861 0.756
25 0.614 0.929 0.940 0.935 0.948 0.943 0.953 0.931 0.931 0.957 0.902
25 0.443 0.737 0.744 0.761 0.771 0.771 0.774 0.758 0.758 0.784 0.684
50 0.717 0.941 0.941 0.944 0.945 0.946 0.946 0.943 0.943 0.949 0.911
100 0.930 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.994 0.993
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Table 3.11: Power of Multivariate AMM and Augmented tests: high correlation. Rows
1-3 contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8).
(*) indicates model selection on precision matrix-transformed covariates and outcomes.
Adaptive regression model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive
LASSO (A. L.). Prespecified models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes
the test statistic that does not incorporate baseline covariates.

Adjusted Mean Model
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.252 0.524 0.482 0.527 0.477 0.519 0.467 0.503 0.487 0.409 0.356
15 0.297 0.511 0.486 0.515 0.485 0.514 0.479 0.498 0.491 0.449 0.412
25 0.350 0.544 0.532 0.547 0.531 0.549 0.526 0.537 0.527 0.504 0.477
25 0.308 0.487 0.470 0.477 0.462 0.468 0.455 0.459 0.448 0.431 0.395
50 0.466 0.611 0.606 0.605 0.603 0.604 0.603 0.600 0.599 0.590 0.558
100 0.663 0.768 0.769 0.771 0.766 0.770 0.766 0.769 0.761 0.765 0.742

Augmented
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.252 0.630 0.547 0.527 0.459 0.493 0.434 0.607 0.566 0.449 0.401
15 0.297 0.591 0.523 0.507 0.481 0.491 0.465 0.575 0.544 0.479 0.442
25 0.350 0.583 0.551 0.539 0.533 0.532 0.523 0.578 0.557 0.524 0.488
25 0.308 0.515 0.486 0.470 0.463 0.462 0.455 0.487 0.467 0.453 0.414
50 0.466 0.623 0.608 0.602 0.603 0.602 0.601 0.613 0.605 0.598 0.563
100 0.663 0.771 0.767 0.766 0.769 0.763 0.767 0.770 0.766 0.764 0.745
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Table 3.12: Power of Multivariate Approximate Exact Tests: high correlation. Rows 1-3
contain results for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8).
(*) indicates model selection on precision matrix-transformed covariates and outcomes.
Results based on Bickel’s adjusted CDF are indicated by (Sm). Adaptive regression model
selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. L.). Prespecified
models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic that does not
incorporate baseline covariates.

Approximate Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.140 0.170 0.200 0.181 0.217 0.211 0.248 0.181 0.191 0.278 0.232
15 0.197 0.270 0.316 0.280 0.328 0.306 0.340 0.279 0.299 0.355 0.322
25 0.268 0.411 0.438 0.414 0.453 0.421 0.458 0.412 0.422 0.463 0.430
25 0.213 0.328 0.351 0.342 0.365 0.352 0.367 0.340 0.344 0.375 0.342
50 0.355 0.532 0.545 0.541 0.554 0.547 0.557 0.536 0.542 0.554 0.522
100 0.557 0.733 0.744 0.740 0.749 0.743 0.749 0.734 0.736 0.744 0.717

Approximate Exact (Ind-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.142 0.173 0.205 0.185 0.223 0.216 0.252 0.185 0.194 0.284 0.235
15 0.197 0.274 0.320 0.284 0.333 0.310 0.344 0.281 0.303 0.359 0.324
25 0.270 0.413 0.441 0.417 0.454 0.423 0.460 0.415 0.425 0.466 0.432
25 0.215 0.332 0.354 0.345 0.369 0.356 0.371 0.344 0.349 0.379 0.344
50 0.357 0.535 0.549 0.546 0.558 0.550 0.561 0.540 0.548 0.558 0.525
100 0.559 0.734 0.746 0.740 0.751 0.744 0.751 0.736 0.738 0.746 0.719

Approximate Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.174 0.172 0.198 0.183 0.215 0.212 0.247 0.181 0.191 0.281 0.234
15 0.239 0.274 0.320 0.287 0.333 0.311 0.345 0.283 0.300 0.359 0.322
25 0.321 0.413 0.443 0.416 0.453 0.423 0.458 0.413 0.427 0.466 0.430
25 0.266 0.334 0.356 0.348 0.371 0.360 0.374 0.341 0.350 0.380 0.346
50 0.442 0.538 0.553 0.550 0.562 0.556 0.563 0.546 0.548 0.561 0.526
100 0.649 0.740 0.748 0.748 0.751 0.754 0.752 0.742 0.742 0.753 0.732

