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Network-scale engineering: systems approaches to synthetic biology 

 

ABSTRACT 

 

 The field of Synthetic Biology seeks to develop engineering principles for biological systems. 

Modular biological parts are repurposed and recombined to develop new synthetic biological devices 

with novel functions. The proper functioning of these devices is dependent on the cellular context 

provided by the host organism, and the interaction of these devices with host systems. The field of 

Systems Biology seeks to measure and model the properties of biological phenomena at the network 

scale. We present the application of systems biology approaches to synthetic biology, with particular 

emphasis on understanding and remodeling metabolic networks. Chapter 2 demonstrates the use of 

a Flux Balance Analysis model of the Saccharomyces cerevisiae metabolic network to identify and 

construct strains of S. cerevisiae that produced increased amounts of formic acid. Chapter 3 describes 

the development of synthetic metabolic pathways in Escherichia coli for the production of hydrogen, 

and a directed evolution strategy for hydrogenase enzyme improvement. Chapter 4 introduces the 

use of metabolomic profiling to investigate the role of circadian regulation in the metabolic network 

of the photoautotrophic cyanobacterium Synechococcus elongatus PCC 7942. Together, this work 

demonstrates the utility of network-scale approaches to understanding biological systems, and 

presents novel strategies for engineering metabolism.
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Chapter 1 

Introduction 

 

 

 

“The beauty of a living thing is not the atoms that go into it, but the way those atoms are put 

together. Information distilled over 4 billion years of biological evolution. Incidentally, all the 

organisms on the Earth are made essentially of that stuff. An eyedropper full of that liquid could be 

used to make a caterpillar or a petunia if only we knew how to put the components together.”  

— Carl Sagan 

  



 2!

ON SYNTHETIC BIOLOGY1 

 As Synthetic Biologists, we study evolved biological systems to identify modular, reusable 

“parts,” and repurpose these parts to design biological devices with new functions. Our primary 

goal, which has yet to be fully realized, is to establish engineering design principles for biological 

systems. Through quantitative modeling and measurement, as well as trial and error, a vast array of 

synthetic devices have demonstrated that the rational design of biological systems is possible (for 

additional reviews, see Drubin et al. 2007; Agapakis & Silver 2009; Boyle & Silver 2009; Haynes & 

Silver 2009; Boyle & Silver 2011; Burrill et al. 2011). 

 The ability to construct novel biological systems has been facilitated by the cost of two 

essential technologies: DNA sequencing and DNA synthesis (Figure 1.1). High throughput 

sequencing technology has resulted in the sequencing of thousands of genomes throughout the 

known biosphere. This has generated a vast library of biological parts that can be integrated into 

new devices (Bayer et al. 2009). In addition, sequencing of entire bacterial genomes is quickly 

becoming a routine and affordable process (Qin et al. 2010). DNA synthesis remains approximately 

6 orders of magnitude more expensive than sequencing, but the synthesis of multi-kilobase DNA 

constructs is well within the resources of modern laboratories (Carlson 2010). DNA synthesis allows 

the design of constructs that are codon- and restriction site-optimized, a feature that would be 

difficult or prohibitively expensive to produce via polymerase chain reaction (PCR) and site-directed 

mutagenesis. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Portions of this chapter were originally published in the following papers: 

1. Boyle, P. M. & Silver, P. A. Harnessing nature's toolbox: regulatory elements for synthetic 
biology. Journal of the Royal Society, Interface / the Royal Society 6 Suppl 4, S535–46 (2009) 

2. Boyle, P. M. & Silver, P. A. Parts plus pipes: Synthetic biology approaches to metabolic 
engineering. Metab Eng (2011).doi:10.1016/j.ymben.2011.10.003 

The full text of these papers is included as Appendices B and C, respectively. Excerpts will be 
identified via footnotes in this chapter. 
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Figure 1.1 Cost of DNA sequencing and DNA synthesis during my time in graduate school 
Source: (Carlson 2010 and personal communication with Rob Carlson) 

 
 While advances in DNA synthesis have made it possible to construct any desired DNA 

sequence, the utility of this power has been limited by the lack of predictive tools that can accurately 

model how a novel genetic construct will behave in vivo. Given the complexity of biological systems, 

it is unlikely that every aspect of an organism can be measured and understood prior to engineering 

it. However, biological design principles can be developed to abstract biological systems into 

comprehensible components.  

 

BIOLOGICAL ABSTRACTION 

Synthetic biologists typically abstract biological organization into three basic levels of 

complexity: parts, devices, and chassis (Endy 2005; Andrianantoandro et al. 2006). The divisions 

between these levels are perhaps less well-defined than in other engineering disciplines (Agapakis & 

Silver 2009), but parts, devices, and chassis roughly correspond to genetic elements, collections of 

interacting genetic elements, and host cells, respectively. For example, promoters, open reading 

frames, and transcriptional terminators are considered to be parts; a set of open reading frames that 

interact in a regulated manner (e.g. transcriptional regulation or a metabolic pathway) are considered 
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to be devices; and organisms with tractable genetic tools such as Escherichia coli and Saccharomyces 

cerevisiae are considered to be chasses.  

 Chassis engineering is central to most metabolic engineering efforts: a chassis is selected for 

a desirable metabolic property (such as producing large amounts of ethanol from glucose in the case 

of S. cerevisiae), and carbon flux to competing reactions is minimized to improve product yields. The 

engineered relationship between a device and its host chassis will vary depending on the application. 

Some applications require that a synthetic device functions “orthogonally” to the host chassis, acting 

independent of host cell regulatory systems. Along these lines, minimal cell chassis and orthogonal in 

vivo translation systems have been proposed, to minimize the interference of host cell functions with 

synthetic devices (Forster & Church 2006). Alternatively, devices may be engineered to integrate 

with their host chassis. For example, synthetic biologists can reconfigure a “maximal chassis,” an 

organism with specific capabilities that can be leveraged by a synthetic device. Maximal chassis 

selection requires identifying genetically tractable species that most closely fit the desired application. 

Minimal chassis are less appropriate for industrial applications; they are not sufficiently flexible or 

robust for the conditions found in large-scale bioreactors (Keasling 2010). In fact, a variety of 

maximal chassis, such as S. cerevisiaie and Pichia pastoris, have been used to develop metabolic 

engineering strategies. We will briefly discuss emerging metabolic engineering strategies using 

synthetic biology approaches in a variety of chassis. 

 

ENGINEERING METABOLISM WITH SYNTHETIC BIOLOGY2 

 Metabolic Engineering3 can be considered as a specific application of Synthetic Biology: 

engineering the natural metabolism of a biological organism to produce a desired product (Boyle & 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!This section is adapted from Boyle and Silver, 2011!
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Silver 2011; Keasling 2008; Carothers et al. 2009; Yadav & Stephanopoulos 2010). Natural metabolic 

pathways are controlled by myriad regulatory systems, for example transcription factors and 

promoters, that can be repurposed by synthetic biologists to modulate pathway components (Figure 

1.2A). Ideally, a quantitative understanding of the transcription, translation, interactions, and kinetics 

of a metabolic pathway, as well as how that pathway interfaces with the host cell’s metabolism, 

enables tuning of pathway components to maximize product yields (Figure 1.2B). In practice, our 

ability to tune pathways has improved as the fundamental principles of metabolism and biological 

regulation continue to be discovered. 

Many synthetic regulatory devices to date have utilized elements of transcription, RNA 

processing, and translation to modulate device behavior (Boyle & Silver 2009). In the context of 

metabolic engineering, modifications to biological regulation are intended to maximize metabolic 

flux to the desired product. In most cases, this is accomplished via adjustments in enzyme 

expression levels, along with the elimination of competing pathways via gene knockout 

(Stephanopoulos 1999). 

The structure and function of evolved metabolic networks suggests that this process of 

pathway optimization requires an understanding of how control is distributed across the entire 

pathway (Dekel & Alon 2005; Fell 1997; Zaslaver et al. 2004). In essence, pathway optimization is a 

multivariate problem, with no single “rate limiting step” to target. Furthermore, simple over-

expression of pathway enzymes is often detrimental to product yields, through both the depletion of 

essential cellular reserves and the buildup of toxic metabolic intermediates (Alper, Miyaoku & 

Stephanopoulos 2005c; Jones et al. 2000; Raab et al. 2005). Efforts to model synthetic biological  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!The term “Metabolic Engineering” predates the term “Synthetic Biology” (Keasling 2010). In this 
thesis I use Metabolic Engineering to refer to the process of redirecting metabolic flux to a desired 
product. Some reviews (such as Yadav & Stephanopoulos 2010) discuss Synthetic Biology and 
Metabolic Engineering as representing different design philosophies; I prefer to consider all relevant 
approaches to redirecting metabolic flux as Metabolic Engineering. 
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Figure 1.2 Combining synthetic biological “parts” to engineer metabolic “pipes.” (A) 
Synthetic biologists use a variety of parts to adjust the functioning of metabolic pathways. 
Transcription machinery, enzyme promoters, ribosome binding sites (RBS), and translational 
machinery can be modified to adjust the concentration of an enzyme. RNA devices can modulate 
mRNA degradation and translation efficiency. Pathway enzymes can be assembled on scaffolds to 
optimize the spatial organization of a pathway. Genome editing approaches can be used to adjust 
host metabolism to improve flux through the target pathway. (B) A ‘‘pipe’’ of key pathway enzymes 
can be tuned to increase product titers. In this conceptual example, enzyme flux is represented by 
the size of the gray arrows. Metabolite concentrations are represented by the size of the circles 
between enzymes. In this example, increasing the concentration of the second and third enzymes in 
the pathway increases the titer of the product. Note that decreasing the concentration of 
intermediate metabolites can be beneficial; this is often the case when intermediates are harmful to 
the host cell. Increasing enzymes does not always improve product titers and can in fact be 
detrimental. Figure adapted from (Boyle & Silver 2011). 

!
circuits have also revealed that desired device behavior is highly dependent on the concentration of 

the device components within cells (Ajo-Franklin et al. 2007; Anderson et al. 2007; Elowitz & 

Leibler 2000). As a consequence, methods for the control of protein expression levels are essential 

to metabolic engineering and synthetic biology in general. 
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Pathway Control: The Rational Approach4 

 Rational pathway tuning approaches attempt to develop a quantitative understanding of a 

pathway to be engineered and to determine optimal enzyme expression levels a priori. In a non-

steady-state environment, endogenous metabolic pathways dynamically respond to changes in 

intracellular metabolite concentrations and changes in the external environment. Forward 

engineering of such metabolic pathways can be facilitated by a variety of standardized and 

characterized control elements available to the metabolic engineering community. Regulated gene 

expression (Beckwith 1967; Jacob & Monod 1961), RNA riboswitches (Mandal & Breaker 2004), 

and allosteric control of enzyme activity (Monod et al. 1963) provide this control over a wide range 

of contexts and timescales. Designing similar dynamics into engineered pathways could improve the 

performance of engineered strains at industrial scales, where reactor conditions are not always 

uniform (Holtz & Keasling 2010). 

 For decades, promoter elements have been used to modify gene expression (Reznikoff et al. 

1969). In recent years, a number of groups have assembled and characterized promoter libraries for 

common industrial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris (Alper, 

Fischer, Nevoigt & Stephanopoulos 2005b; Cox et al. 2007; Davis et al. 2010; Hartner et al. 2008; 

Nevoigt et al. 2006). In each case, native promoters were mutated or recombined to generate a 

group of promoters of varying strengths. Work has begun to develop standard metrics for promoter 

characterization, but remains dependent on high-throughput screening of promoter libraries rather 

than in silico prediction (Bayer 2010; Kelly et al. 2009). This issue is compounded by the contextual 

variability of expression levels in response to environmental factors such as temperature or carbon 

source (Kelly et al. 2009). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!This section is adapted from Boyle and Silver, 2011!
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 Ribosome Binding Sites (RBS) mediate translation initiation, with variation in RBS sequence 

directly affecting translation efficiency. Thermodynamic models of translation initiation have been 

generated that now allow a priori design of RBS appropriate for a desired expression level. The RBS 

Calculator (http://salis.psu.edu/software/) generates a customized RBS for a given gene based on 

the desired translation initiation rate, gene sequence, and host organism. The RBS Calculator was 

successfully utilized to predict RBS combinations that would permit the desired operation of a 

synthetic AND gate (Salis et al. 2009), a device that is highly dependent on the expression levels of 

the inputs to produce AND gate output (Anderson et al. 2007). 

 Modification of RNA degradation rates can also control steady-state expression levels. In S. 

cerevisiae, the Rnt1p RNAse recognizes and cleaves a specific class of RNA hairpin (Lamontagne et 

al. 2003). When Rnt1p target hairpins are placed in the untranslated region (UTR) of an mRNA 

transcript, Rnt1p degradation lowers the effective expression level of the target gene. A library of 

variable Rnt1p target hairpins has been constructed that permits quantitative control of S. cerevisiae 

gene expression (Babiskin & Smolke 2011).  

 Modular RNA elements can be designed to provide a dynamic response to intracellular 

metabolite levels. Riboswitches are natural RNA elements that undergo a conformational change in 

response to a small-molecule ligand. When riboswitches are part of an mRNA molecule, this 

conformational change modulates the translation of the mRNA sequence. (Nahvi et al. 2002; 

Stoddard & Batey 2006). Many riboswitches have been discovered in untranslated regions of 

mRNAs encoding for metabolic enzymes, offering a post-transcriptional layer of control over 

enzyme levels. 

The potential for RNA-based multisite pathway modulation is exemplified in the 11 known 

S-adenosylmethionine (SAM) dependent riboswitches of Bacillus subtilis. In B. subtilis, much of the 

methionine biosynthesis pathway is regulated by SAM dependent riboswitches. These riboswitches 
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function primarily through SAM-dependent conformational changes that trigger premature 

transcriptional termination, although a smaller subset disrupts translation initiation instead. 

Remarkably, each of the 11 riboswitches is independently tuned to a different SAM concentration. 

Furthermore, the termination efficiency of each SAM riboswitch in both the ligand bound and 

unbound conformations are different for each gene (Tomsic et al. 2008). Augmenting engineered 

metabolic pathways with small-molecule responsive RNA regulators could offer similarly distributed 

control (Beisel & Smolke 2009). 

 A variety of synthetic RNA regulators have been designed to control gene expression. 

Synthetic RNA regulators can interact in cis with mRNA via aptamer domains to respond to small 

molecules (Bayer & Smolke 2005; Win & Smolke 2008), or make use of trans-acting RNA elements 

expressed off of an inducible promoter (Callura et al. 2010; Isaacs et al. 2004). Robust methods have 

been developed for the selection of RNA aptamer domains (Gilbert & Batey 2005), and modular 

RNA elements can be combined to generate higher-order behaviors. For example, pairs of RNA 

aptamer domains alternately promoting or inhibiting translation of a transcript can serve as 

“bandpass filters,” permitting mRNA translation between the range of concentrations set by the 

aptamer domains (Win & Smolke 2008). Combining promoters and RBS tuned for steady-state 

performance with dynamically regulated RNA regulators may improve the robustness of engineered 

pathways. 

 

Pathway Control: The Rationally Irrational Approach5 

Rational efforts to control pathways with standardized parts have made progress towards 

making biology “engineerable,” yet the complexity of biological systems has kept this process firmly 

in the trial and error stage. Even synthetic devices with well-defined parameters for desired behavior 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5!This section is adapted from Boyle and Silver, 2011!
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require exhaustive characterization of the biological components to achieve functionality (Ajo-

Franklin et al. 2007; Anderson et al. 2007). However, trial and error through the process of 

evolution has generated the biological diversity that synthetic biologists seek to redesign. In addition 

to traditional engineering principles, engineers of biological systems have access to the tools of 

selection and evolution, which can be leveraged to discover improvements to metabolic pathways. 

The ability to use these “rationally irrational” approaches is a core advantage to engineering 

biological systems. 

 Early metabolic engineering efforts relied on genomic mutagenesis to generate strains with 

desired properties (Stephanopoulos 1999). If the phenotype of interest is accessible via a single 

mutation, mutagenesis is an acceptable approach. If the desired phenotype requires multiple 

mutations, however, the combinatorial expansion of the library size required to identify that 

phenotype makes untargeted mutagenesis practically infeasible (Dietrich et al. 2010). Generating 

variation in a targeted subset of the genome enriches the resulting library for mutants with relevant 

phenotypes (Carr & Church 2009). 

Mutagenesis of the cellular transcriptional machinery can be used to adjust gene expression 

levels. In engineered cells, endogenous regulation often interferes with the functioning of 

heterologous pathways. Global Transcription Machinery Engineering (gTME) is an approach that 

modifies relative transcription rates across all genes simultaneously by selectively mutagenizing genes 

involved in the initiation of transcription. For example, mutagenesis of the S. cerevisiae TATA-

binding protein SPT15 and selection for improved ethanol tolerance yielded a mutant with a 20% 

higher biomass yield than the parent strain (Alper et al. 2006). GTME in E. coli, targeting the primary 

sigma factor σ70, saw similar gains when applied to ethanol tolerance as well as 50% gains when 

applied to lycopene production (Alper & Stephanopoulos 2007). 
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A more targeted approach to pathway adjustment is to selectively alter the regulation of 

pathway genes. Introducing RNAse cleavage sites or hairpin structures that alter mRNA stability 

into intergenic regions can result in different translation rates for two ORFs on the same mRNA 

(Smolke et al. 2000). Tunable Intergenic Regions (TIGR) are synthetic RNA constructs that include 

two hairpins joined by an RNAse cleavage site, and can be used to connect co-transcribed ORFs. 

Libraries of TIGR elements with a wide variety hairpin structures can be inserted between two co-

transcribed genes to screen for optimal translation ratios (Pfleger et al. 2006). 

 New mutagenesis strategies are enabling iterative and simultaneous mutation of gene 

regulatory elements. Multiplex Automated Genome Engineering (MAGE) is a high throughput 

technique for the directed evolution of microbial genomes (Wang et al. 2009). MAGE combines 

both rational design and directed evolution approaches; specific genomic targets are selected for 

mutagenesis. For each genomic target, pools of degenerate oligonucleotides that retain homology to 

the target sequence are electroporated into the cells to be engineered. Multiple pools of 

oligonucleotides can be combined in a single electroporation step, allowing multiple genomic loci to 

be modified simultaneously. Iterative rounds of electroporation and growth generate a mixed 

population of cells with a variety of mutations at loci of interest. 

 Combinatorial approaches are powerful tools for pathway optimization because they can 

adjust multiple gene levels simultaneously. Iterative pathway improvement, in which a single gene 

level is adjusted at a time, can fail to identify global maxima accessible by simultaneous perturbation 

(Alper & Stephanopoulos 2007). Both gene knockout and up-regulation studies have shown that 

mutations often interact in a cooperative and non-linear manner with regards to metabolite 

production (Kennedy et al. 2009). As a further complication, many modern metabolic engineering 

efforts involve the heterologous expression of enzymes from several different species in an un-

optimized host (Agapakis et al. 2010; Bayer et al. 2009; Martin et al. 2003; Ro et al. 2006). 
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Engineering these chimeric pathways to interface with host metabolism demands that the many 

factors be adjusted simultaneously.  

Generating genomic or pathway-specific variation in gene regulation is only the first step in 

pathway optimization. Each approach outlined in this section was paired with a screening or 

selection strategy to identify improved product yields. Pathways that are not observable via high-

throughput assays are less amenable to screening approaches. Selection strategies that connect 

pathway output to cell viability are designed ad hoc, and success is not guaranteed (Dietrich et al. 

2010). The lack of generalized methods for pathway screening and selection currently limits the 

broad application of combinatorial pathway optimization methods. 

 

MODELING METABOLIC NETWORKS6 

 Computational models of metabolism can enhance engineering efforts. The state of the 

cellular metabolic network is a function of the network topology, the physical properties of enzymes, 

and the regulation of enzyme levels and activity. While no model has captured the complete 

complexity of a genome-scale metabolic network, constraint-based approaches have yielded models 

sufficient for making predictions that can then be validated by rational or irrational experimental 

approaches. 

 At the network scale, constraint-based metabolic models utilize the stoichiometry of the 

metabolome to predict metabolic fluxes. Most constraint-based metabolic models are based on the 

framework of Flux Balance Analysis (FBA), a technique that simulates the entire metabolic network 

of an organism (Varma & B. O. Palsson 1994). The only required parameter for an FBA model is a 

stoichiometric matrix that contains all known metabolic reactions of an organism. Constraints are 

placed on certain fluxes, defining nutrient availability and relative uptake rates, as well as 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 This section is adapted from Boyle and Silver, 2009!
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thermodynamic constraints on the reversibility of reactions. It is assumed that at steady state, the net 

flux of the system is fixed. The model is then solved for the optimization of an objective function 

such as maximization of biomass. Since FBA models do not consider enzymatic parameters beyond 

the stoichiometry of each reaction, the availability of comprehensive databases such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.com) has fostered the 

development of FBA models for many organisms (Varma & B. O. Palsson 1994; Duarte et al. 2004; 

Becker & B. Ø. Palsson 2005; Feist et al. 2007; Lee et al. 2008; Senger & Papoutsakis 2008). Due to 

the genome-scale power of constraint-based models, in silico screens have been applied to predict 

gene essentiality (Edwards & B. O. Palsson 2000; Thiele et al. 2005; Samal et al. 2006; Becker & B. 

O. Palsson 2008), and to the related metabolic engineering problem of predicting gene knockouts 

for strain optimization (Burgard et al. 2003; Alper, Jin, Moxley & Stephanopoulos 2005a; Kennedy 

et al. 2009).  

 The successful application of FBA in a variety of organisms demonstrates the utility of 

constraint-based models in the context of metabolism. However, even in the unlikely case that 

enzyme kinetics are unimportant to determining metabolic flux, traditional FBA models assume that 

a cell’s entire complement of enzymes are available at all times. Regulation can be modeled 

implicitly, via methods such as minimization of metabolic adjustment (MOMA), which assumes that 

regulation will force mutant flux distributions to be as similar to the wild-type distribution as 

possible (Segrè et al. 2002). Models such as regulatory FBA (rFBA) attempt to explicitly model 

regulation by switching fluxes on and off based on experimental data of enzyme expression in 

various growth conditions (Covert et al. 2001; Covert & B. Ø. Palsson 2002; Herrgård et al. 2006). 

 For the foreseeable future, network scale models of metabolism will serve to augment—but 

not replace—trial and error design. More complex kinetic models of metabolism suffer from 

combinatorial increases in complexity when scaled up, making them inadequate for network scale 
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models (Schuster et al. 1999). In the absence of perfect models, experimental data can be used to 

reveal key oversights in model predictions. 

 

MEASURING METABOLIC NETWORKS7 

In many ways, metabolites are the “dark matter” of the cell—their existence, intracellular 

concentrations, and fluxes are difficult to derive from genomic information and difficult to 

experimentally measure (Blow 2008). Combining tools for characterizing the status of the 

metabolome with robust metabolic models is a foundational mission for systems and synthetic 

biology.  

Multiple studies have attempted to reconcile transcriptome data with proteomic or 

metabolomic measurements in engineered cells (Bradley et al. 2009; Fendt et al. 2010; Ishii et al. 

2007; Moxley et al. 2009). The integration of –omics level data with network-scale metabolic models 

enhances both a priori prediction and post hoc evaluation of metabolic engineering. In particular, 

developing quantitative models for the relationship between transcript levels and metabolite pools 

and fluxes would allow metabolomic data to be inferred from the vast number of microarray 

datasets that are already available (Yizhak et al. 2010). The chemically uniform nature of mRNA 

transcripts allows the reliable collection of total mRNA in a single extraction condition. Due to the 

chemical diversity of small molecules within cells, extraction conditions limit the extent of the 

metabolome that is observed (Yanes et al. 2011).  

Coordination between gene expression and metabolite concentrations appears to be 

dependent on how is a system is perturbed. Comparison of the E. coli transcriptome and 

metabolome over a range of growth rates revealed that enzyme transcript and protein levels 

increased with increasing growth rates, while metabolite pools remained steady (Ishii et al. 2007). It 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 This section is adapted from Boyle and Silver, 2011 
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was also noted that gene deletions that reverse the flux direction of the pentose phosphate pathway 

did not significantly alter enzyme levels or metabolite pool sizes. Furthermore, metabolic enzymes 

did not appreciably up-regulate to compensate for enzyme knockouts (Ishii et al. 2007). On the 

other hand, a study comparing the transcriptome and metabolome of S. cerevisiae during carbon and 

nitrogen starvation observed coordinated changes in expression and metabolite levels(Bradley et al. 

2009). 

Further work is required to identify contexts in which transcript levels correlate to 

metabolite concentrations. Comparison of the above studies suggests a differential metabolic 

response to enzyme knockouts versus shifting media conditions (Bradley et al. 2009; Ishii et al. 

2007); this could be a consequence of evolutionary selection for robustness against condition 

changes (Cornelius et al. 2011; Segrè et al. 2002). Alternatively, E. coli and S. cerevisiae may simply 

respond differently to metabolic perturbations.  

A significant confounding issue is that major metabolic flux alterations can occur without 

major shifts in enzyme or metabolite concentrations (Fell 1997; Ishii et al. 2007). Two recent studies 

measured transcriptomic and metabolomic shifts in S. cerevisiae in response to the deletion of global 

regulatory genes rather than enzymes (Fendt et al. 2010; Moxley et al. 2009). Following the deletion 

of the Gcn4p, a global stress response regulator, metabolites that were involved in many enzymatic 

reactions had the most influence on flux through their respective pathways (Moxley et al. 2009). This 

raises the possibility of utilizing network topology to inform metabolic engineering. In the case of 

central carbon metabolism, deletion of the glycolysis-activating transcription factor Gcr2p showed a 

negative correlation between enzyme levels and associated metabolite levels (Fendt et al. 2010). This 

could be indicative of a buffering phenomenon, in which changes in metabolite pools counteract 

enzyme concentration changes to maintain a steady pathway flux. 
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A grand unifying theory of metabolism has not yet arisen from these meta-omics studies. It 

is possible that a truly general relationship between gene expression and metabolic concentrations 

does not exist. Overall, however, it appears that evolved metabolic networks are quite robust in 

response to genetic and environmental perturbations. This is corroborated by many of the metabolic 

engineering efforts that we have reviewed, in which multiple perturbations were required to improve 

product yields. Integrative data from –omics scale datasets may help to identify genes that contribute 

to the observed resistance to perturbations in pathways of interest. 

 

TOWARDS AN ENGINEERING DESIGN CYCLE FOR BIOLOGY 

 The work presented in this dissertation is intended to assist the ongoing effort to develop 

true engineering design cycles for biological systems. Predictable rational design is a universal feature 

of all engineering disciplines. Rational design of biological systems continues to improve as new 

models and genomic engineering techniques are developed. Irrational design, based on mutagenesis 

and directed evolution, is an advantageous quality of biological systems that should be used to the 

engineer’s benefit. This dissertation presents applications of both rational and irrational design in a 

variety of contexts. 

 During my time in the Silver laboratory we established ourselves as a “species independent” 

synthetic biology lab: we chose to work with organisms based on genetic tractability, chassis-specific 

metabolic properties, and applicability to an interesting biological problem. As a result, my fellow 

labmates and I have worked on a wide array of organisms over the last six years. In particular, I have 

personally worked on S. cerevisiae, E. coli, Synechococcus elongatus, and Arabidopsis thaliana as a graduate 

student (Figure 1.5). We extracted and cloned DNA from acetobutylicum8 to Zea mays to obtain parts  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8!Clostridum acetobutylicum, to be exact. 
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Figure 1.3 The Yeast Metabolic Network. Blue nodes represent genes, green nodes represent 
enzymatic reactions. The three white nodes represent knockouts selected by the FBA model used in 
Chapter 2 to improve formic acid production. This image was originally published as cover art for 
Genetics 183(1) (2009). 
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!
Figure 1.4 The Silver Lab Metabolic Engineering Master Plan (2007) 

!
!

!
Figure 1.5 Approximate time period in which each organism was utilized as a chassis. 
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to test in these chasses. We are entering an era of “Synthetic Metagenomics,” in which novel 

metabolic pathways can be constructed from optimal combinations of enzymes that originated in 

many different species (Bayer et al. 2009). Studying and engineering metabolism in diverse contexts 

also highlights the features of metabolic networks that are common to all species. 

 In chapter 2, I present a project in which a computational model of S. cerevisiae metabolism 

was used to identify gene deletions that would lead to increased formic acid production. Model 

predictions were validated experimentally, demonstrating that the top hit in our computational 

screen did in fact improve formic acid titers. This work demonstrates the utility of network-scale 

approaches in metabolic engineering: a genome-scale FBA model of metabolism was used to 

establish our predictions, and microarray analysis identified unanticipated regulatory interventions 

that negatively impacted product yields. 

 In chapter 3, I present my contributions to our laboratory’s efforts to optimize the function 

of [FeFe]-hydrogenases. We tested a variety of synthetic biology concepts during the course of this 

work: we cloned enzymes from numerous species to optimize the heterologous production of 

hydrogen in E. coli, systematically deleted host metabolic reactions that competed with our synthetic 

hydrogen pathway, and designed genetic selections to “irrationally” identify hydrogenase mutants 

with improved oxygen tolerance. 

 In chapter 4, I demonstrate the application of network-scale measurements to understanding 

metabolic networks. Targeted liquid chromatography/mass spectrometry was used to track over 200 

metabolites in the model cyanobacterium S. elongatus PCC 7942. While this work has metabolic 

engineering implications in that it improves our understanding of S. elongatus metabolism, it also 

addresses basic questions regarding metabolic responses to transcriptional regulation. 

 I have also included several papers as Appendices that I wrote during the course of my 

graduate work that are supplemental to the main narrative of this dissertation. Appendices B and C 
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include the full text of two reviews on synthetic biology that contributed to this introduction 

chapter. Appendix D presents a review that I wrote with Devin Burrill on the application of 

Synthetic Biology to human metabolic disease. Appendix E presents a research paper that I wrote 

with the members of the 2010 Harvard team for the International Genetically Engineered Machines 

(iGEM) competition. In Appendix F, Christina Agapakis and I review spatial methods for 

optimizing metabolic pathways. 
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Chapter 2 

Systems-level engineering of non-fermentative metabolism in 

yeast1 

 

ABSTRACT 

We designed and experimentally validated an in silico gene deletion strategy for engineering 

endogenous one-carbon (C1) metabolism in yeast.  We used constraint-based metabolic modeling 

and computer-aided gene knockout simulations to identify five genes (ALT2, FDH1, FDH2, FUM1, 

and ZWF1), which, when deleted in combination, predicted formic acid secretion in Saccharomyces 

cerevisiae under aerobic growth conditions. Once constructed, the quintuple mutant strain showed the 

predicted increase in formic acid secretion relative to a formate dehydrogenase mutant (fdh1 fdh2), 

while formic acid secretion in wild-type yeast was undetectable. Gene expression and physiological 

data generated post hoc identified a retrograde response to mitochondrial deficiency, which was 

confirmed by showing Rtg1-dependent NADH accumulation in the engineered yeast strain.  Formal 

pathway analysis combined with gene expression data suggested specific modes of regulation that 

govern C1 metabolic flux in yeast. Specifically, we identified coordinated transcription regulation of 

C1 pathway enzymes and a positive flux control coefficient for the branchpoint enzyme 3-

phosphoglycerate dehydrogenase (PGDH). Together, these results demonstrate that constraint-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This chapter was originally published as Kennedy, C. J.*, Boyle, P. M.*, Waks, Z. & Silver, P. A. 
Systems-level engineering of nonfermentative metabolism in yeast. Genetics 183, 385–397 (2009). 
*Equal contribution. 
Contributions: CJK, PMB, and PAS designed experiments and wrote the paper. CJK and PMB did 
the computational work jointly. CJK, PMB, and ZW performed experiments. 



 28 

based models can identify seemingly unrelated mutations, which interact at a systems level across 

subcellular compartments to modulate flux through non-fermentative metabolic pathways. 

 

INTRODUCTION 

Formic acid and one-carbon metabolism: Formic acid is an important intracellular 

metabolite that has been adapted for specific functions in different organisms. It is produced and 

secreted in small amounts as a fermentation byproduct by bacteria in the family Enterobacteriaceae 

(Leonhartsberger et al., 2002) and in large quantities as an irritant and pheromone by ants (Hefetz 

and Blum, 1978). Formic acid is used commercially as a preservative in animal feed and has a 

potential use as a precursor to hydrogen, since it is one of only a few biological molecules with 

sufficient reducing potential (Milliken and May, 2007). The main pathway for biohydrogen 

production during mixed acid fermentation in E. coli proceeds through a formic acid intermediate: a 

product of the reaction catalyzed by pyruvate formate lyase (PFL, EC 2.3.1.54)  (Birkmann et al., 

1987). 

As yeast (and other eukaryotes) lack a PFL homologue, their primary source of formic acid is 

through tetrahydrofolate (THF)-mediated one-carbon (C1) reactions present in the mitochondria 

(McNeil et al., 1996). In mammalian cells C1 metabolism is responsible for up to 90% of single 

carbon units required for nucleotide biosynthesis (Fu et al., 2001). The first reaction in this pathway 

is catalyzed by the branchpoint enzyme 3-phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) 

encoded by the yeast isozymes SER3 and SER33. The NAD-dependent oxidation reaction catalyzed 

by PGDH is non-fermentative: oxygen, rather than organic substrate, acts as the final electron 

acceptor to maintain redox homeostasis under conditions where high levels of serine and formic 

acid are synthesized from the glycolytic intermediate 3-phosphoglycerate (3PG; Peters-Wendisch et 

al., 2005). 
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Constraint-based modeling: Constraint-based (stoichiometric) models are capable of 

describing systems-level properties of metabolic networks without requiring specific information 

about molecular mechanism or reaction-specific kinetics. As many of these parameters are often 

unknown, constraint-based methods have advantages over their kinetic counterparts as practical 

tools for developing systems-level metabolic engineering strategies. These models rely on well-

annotated genomic sequences in order to define sets of metabolites and the stoichiometric matrix of 

known biochemical reactions. Once these are defined, feasible assumptions about quasi steady-state 

optimality are all that is necessary to predict reaction rates for the entire system. Combinatorial 

enzyme deletion phenotypes can be explored systematically by constraining specific enzyme-reaction 

fluxes to zero (for example Forster et al., 2003; Edwards and Palsson, 2000). This approach provides 

reasonable approximations of genome-wide biochemical processes in several model organisms 

(Becker and Palsson, 2008; Motter et al., 2008; Hjersted et al., 2007; Resendis-Antonio et al., 2007; 

Oh et al., 2007; Bro et al., 2006; Duarte et al., 2004; Edwards and Palsson, 2000). 