Approximate Exact (Exch-Sm)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.176 0.177 0.201 0.187 0.219 0.215 0.252 0.184 0.193 0.284 0.237
15 0.240 0.278 0.323 0.291 0.337 0.313 0.348 0.286 0.304 0.363 0.325
25 0.323 0.415 0.445 0.419 0.456 0.426 0.459 0.415 0.430 0.467 0.431
25 0.268 0.339 0.360 0.353 0.374 0.365 0.377 0.346 0.354 0.385 0.349
50 0.443 0.542 0.558 0.554 0.565 0.559 0.566 0.550 0.552 0.565 0.528
100 0.650 0.743 0.751 0.750 0.752 0.755 0.754 0.744 0.746 0.755 0.733
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Table 3.13: Power of Multivariate Exact Tests: high correlation. Rows 1-3 contain results
for cluster size mi = (20, 30). Rows 4-6 show results for mi = (4, 6, 8). Adaptive regres-
sion model selection: AIC, BIC by n (BICn), BIC by M ,(BICm), Adaptive LASSO (A. L.).
Prespecified models: Correct (Corr.), Incorrect (Inco.). ’Unadj.’ denotes the test statistic
that does not incorporate baseline covariates.

Exact (Ind)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.175 0.188 0.231 0.200 0.250 0.234 0.283 0.199 0.215 0.330 0.275
15 0.222 0.294 0.347 0.304 0.367 0.331 0.380 0.302 0.330 0.410 0.366
25 0.295 0.436 0.472 0.442 0.483 0.450 0.487 0.437 0.451 0.505 0.463
25 0.231 0.351 0.379 0.365 0.392 0.378 0.398 0.367 0.374 0.409 0.370
50 0.369 0.552 0.571 0.566 0.579 0.569 0.578 0.556 0.565 0.583 0.546
100 0.571 0.748 0.758 0.754 0.762 0.759 0.761 0.752 0.752 0.761 0.732

Exact (Exch)
na Unadj. AIC AIC* BICn BICn* BICm BICm* A. L. A. L.* Corr. Inco.
10 0.217 0.189 0.229 0.201 0.250 0.234 0.284 0.199 0.215 0.330 0.277
15 0.274 0.302 0.355 0.310 0.372 0.334 0.385 0.305 0.329 0.412 0.369
25 0.343 0.438 0.474 0.442 0.483 0.450 0.490 0.439 0.457 0.503 0.467
25 0.291 0.356 0.384 0.373 0.398 0.386 0.399 0.370 0.380 0.415 0.377
50 0.461 0.558 0.574 0.572 0.585 0.577 0.587 0.564 0.572 0.589 0.553
100 0.661 0.755 0.762 0.764 0.768 0.769 0.768 0.758 0.758 0.770 0.749
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Table 3.14: Average Number of Baseline Covariates selected by AIC, BIC by n (BICn),
BIC by M ,(BICm), Adaptive LASSO (A. LASSO) by sample size when outcomes were
multivariate. Rows 1-3 contain results for cluster size mi = (20, 30); rows 4-6 for mi =
(4, 6, 8). Results are shown for estimating E[Yi|Xi] considering untransformed (U) and
transformed (T) covariates and outcomes.

Low Correlation
AIC BICn BICm A. LASSO

na U T U T U T U T
10 8.61 9.55 6.65 7.67 3.95 5.12 7.66 8.57
15 9.02 9.33 6.48 7.05 4.10 4.98 8.22 8.79
25 9.45 9.62 6.37 7.01 4.29 5.31 8.77 9.51
25 6.84 7.65 4.11 5.08 3.13 4.15 4.51 5.28
50 7.27 7.96 3.98 4.98 3.22 4.28 4.86 5.52

100 7.82 8.49 4.23 5.28 3.55 4.67 5.93 6.50

High Correlation
Aic BICn BICm Adap Lasso

na U T U T U T U T
10 10.93 9.70 8.95 7.79 5.84 5.24 11.52 9.87
15 11.30 9.44 8.76 7.28 5.99 5.26 12.34 9.65
25 11.69 9.69 8.53 7.30 6.06 5.70 13.01 9.74
25 8.06 7.81 4.99 5.35 3.70 4.41 6.81 5.70
50 8.51 8.61 4.72 5.73 3.72 4.92 7.31 5.94

100 8.86 9.67 4.66 6.46 3.80 5.75 7.94 6.43
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3.4 Application

Covariate-adjusted tests were applied to data from the Young Citizens study. Young

Citizens was a cluster-randomized intervention trial designed to evaluate the effective-

ness of a behavioral intervention in training adolescents to be peer educators about HIV.

Thirty communities were randomized to intervention or control, resulting in 15 commu-

nities per arm. Residents in participating communities were surveyed regarding the de-

gree to which they believed adolescents could effectively communicate to their families

and peers about HIV transmission dynamics. The outcome Yij was a child empowerment

score from responses given by individuals within each randomized community. Addi-

tional covariates characterizing the communities and households of survey respondents

were measured.

Predictive models for baseline covariates were first determined by AIC, BICn,

BICm, and adaptive LASSO. Covariates selected by AIC include employment status (em-

ployment), age of the head of household (age), whether or not the household had a

flushing toilet (flushing toilet), number of relatives in the neighborhood (relatives), re-

ligion, community population density (density), transportation ownership (transporta-

tion), home ownership (home), and interactions of treatment with relatives and density.

BICn selected the same covariates as AIC except for transportation and home, which it

did not enter into the model. BIC penalized by the number of total observations (BICm)

chose employment, age, and flushing toilet. Finally, adaptive LASSO picked flushing toi-

let, religion, employment, age, and interactions with treatment and density, relatives, and

number of kids in the house. For randomization tests, the AIC-based model contained

employment, flushing toilet, age, religion, relatives, home, and wealth deviance for each

family from the mean community wealth. BICn selected employment, flushing toilet,

age, religion and relatives. Selection by BICm and adaptive LASSO chose employment,

flushing toilet, and age.
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Table 3.15: Analysis of the Young Citizens study. Covariate-adjusted method (Method),
regression (OR) {AIC, BIC by n (BICn), BIC byM ,(BICm), Adaptive LASSO (A. LASSO)},
test statistic (T) and p-value (p), with each test statistic evaluated under independence
(Ind) and exchangeable (Exch) working covariance. P-values for Approx. Exact tests are
calculated under Bickel’s cdf for randomization test statistics. ’Unadjusted’ denotes the
unadjusted test.

Ind Exch
Method OR Test Stat p Test Stat p

Adjusted AIC 58.7003 < 0.0001 53.5700 < 0.0001
BICm 59.9557 < 0.0001 54.5695 < 0.0001
BICm 4.5046 < 0.0001 4.6231 < 0.0001

A. LASSO 112.0423 < 0.0001 103.4147 < 0.0001
Unadjusted 4.1415 < 0.0001 4.3186 < 0.0001

Augmented AIC 5.1136 < 0.0001 5.2477 < 0.0001
BICM 5.1845 < 0.0001 5.2321 < 0.0001
BICN 4.6400 < 0.0001 4.6565 < 0.0001

Adaptive LASSO 5.3805 < 0.0001 5.3756 < 0.0001
Approx. Exact AIC 3.1326 0.0017 3.3316 0.0009

BICm 3.1431 0.0017 3.3836 0.0007
BICn 3.1223 0.0018 3.3280 0.0009

A. LASSO 3.1223 0.0018 3.3280 0.0009
Unadjusted 1.6172 0.1058 2.2682 0.0233

Approx. Exact (Sm) AIC 3.1326 0.0017 3.3316 0.0008
BICm 3.1431 0.0017 3.3836 0.0007
BICn 3.1223 0.0018 3.3280 0.0009

A. LASSO 3.1223 0.0018 3.3280 0.0009
Unadjusted 1.6170 0.1060 2.2682 0.0233

Exact AIC 89.8329 0.0003 37.0575 0.0003
BICm 91.9124 0.0007 36.5084 0.0003
BICn 88.8094 0.0007 36.5876 0.0007

A. LASSO 88.8094 0.0007 26.5876 0.0007
Unadjusted 434.8410 0.1043 71.4085 0.1200
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Table 3.15 presents results from the Young Citizens analysis. Adjusted and aug-

mented GEE methods were associated with highly significant treatment effects (p <

0.0001) across covariate-adjusted and unadjusted tests. For the approximate exact tests,

all covariate-adjusted methods yielded a significant intervention effect. When unad-

justed, however, only the test using exchangeable covariance resulted in significantly

different child empowerment between intervention groups (p = 0.0233 for exchangeable

working covariance, p = 0.10 under independence). Applying Bickel’s small-sample ad-

justment to obtain tail probabilities resulted in p-values that were slightly larger than

those based on the standard normal distribution. Among permutation tests, signifi-

cant intervention effects were detected under covariate-adjustment, but not in the ab-

sence of such adjustment for either working covariance structure. The data provide suffi-

cient evidence that children who participated in the intervention were significantly more

equipped to educate their peers about HIV. The results underscore the importance of us-

ing appropriate methodology and utilizing baseline covariate information. Unadjusted

tests based on GEE methods were highly significant, but with a fairly small number of

clusters, the validity of such methods is not guaranteed. Randomization tests, with guar-

anteed validity in small samples, showed similar results with covariate adjustment, but

conclusions of unadjusted tests were inconsistent.
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3.5 Discussion

We have investigated the dangers and merits of several procedures that allow for

flexible covariate adjustment when applied to small samples. Simulation studies showed,

as expected, that AMM and augmented methods break down in small samples when

the number of baseline covariates is large relative to the sample size. Alternatively, ran-

domization methods, which exploit the fact that outcomes and baseline covariates are

regarded as fixed, provide valid tests for treatment effects when flexibly incorporating

baseline covariates. Model selection may be used to identify the set of baseline covariates

that explain the greatest amount of variability in the outcome while preserving the type I

error of the primary test. The central conclusion is that randomization tests therefore do

not require adjustment models to be prespecified to preserve the nominal type I error. Fur-

thermore, adjustment generally increases the power of testing for treatment effects over

unadjusted methods, with the caveat that in extremely small samples of independent out-

comes, such as na = 10, 15, model selection approaches must be sufficiently conservative.