Constraint-based methods provide a solid mathematical foundation for identifying important 

properties of biochemical pathways. Under a certain set of stoichiometric constraints, metabolic 

networks can be decomposed into a finite number of elementary flux modes (EFMs) or extreme 

pathways (Papin et al., 2002). The properties of EFMs have important biological implications. EFMs 

are the unique set of non-decomposeable pathway flows for a given biochemical network (Shuster, 

1999). In biological terms, EFMs are modular units of pathway function—minimal sets of enzymes 

required to catalyze whole metabolic reactions. Because metabolic pathways are highly integrated, 

the number of possible pathways connecting reactants and products grows exponentially. Thus 

EFM analysis is only computationally tractable for individual pathways or small metabolic 

subnetworks (Klamt and Stelling, 2002). 

Past metabolic engineering efforts in eukaryotic microbes have sought to control flux 
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through anaerobic pathways for increased production of metabolites produced by fermentation. 

These include lactate (Ishida et al., 2006; van Maris et al., 2004), malate (Zelle et al., 2008), 

isoprenoids (Kizer et al., 2008; Herrero et al., 2008; Shiba et al., 2007), glycerol (Cordier et al., 2007; 

Geertman et al., 2006), and ethanol (Alper et al., 2006 and Bro et al., 2006), among others. Although 

non-fermentative byproducts represent a class of biologically interesting and commercially attractive 

small molecules, efforts aimed at engineering microbes for increased production of these metabolites 

are comparatively infrequent. 

Reactions that produce the major one-carbon donors serine, glycine, and formic acid are 

often duplicated in the cytoplasm and mitochondrion (Christensen and MacKenzie, 2006). Flux 

through these reactions is generally oxidative in the mitochondria and reductive in the cytoplasm; 

however, C1 metabolic pathways are under considerable regulatory control and can be adapted to 

specific genetic backgrounds and growth conditions (Piper et al., 2000; Kastanos et al., 1997). Two 

groups have independently shown that C1 enzymes are controlled dynamically by glycine at the 

transcription level. Upon glycine withdrawal many enzymes involved in C1 metabolism are strongly 

repressed; a regulatory event that requires the transcription factor Bas1 (Subramanian et al., 2005). 

Under conditions of glycine induction Gelling et al. (2004) noticed a similar pattern of C1-enzyme 

differential expression, however Bas1 was not required for the observed effect in this case. In both 

of these studies the intact cytosolic serine hydroxymethyltransferase Shm2 (EC 2.1.2.1) was 

necessary for glycine-dependent changes in C1 enzyme expression (Subramanian et al., 2005; Gelling 

et al., 2004). Though contradicting evidence exists, results reported thus far demonstrate the 

dynamic control of C1 metabolism in eukaryotes. 

To investigate metabolic engineering strategies for controlling biosynthetic flux through a 

non-fermentative pathway, we chose to construct strains of S. cerevisiae that increase flux through C1 

metabolism. We chose a constraint-based modeling approach to develop genetic engineering 
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strategies leading to increased production of formic acid. We experimentally validated our modeling 

strategy and identified specific transcription control mechanisms that govern C1 metabolism in the 

engineered strain. 

 

RESULTS 

Pathway analysis of C1 metabolism in yeast: We performed limited pathway analysis of 

the yeast metabolic network to identify Eq. (1), which represents the complete oxidation of glucose 

into formic acid (see Methods): 

C6H12O6 + 4O2 ! 4HCOOH + 2CO2 + 2H2O + energy        Eq. (1) 

 Due to the quasi steady-state assumption, individual reaction rates in Eq. (1) are likely to be 

correlated during C1-mediated formic acid secretion; a condition that strongly suggests coordinated 

regulation of enzymes in this pathway (Schuster et al., 2002). Co-regulation of enzymes involved in 

glycolysis is well characterized; however, it is not fully understood if and how endogenous programs 

coordinate C1 metabolism to affect formic acid biosynthesis. 

Theoretically, maximum flux through Eq. (1) would result in 4 formic acid molecules per 

glucose, a two-fold yield increase compared to PFL-catalyzed reactions associated with mixed acid 

fermentation in E. coli (Birkmann et al., 1987). This may have important biotechnological 

applications for biofuel production. Assuming 100% conversion of exogenous formic acid into 

hydrogen, a two-step conversion process using endogenous hydrogenases in E. coli could result in 4 

H2 per glucose (Yoshida et al., 2005; Waks and Silver, 2009). Formic acid production in yeast is 

relatively low and secretion is essentially non-existent (Blank et al., 2005); however, there is reason to 

believe that engineering C1 metabolism to produce high levels of formic acid is achievable. Various 

insect species regulate homologous pathways to produce large quantities of formic acid for the 

purposes of defense and communication (Hefetz and Blum, 1978). 



 32 

 

Rank Genotype Efficiency (%)a 

1 fdh1 fdh2 alt2 fum1 zwf1 72.3 
2 fdh1 fdh2 aat2 fum1 zwf1 72.2 
3 fdh1 fdh2 cat2 fum1 zwf1 72.0 
4 fdh1 fdh2 cat2 fum1 rpe1 71.7 
5 fdh1 fdh2 cat2 fbp1 fum1 30.5 
6 fdh1 fdh2 cat2 yat2 slc1 2.4 
7 fdh1 fdh2 cat2 yat2 cho1 2.3 
8 fdh1 fdh2 cat2 yat2 alt2 1.2 

 
Table 2.1 Gene combinations affecting C1 metabolic flux and formic acid secretion 
identified through in s i l i co  knockout simulation 
a 100% efficiency is defined as 4 formic acid molecules per glucose. 
 
 

Strain Genotypea Reference 

PSY3639 fdh1(41, 1091)::loxP fdh2(41, 1091)::loxP 
Overkamp et 
al., 2002 

PSY3640 zwf1::loxP this study 
PSY3641 zwf1::loxP fum1::loxP this study 
PSY3642 zwf1::loxP fum1::loxP alt2::loxP this study 
PSY3650 zwf1::loxP fum1::loxP alt2::loxP rtg1::KanMX this study 
PSY3653 fum1::KanMX this study 

 
Table 2.2 Yeast strains 
a All mutations are present in the CEN.PK113-7D MATa URA3 HIS3 LEU2 TRP1 MAL2 SUC2 
genetic background. PSY3640-PSY3642, PSY3650 , and PSY3653 were constructed from PSY3639. 

 

A model-driven metabolic engineering strategy to increase endogenous formic acid 

secretion: To formulate genetic engineering strategies leading to increased production of formic 

acid in yeast, we used the compartmentalized metabolic model iND750 (Duarte et al., 2004) and an 

iterative gene knockout simulation strategy to identify combinatorial enzyme deletions predicted to 

significantly increase formic acid secretion (see Methods for details). As an exhaustive screen 

through all triple knockout combinations would have been experimentally infeasible, we used flux 

balance analysis (FBA) to screen combinatorial knockouts in silico. We identified several gene 

knockout combinations, which predicted non-zero secretion rates of formic acid (Table 2.1). In all 
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cases eliminating the NAD-dependent formate dehydrogenase reaction FDH (EC 1.2.1.2) was 

required for secretion of formic acid. This is not surprising as FDH is thought to protect yeast from 

formic acid toxicity by catalyzing its irreversible oxidation to CO2 (Overkamp et al., 2002).  

We chose to proceed by constructing the mutant strain predicted to have the highest formic 

acid production efficiency (Table 2.1). In addition to FDH1 and FDH2, three other genes were 

targeted for mutation by serial gene replacement (Table 2.2): ALT2, a putative cytoplasmic alanine 

transaminase (EC 2.6.1.2); FUM1, fumarase (EC 4.2.1.2); and ZWF1, glucose-6-phosphate 

dehydrogenase (EC 1.1.1.49). Unlike FDH, these three genes (reactions) function across subcellular 

compartments at distantly located positions within the metabolic network and are not obviously 

associated with formic acid biosynthesis or C1 metabolism. 

A predicted increase in flux to formic acid is achieved through non-intuitive interactions 

between alt2, fum1, and zwf1 (Figure 2.1). Although the protein encoded by FUM1 is both 

cytoplasmic and mitochondrial (Stein et al., 1994), the model predicted several effects specifically 

related to its mitochondrial function: (i) decoupling the respiratory chain resulting in (ii) decreased 

flux into the key TCA cycle intermediate alpha-ketoglutarate (AKG) and (iii) increased flux into 3-

phosphoglycerate (3PG). Flux through PGDH compensates for loss of FUM1 by balancing 3PG 

and generating the cytoplasmic AKG—via phosphoserine transaminase (PST, EC 2.6.1.52) that is 

necessary for growth. PST catalyzes the transamination of 3-phosphonooxypyruvate using glutamate 

as a cofactor, which is balanced by eliminating the competitive reaction associated with ALT2. 

Removing ZWF1 eliminates direct flux to the pentose phosphate pathway thereby increasing flux 

into 3PG, which is balanced by serine/glycine biosynthesis leading to the complete oxidation of 

glucose into formic acid, carbon dioxide, and biomass. In the absence of FDH1 and FDH2, 

intracellular formic acid is balanced by secretion into the media.  
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Figure 2.1 Constraint based modeling predicts mutations that redirect flux through 
serine/glycine biosynthesis and C1 metabolism leading to increased aerobic formic acid 
secretion. Arrows denote key cytoplasmic (A) and mitochondrial (A and B) reactions for which 
predicted flux is higher (red) or lower (blue) in PSY3642 compared to PSY3639 (see text for details). 
Boxes superimposed over arrows contain flux values for three simulated conditions: (i) PSY3639 
(aerobic), (ii) PSY3642 (aerobic), and (iii) PSY3642 (anaerobic). Flux values are relative to a constant 
glucose uptake rate of 20 mmol gDW-1 hr-1. *See Supplementary Table S2.2 for a complete list of 
predicted fluxes and metabolites required for growth (the Biomass equation). †Only given in (A). 
Abbreviations (not provided in the text): glc, glucose; g1p, glucose-1-phosphate; g6p, glucose-6-
phosphate; ser, serine; etoh, ethanol; pyr, pyruvate; ala, alanine; gly, glycine; for, formate; nad, 
nicotinamide adenine dinucleotide; Q, quinone; accoa, acetyl-CoA; cit, citrate; isocit, isocitrate; succ, 
succinate; fum, fumarate; and mal, malate. 
 

Consistent with Eq. (1), the FBA model predicts that formic acid secretion is oxygen-

dependent. Excess reducing equivalents in the form of 8 cytoplasmic NADH are balanced 

aerobically rather than using organic substrate as a final electron acceptor. Accordingly, the model 

predicts increased flux through reactions catalyzed by the external mitochondrial NADH 

dehydrogenases Nde1 and Nde2 as well as downstream electron transport chain components. 

Model validation confirms that elevated formic acid secretion requires aerobic respiration: 

Results comparing formic acid secretion in PSY3639 and PSY3642 revealed broad qualitative 
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agreement with two important model predictions: (i) mutations in alt2, fum1 and zwf1 appear to 

interact in a combinatorial manner to enhance formic acid production and (ii) this enhancement was 

oxygen-dependent. 

 

Figure 2.2 Experimental validation of model predictions. Given are formic acid secretion rates 
under aerobic and anaerobic growth conditions (A), total extracellular formic acid production for 
several strains (B) including PSY3639 (blue) and PSY3642 (red) grown aerobically (C) and 
anaerobically (D). Growth rates are given for PSY3639 and PSY3642 grown aerobically (E) and 
anaerobically (F). Genotypes for strains in B are listed in Table 2.2. Fit-curves in C-F were calculated 
using logistic regression. Data represent the average of three biological replicates + SD. A paired 
two-tailed t-test was used to test for statistical significance in (A). 
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The rate of formic acid secretion measured during log-phase growth was significantly (3-

fold) higher in PSY3642 compared to PSY3639 (p < 0.01) and this change was dependent on 

aerobic growth conditions (Figure 2.2A). Furthermore, formic acid secretion increased non-linearly 

with enzyme loss indicating a cumulative increase in formic acid production that resulted from 

eliminating combinatorial interactions between the deleted enzymes (Figure 2.2B). Because FBA 

models flux at quasi steady-state, derived predictions are generally applicable only during log-phase 

growth. However, comparisons of PSY3642 and PSY3639 made after saturation (> 30 hours of 

continuous growth) revealed a striking 16.5-fold increase in extracellular formic acid concentration 

(Figure 2.2C). Consistent with model predictions, this difference in total formic acid secretion was 

only observed under aerobic growth conditions (Figure 2.2D). 

Gene ORF Function Fold-
Change 

ADE4 YMR300C Phosphoribosylpyrophosphate amidotransferase -56.6 
ATP15 YPL271W ATP synthase epsilon subunit -12.7 
FMT1 YBL013W Formyl-Methionyl-tRNA Transformylase -8.5 
ESC8 YOL017W Telomeric and mating-type locus silencing -8.2 

QCR10 YHR001W-A Ubiqunol-cytochrome c oxidoreductase complex -7.7 
POR1 YNL055C Outer mitochondrial membrane porin -4.1 
ATP7 YKL016C ATP synthase D subunit -3.3 
ATP2 YJR121W F(1)F(0)-ATPase complex beta subunit -2.2 
SER3 YER081W Catalyzes the first step in serine biosynthesis 1.8 
ADH3 YMR083W Alcohol dehydrogenase isoenzyme 1.9 
RTG1 YOL067C Interorganelle communication 4.7 
CRC1 YOR100C Mitochondrial carnitine carrier 4.8 
FOL1 YNL256W Folic acid synthesis 5.7 
IDH1 YNL037C Mitochondrial isocitrate dehydrogenase 5.8 
RGR1 YLR071C Transcription regulation of diverse genes 6.6 
IDH2 YOR136W NAD+-dependent isocitrate dehydrogenase 6.6 
OAC1 YKL120W Mitochondrial oxaloacetate carrier 7.0 
SIR3 YLR442C Silencing at HML, HMR, and telomeres 9.9 

GCR1 YPL075W Positive regulator of the enolase 11.7 
RSC58 YLR033W Chromatin remodeling complex subunit  12.1 
RPM2 YML091C Mitochondrial precursor tRNAs 44.7 

Table 2.3 Differentially expressed genes in PSY3642 
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Under aerobic conditions, the model predicted a slight growth disadvantage in PSY3642 

attributed to diversion of carbon flux away from biomass into formic acid synthesis (Figure 2.1A) 

whereas under anaerobic conditions the predicted growth rates for the two strains were equivalent 

(data not shown). Consistent with these predictions, under aerobic conditions we observed a 

substantial growth defect (0.17 h-1 versus 0.26 h-1) (Figure 2.2E). Under anaerobic conditions, the 

two strains had comparable growth rates (0.23 h-1 versus 0.24 h-1) (Figure 2F). One simple 

explanation for the exacerbated growth defect observed in PSY3642 was toxicity. However, the 

addition of high concentrations of extracellular formic acid up to 100mM were well tolerated and 

did not affect relative rates of growth or cell lysis in either strain (data not shown). 

Engineering endogenous C1 metabolism induces the retrograde response: To gain insight 

into potential transcription mechanisms underlying increases in formic acid secretion, we performed 

gene expression analysis comparing PSY3639 and PSY3642 by competitive hybridization to whole-

genome cDNA microarrays (see Methods). Bioinformatics analysis of these data implicated specific 

transcription responses resulting from manipulating C1 metabolism for formic acid production. An 

initial assessment of genes with the highest differential expression (some as high as 56-fold) revealed 

a varied transcription response involving disparate biological processes including glucose repression 

(GCR1 and RGR1), mitochondrial function (ATP15, FMT1, RPM2, and QCR10), telomere 

maintenance (ESC8, RSC58, and SIR3), and C1 metabolism (ADE4, ATP2, ATP7, FOL1, FMT1, 

and POR1) (Table 2.3). Significant gene ontology enrichments were identified for enzymes primarily 

involved in mitochondrial-associated reactions (p = 0.01) including TCA metabolic processes (p = 

0.02) and oxidative phosphorylation (p = 0.005). These results are generally consistent with glycine-

induced transcription changes observed for C1 metabolic enzymes (Gelling et al., 2004). 
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Figure 2.3 Expression analysis of PSY3642. 
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Figure 2.3, continued. Expression analysis of PSY3642. Hierarchical clustering of PSY3642 and 
other mutant strain expression profiles are represented as a clustering diagram (dendogram) (A). For 
clarity, only a portion (approximately one-third) of the complete dendogram is shown. The cluster 
subtrees are ordered and displayed non-randomly such that similar expression profiles appear closer 
together. Labels for several functional categories reflect the tendency for strains with comparable 
genetic deficiencies to exhibit similar patterns of gene expression (Hughes et al., 2000). PSY3642 
clusters close to strains with mutations affecting chromatin function, MAP kinase signaling, and 
mitochondrial function (see text for details). DNA-binding motifs (p < 10-10) within the promoters 
of activated genes in PSY3642 are represented as sequence logos (left column) along with cognate 
transcription factors (middle column) and identified regulatory roles (right column) (B). 
 