Model selection by BIC and adaptive LASSO, which have stronger penalties and therefore

favor more parsimonious models than AIC, resulted in improved power at the smallest

sample sizes considered. Further research is needed to formally characterize the power of

covariate-adjusted tests under misspecified covariate adjustment and adaptive covariate

selection.

Our presentation has focused on hypothesis testing for evaluating treatment ef-

fects. For confidence interval estimation, hypothesis tests may be inverted. When invert-

ing randomization-based hypothesis tests, it is important to note that for each potential

value of the treatment effect considered, adaptive selection needs to be repeated, since

conditional mean models are estimated by pooling across treated and untreated subjects.

Interval estimation may be simplified by a slight modification of the testing procedure.

Under the null, the conditional mean model may be estimated using data only for un-

treated subjects. The model may then be applied to all subjects in conducting the test.

Not pooling the data when estimating the conditional mean model removes the need for
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its re-estimation with each treatment effect value considered. For small-sample univari-

ate data, it may not be feasible to perform model selection on one treatment group may

be infeasible, but for a small number of moderately sized clusters such a strategy may be

more reasonable.
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Appendix

Appendix A: β̂ Solutions for Standard and Augmented Logistic GEE in
cluster randomized designs

Let Yij denote the response (0 or 1) for the jth individual in the ith cluster. Yi =

(Yi1, Yi2, ..., Yini
)T, where ni is the number of subjects within the ith cluster. A typical

model for binary data is E(Yij|Ai) = g(Ai; β) = g(β0 + β1Ai), where g is the inverse logit

link function. The Standard GEE for the marginal treatment effect are given by

m∑
i=1

ψi(Y, A; β) =
m∑
i=1

DT
i V−1i {Yi − g(Ai; β)} = 0, (4.1)

where bold g(Ai; β) denotes the ni-dimensional link function for the outcome vector Yi,

Di is the ni × p matrix defined by ∂g(Ai;β)
∂βT , and Vi is a ni × ni working covariance matrix

for Yi.

Di is composed of the ni-dimensional columns ~Di·0 = ∂g(Ai;β)
∂β0

and ~Di·1 = ∂g(Ai;β)
∂β1

.

Because of the cluster-randomized design, ~Di·0 and ~Di·1 are vectors of the form ~Di·p =

(Dip , Dip , . . . , Dip)T for p = 0, 1 (intercept and treatment effect), with

Di0 =
∂g(Ai; β)

∂β0
=

exp(β0 + β1Ai)

(1 + exp(β0 + β1Ai))

(
1− exp(β0 + β1Ai)

(1 + exp(β0 + β1Ai))

)
= π(Ai){1− π(Ai)}

(4.2)

Di1 =
∂g(Ai; β)

∂β1
=

exp(β0 + β1Ai)Ai
(1 + exp(β0 + β1Ai))

(
1− exp(β0 + β1Ai)Ai

(1 + exp(β0 + β1Ai))

)
= π(Ai){1− π(Ai)}Ai,

where π(Ai) = E(Yij|Ai). We recall that Di is evaluated using an initial estimator β̂init,

usually obtained from standard logistic regression that does not account for clustering.

The inverse working covariance matrix V−1i can be broken down into its columns

and scalar elements. Let V−1i =
[
~V −1i·1

~V −1i·2
· · · ~V −1i·ni

]
, where ~V −1i·j

is the jth column of

V−1i , and V −1iq,j
represents the scalar element in the qth row, jth column. Using this construc-

tion, after some matrix algebra, a closed form solution for β under a cluster randomized
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design is given by

β̂0 = logit

[ n∑
i=1

{
I(Ai = 0)Di0

∑
q,j≤ni

V −1iq,j

}]−1 [ n∑
i=1

{
( ~Di·0 − ~Di·1)

T

ni∑
j=1

(~V −1i·j
Yij)

}]
(4.3)

β̂1 = logit

[ n∑
i=1

{
I(Ai = 1)Di1

∑
q,j≤ni

V −1iq,j

}]−1 [ n∑
i=1

{
~DT
i·1

ni∑
j=1

(~V −1i·j
Yij)

}]− β̂0
This solution can be simplified using the working covariance structure. Under

exchangeable correlation, Viq,q = φ and Viq,j = ρ for q 6= j. We note working independence

as a special case with off-diagonal elements ρ = 0. Proceeding, let φ−1 and ρ−1 denote the

diagonal and off-diagonal elements of V−1i , respectively. The above simplifies to

β̂0 = logit

([
n∑
i=1

Di0I(Ai = 0)
{
niφ

−1 + ni(ni − 1)ρ−1
}]−1

×[
n∑
i=1

{
(Di0 −Di1){(ni − 1)ρ−1i + φ−1}

ni∑
j=1

Yij

}])
(4.4)

β̂1 = logit

([
n∑
i=1

I(Ai = 1)Di1{niφ−1 + ni(ni − 1)ρ−11 }

]−1
×[

n∑
i=1

{
Di1{(ni − 1)ρ−1 + φ−1}

ni∑
j=1

Yij

}])
− β̂0

In the case of the augmented GEE, we estimate β̂ using the augmented estimating

equations
m∑
i=1

[
DT
i V−1i

{
Yi − g(Ai; β)

}
− (Ai − π)γ̂(Xi)

]
= 0 (4.5)

where γ̂(Xi) =
[
Di(1)TVi(1)−1

{
f1(Xi; η̂1)−g(1; β)

}
−Di(0)TVi(0)−1

{
f0(Xi; η̂0)−g(0; β)

}]
.

Above, we take Di(k) = ∂g(k;β)
∂βT , Vi(k) = Vi evaluated under treatment k, and

fk(Xi; η̂k) = Ê[Yi|Ai = k,Xi] for k = 0, 1. Vectors ~Di·p(k), ~V −1i·j
(k), and scalars Dip(k),

V −1q,j (k) are defined similarly as above, evaluated under treatment k. For brevity, we write

Fki below, where Fki=fk(Xi; η̂k). Solutions for β̂0 and β̂1 are given by
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β̂0 = logit

([
(1− π)

n∑
i=1

{
Di0(0)

∑
q,j≤ni

V −1iq,j
(0)

}]−1
×

n∑
i=1

[
ni∑
j=1

{
( ~Di·0 − ~Di·1)

TV −1i·j
Yij − (Ai − π)

(
− ~Di·0(0)~V −1i·j

(0)F0ij

)}])
(4.6)

β̂1 = logit

([
π

n∑
i=1

{
Di1(1)

∑
q,j≤ni

V −1iq,j
(1)

}]−1
×

n∑
i=1

[
ni∑
j=1

{
( ~DT

i·1V
−1
i·j
Yij)− (Ai − π)

(
~Di·1(1)T~V −1i·j

(1)F1ij

)}])
− β̂0,

The simplified expression in case of exchangeable structure is

β̂0 = logit

([
(1− π)

n∑
i=1

Di0(0){niφ−1 + ni(ni − 1)ρ−10 }

]−1
×

n∑
i=1

[
(Di0 −Di1){(ni − 1)ρ−1i + φ−1i }

ni∑
j=1

Yij−

(Ai − π)

{
−Di1(0){(ni − 1)ρ−10 + φ−10 }

ni∑
j=1

F0ij

}])
(4.7)

β̂1 = logit

([
π

n∑
i=1

{
Di1(1){niφ−11 + ni(ni − 1)ρ−11 }

}]−1
×

n∑
i=1

[
Di1{(ni − 1)ρ−1i + φ−1i }

ni∑
j=1

Yij−

(Ai − π)

{
Di1(1){(ni − 1)ρ−11 + φ−11 }

ni∑
j=1

F1ij

}])
− β̂0,

where we maintian the index i in Dip(k) to be consistent with the unsimplified

expressions above, in which the index i on ~Di·p(k) is retained to be mindful of varying

cluster size. The quantity Dip(k), however, is a fixed function of E(Yij|Ai = k).

Appendix B: Variance Estimators

Let Yi be the ni-dimensional response vector, Ai the scalar treatment variable, and

Xi a collection of baseline covariates potentially at the cluster and individual level. The
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modelE(Yi|Ai) = g(Ai; β) is assumed, and the estimator β̂ is obtained by solving the aug-

mented estimating equations detailed in Section 1.2. Recall that Vi is a working covari-

ance matrix as typically used in GEE for estimating coefficients in restricted moment mod-

els and π=P (Ai = 1). Formulas for the variance estimators discussed in Section 1.3 are

presented below. The asymptotic variability of β̂aug is shown to be var(β̂aug) = Γ−1∆Γ−1
T ,

where Γ = E
[
∂ψiopt (Y,A,X;β)

∂βT

]
, and ∆ = E

[
ψiopt(Y, A,X; β)