To identify similar patterns of expression in other mutant backgrounds, we compared the 

gene expression profile of PSY3642 with the compendium generated by Hughes et al. (2000). Using 

hierarchical clustering of these data we identified patterns of expression that were similar to the 

profile observed in PSY3642 (Figure 2.3A). Each of these profiles was associated with a particular 

conditional experiment. We chose to limit our analysis to gene expression profiles generated from 

gene deletions. PSY3642-similar expression patterns were associated with specific gene mutations 

affecting chromatin function and general transcription regulation, MAP kinase signal transduction 

(swi6, sst2, dig1, and dig2), mitochondrial function (rip1, qcr2, kim4, etc.), and cell wall (gas1, anp1, fks1, 

etc.) and ergosterol biosynthesis (erg2 and erg3). Interestingly, single deletions in SSN6, RPD3, or 

TUP1—components of a well-characterized transcription silencing complex—resulted in the 

differential expression of over 180 genes (Green and Johnson, 2004; Smith and Johnson, 2000), 

many of which were also differentially expressed in PSY3642. Motif enrichments in the promoters 

of up-regulated genes implicated transcription factors associated with several biological processes 

(Figure 2.3B). Included in this set were Rtg1 and Rtg3, two transcription factors that mediate 

mitochondria-to-nucleus retrograde signaling in response to severe mitochondrial dysfunction. 

Retrograde signaling is typically associated with the petite phenotype caused by loss of 

mitochondrial DNA (ρ0) (Butow and Avadhani, 2004). Cells sense mitochondrial dysfunction and 

implement systemic changes in gene expression to compensate for mitochondria-associated 
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metabolic deficiencies (Liu and Butow, 2006). In ρ0 yeast, Rtg1-mediated retrograde signaling is 

exclusively post-translational: phosphorylated Rtg1 translocates to the nucleus without any change in 

the abundance of RTG1 transcript itself; however, in PSY3642 expression of RTG1 is significantly 

up-regulated (Table 2.3). This suggests an alternative (transcription) mode of Rtg1-mediated 

retrograde signaling that is absent in ρ0 yeast. 

Using mitochondria-specific vital stains we confirmed the mitochondrial defect implied by 

induced expression of RTG1 and transcriptional induction of retrograde responsive genes. Whereas 

PSY3639 resembled wild type yeast with regard to mitochondrial abundance, morphology, and 

membrane potential, analysis of PSY3642 revealed a heterogeneous population of cells that were 

depleted in functional mitochondria (Figure 2.4). Microscopic analysis revealed a dramatic reduction 

in both the total number of mitochondria and their associated respiratory capacity (comparing 

Figures 2.4A and C to Figures 2.4B and D). This effect was primarily evident in PSY3642, with 

strains PSY3640 and PSY3641 resembling the parent strain PSY3639 (Supplemental Figure 1). 

These data, along with experiments that show elevated formic acid secretion exclusively under 

oxygenated growth conditions (Figure 2.2) indicate that mitochondrial function and respiratory 

capacity are severely diminished but not completely abolished in PSY3642. 

ρ0 yeast up-regulate several genes in order to provide stoichiometric amounts of oxaloacetate 

and acetyl-CoA to drive the TCA cycle in the presence of respiratory deficiency (Epstein et al., 

2001). Several of these genes are also up-regulated in PSY3642 including PYC1, OAC1, and CRC1, 

as well as the NAD-dependent TCA cycle enzymes IDH1 and IDH2 (Table 2.3). As the FBA model 

predicted very little flux through the TCA cycle, a retrograde responsive increase in flux through 

these reactions represents an unanticipated (and unforeseeable) adaptation to manipulating C1 

metabolism. We constructed an rtg1 mutation in the PSY3642 genetic background (PSY3650) and 

observed a 25% increase in formic acid secretion (Table 2.4). 
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Figure 2.4 Phenotypic analysis of PSY3642 reveals mitochondrial dysfunction. 
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Figure 2.4, continued. Phenotypic analysis of PSY3642 reveals mitochondrial dysfunction. 
Total mitochondria were labeled in PSY3642 (A) and PSY3639 (B) and single-cells were imaged at 
100X magnification with DIC (top panels) and epifluorescence (bottom panels). Oxidation of 
Mitotracker® CM-H2XRos was measured to indicate respiratory capacity in PSY3642 (C) and 
PSY3639 (D). Cells were imaged at 40X magnification with DIC (top panels) and epifluorescence 
(bottom panels). Exposure times were 40ms in all cases. 

 

In the presence of severe respiratory deficiency increased TCA cycle flux would be coupled 

to increased flux through NAD-dependent reactions (for example through increased expression of  

IDH1 and IDH2). As a result the cell would require some biochemical mechanism to regenerate 

NAD and maintain redox homeostasis. ρ0 yeast up-regulate the expression of glycerol-3-phosphate 

and alcohol dehydrogenase enzymes (Gpd2 and Adh1-7) as part of the retrograde response. These 

pathways reoxidize NADH in the absence of competent oxidative capacity (Epstein et al., 2001). In 

PSY3642 there is no significant change in expression of GPD2, ADH1, or ADH4-7. ADH3—a 

mitochondrial ethanol-acetaldehyde redox shuttle (Bakker et al., 2000) is induced 2-fold; however, 

we observed no detectable difference in ethanol production between PSY3642 and PSY3639 (Table 

2.4). To test the hypothesis that flux through NAD-dependent reactions increase in PSY3642 we 

measured intracellular NADH/NAD ratios directly (see Methods). We observed a significant 

increase in intracellular NADH relative to NAD, which was eliminated in rtg1 mutants (Figure 2.5). 

Together, these results support the hypothesis of an Rtg1-mediated increase in flux to the TCA 

cycle, which increases the NADH/NAD ratio and diverts organic substrate away from C1 

metabolism and formic acid biosynthesis. 

Strain Formic Acid (mM)a Ethanol (mM)a 

PSY3639 0.01 + 0.005 155 + 19 
PSY3642 0.16 + 0.004 178 + 14 
PSY3650 0.2 + 0.01 NA 

Table 2.4 Quantification of Rtg1-mediated formic acid secretion 
 a Data are given as the average of three biological replicates + SD. 
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Figure 2.5 Increase in NADH/NAD in PSY3642. NADH/NAD ratios for PSY3642 and 
PSY3650 are given as percent of PSY3639. Data represent the average of four biological replicates + 
SD. Compared to PSY3639, NADH accumulated significantly in PSY3642 (p = 0.001) but not in 
PSY3650 (p = 0.46). Statistical significance was assessed by testing the null hypothesis m = 100% 
versus the alternative m > 100% assuming normally distributed sample data. 
 

Increased flux to formic acid is modulated by coordinated expression of C1 pathway 

enzymes: According to our pathway analysis of C1 metabolism, the enzymes associated with Eq. (1) 

are both necessary and sufficient to catalyze the full oxidation of glucose into formic acid given 

proper regulatory constraints that serve to channel flux through this pathway. Transcription co-

regulation of the upstream portion of Eq. (1) (glycolysis) is well characterized. By combining 

pathway analysis and transcription data, we tested the hypothesis that downstream reactions 

occurring after the glycolytic branchpoint PGDH are also subject to co-regulation. We sought to 

identify endogenous transcription programs responsible for increased C1 metabolic flux in 

PSY3642. 

A closer look at relative mRNA abundance for enzymes involved in formic acid biosynthesis 

revealed an interesting pattern of endogenous differential expression (Figure 2.6B). Relative to the  
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Figure 2.6 Flux to formic acid is controlled by PGDH and the coordinated expression of all 
pathway enzymes. The subnetwork of serine-glycine-formate biosynthesis with reaction arrows 
that represent composites of several biochemical interconversions labeled with relevant enzymes 
(A). The cytoplasmic enzymes involved in converting serine into formic acid (Shm2 and Ade3) are 
denoted with asterisks. Differential expression of enzymes in (A) were normalized to Ser3 and 
plotted according to their pathway position (B). Multisite modulation for enzymes in the formic acid 
biosynthetic pathway is indicated by linear regression (black line, R2 = 0.52) and corrected Spearman 
ranked order correlation (rho = -0.72, p = 0.02). Levels of the SerA fusion protein (relative to actin) 
were unaffected by genetic background and induction conditions (C). Expressing SerA in PSY3642 
caused a significant increase in formic acid secretion under inducing conditions (D). Each 
transformed strain was normalized to the empty vector control plasmid pRS410a. Data in (D) 
represent the average of three biological replicates + SD. We assessed statistical significance using a 
paired two-tailed t-test (p = 0.002). 
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branchpoint isozyme Ser3 (PGDH) differential expression of downstream enzymes is correlated to 

their relative position in the pathway, with the lowest expression change associated with the terminal 

enzyme Mis1. Linear regression indicates that 52% of the variance in differential expression of C1-

associated enzymes is explained simply by their relative topological position in the reaction pathway 

(p = 0.02). Interestingly, this pattern of differential expression implicates a recognized mechanism of 

endogenous metabolic control termed multisite modulation, where coordinated expression of 

several enzymes modulates flux through entire metabolic pathways (Fell, 1997). This provides 

experimental evidence that C1 enzymes constitute a module of pathway function in PSY3642.  

 The transcription data we obtained suggested that increased expression of Ser3 was causally 

associated with increased flux to formic acid (Table 2.3). Generally, overexpressing branchpoint 

enzymes rarely affects their associated flux to any significant degree. This is due, in part, to feedback 

inhibition by downstream metabolites (Fell, 1997). Indeed PGDH is allosterically inhibited by serine 

and, as a consequence, it has very low flux control in mammalian tissue (Thompson et al., 2005; Bell 

et al., 2004; Fell and Snell, 1988). To test the hypothesis that PGDH may control formic acid 

synthesis in PSY3642, we generated a plasmid for inducible overexpression of the catalytic domain 

of E. coli SerA (pRS410a), a well-characterized functional homologue of yeast Ser3. Expression levels 

of the fusion protein were not affected by strain-specific genetic backgrounds or transcriptional 

induction (Figure 2.6C). Consistent with previous experiments in mammalian tissues, SerA had no 

effect on flux to formic acid in PSY3639; however, SerA expression in PSY3642 resulted in an 86% 

increase in extracellular formic acid concentration (Figure 2.6D). This result is consistent with 

endogenous induction of Ser3 in PSY3642 and suggests that PGDH has a positive flux control 

coefficient in this strain. 
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DISCUSSION 

 Our goal in this work was to test an FBA-based strategy for engineering C1 metabolism in 

yeast to increase endogenous formic acid production and describe cellular mechanisms responsible 

for regulating this important metabolic pathway. FBA and gene knockout simulations identified a 

non-intuitive combination of genes (ALT2, FUM1, and ZWF1), which individually had no obvious 

role in formic acid biosynthesis (Figure 2.1). Based on the model predictions, we constructed the 

quintuple knockout alt2 fdh1 fdh2 fum1 zwf1 and showed significant oxygen-dependent formic acid 

secretion in the engineered strain, both during log-phase (Figure 2.2A) and stationary-phase growth 

(Figures 2.2C and D). Further, maximum formic acid secretion required all five enzyme deletions 

predicted by the model (Figure 2.2B). Although formic acid is an essential intracellular metabolite, it 

is not secreted in detectable levels in wild type yeast (Blank et al., 2005; McNeil et al., 1996). Thus, 

our results demonstrate the successful application of an FBA-based strategy for microbial 

production of formic acid under aerobic growth conditions. More generally, these data support the 

predictive potential for this approach in deriving strategies aimed at engineering non-fermentative 

metabolic pathways that integrate across subcellular compartments in eukaryotic microbes. 

 To gain insights into the regulatory events that result from manipulating formic acid 

biosynthesis, we supplemented model predictions and validation experiments with gene expression 

and phenotypic analyses. From these data we identified (i) a significant  response involving multiple 

cellular processes (Table 2.3 and Figure 2.3); (ii) activation of retrograde signaling, mitochondrial 

dysfunction, and diminished respiratory capacity (Table 2.4 and Figures 2.4 and 2.5); and (iii)  

regulatory events that lead to the coordinated expression of enzymes involved in C1 metabolism 

(Figure 2.6). Upon close inspection, these data indicate specific mechanisms of metabolic regulation 

that result from unanticipated adaptive responses to manipulating C1 metabolic flux. 
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 Several lines of evidence strongly suggest activation of the retrograde response in PSY3642 

cells. In terms of global gene expression pattern, PSY3642 is most similar to strains with mutations 

in genes that are directly involved in retrograde signaling (Figure 2.3A). These include Rpd3, Ssn6, 

and Tup1, a well-characterized co-repressor complex (Malave and Dent, 2006); and Yat2, a carnitine 

acetyl-CoA transferase involved in transporting activated acetate into respiratory deficient 

mitochondria (Liu and Butow, 2006; Epstein et al., 2001; Swiegers et al., 2001). Interestingly, Yat2 

was identified in our original in silico knockout screen for enzymes that affect C1 metabolic flux 

(Table 2.1). 

In petite cells Ssn6-Tup1 is converted from a  co-repressor complex into a co-activator, 

which up-regulates gene expression through direct interaction with Rtg3 (Conlan et al., 1999), one of 

three transcription factors primarily responsible for retrograde responsive gene activation in yeast 

(Rothermel et al., 1997). DNA binding motifs for Rtg1 and Rtg3 are overrepresented in the 

promoters of activated genes in PSY3642 (Figure 2.3D) while RTG1 expression itself is increased 

almost 5-fold (Table 2.3). These results strongly implicate retrograde regulatory transcription factors 

as specific modulators of gene activation and metabolic activity in PSY3642. Consistent with this 

hypothesis are data showing Rtg1-dependent NADH accumulation and limitations in formic acid 

biosynthesis (Figure 2.5 and Table 2.4). 

 While zwf1 mutants have no mitochondrial defects (Blank et al., 2005), Wu and Tzagoloff 

(1987) speculated that the petite-like phenotype of fum1 mutants is caused by decreased 

concentrations of intramitochondrial amino acids, which limits the production of respiratory chain 

components. However, loss of Fum1 alone does not account for retrograde signaling in PSY3642, as  

changes in fum1 single mutants are limited; only about 20 genes are affected, none of which encode 

typical retrograde responsive TCA cycle enzymes (McCammon et al., 2002). Furthermore, although 

Gelling et al. (2004) showed that C1 metabolic flux changes significantly affect the expression status 
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of respiratory chain components, mitochondrial deficiency and retrograde signaling were not 

reported as a consequence. From these results we conclude that enzyme deletions predicted by our 

model cause systemic metabolic changes that modulate C1 flux and activate retrograde signaling in 

PSY3642. Specifically, alt2-associated loss of cytoplasmic alanine transaminase activity—either alone 

or in combination with fum1 or zwf1 mutations—may significantly diminish aminogenic capacity 

leading to full activation of the retrograde response. Alternatively, retrograde signaling may result 

from reduced intracellular concentrations of specific retrograde inhibitors such as glutamate, 

glutamine, or ammonia (Butow and Avadhani, 2004; Dilova et al., 2004; Tate and Cooper, 2003; 

Crespo et al., 2002). 

 Multisite modulation is an important mechanism of metabolic control where changes in 

pathway flux result from the coordinated expression of multiple pathway enzymes in relative 

proportion to their distance from the main pathway branchpoint (Thomas and Fell, 1996; Fell, 

1997). Accumulating evidence obtained in yeast (Niederberger et al., 1992), mammals (Werle et al., 

2005; Vogt et al., 2002; Hillgartner et al., 1995; Waterman and Simpson, 1989; Brownie and 

Pedersen, 1986), and plants (Anterola et al., 1999; Quick et al., 1991; Stitt et al., 1991) suggests that 

multisite modulation may be a general design principle employed by cells to regulate metabolic flux 

in vivo (Wildermuth, 2000). Indeed, using formal pathway analysis, we identified a module of 

pathway function corresponding to downstream reactions in C1 metabolism (Eq. (1)) and observed 

a pattern of differential expression in PSY3642 that strongly suggested multisite modulation of 

enzymes in this pathway (Figure 2.6B). 