⊗
2
]
, with U

⊗
2 = UUT. In each

of the below, Γ̂ = m−1
∑

i Di
TVi

−1Di. The four variance estimators considered are:

1. ˆvar1(β̂aug) = Γ̂−1∆̂Γ̂−1
T , where ∆̂ = m−1

n∑
i=1

ψ̂
⊗

2
iopt

, and

ψ̂iopt(Y, A,X; β) = DT
i V−1i

{
Yi − g(Ai; β̂aug)

}
− (Ai − π)×[

Di(1)TVi(1)−1
{
f1(Xi; η̂1)− g(1; β̂aug)

}
−Di(0)TVi(0)−1

{
f0(Xi; η̂0)− g(0; β̂aug)

}]

2. ˆvar2(β̂aug) = Γ̂−1∆̂∗Γ̂−1
T , where ∆̂∗ = m−1

n∑
i=1

(Hiψ̂i)
⊗

2, and Hi is a diagonal matrix

with Hijj =
[
1−min{q, (∂ψi(Yi,A,Xi;β)

∂βT × Γ̂)jj}
]−1/2

{Fay and Graubard (2001)}, and

ψ̂i = ψ̂i(Y, A,X; β) is as defined in 1).

3. ˆvar3(β̂aug) = Γ̂−1∆̃Γ̂−1
T , where ∆̃ = m−1

n∑
i=1

ψ̃
⊗

2
iopt

, and

ψ̃iopt = DT
i V−1i

{
Yi − g(Ai; β̂aug)

}
−

(Ai − π)×[
Di(1)TVi(1)−1

{
f1(Xi; η̂1)− g(1; β̂aug)

}
−Di(0)TVi(0)−1

{
f0(Xi; η̂0)− g(0; β̂aug)

}]
−

(Ai − π)×[
Di(1)TVi(1)−1

{
f ′1(Xi; η̂1)

}
ζ̂1(Yi,Xi; η̂1)−Di(0)TVi(0)−1

{
f ′0(Xi; η̂0)

}
ζ̂0(Yi,Xi; η̂0)

]
.

ζ̂k(Yi,Xi; η̂) is the first order approximation of the term (η̂k − η∗) that results

from estimation of ηk in E(Yi|Xi, Ai). If E(Yi|Xi, Ai) is estimated by linear re-

gression, ζ̂k(Yi,Xi; η̂) =

(
n∑
i=1

XT
i Xi

)−1 n∑
i=1

XT
i (Yi − Xiη̂k). For nonlinear mod-

els, in which E(Yi|Xi, Ai) = µ(Xi; ηk), (η̂k − η∗k) may be approximated by
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(
n∑
i=1

FT
i W−1

i Fi

)−1 n∑
i=1

FT
i W−1

i (Yi − µ(Xi; η̂k)), where Fi = ∂µk(Xi;η)
∂η

∣∣∣∣
ηk=η̂k

, and Wi

is a diagonal matrix withWijj=φµν(µ), following from generalized linear model the-

ory. The function ν(µ) denotes the variance function and φµ the dispersion parame-

ter. We include the subscript µ in φµ to distinguish from φ involved in characterizing

V (Yij|Ai) in the main text.

4. ˆvar4(β̂aug) = Γ̂−1∆̃∗Γ̂−1
T , where ∆̃∗ = m−1

∑
i(Hiψ̃i)

⊗
2, with ψ̃ and Hi are as defined

above.

In 2) and 4), the lower bound q is typically set to 0.75 to prevent gross inflation Fay

and Graubard (2001).
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Appendix C: Additional Simulations

Table 4.1: Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high
association, ρ = 0.05. Std: unaugmented. Correlation is exchangeable for all estimators.
C,F,O,W: augmentation with ’Correct’,’Forward’ selected, ’One-variable’, or ’Wrong’ model. ML,
OLS: augmentation fit with maximum likelihood or ordinary least squares. SE: average unad-
justed sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the
Monte Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich
SE.

Estimator β̂1 Bias SE MC SE MC RE Coverage
m=250, low Std -0.3036 0.0077 0.0739 0.0778 1.0000 0.936

C - ML -0.3029 0.0069 0.0705 0.0744 1.0951 0.935
C - OLS -0.3032 0.0072 0.0710 0.0750 1.0778 0.937
F - ML -0.3023 0.0064 0.0701 0.0753 1.0683 0.935
F - OLS -0.3026 0.0066 0.0703 0.0757 1.0571 0.937
O - ML -0.3033 0.0073 0.0717 0.0752 1.0704 0.937
O - OLS -0.3033 0.0073 0.0717 0.0754 1.0658 0.935
W - ML -0.3034 0.0075 0.0728 0.0768 1.0271 0.938
W - OLS -0.3035 0.0075 0.0728 0.0768 1.0258 0.938

m=250, high Std 1.1310 0.0052 0.0567 0.0576 1.0000 0.943
C - ML 1.1314 0.0047 0.0489 0.0497 1.3429 0.940
C - OLS 1.1313 0.0049 0.0496 0.0505 1.2989 0.943
F - ML 1.1314 0.0047 0.0485 0.0502 1.3156 0.937
F - OLS 1.1314 0.0048 0.0491 0.0510 1.2719 0.941
O - ML 1.1312 0.0050 0.0501 0.0509 1.2799 0.934
O - OLS 1.1313 0.0048 0.0506 0.0512 1.2651 0.941
W - ML 1.1310 0.0051 0.0531 0.0542 1.1301 0.938
W - OLS 1.1310 0.0051 0.0533 0.0542 1.1266 0.937

118



Table 4.2: Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high
association, ρ = 0.05. Std: unaugmented. Correlation is exchangeable for all estimators.
C,F,O,W: augmentation with ’Correct’,’Forward’ selected, ’One-variable’, or ’Wrong’ model. ML,
OLS: augmentation fit with maximum likelihood or ordinary least squares. SE: average unad-
justed sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the
Monte Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich
SE.

Estimator β̂1 Bias SE MC SE MC RE Coverage
m=250, low Std -0.2299 0.0135 0.1164 0.1190 1.0000 0.938

C - ML -0.2290 0.0126 0.1144 0.1173 1.0293 0.936
C - OLS -0.2293 0.0129 0.1146 0.1175 1.0256 0.935
F - ML -0.2276 0.0112 0.1135 0.1185 1.0077 0.932
F - OLS -0.2280 0.0116 0.1135 0.1187 1.0041 0.933
O - ML -0.2294 0.0130 0.1150 0.1175 1.0253 0.935
O - OLS -0.2295 0.0130 0.1150 0.1176 1.0234 0.935
W - ML -0.2296 0.0131 0.1155 0.1188 1.0020 0.931
W - OLS -0.2297 0.0132 0.1155 0.1188 1.0021 0.932

m=250, high Std 1.0429 0.0072 0.0883 0.0887 1.0000 0.944
C - ML 1.0436 0.0065 0.0835 0.0848 1.0936 0.949
C - OLS 1.0435 0.0066 0.0839 0.0851 1.0871 0.948
F - ML 1.0442 0.0059 0.0828 0.0858 1.0694 0.938
F - OLS 1.0444 0.0058 0.0831 0.0860 1.0643 0.941
O - ML 1.0433 0.0068 0.0842 0.0851 1.0863 0.951
O - OLS 1.0435 0.0067 0.0844 0.0851 1.0861 0.949
W - ML 1.0431 0.0070 0.0859 0.0869 1.0409 0.951
W - OLS 1.0431 0.0070 0.0860 0.0869 1.0406 0.950
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Appendix D: Deriving the Efficient Score

Let Oi = (Yi, Ai,Xi), where Yi = (Yi1, Yi2, ...Yini
)T is the ni-dimensional response

vector for the ith independent unit, i = 1, ...,m, Ai is a scalar treatment assignment,

and Xi is a matrix of auxiliary covariates. For data Oi augmented estimating functions

ψiaug(Oi, t; β, h, γ) are constructed by (2.4). The optimal index hopt(A, t) is determined by

solving the generalized information equality

−E

[
∂ψ{Y, A,X, t; β, γ, h(·)}

∂βT

∣∣∣∣
β=β0

]
=

E

[
ψ{Y, A,X, t; β, γ, h(·)}ψT{Y, A,X, t; β, γ, hopt(·)}

∣∣∣∣
β=β0

]
, (4.8)

for hopt, where h(·) is any p× ni function such that E[ψTψ] <∞.

Conditioning on t, h(A, t) takes up to K different matrix values,

h0(t), h1(t), ..., hK−1(t), which may be denoted by K p × ni constant matrices

h0,h1, ...,hK−1. Similarly, we define ∆k(X) = E(Y|A = k,X, t) − g(k, t; β), the

ni-dimensional vector of the difference in the conditional and marginal mean out-

comes under treatment k, where k = 0, 1, ..., K − 1. Using this construction, let

h = [h0,h1, ...,hK−1] and ∆K(X) = {∆T
0 (X), ...,∆T

K−1(X)}T. The complete index matrix

h is therefore of dimension p × Kni, while ∆K is a Kni-dimensional vector. Estimating

functions are then expressed concisely through defining two auxiliary matrix functions

of A. Let A be the Kni × ni matrix A = [I(A = 1)In, ..., I(A = K)In]T and Aπ be the

Kni ×Kni block diagonal matrix composed of the diagonal matrices {I(A = k) − πk}In,

where In denotes the ni × ni identity matrix.