 A predominant challenge in constraint-based analysis of metabolic networks involves 

discovering and incorporating relevant cellular regulatory processes (Stelling et al., 2004; Price et al., 

2003). Because regulatory events are conditional and often characterized by their dynamic nature, 
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they are difficult to predict under the assumptions of conventional FBA (Jamshidi and Palsson, 

2008). Without the benefit of complete knowledge of gene regulation it is useful to combine 

systems-level modeling with experimental data generated post hoc for the purposes of design and 

discovery in complex metabolic systems. By combining formal pathway analysis, FBA, and 

experimentation, we were able to identify and exploit specific modes of endogenous regulation to 

increase C1 metabolic flux and engineer a formic acid producing strain of yeast. 

 
MATERIALS AND METHODS 

 Constraint-based modeling and in s i l i co  gene deletion: The validated, genome-scale 

metabolic model Saccharomyces cerevisiae iND750 previously described by Duarte et al., 2004 was used 

to model the fully compartmentalized yeast metabolic network. The FBA optimization problem was 

formulated as described previously (Varma and Palsson, 1994) in the GNU MathProg language and 

solved with custom generated C code (available upon request) implementing the GNU Linear 

Programming (LP) Kit (GLPK) available at ftp://aeneas.mit.edu/pub/gnu/glpk. 

 Specifically, we defined quasi steady-state conditions using the yeast stoichiometric matrix S 

and unknown flux vector v 

€ 

S ⋅ v = 0, 

with maximization of growth rate (µ) as the objective function for FBA: 

€ 

max µ

s.t.vmin,i ≤ vi ≤ vmax,i
, 

Thermodynamic constraints in iND750 are derived from the KEGG database 

(http://www.genome.jp/kegg/) and associated with individual reactions to define 

€ 

vi
ub  and 

€ 

vi
lb , 

which are the upper and lower bounds of each reaction i. We modeled 20 mmol gDW-1 h-1 constant 

glucose uptake; nutrient uptake fluxes appropriately constrained to simulate synthetic complete 

media including the addition of serine (Figure 2.1A, Supplementary Table S2.1); oxygen uptake flux 
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that was either fixed to 0 mmol gDW-1 h-1 or left unconstrained to simulate anaerobic or aerobic 

growth conditions, respectively; and internal fluxes constrained to {0, ∞} or left unconstrained to 

simulate irreversible or reversible reactions, respectively. It is important to note that multiple optimal 

solutions are possible in which the objective function constraint is satisfied (Phalakornkule et al., 

2001; Lee et al., 2000). We sampled alternative optimal solutions for the mutant strains predicted to 

increase flux to formic acid by relaxing the directionality constraint of individual reactions (Lee et al., 

1997). Results from this analysis indicated some flexibility in the formic acid biosynthetic pathway; 

however, the three mutations alt2, fum1, and zwf1 were consistently associated with significant 

increases in formic acid secretion, with a minimum secretion rate of 53.65 mmol gDW-1 h-1 (other 

data not shown). 

 To identify the maximum theoretical yield for formic acid production we substituted formic 

acid secretion for biomass in the objective function. All the other constraints were appropriate for 

external exchange and aerobic growth. Maximizing this objective resulted in Eq. (1), which can be 

considered the ‘Type I’ through pathway for formic acid biosynthesis (Shilling et al., 2000). 

 Several efficient algorithms have been developed for identifying a single solution of optimal 

gene knockouts (for example, Burgard et al., 2003). We chose an iterative simulation strategy as we 

were interested in all combinations of gene knockouts predicted to impact C1 metabolism and 

formic acid production, including solutions that might be considered sub-optimal under formal 

definitions. By constraining the fluxes of individual sets of < 3 non-essential genes to zero and 

reevaluating the system using LP we simulated metabolic phenotypes for greater than 4 million gene 

combinations in reasonable time frames (less than four hours on an x86-64 processor running Linux 

version 2.6.15-51). Our knockout simulation protocol is summarized with the following pseudocode: 
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€ 

p← powerset non-essential genes{ }( )
foreach combo ∈  p : p ≤ 3
  foreach c ∈  combo

    vc
ub = 0.0

    vc
lb = 0.0

 

 Yeast strains and plasmids: PSY3642 was derived from the fdh1 fdh2 parental strain 

PSY3639 (Overkamp et al., 2002) by iterative gene replacement (Guldener et al., 2002). Briefly, 

LoxP-KanMX gene deletion cassettes for ALT2, FUM1, and ZWF1 were generated by PCR using 

primers with 45bp of flanking homology and pUG6 as template (Guldener et al., 1996). KanMX+ 

transformants were selected on YPD plates containing 200mg/l G418 (geneticin). After confirming 

integration by single colony PCR, G418 sensitivity was reestablished for subsequent gene 

replacement by expressing Gal4-Cre from pSH65 (Guldener et al., 2002) and selecting transformants 

on YPD plates containing 50mg/l phleomycin. Correct excision of LoxP-KanMX was confirmed by 

single colony PCR. 

 The biobrick assembly method (Knight, 2003; Phillips and Silver, 2006) was used to generate 

the expression plasmid pRS410a consisting of (ordered 5’ to 3’): the yeast CUP1 promoter; the yeast 

Kozak sequence; the catalytic domain of SerA (cloned by PCR from E. coli genomic DNA); in-frame 

fusion of the V5 epitope; stop codon; and the yeast ADH1 terminator. The flanking biobrick 

restriction sites XbaI and SpeI were used to subclone the expression fragment into pRS410 

(Addgene). Yeast transformants were selected on YPD plates containing 200mg/l G418 and 

cultured with the same concentration of drug in synthetic complete media containing 2% glucose 

and 0.3 mM CuSO4. Primer sequences used in this study are available as Supplementary Table S2.3. 

 Metabolite determination: Extracellular formic acid and ethanol measurements were made 

using spectrometric enzymatic assays at 340nm according to the manufacturer’s specifications (R-

Biopharm). Yeast cultures were grown in synthetic complete media with 2% glucose under batch 
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conditions in baffled (aerobic) or round bottom (anaerobic) Erlenmeyer shaker flasks. Anaerobic 

cultures were grown in sparged media under nitrogen gas. 

Samples for intracellular metabolite measurements were prepared using several methods as 

conceptual frameworks (Canelas et al., 2008; Sporty et al., 2008; Visser et al., 2004; and Lange et al., 

2001).  Briefly, 20ml samples were quickly drawn at a log phase (cell density of 0.4-0.6 OD600) and 

immediately quenched in 32ml cold 60% (v/v) methanol.  A frozen binary solution of 60% (v/v) 

ethanol was used to maintain the yeast samples and quenching solution at -40ºC.  Two subsequent 

washes were performed using the cold quenching solution, followed by cell lysis at 4ºC using a glass 

bead beater in the presence of 75% (v/v) ethanol to precipitate proteins.  Samples were lyophilized 

overnight, resuspended in 100ul anaerobic water, and centrifuged twice before use.  The supernatant 

was stored at -80ºC until processing via HPLC. 

     HPLC measurements were performed using a Waters 2695 HPLC separation module fitted with 

a Luna C18 5µ column, 250x4.5mm (Phenomenex).  Samples of 75-85µl were injected and eluted at 

a flow rate of 1ml/min, starting with 100% mobile phase buffer A and gradually increasing to 100% 

mobile phase buffer B (Di Pierro et al., 1995).  Specifically, the relative fraction of buffer B in the 

mobile phase was increased at a rate of 15%/min until 60%, at 0.6%/min until 80% during which 

the majority of separation occurred, and at 20%/min until 100% was reached.  Buffer A contained 

10mM tetrabutylammonium hydroxide, 10mM KH2PO4, and 0.25% methanol at pH 7.0 (Di Pierro 

et al., 1995).  Buffer B contained 2.8mM tetrabutylammonium hydroxide, 100mM KH2PO4 and 30% 

methanol at pH 5.5 (Di Pierro et al., 1995).  NAD was analyzed at 260nm, and NADH was analyzed 

at 340nm using a photodiode array detector (Waters 996) (Di Pierro et al., 1995 and Sporty et al., 

2008).  Standard curves of specific metabolites were performed to enable quantification. 

 Gene expression profiling and analysis: PolyA mRNA was obtained in biological 

triplicate by trizol extraction (Invitrogen) from early log-phase (OD600 = 0.4) yeast grown aerobically. 
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cDNA was generated from PSY3642 and PSY3639 by reverse transcription; differentially labeled 

with Cy3 or Cy5, respectively (one sample was processed with the labeling reversed to minimize 

artifacts introduced by incorporation bias); and hybridized to whole-genome cDNA microarrays 

(http://www.microarray.ca/). Array scans were analyzed with GenPix software and Rosetta 

Resolver (complete data are available as Supplementary Table S2.4). 

 Gene ontology enrichment was obtained using GoStat (http://gostat.wehi.edu.au/) with 

Benjamini false discovery to correct for multiple hypothesis testing. The query set for enzyme 

annotation analysis was limited to those gene identities with represented reactions in iND750 for 

which flux values were calculated. 

 Hierarchical clustering was applied to genome-wide expression profiles of PSY3642 

(compared to PSY3639) and other genetic knockout strains (excluding overexpression and drug 

treatment conditions) in the compendium described by Hughes et al., 2000. Routines were 

implemented in R (http://www.r-project.org/) with a Euclidean distance metric and Ward’s 

minimum variance clustering algorithm (Murtagh, 1985). 

 We used YEASTRACT-DISCOVERER (http://www.yeastract.com/) to find transcription 

factor binding motif enrichments in the promoter regions of genes with significant activation (p < 

0.01) greater than 2-fold (Monteiro et al., 2008 and Teixeira et al., 2006). 

 Phenotypic analysis: Mitotracker® Red CMXRos and Mitotracker® CM-H2XRos 

(Invitrogen) were used to stain mitochondria. CMXRos selectively stains mitochondria, and 

fluoresces in the red portion of the spectrum. CM-H2XRos is a reduced version of CMXRos, and 

only fluoresces when oxidized in respiring mitochondria (Ludovico et al., 2002). Overnight yeast 

cultures were resuspended in YEPD media containing either 1µM of CMXRos or 3µM CM-

H2XRos, and incubated at 30ºC for 30 minutes prior to imaging. 
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Antibodies and Western blotting: PVDF membranes were blocked with phosphate buffered 

saline containing 0.25% Tween-20 (PBST) and 5% nonfat dry milk; probed with mouse monoclonal 

primary antibodies against actin (Chemicon) or V5 (Sigma) and appropriate HRP-conjugated 

secondary antibody (Jackson); washed with PBST; and developed with enhanced chemiluminescence 

substrate (Amersham). 

 

SUPPLEMENTAL FIGURES AND TABLES 

           

 

Figure 2.7 Comparison of Mitotracker staining of strains described in this study. For each 
strain, the upper image is DIC at 60x magnification, and the lower image is the Mitotracker signal 
from the same field. Materials and methods are identical to the Mitotracker CMXRos protocol 
described in the main text. 

 

Tables 2.S1 to 2.S4 are available online at  
http:/www.genetics.org/ cgi/content/full/genetics.109.105254/DC1. 

PSY3639 fdh1 fdh2 PSY3640 fdh1 fdh2 zwf1 PSY3639 fdh1 fdh2 PSY3640 fdh1 fdh2 zwf1 

PSY3642 fdh1 fdh2 fum1 zwf1 alt2 
Supplemental Figure 1. Comparison of 
Mitotracker staining of strains described in this 
study. For each strain, the upper image is DIC at 
60x magnification, and the lower image is the 
Mitotracker signal from the same field. Materials 
and methods are identical to the Mitotracker 
CMXRos protocol described in the main text. 



 55 

ACKNOWLEDGEMENTS 

 We thank Christina Agapakis and Jake Wintermute for comments on the manuscript. This 

work was supported in part by an NIH training grant to C. J. K., an NIH Cell and Developmental 

Biology Training Grant (GM07226) to P. M. B., and in part by a grant from the Harvard University 

Center for the Environment (HUCE). 

 

REFERENCES 

Alper H, Moxley J, Nevoigt E, Fink GR, and Stephanopoulos G. (2006) Engineering yeast 
transcriptional machinery for improved ethanol tolerance and production. Science, 314, 1565-1568. 
 
Anterola AM, van Rensburg H, van Heerden PS, Davin LB, and Lewis NG. (1999) Multi-site 
modulation of flux during monolignol formation in loblolly pine (Pinus taeda). Biochem Biophys Res 
Commun, 261, 652-657. 
 
Bakker BM, Bro C, Kotter P, Luttik MAH, van Dijken JP, and Pronk JT. (2000) The mitochondrial 
alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol, 182, 
4730-4737. 
 
Becker SA, and Palsson BO. (2008) Context-specific metabolic networks are consistent with 
experiments. PLoS Comput Biol, 4, e1000082. 
 
Bell JK, Grant GA, and Banaszak LJ. (2004) Multiconformational states in phophoglycerate 
dehydrogenase. Biochemistry, 43: 3450-3458. 
 
Birkmann A, Zinoni F, Sawers G, and Brök A. (1987) Factors affecting transcriptional regulation of 
the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol, 148, 44-51. 
 
Blank LM, Kuepfer L, and Sauer U. (2005) Large-scale 13C-flux analysis reveals mechanistic 
principles of metabolic network robustness to null mutations in yeast. Genome Biol, 6, R49. 
 
Bro C, Regenberg B, Forster J, and Nielsen J. (2006) In silico aided metabolic engineering of 
Saccharomyces cerevisiae for improved bioethanol production. Metab Eng, 8, 102-111. 
 
Brownie AC and Pedersen RC. (1986) Control of aldosterone secretion by pituitary hormones. J 
Hypertens Suppl, 4, S72-S75. 
 
Burgard AP, Pharka P, and Maranas CD. (2003) Optknock: a bilevel programming framework for 
identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng, 84, 647-657. 
 
Butow, RA and Avadhani, NG. (2004) Mitochondrial signaling: the retrograde response. Mol Cell, 14, 
1-15. 



 56 

 
Canelas, A. B., W. M. van Gulik, and J. J. Heijnen. 2008. Determination of the cytosolic free 
NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. 
Biotechnol Bioeng, 100, 734-43. 
 
Christensen KE and MacKenzie RE. (2006) Mitochondrial one-carbon metaboism is adapted to the 
specific needs of yeast, plants and mammals. BioEssays, 28, 595-605. 
 
Conlan SR, Gounalaki N, Hatis P, and Tzamarias D. (1999) The Tup1-Cyc8 protein complex can 
shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem, 1, 205-210. 
 
Cordier H, Mendes F, Vasconcelos I, and Francois JM. (2007) A metabolic and genomic study of 
engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng, 9: 364-378. 
 
Crespo JL, Powers T, Fowler B, and Hall MN. (2002) The TOR-controlled transcription activators 
GLN3, RTG1, and RTG3, are regulated in response to intracellular levels of glutamine. Proc Natl 
Acad Sci USA, 99, 6784-6789. 
 
Di Pierro, D., B. Tavazzi, C. F. Perno, M. Bartolini, E. Balestra, R. Calio, B. Giardina, and G. 
Lazzarino. 1995. An ion-pairing high-performance liquid chromatographic method for the direct 
simultaneous determination of nucleotides, deoxynucleotides, nicotinic coenzymes, oxypurines, 
nucleosides, and bases in perchloric acid cell extracts. Anal Biochem, 231, 407-12. 
 
Dilova I, Aronova S, Chen JC-Y, and Powers T. (2004) Tor signaling and nutrient-based signals 
converge on Mks1p phosphorylation to regulate expression of Rtg1p-Rtg3p-dependent target genes. 
J Biol Chem, 45, 46527-46535. 
 
Duarte NC, Herrgård MJ, and Palsson BO. (2004) Reconstruction and validation of Saccharomyces 
cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res, 14, 1298-
1309. 
 
Edwards JS and Palsson BO. (2000) The Eschericia coli MG1655 in silico metabolic genotype: its 
definition, characteristics, and capabilities. Proc Nat Acad Sci USA, 97, 5528-5533. 
 
Epstein CB, Waddle JA, Hale W 4th, Dave V, Thornton J, Macatee TL, Garner HR, and Butow RA. 
(2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell, 12, 297-308. 
 
Fell DA. (1997) Frontiers in metabolism: understanding the control of metabolism. London: Portland 
Press. 
 
Fell DA and Snell K. (1988) Control analysis of mammalian serine biosynthesis. Feedback inhibition 
on the final step. Biochem J, 256: 97-101. 
 
Friend SH. (2000) Functional discovery via a compendium of expression profiles. Cell, 102, 109-126. 
 
Forster J, Famili I, Palsson B, and Nielsen J. (2003) Large-scale evaluation of in silico gene knockouts 
in Saccharomyces cerevisiae. OMICS, 7, 193-202. 
 



 57 

Fu TF, Rife JP, Schirch V. (2001) The role of serine hydroxymethyltransferase isozymes in one-
carbon metabolism in MCF-7 cells as determined by 13C NMR. Arch Biochem Biophys, 393, 42-50. 
 