Rewriting (2.4) using this notation, we obtain

n∑
i=1

hiAi{Yi − g(Ai, t; β)} − hAπi i∆i(Xi) = 0. (4.9)

Substituting this expression into Newey’s equations we have
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E

[
hA

∂g(A, t; β)

∂βT

]
= E

[
{hA(Y − g(A, t; β))− hAπ∆K(X)}× (4.10)

{(Y − g(A, t; β))TAhT
opt −∆T

K(X)Aπh
T
opt}

]
We first note that since h and hopt are constant, we can extract them from the

expectation, leaving

hTE

[
A
∂g(A, t; β)

∂βT

]
= hTE

[
{A(Y − g(A, t; β))−Aπ∆K(X)}×

{(Y − g(A, t; β))TA−∆T
K(X)Aπ}

]
hT
opt (4.11)

Since h is nonzero, it must hold that

E

[
A
∂g(A, t; β)

∂βT

]
=

E
[
{A(Y − g(A, t; β))−Aπ∆K(X)}{(Y − g(A, t; β))TA−∆T

K(X)Aπ}
]
hT
opt (4.12)

Evaluating the left hand side of the equation, we have

E




A0In
A2In

...
AK−1In

 ∂g(A, t; β)

∂βT

 =


π0

∂g(0,t;β)
∂βT

π1
∂g(1,t;β)
∂βT

...
πK−1

∂g(K−1,t;β)
∂βT

 (D∗)

Evaluating the right hand side, we note that we have an expression of the form E[A −

B][Aopt − Bopt]
T. Interpreting the augmented estimating function as a residual, we note

that A−B ⊥ Bopt. We can therefore evaluate E[A−B][Aopt−Bopt]
T = E[A−B][Aopt]

T. In

(4.12), this becomes

E[A{Y − g(A, t; β)}{Y − g(A, t; β)}TA]− E[Aπ∆(X){Y − g(A, t; β)}TA] (4.13)

Regarding the first term in (4.13), we have

E[A{Y − g(A, t; β)}{Y − g(A, t; β)T}A] =

E


A0A0{Y − g(A, t; β)}

⊗
2 · · · A0AK−1{Y − g(A, t; β)}

⊗
2

A1A0{Y − g(A, t; β)}
⊗

2 · · · A1AK−1{Y − g(A, t; β)}
⊗

2

... . . . ...
AK−1A0{Y − g(A, t; β)}

⊗
2 · · · AK−1AK−1{Y − g(A, t; β)}

⊗
2

 , (4.14)
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where U
⊗

2=UUT. Since each individual is only assigned to one treatment, only one ofA0,

A1,...,AK−1 is nonzero. The non diagonal blocks of (4.14) are identically 0. The diagonal

blocks contain terms of the form E[AkAk{Y−g(A, t; β)}
⊗

2] = E[Ak{Y−g(A, t; β)}
⊗

2] =

πkV (Y|A = k).

Matrix (4.14) is written as
π0V (Y|A = 0) 0 · · · 0

0 π1V (Y|A = 1) · · · 0
...

...
. . .

...
0 0 · · · πK−1V (Y|A = K − 1)

 (C1)

Evaluating the second term of (4.13), we have

E[Aπ∆K(X){Y − g(A, t, β)}TA] =

E

{ (A0 − π0)In ... 0
... (A1 − π1)In

...
0 · · · (AK−1 − πK−1)In




∆0(X)
∆1(X)

...
∆K−1(X)

×
{Y − g(A, t; β)}T

[
A0In A1In · · · AK−1In

]}

=E




(A0 − π0)A0∆0(X)∆T
A(X) · · · (A0 − π0)AK−1∆0(X)∆T

A(X)

(A1 − π1)A0∆1(X)∆T
A(X)

. . . (A1 − π1)AK−1∆1(X)∆T
A(X)

... . . . ...
(AK−1 − πK−1)A0∆K−1(X)∆T

A(X) · · · (AK−1 − πK−1)AK−1∆T
A(X)




=


π0(1− π0)∆0(X)∆T

0 (X) · · · −π0πK−1∆0(X)∆T
K−1(X)

−π1π0∆1(X)∆T
0 (X)

. . . −π1πK−1∆1(X)∆T
K−1(X)

... . . . ...
−πK−1π0∆K−1(X)∆T

0 (X) · · · πK−1(1− πK−1)∆T
K−1(X)

 (C2)

From (C2), we see that generally, the second term of (4.13) contains block diagonal terms
πk(1− πk)EX

{
∆

⊗
2

k (X)
}

, and block off-diagonal terms −πjπkEX{∆j(X)∆T
k (X)}.

Referring to (4.12), we see that hopt = [C1 −C2]
−1D∗, as labeled above.
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