Geertman JM, van Maris AJ, van Dijken JP, and Pronk JT. (2006) Physiological and genetic 
engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol 
production. Metab Eng, 8, 532-542. 
 
Gelling CL, Piper MD, Hong SP, Kornfeld GD, Dawes IW. (2004) Identification of a novel one-
carbon metabolism regulon in Saccharomyces cerevisiae. J Biol Chem, 279, 7072-7081. 
 
Green SR and Johnson AD. (2004) Promoter-dependent roles for the Srb10 cyclin-dependent kinase 
and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol Biol Cell, 15, 
4191-4202. 
 
Guldener U, Heck S, Fiedler T, Beinhauer J, and Hegemann JH. (1996) A new efficient gene 
disruption cassette for repeated use in budding yeast. Nucleic Acids Res, 24, 2519-2524. 

Hefetz A and Blum MS. (1978) Biosynthesis of formic acid by the poison glands of formicine ants. 
Science, 201, 454-455. 

Herrero O, Ramon D, and Orejas M. (2008) Engineering the Saccharomyces cerevisiae isoprenoid 
pathway for de novo production of aromatic monoterpenes in wine. Metab Eng, 10, 78-86. 

Hillgartner FB, Salati LM, and Goodridge AG. (1995) Physiological and molecular mechanisms 
involved in nutritional regulation of fatty acid synthesis. Physiol Rev, 75, 47-76. 

Hjersted, J. L., Henson, M. A. and Mahadevan, R. (2007) Genome-scale analysis of Saccharomyces 
cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng, 97, 1190-1204. 

 
Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennet HA, Coffey E, 
Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stephaniants SB, Shoemaker 
DD, Gachotte D, Chakraburtty K, Simon J, Bard M, and 
 
Ishida N, Saitoh S, Ohnishi T, Tokuhiro K, Nagamori E, Kitamoto K and Takahashi H. (2006) 
Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L: -(+)-lactic acid. 
Appl Biochem Biotechnol, 131, 795-807. 
 
Jamshidi N and Palsson BO. (2008) Formulating genome-scale kinetic models in the post-genome 
era. Mol Syst Biol, 4, 171. 
 
Kastanos EK, Woldman YY, and Appling DR. (1997) Role of mitochondrial and cytoplasmic serine 
hydroxymethyltransferase isozymes in de novo purine synthesis in Sacharomyces cerevisiae. Biochemistry, 36, 
14956-14964 
 
Kizer L, Pitera DJ, Pfleger BF, and Keasling JD. (2008) Application of functional genomics to 
pathway optimization for increased isoprenoid production. Appl Environ Microbiol, 74, 3229-3241. 
 



 58 

Klamt S and Stelling J. (2002) Combinatorial complexity of pathway analysis in metabolic networks. 
Mol Biol Rep, 29, 233-236. 
 
Knight T. (2003) Idempotent vector design for standard assembly of biobricks. 
http://hdl.handle.net/1721.1/21168. In DSpace. MIT Artificial Intelligence Laboratory; MIT 
Synthetic Biology Working Group. 
 
Lange, H. C., M. Eman, G. van Zuijlen, D. Visser, J. C. van Dam, J. Frank, M. J. de Mattos, and J. J. 
Heijnen. 2001. Improved rapid sampling for in vivo kinetics of intracellular metabolites in 
Saccharomyces cerevisiae. Biotechnol Bioeng, 75, 406-15. 
 
Lee J, Goel A, Ataii MM, Domach MM. (1997) Supply-side analysis of growth of Bacillus subtilis on 
glucose-citrate medium: feasible network alternatives and yield optimality. Appl Environ Microbiol, 63, 
710-718. 
 
Lee S, Phalakornkule C, Domach MM, Grossmann IE. (2000) Recursive MILP model for finding all 
alternate optima in LP models for metabolic networks. Comp Chem Eng, 24, 711-716. 
 
Leonhartsberger S, Korsa I, and Bock A. (2002) The molecular biology of formate metabolism in 
enterobacteria. J Mol Microbiol Biotechnol, 4, 269-276. 
 
Liu Z and Butow RA. (2006) Mitochondrial retrograde signaling. Annu Rev Genet, 40, 159-185. 
 
Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, and Corte-Real M. (2002) 
Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic 
acid in Saccharomyces cerevisiae. Mol Cell Biol, 13, 2598-2606. 
 
Malave TM, and Dent SY. (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol, 84, 437-
443. 
 
McCammon MT, Epstein, CB, Przybyla-Zawislak B, McAlister-Henn L, and Butow RA. (2003) 
Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern 
of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell, 14, 958-972. 
 
McNeil JB, Bognar AL, and Pearlman RE (1996) In vivo analysis of folate coenzymes and their 
compartmentalization in Saccharomyces cerevisiae. Genetics, 142, 371-381. 
 
Milliken CE and May HD. (2007) Sustained generation of electricity by the spore-forming, Gram-
positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol, 73, 1180-1189. 
 
Monteiro PT, Mendes N, Teixeira MC, d’Orey S, Tenreiro S, Mira N, Helios P, Francisco AP, 
Carvalho AM, Lourenco A, Sa-Correia I, Oliveria AL, and Freitas AT. (2008) YEASTRACT-
DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in 
Saccharomyces cerevisiae. Nucl Acids Res, 36, D132-D136. 
 
Motter, A. E., Glubahce, N., Almass, E. and Barabasi, A. L. (2008) Predicting synthetic resuces in 
metabolic networks. Mol Syst Biol, 4, 168. 
 



 59 

Murtagh F. (1985) Multidimensional clustering algorithms. Wuerzburg: Physica-Verlag. 
 
Niederberger P, Prasad R, Miozzari G, and Kacser H. (1992) A strategy for increasing an in vivo flux 
by genetic manipulations. The tryptophan system of yeast. Biochem J, 287, 473-479. 
 
Oh Y-K, Palsson BO, Park SM, Schilling CH, and Mahadevan R. (2007) Genome-scale 
reconstruction of metabolic network in Bacillus subtillis based on high-throughput phenotyping and 
gene essentiality data. J Biol Chem, 10.1074/jbc.M703759200. 
 
Overkamp KM, Kötter P, van der Hoek R, Schoondermark-Stolk S, Luttik MA, van Dijken JP, and 
Pronk JT. (2002) Functional analysis of structural genes for NAD(+)-dependent formate 
dehydrogenase in Saccharomyces cerevisiae. Yeast, 19, 509-520. 
 
Papin J, Price N, Edwards J, and Palsson B. (2002) The genome-scale metabolic extreme pathway 
structure in Haemophilus influenze shows significant network redundancy. J Theor Biol, 215, 67-82. 
 
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, and Eggeling L. (2005) 
Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol, 
71, 7139-7144. 
 
Phalakornkule C, Lee S, Zhu T, Koepsel R, Ataai MM, Grossmann IE, Domach MM. (2001) A 
MILP-based flux alternative generation and NMR experimental design strategy for metabolic 
engineering. Metab Eng, 3, 124-137. 
 
Phillips I and Silver PA. 2006, A new biobrick assembly strategy designed for facile protein 
engineering. http://hdl.handle.net/1721.1/32535. In DSpace. MIT Artificial Intelligence 
Laboratory; MIT Synthetic Biology Working Group. 
 
Piper MD, Hong SP, Ball GE, and Dawes IW. (2000) Regulation of the balance of one-carbon 
metabolism in Saccharomyces cerevisiae. J Biol Chem, 275, 30987-30995. 
 
Price N., Reed JL, Papin JA, Wiback SJ, and Palsson BO. (2003) Network-based analysis of 
metabolic regulation in the human red blood cell. J Theor Biol, 225, 185-194. 
 
Quick WP, Schurr U, Sheibe R, Schulze E-D, Rodermel SR, Bogorad L, and Stitt M. (1991) 
Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in tobacco transformed with ‘antisense’ 
rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta, 183, 542-555. 
 
Resendis-Antonio O, Reed RJ, Encarnacion S, Collado-Vides J, and Palsson BO. (2007) Metabolic 
reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comp Biol, 3, e192. 
 
Rothermel BA, Thornton JL, and Butow RA. (1997) Rtg3p, a basic helix-loop-helix/leucine zipper 
protein that functions in mitochondrial-induced changes in gene expression, contains independent 
activation domains. J Biol Chem, 32, 19801-19807. 
 
Schuster S, Fell DA, Dandekar T. (2000) A general definition of metabolic pathways useful for 
systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 18: 326-332. 
 



 60 

Shuster S, Klamt S, Weckwerth W, Moldenhaurer F, and Pfeiffer T. (2002) Use of network analysis 
of metabolic systems in bioengineering. Bioproc Biosyst Eng, 24, 363-372. 
 
Shiba Y, Paradise EM, Kirby J, Ro DK, and Keasling JD. (2007) Engineering of the pyruvate 
dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng, 
9, 160-168. 
 
Schilling CH, Letsher D, Palsson BØ. Theory for the systemic definition of metabolic pathways and 
their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol, 203, 
229-248. 
 
Smith RL and Johnson AD. (2000) Turning genes off by Ssn6-Tup1: a conserved system of 
transcriptional repression in eukaryotes. Trends Biochem Sci, 25, 325-330. 
 
Sporty, J. L., M. M. Kabir, K. W. Turteltaub, T. Ognibene, S. J. Lin, and G. Bench. 2008. Single 
sample extraction protocol for the quantification of NAD and NADH redox states in 
Saccharomyces cerevisiae. J Sep Sci, 31, 3202-11. 
 
Stein I, Peleg Y, Even-Ram S, and Pines O. (1994) The single translation product of the FUM1 gene 
(fumarase) is processed in the mitochondria before being distributed between the cytosol and the 
mitochondria in Saccharomyces cerevisiae. Mol Cell Biol, 14, 4770-4778. 
 
Stelling J and Gilles ED. (2004) Mathematical modeling of complex regulatory networks. IEEE 
Trans Nanobioscience, 3, 172-179. 
 
Stitt M, Quick WP, Schurr U, Schulze E-D, Rodermel SR, and Bogorad L. (1991) Decreased 
ribulose-1,5-bisphosphate carboxylase-oxygenase in tobacco transformed with ‘antisense’ rbcS. II 
Flux-control coefficients for photosynthesis in varying light, CO2, and air humidity. Planta, 183, 555-
566. 
 
Subramanian M, Qiao WB, Khanam N, Wilkins O, Der SD, Lalich JD, Bognar AL. (2005) 
Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p. 
Mol Microbiol, 57, 53-69. 
 
Swiegers JH, Dippenaar N, Pretorius IS, and Bauer FF. (2001) Carnitine-dependent metabolic 
activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-
dependent strain. Yeast, 18, 585-595. 
 
Tate JJ and Cooper TG. (2003) Tor1/2 regulation of retrograde gene expression in Saccharomyces 
cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism. J Biol Chem, 38, 
36924-36933. 
 
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, 
Oliveira AL, and Sa-Correia I. (2006) The YEASTRACT database: a tool for the analysis of 
transcription regulatory associations in Saccharomyces cerevisiae. Nuc Acids Res, 34, D446-D451. 
 
Thomas S and Fell DA. (1996) Design of metabolic control for large flux changes. J Theor Biol, 182, 
285-298. 



 61 

 
Thompson JR, Bell JK, Bratt J, Grant GA, and Banaszak LJ. (2005) Vmax regulation through 
domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Biochemistry, 44: 
5763-5773. 
 
Varma A and Palsson BO. (1994) Metabolic flux balancing: basic concepts, scientific and practical 
use. Bio/Technology, 12, 994-998. 
 
van Maris AJ, Winkler AA, Porro D, van Dijken JP, and Pronk JT. (2004) Homofermentative lactate 
production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible 
consequence of energy-dependent lactate export. Appl Environ Microbiol, 70, 2898-2905. 
 
Visser, D., G. A. van Zuylen, J. C. van Dam, M. R. Eman, A. Proll, C. Ras, L. Wu, W. M. van Gulik, 
and J. J. Heijnen. 2004. Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae 
by application of glucose and ethanol pulses. Biotechnol Bioeng, 88, 157-167. 
 
Vogt AM, Nef H, Schaper J, Poolman M, Fell DA, Kübler W, and Elsässer A. (2002) Metabolic 
control analysis of anaerobic glycolysis in human hibernating myocardium replaces traditional 
concepts of flux control. FEBS Lett, 24, 245. 
 
Waks Z and Silver PA. (2009) Engineering a synthetic dual organism for hydrogen production. Appl 
Environ Eng, 75, 1867-1875. 
 
Waterman MR and Simpson ER. (1989) Regulation of steroid hydroxylase gene expression is 
multifactorial in nature. Recent Prog Horm Res, 45, 155-163. 
 
Werle M, Kreuzer J, Höfele J, Elsässer A, Ackermann C, Katus HA, and Vogt AM. (2005) Metabolic 
control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J Biomed Sci, 12, 
827-834. 
 
Wildermuth M. (2000) Metabolic control analysis: biological applications and insights. Genome Biol, 1, 
1031. 
 
Wu M and Tzagoloff A. (1987) Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are 
encoded by a single nuclear gene FUM1. J Biol Chem, 262, 12275-12282. 
 
Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., and Yukawa, H. (2005) Enhanced hydrogen 
production from formic acid by formate hydrogen lyase-overexpressing  Escherichia coli strains. Appl 
Environ Microbiol, 71, 6762-6728. 
 
Zelle, RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van 
Dijken JP, Pronk JT, and van Maris AJ. (2008) Malic acid production by Saccharomyces cerevisiae: 
engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ 
Microbiol, 74: 2766-2777. 
 
 
 



 62!

Chapter 3 

Strategies for biological hydrogen production1 

 

ABSTRACT 

 Hydrogen could potentially serve as a clean-burning carbon neutral fuel, provided that 

efficient carbon neutral processes can be developed for hydrogen production. Biological systems can 

potentially fulfill this need, given that hydrogenase enzymes are able to efficiently catalyze the 

production of hydrogen without the use of exotic metallic cofactors. In this chapter we present the 

optimization of synthetic hydrogen production circuits in Escherichia coli, and demonstrate their utility 

in selecting for hydrogenase mutants with improved properties. 

 

PRODUCING HYDROGEN BIOLOGICALLY 

 A primary factor limiting the usefulness of hydrogen as a carbon neutral fuel is that 95% of 

current hydrogen production is achieved through the steam reformation of natural gas (Kontur et al. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Portions of the work presented in this chapter were published in the following papers: 

1. Agapakis, C. M., Ducat, D.C., Boyle, P.M., Wintermute, E.H., Way, J.C., & Silver, P.A. 
Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 4, 3 (2010). 

a. Contributions: CMA, DCD, PMB, EHW, JCW, and PAS designed experiments and 
analyzed data; CMA, DCD, PMB, EHW performed experiments; CMA, DCD, JCW, 
and PAS wrote the paper. 

2. Barstow, B., Agapakis, C. M.*, Boyle, P.M.*, Gerald, G.*, Silver, P.A., & Wintermute, E.H. 
A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J Biol Eng 
5, 7–7 (2011). *Equal contribution. 

a. Contributions: EHW designed experiments and drafted the manuscript. EHW, BB, 
CMA, PMB and GG performed experiments. EHW, BB, CMA, PMB, GG and PAS 
analyzed data. 

Excerpts from these papers will be indicated via footnotes in this chapter. I am also including some 
experimental data from work that I did that is unpublished, specifically work on a PFOR-based 
selection system. 
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2011). Biological hydrogen (“bio-hydrogen”) production utilizes reducing power from sugars or 

photosynthesis rather than fossil fuels. Furthermore, hydrogenase enzymes do not require rare 

metals to function, in contrast to current industrial scale electrolysis technologies (Aguirre de Carcer 

et al. 2006). Two major hurdles limit the utility of current biological systems for hydrogen 

production: low hydrogen yields from common feedstocks, and the oxygen sensitivity of [FeFe]-

hydrogenases (Savage et al. 2008). Re-engineering of metabolic pathways and of the hydrogenase 

itself is required to address these issues. 

 We have tested several strategies to improve bio-hydrogen production: the elimination of 

competing metabolic pathways, direct linkage of the hydrogenase to redox carriers (Agapakis et al. 

2010), and genetic selections for the directed evolution of oxygen-tolerant hydrogenases(Barstow et 

al. 2011). 

 

PROPERTIES OF [FeFe]-HYDROGENASES 

 Hydrogenase enzymes are remarkable catalysts; they facilitate the interconversion of two 

protons and two electrons to molecular hydrogen, and do so more efficiently than industrial 

processes which require rare metals such as platinum (Shima et al. 2008). The vast majority of 

known hydrogenase enzymes are classified into two categories, nickel-iron [NiFe] and iron-iron 

[FeFe]. As the nomenclature suggests, these two hydrogenase classes differ in the metal content of 

their active sites (Vignais & Billoud 2007). These hydrogenase families appear to have evolved 

independently, as they show no similarity in amino acid sequence. The highly related geometries of 

hydrogenase active sites, and the use of similar ligands such as carbon monoxide and cyanide, 

suggest that the physical requirements of hydrogen production have resulted in convergent 

evolution (Shima et al. 2008; Vignais & Billoud 2007). 
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 [FeFe]-hydrogenases can be expressed heterologously in Escherichia coli via coexpression with 

three maturation factors: HydE, HydF, and HydG. HydE and HydF can be expressed as a 

functional fusion protein, as demonstrated by the HydEF gene in Chlamydomonas reinhardtii, 

effectively reducing the number of required [FeFe]-hydrogenase maturation factors to two: HydEF 

and HydG (King et al. 2006). In contrast, the maturation of [NiFe] hydrogenases requires at least 12 

maturation factors, making heterologous expression of [NiFe] hydrogenases more difficult (Casalot 

& Rousset 2001; Savage et al. 2008). This limits the portability of synthetic devices that utilize [NiFe] 

hydrogenases, as the full complement of required maturation factors is unknown. 

 An additional advantage of [FeFe]-hydrogenases is that they tend to favor hydrogen 

production under typical physiological conditions, while [NiFe] hydrogenases favor the reverse 

hydrogen-consuming reaction (Ghirardi et al. 2007). This is a consequence of relationship between 

the redox potential of the hydrogenase active site and the redox potential of the carrier molecule that 

shuttles electrons to the hydrogenase. [NiFe] hydrogenases are coupled to NADH, while [FeFe]-

hydrogenases are coupled to ferredoxin (Fd) proteins. NADH and Fd have reducing potentials of -

320 mV and -420 mV, respectively, with the latter potential being closer to that of an H2/H+ pair 

(Ghirardi et al. 2009). Furthermore, [FeFe]-hydrogenases exhibit among the highest activities of 

known hydrogenases, with catalytic rates exceeding the 1000 nmol H2 mg-1 min-1 estimated to be 

required for efficient in vivo photosynthetic hydrogen production (Benemann et al. 1973). 

 Electrons and protons must reach the catalytic H-cluster of [FeFe]-hydrogenases to produce 

hydrogen. Protons appear to diffuse in solution to protonate residues near the active site, while 

electrons are shuttled from Fd (Mulder et al. 2011). Fd are characterized by iron-sulfur (FeS) 

clusters, which is where electrons are stored following reduction reactions. FeS clusters in the 

hydrogenase itself serve as “wires,” allowing electrons to jump from reduced Fd and through FeS 

clusters to the H-cluster via quantum tunneling (Page et al. 1999). The modular nature of Fd 
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proteins and FeS clusters has been exploited by synthetic biologists to generate Fd-hydrogenase 

fusion proteins that more efficiently evolve hydrogen2 (Agapakis et al. 2010). 

 It has been demonstrated that Fd wires can be used to directly couple hydrogenases to 

photosystem I in vitro (Ihara et al. 2006). Achieving sustainable hydrogen production by fusing 

hydrogenases to photosystem I in vivo would prevent captured electrons from entering cellular 

metabolism, maximizing hydrogen production efficiency. Unfortunately, all known [FeFe]-

hydrogenases are sensitive to oxygen, which is a byproduct of photosynthetic activity (Armstrong 

2009). While [NiFe] hydrogenases are more oxygen tolerant than [FeFe]-hydrogenases, the superior 

modularity and faster kinetic rates of [FeFe]-hydrogenases make them intriguing candidates for 

photosystem fusions. 

 In this chapter, we present two complementary strategies that work towards sustainable 

biohydrogen production: the optimization of heterologous hydrogenase pathways in E. coli, as well 

as the design of genetic selection systems for oxygen-tolerant [FeFe]-hydrogenases. To study and 

manipulate the function of hydrogenases in vivo, both strategies involve the coupling of hydrogenases 

to oxidoreductase enzymes via Fd (Figure 3.1). Pyruvate:ferredoxin oxidoreductase (PFOR) reduces 

Fd, and reduced Fd in turn provides electrons for hydrogen production by the hydrogenase. Sulfite 

reductase (SIR) oxidizes Fd in the process of producing hydrogen sulfide, reduced Fd for this 

process can be provided by a hydrogenase running in the reverse direction, consuming molecular 

hydrogen. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 This aspect of the paper is not presented in detail here, as I did not directly contribute to the Fd-
hydrogenase fusion experiments. 
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Figure 3.1 Synthetic hydrogenase circuits. 
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Figure 3.1, continued. Synthetic hydrogenase circuits. (A) Pyruvate:ferredoxin oxidoreductase 
(PFOR) generates reduced Fd by converting pyruvate to acetyl-CoA. Oxidation of reduced Fd by a 
hydrogenase produces molecular hydrogen. (B) Sulfite reductase (SIR) reduces sulfite to sulfide via 
the oxidation of Fd. Consumption of hydrogen by a hydrogenase (H2ase) regenerates reduced Fd. 

 

OPTIMIZING THE PFOR-FERREDOXIN-HYDROGENASE INTERACTION3 

In vitro hydrogen production from heterologously expressed hydrogenases 

To create a synthetic electron metabolism circuit with hydrogenase as the terminal electron 

acceptor, we first investigated the activity of various hydrogenase genes heterologously expressed in 

the presence of appropriate maturation factors. We adapted a previously established in vitro 

hydrogenase activity assay (King et al. 2006), and measured hydrogen production from crude lysates 

of bacteria expressing hydrogenases and maturation factors from several species in the presence of a 

chemical electron donor, methyl viologen. Previous reports have shown that the hydrogenase 

maturation factors from C. reinhardtii, HydEF and HydG, are unstable when heterologously 

expressed in E. coli (King et al. 2006), likely due to the genes’ high GC content, while the maturation 

factors from Clostridium acetobutylicum were able to mature [FeFe]-hydrogenases from a wide range of 

species. Using commercially synthesized, codon optimized maturation factors from C. reinhardtii we 

were able to alleviate the instability of the gene constructs. We found that in vitro hydrogen 

production from the Clostridium acetobutylicum hydrogenase was identical when coexpressed with the 

synthetic maturation factors or with HydE, HydF, and HydG from C. acetobutylicum (data not 

shown). All subsequent experiments were performed using the optimized C. reinhardtii maturation 

factors.  

We compared the in vitro hydrogen production of [Fe-Fe] hydrogenases from Clostridium 

acetobutylicum, Clostridium saccharobutylicum, Chlamydomonas reinhardtii, Shewanella oneidensis, and Thermotoga 

maritima, all of which are homologous in their catalytic domain (Appendix A, figure S3). All 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 This section is adapted from Agapakis et al, 2010. 
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hydrogenases except HydA from Thermotoga maritima could be expressed at a high level in E. coli 

(Figure 3.2A), and were functional in vitro (Figure 3.2B). Hydrogen levels increased linearly for the 

first several hours of measurement (data not shown), and we found that levels of hydrogen gas in 

the headspace after overnight incubation correlated to the relative rate of hydrogenase activity 

during this linear phase. Our overnight in vitro results agree with previous reports of in vitro hydrogen 

production rates, with the hydrogenases from Clostridium species producing the highest levels of 

hydrogen (King et al. 2006). The heterologously expressed hydrogenase from Shewanella oneidensis is 

functional at relatively low levels in vitro when both subunits are coexpressed in E. coli with 

maturation factors from C. reinhardtii. 

The in vitro assay is useful to test and compare the activities of heterologously expressed 

hydrogenase genes, but as the assay uses an exogenous reducing agent, it does not provide 

information on the electron flux within normal metabolic pathways in vivo. To measure electron flux 

in vivo as a function of hydrogen production, hydrogenase activity must be integrated into a 

functional electron transfer pathway. One well established class of electron donors to hydrogenases 

are ferredoxins, small soluble proteins that contain iron-sulfur clusters. Construction of a system 

where hydrogenase activity depends on electron transfer from Fd would allow for comparison to in 

vitro data to provide information on hydrogenase behavior and hydrogenase-ferredoxin interaction 

dynamics. 

 

In vivo construction and optimization of a synthetic hydrogen-producing circuit 

 To produce hydrogen in vivo from glucose, the [FeFe]-hydrogenase was coexpressed with its 

required maturation factors, Fd, and pyruvate-ferredoxin oxidoreductase (PFOR) from different 

species. In this heterologous circuit, PFOR oxidizes pyruvate to acetyl-CoA, reducing Fd, which  
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Figure 3.2 Characterization of synthetic hydrogen production pathway. A) Western blot of 
Strep-II tagged hydrogenase expression. B) In vitro hydrogen production from E. coli strains 
expressing various hydrogenases, measured by the methyl viologen in vitro assay (King et al. 2006). 
C.a. = C. acetobutylicum, C.s. = C. saccharobutylicum, C.r. = C. reinhardtii, S.o. = Shewanella oneidensis. C) 
Glucose-dependence of hydrogen production. Here and below, in vivo and in vitro hydrogen 
production values are in units of µmol hydrogen/ml of E. coli culture, normalized to an OD600 of 
0.15 unless otherwise stated. Assays were performed in triplicate, with error bars indicating standard 
deviation. D) In vivo hydrogen production from E. coli strains expressing all combinations of the four 
hydrogenases vs. three Fd from C. acetobutylicum, Spinacia olearcea (Sp.o), and Zea mays (Zm). E) In vivo 
hydrogen production from the C. acetobutylicum hydrogenase paired with combinations of three Fd 
and three PFOR genes. 

then transfers the electron to the hydrogenase. In normal E. coli metabolism, the oxidative 

breakdown of pyruvate to acetyl-CoA is performed either aerobically by the pyruvate dehydrogenase 

complex, reducing NAD+, or anaerobically by pyruvate formate lyase, generating formate (Figure 

3.3). PFOR functions in certain anaerobic bacteria and in eukaryotic parasites that possess 

hydrogenosomes, organelles evolutionarily related to the mitochondrion that generate a proton 

the production of hydrogen gas [33]. PFOR is an attractive
electron source for a synthetic hydrogen production cir-
cuit as overexpression of a putative E. coli PFOR homolog,
YdbK, increases in vivo hydrogen production by heterolo-
gously expressed [FeFe]-hydrogenase and ferredoxin [20],
PFOR purified from Clostridium pasteurianum has been
shown to reduce a number of ferredoxins in vitro [34],
and functional PFOR from Desulfovibrio africanus has
been recombinantly expressed in E. coli [28].
Consistent with the establishment of a synthetic elec-

tron transport circuit in vivo, we observed high levels of
glucose-dependent hydrogen production upon coexpres-
sion of PFOR, hydrogenase and its maturation factors,
and ferredoxin all from Clostridium acetobutylicum in
an E. coli strain lacking endogenous hydrogenases
(∆hycE, ∆hyaB, ∆hybC, figure 2C). Hydrogen production

was again measured after overnight incubation, as we
found that hydrogen production in vivo from glucose
was exhausted after 16 hours (data not shown). We
were unable to detect hydrogen production in the par-
ental strain of E. coli with the native hydrogenases
deleted. Removal of any individual pathway component
from the synthetic circuit drastically reduced in vivo
hydrogen production. However, as has been previously
reported, there was a small background level of hydro-
gen production from expression of hydrogenase and
maturation factors alone [35]. Consistent with previous
results [19], we found this background hydrogen pro-
duction was slightly increased upon overexpression of
ferredoxin in addition to hydrogenase, indicating that
there are E. coli proteins capable of reducing both
hydrogenases and plant-type ferredoxins, several

Figure 2 Characterization of synthetic hydrogen production pathway A.) Western blot of Strep-II tagged hydrogenase expression. B.) In vitro
hydrogen production from E. coli strains expressing various hydrogenases, measured by the methyl viologen in vitro assay [18]. C.a. = C.
acetobutylicum, C.s. = C. saccharobutylicum, C.r. = C. reinhardtii, S.o. = Shewanella oneidensis. C.) Glucose-dependence of hydrogen production.
Here and below, in vivo and in vitro hydrogen production values are in units of μmol hydrogen/ml of E. coli culture, normalized to an OD600 of
0.15 unless otherwise stated. Assays were performed in triplicate, with error bars indicating standard deviation. D.) In vivo hydrogen production
from E. coli strains expressing all combinations of the four hydrogenases vs. three ferredoxins from C. acetobutylicum, Spinacia olearcea (Sp.o),
and Zea mays (Zm). E.) In vivo hydrogen production from the C. acetobutylicum hydrogenase paired with combinations of three ferredoxins and
three PFOR genes.

Agapakis et al. Journal of Biological Engineering 2010, 4:3
http://www.jbioleng.org/content/4/1/3
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gradient through the production of hydrogen gas (Boxma et al. 2005). PFOR is an attractive electron 

source for a synthetic hydrogen production circuit as overexpression of a putative E. coli PFOR 

homolog, YdbK, increases in vivo hydrogen production by heterologously expressed [FeFe]-

hydrogenase and Fd (Kalim Akhtar & Jones 2009), PFOR purified from Clostridium pasteurianum has 

been shown to reduce a number of Fd in vitro (Moulis & Davasse 1995), and functional PFOR 

from Desulfovibrio africanus has been recombinantly expressed in E. coli (Pieulle et al. 1997). 

 

Figure 3.3 Natural and synthetic pyruvate metabolism to acetyl-CoA in E. coli through the pyruvate 
dehydrogenase complex (PDH), pyruvate formate lyase (PFL), and the heterologous PFOR-
ferredoxin (Fd)-hydrogenase synthetic pathway. Native enzymes are indicated in black, heterologous 
enzymes in blue. 

Consistent with the establishment of a synthetic electron transport circuit in vivo, we 

observed high levels of glucose-dependent hydrogen production upon coexpression of PFOR, 

hydrogenase and its maturation factors, and Fd all from Clostridium acetobutylicum in an E. coli strain 

lacking endogenous hydrogenases (∆hycE, ∆hyaB, ∆hybC, Figure 3.2C). Hydrogen production was 

for electron transfer pathways. We reproduced spatio-
temporal isolation through the deletion of competing
iron-sulfur proteins. We explored the interaction surface
of the hydrogenase and ferredoxin, testing four mutations
of surface amino acids of the [FeFe]-hydrogenase from
Chlamydomonas reinhardtii previously predicted to
improve ferredoxin binding [25]. We synthetically mod-
eled physical scaffolding of electron transfer proteins,
both through direct protein fusion of the Clostridium
acetobutylicum hydrogenase and ferredoxins with flexible

peptide linkers, and through connection of hydrogenase
and ferredoxin to a heterologous protein scaffold [26].
All of these insulation strategies significantly affected the
function of our synthetic circuit, in many cases increasing
total hydrogen production. The highest improvement
was seen with direct protein-protein fusion of the hydro-
genase and ferredoxin, with an optimal linker length
increasing hydrogen production by up to four fold.
This method is easily transferrable to other synthetic
electron transfer pathways and may provide clues to

Figure 1 Overview of synthetic pathway design and insulation strategies A.) Natural and synthetic pyruvate metabolism to acetyl-CoA in
E. coli through the pyruvate dehydrogenase complex (PDH), pyruvate formate lyase (PFL), and the heterologous PFOR-ferredoxin (Fd)-
hydrogenase synthetic pathway. Native enzymes are indicated in black, heterologous enzymes in blue. B.) Insulation strategies for synthetic
electron transfer pathways; deletion of competing reactions, optimization of binding surfaces, direct protein-protein fusion, and localization to a
synthetic protein scaffold. We present the maximum fold increase in hydrogen production due to each method, calculated by comparing
normalized values of hydrogen production by otherwise identical synthetic pathways with and without the insulation strategy (see Results).

Agapakis et al. Journal of Biological Engineering 2010, 4:3
http://www.jbioleng.org/content/4/1/3

Page 3 of 15
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again measured after overnight incubation, as we found that hydrogen production in vivo from 

glucose was exhausted after 16 hours (data not shown). We were unable to detect hydrogen 

production in the parental strain of E. coli with the native hydrogenases deleted. Thus, any hydrogen 

production observed in this strain background must occur via heterologous hydrogenases. Removal 

of any individual pathway component from the synthetic circuit drastically reduced in vivo hydrogen 

production. However, as has been previously reported, there was a small background level of 

hydrogen production from expression of hydrogenase and maturation factors alone (Akhtar & Jones 

2008). Consistent with previous results (Veit et al. 2008), we found this background hydrogen 

production was slightly increased upon overexpression of Fd in addition to hydrogenase, indicating 

that there are E. coli proteins capable of reducing both hydrogenases and plant-type ferredoxins, 

several candidate proteins of which we deleted in the following section (Figure 3.4).  

The hydrogenase-ferredoxin-PFOR pathway constitutes a modular system, where each 

element can be exchanged with homologous genes from different organisms. By coexpressing 

pathway enzymes from diverse microorganisms, we were able to compare the relative interaction 

strengths of four hydrogenases, three ferredoxins (Figure 3.2D), and three PFORs (Figure 3.2E). All 

ferredoxins were able to transfer electrons between PFOR and hydrogenases from different species 

with varying levels of efficiency.  

In vivo hydrogen production from circuits expressing each of the four hydrogenases (C. 

acetobutylicum, C. saccharobutylicum, C. reinhardtii, and S. oneidensis) followed the same trend as the in vitro 

experiments, with the highest hydrogen production observed with the clostridial hydrogenases 

(Figure 3.2D). The relative interaction and electron transfer rates for hydrogenase and Fd were 

explored by comparing the in vivo hydrogen production of circuits made up from all pairwise 

combinations of the four hydrogenases and Fd from C. acetobutylicum, Spinacea olearcea, and Zea mays 

and the PFOR from C. acetobutylicum (Figure 3.2D). All hydrogenases produced the highest output 
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when co-expressed with bacterial type 2-[4Fe-4S] Fd from Clostridium acetobutylicum, with a potential 

of -420mV (Guerrini et al. 2008). Intermediate levels of hydrogen were produced using leaf-type 

[2Fe-2S]-Fd I from spinach, S. olearcea (-420 mV (Yonekura-Sakakibara et al. 2000)) while the 

homologous root-type Fd III from corn, Z. mays (-345 mV (Yonekura-Sakakibara et al. 2000)) led to 

significantly lower in vivo hydrogen levels in all cases. Interestingly, the difference in hydrogen 

production from circuits expressing bacterial versus plant-type ferredoxins was more significant for 

hydrogenases from bacterial species. Hydrogenase from C. reinhardtii, which naturally pairs with 

plant-type ferredoxins, produced similar levels of hydrogen when co-expressed with Fd from C. 

acetobutylicum or S. olearcea (Figure 3.2D).  

The interaction of overexpressed PFOR from C. acetobutylicum, D. africanus, or the PFOR 

homolog YdbK from E. coli with the three ferredoxins was compared in a similar fashion in circuits 

containing the C. acetobutylicum hydrogenase (Figure 3.2E). Overexpression of PFOR from C. 

acetobutylicum and YdbK from E. coli led to similar levels of hydrogen production, although 

surprisingly, the highest levels of hydrogen produced from YdbK occurred when it was coexpressed 

with plant-type Fd from S. olearcea. Overall, the highest levels of hydrogen production were seen 

with the PFOR from D. africanus, coexpressed with the hydrogenase and Fd from C. acetobutylicum. 

Isolation of the hydrogen producing circuit through deletion of competing reactions 

Natural biological electron transfer circuits are insulated to prevent electron leaks that can cause 

damage by creating oxygen radicals and insulated from one another to prevent "short circuiting" 

(McCord 2000). We sought to insulate our hydrogen producing circuit from competing metabolism 

to improve levels of hydrogen production and to better understand natural biological pathway 

isolation, a priority for the design of synthetic metabolic pathways. Although our constructed 

pathway is made up of genes that are divergent from E. coli metabolic enzymes, given the non-

specific electrostatic interactions that mediate many Fd interactions (Gou et al. 2006), native iron-
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sulfur proteins may interact with the proteins of the heterologous pathway. This is evidenced by the 

background hydrogen production in strains expressing only heterologous hydrogenases and 

ferredoxins (Figure 3.4). Deletion of these potentially competing redox interaction partners should 

improve pathway function. To address these issues, we deleted six genes identified through their 

homology to plant-type ferredoxins or ferredoxin oxidoreductases that still allowed for viability (fpr, 

flavodoxin:NADP+ reductase (Veit et al. 2008); ydbK, the putative PFOR homolog (Veit et al. 2008); 

hcr, an NADH oxidoreductase; yeaX, a predicted oxidoreductase; hcaD, ferredoxin:NAD+ reductase; 

and frdB, fumarate reductase. Appendix A, figure S4). 

!
Figure 3.4 Insulation of hydrogenase pathway through deletion of competing reactions. 
Relative hydrogen production of different knockout strains compared to parent strain (∆hycE, 
∆hyaB, ∆hybC) expressing hydrogenase alone (dark blue bar), hydrogenase and Fd only (yellow bars) 
or the full PFOR-ferredoxin-hydrogenase pathway (green bars). 

These six deletions were tested individually in a ∆hycE, ∆hyaB, ∆hybC background while 

expressing hydrogenase from C. acetobutylicum and maturation factors from C. reinhardtii, Fd from S. 

olearcea, with or without co-expression of PFOR from D. africanus. Deletion of fpr and ydbK have 

been previously shown to slightly decrease the background level of hydrogenase activity in vivo (Veit 

et al. 2008). We found that only the ydbK deletion had any significant effect on hydrogen production 

candidate proteins of which we deleted in the following
section (figure 3).
The hydrogenase-ferredoxin-PFOR pathway constitu-

tes a modular system, where each element can be
exchanged with homologous genes from different organ-
isms. By coexpressing pathway enzymes from diverse
microorganisms, we were able to compare the relative
interaction strengths of four hydrogenases, three ferre-
doxins (figure 2D), and three PFORs (figure 2E). All fer-
redoxins were able to transfer electrons between PFOR
and hydrogenases from different species with varying
levels of efficiency.
In vivo hydrogen production from circuits expressing

each of the four hydrogenases (C. acetobutylicum,
C. saccharobutylicum, C. reinhardtii, and S. oneidensis)
followed the same trend as the in vitro experiments, with
the highest hydrogen production observed with the clos-
tridial hydrogenases (figure 2D). The relative interaction
and electron transfer rates for hydrogenase and ferre-
doxin were explored by comparing the in vivo hydrogen
production of circuits made up from all pairwise combi-
nations of the four hydrogenases and ferredoxin from
C. acetobutylicum, Spinacea olearcea, and Zea mays and
the PFOR from C. acetobutylicum (figure 2D). All hydro-
genases produced the highest output when co-expressed
with bacterial type 2-[4Fe-4S] ferredoxin from Clostri-
dium acetobutylicum, with a potential of -420mV [27].
Intermediate levels of hydrogen were produced using
leaf-type [2Fe-2S]-ferredoxin I from spinach, S. olearcea
(-420 mV [36]) while the homologous root-type ferre-
doxin III from corn, Z. mays (-345 mV [36]) led to signif-
icantly lower in vivo hydrogen levels in all cases.
Interestingly, the difference in hydrogen production from
circuits expressing bacterial versus plant-type ferredoxins
was more significant for hydrogenases from bacterial spe-
cies. Hydrogenase from C. reinhardtii, which naturally

pairs with plant-type ferredoxins, produced similar levels
of hydrogen when co-expressed with ferredoxin from
C. acetobutylicum or S. olearcea (figure 2D).
The interaction of overexpressed PFOR from C. aceto-

butylicum, D. africanus, or the PFOR homolog YdbK
from E. coli with the three ferredoxins was compared in
a similar fashion in circuits containing the C. acetobuty-
licum hydrogenase (figure 2E). Overexpression of PFOR
from C. acetobutylicum and YdbK from E. coli led to
similar levels of hydrogen production, although surpris-
ingly, the highest levels of hydrogen produced from
YdbK occurred when it was coexpressed with plant-type
ferredoxin from S. olearcea. Overall, the highest levels of
hydrogen production were seen with the PFOR from
D. africanus, coexpressed with the hydrogenase and fer-
redoxin from C. acetobutylicum.

Isolation of the hydrogen producing circuit through
deletion of competing reactions
Natural biological electron transfer circuits are insulated
to prevent electron leaks that can cause damage by creat-
ing oxygen radicals and insulated from one another to
prevent “short circuiting” [37]. We sought to insulate our
hydrogen producing circuit from competing metabolism
to improve levels of hydrogen production and to better
understand natural biological pathway isolation, a prior-
ity for the design of synthetic metabolic pathways.
Although our constructed pathway is made up of genes
that are divergent from E. coli metabolic enzymes, given
the non-specific electrostatic interactions that mediate
many ferredoxin interactions [5], native iron-sulfur pro-
teins may interact with the proteins of the heterologous
pathway. This is evidenced by the background hydrogen
production in strains expressing only heterologous
hydrogenases and ferredoxins (figure 3). Deletion of
these potentially competing redox interaction partners
should improve pathway function. To address these
issues, we deleted six genes identified through their
homology to plant-type ferredoxins or ferredoxin oxidor-
eductases that still allowed for viability (fpr, flavodoxin:
NADP+ reductase [19]; ydbK, the putative PFOR homo-
log [19]; hcr, an NADH oxidoreductase; yeaX, a predicted
oxidoreductase; hcaD, ferredoxin:NAD+ reductase; and
frdB, fumarate reductase. Additional file 1, figure S4).
These six deletions were tested individually in a ∆hycE,

∆hyaB, ∆hybC background while expressing hydrogenase
from C. acetobutylicum and maturation factors from
C. reinhardtii, ferredoxin from S. olearcea, with or with-
out co-expression of PFOR from D. africanus. Deletion
of fpr and ydbK have been previously shown to slightly
decrease the background level of hydrogenase activity in
vivo [19]. We found that only the ydbK deletion had any
significant effect on hydrogen production compared to
the hydrogenase knockouts alone. The background level

Figure 3 Insulation of hydrogenase pathway through deletion
of competing reactions Relative hydrogen production of different
knockout strains compared to parent strain (∆hycE, ∆hyaB, ∆hybC)
expressing hydrogenase alone (dark blue bar), hydrogenase and
ferredoxin only (yellow bars) or the full PFOR-ferredoxin-
hydrogenase pathway (green bars).

Agapakis et al. Journal of Biological Engineering 2010, 4:3
http://www.jbioleng.org/content/4/1/3
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compared to the hydrogenase knockouts alone. The background level of hydrogen production from 

HydA and Fd expressed alone was decreased by half in the ydbK deletion strain, whereas hydrogen 

production from the full pathway with the D. africanus PFOR was increased by 1.4 fold (Figure 3.4). 

This is consistent with our finding that overexpression of ydbK led to high levels of electron transfer 

when co-expressed with Fd from spinach, indicating that endogenous ydbK is able to disrupt the 

synthetic electron transfer pathway. 

 

DESIGN OF A PFOR-BASED GENETIC SELECTION FOR OXYGEN TOLERANT 

HYDROGENASES4 

 We investigated whether the PFOR-Fd-Hydrogenase circuit (Figure 3.1A) was a suitable 

pathway for a genetic selection. The rationale for this selection is that cell viability could be coupled 

to central carbon metabolism, by replacing pyruvate dehydrogenase and pyruvate formate lyase with 

PFOR. In this manner, PFOR would provide the only route between pyruvate and acetyl-CoA. The 

reduced Fd generated by PFOR would then be oxidized by an [FeFe] hydrogenase. Thus, the 

function of the hydrogenase would be required for the maintaining cellular redox balance, and 

hydrogen production would be an observable output of this process. If cell growth could be coupled 

to hydrogenase function, this system could be used to select for hydrogenases with improved 

function; in particular we were interested in identifying oxygen-tolerant hydrogenases. 

In parallel, we also developed a genetic selection based on an SIR-Fd-Hydrogenase circuit 

(Figure 3.1B). For the SIR-based circuit, the hydrogenase is acting in the opposite reaction direction 

to the PFOR-dependent selection. We hypothesized that if the SIR-dependent and PFOR-

dependent selections yielded different types of hydrogenase mutants, then that would indicate a 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 This work was performed concurrently with the work in Agapakis et al 2010 and Barstow et al 
2011. This section describes work that was not included in these publications. 
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physical mechanistic difference between the forward and reverse hydrogenase reactions. Such a 

difference could be a consequence of hydrogenase converting aqueous protons to gaseous molecular 

hydrogen, and vice versa. Unfortunately, our efforts to engineer a PFOR-dependent strain were not 

successful. The strains that were constructed and tested for the PFOR-based selection are described 

here. The SIR selection was eventually published as Barstow et al 2011, and is described in the next 

section. 

 As with the previously described experiments, our initial strain for the PFOR selection was 

BL21 E. coli with the native hydrogenases knocked out (∆hycE, ∆hyaB, ∆hybC) (Agapakis et al. 2010). 

From this strain, we deleted all pyruvate consuming reactions in E. coli (Figure 3.5). An E. coli with 

these deletions was previously demonstrated to overproduce pyruvate (Zhu et al. 2008). Zhu et al 

observed that this strain is only capable of growth on rich media containing acetate, such as TYA 

medium. 

 In order to select for oxygen tolerant hydrogenases, all other components of the selective 

pathway must be oxygen tolerant. The PFOR from D. africanus is the only PFOR known to be 

functional in the presence of oxygen (Pieulle et al. 1997)5. As noted previously, we also observed 

that daPFOR produces more hydrogen in vivo when coupled with caFd and caHydA than caPFOR 

does. Thus, daPFOR was used for these experiments. Unless otherwise noted, all strains in this 

section contain the IPTG-inducible daPFOR, caHydA, caFd, crHydEF,crHydG system described in 

Agapakis et al 2010. 

 As with Zhu et al 2008, we knocked out pyruvate related genes ldhA, pps, poxB, and pflB to 

increase flux to pyruvate. We also knocked out fre, which in early experiments with the SIR-

dependent selection had been shown to reduce nonspecific growth (E.H. Wintermute, personal 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 This is the original reason we cloned daPFOR, the improvement in hydrogen yield over the 
caPFOR was unanticipated. 
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communication). The pyruvate dehydrogenase genes aceE and aceF have the largest fitness impact 

when deleted (Zhu et al. 2008), so we first conducted experiments with the pyruvate dehydrogenase 

complex intact. Paradoxically, despite no major changes in anaerobic growth on LB (Figure 3.6A), 

the introduction of PFOR reduced in vivo production of hydrogen in this knockout background 

(Figure 3.6B). The addition of pyruvate and thiamine pyrophosphate (TPP), a substrate of PFOR, 

had no major effect on improving hydrogen yields (data not shown). 

 

Figure 3.5 Pyruvate metabolism in E. co l i .  Enzymes: 1, PEP carboxylase, 22, PEP synthase, 3, 
lactate dehydrogenase, 4, pyruvate oxidase, 5, pyruvate formate lyase, 6, pyruvate dehydrogenase 
complex, 7, acetyl-CoA synthetase, 8, acetate kinase, 9, phosphotransacetylase. Reactions knocked 
out for the PFOR selection are labeled with a red X. Figure adapted from Zhu et al 2008. 
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!
Figure 3.6 Impact of PFOR Expression on in v ivo  hydrogen yields. A) OD 600 of cultures 
tested for hydrogen production. B) Hydrogen yields from an in vivo hydrogen production assay 
(Agapakis et al. 2010). Ca = CaPFOR, Da = DaPFOR, hydko = ΔhycE ΔhybC ΔhyaB, pyrko = hydko 
+ ΔldhA Δpps ΔpoxB ΔpflB Δfre. Y-axis: peak area as detected by gas chromatography (arbitrary 
units)  

 Despite these results, we decided to also test pyruvate knockout strains under selection 

conditions, as in the SIR-dependent selection. Cultures of ΔldhA Δpps ΔpoxB ΔpflB ΔhycE ΔhybC 

ΔhyaB Δfre cells, as well as cultures of cells with only the hydrogenases and one of the two major 

pyruvate dehydrogenase genes (aceE or aceF) knocked out. Cells were plated on TYA media, which is 

rich media containing acetate as a carbon source. In Zhu et all 2008, aerobically culturing pyruvate 

metabolism knockouts in TYA medium was shown to cause pyruvate accumulation in these strains. 

ΔldhA Δpps ΔpoxB ΔpflB ΔhycE ΔhybC ΔhyaB Δfre were capable of growing both aerobically and 

anaerobically on TYA media (Table 3.1). Both ΔaceE and ΔaceF strains, on the other hand, 

demonstrated poor growth when transformed with PFOR in aerobic conditions. Anaerobically, the 

growth defect caused by PFOR was sufficient to prevent growth entirely (Table 3.1). Based on these 
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results, we concluded that our PFOR-based strategy was unsuitable for use as a selection for oxygen-

tolerant hydrogenases. 

Strain Growth -PFOR Growth +PFOR 

ΔldhA Δpps ΔpoxB ΔpflB ΔhycE 

ΔhybC ΔhyaB Δfre 

+++ (air) +++ (air) 

++ (nitrogen) ++ (nitrogen) 

ΔhycE ΔhybC ΔhyaB ΔaceE ++ (air) + (air) 

++ (nitrogen) No growth (nitrogen) 

ΔhycE ΔhybC ΔhyaB ΔaceF +++ (air) + (air) 

++ (nitrogen) No growth (nitrogen) 

Table 3.1 Growth of pyruvate knockouts on TYA media in different atmospheres.                 
+ = colonies only, ++ and +++ = lawns. 

!
DESIGN OF AN SIR-BASED GENETIC SELECTION FOR OXYGEN TOLERANT 

HYDROGENASES6 

Design for hydrogenase-dependent growth 

Figure 3.1B details the synthetic pathway designed for our selection and expressed in E. coli. 

An exogenous FeFe-hydrogenase consumes H2 and reduces Fd. Fd donates electrons to sulfite 

reductase for the reduction of sulfite to sulfide. Sulfide serves in the host as an indispensible sulfur 

source for cysteine biosynthesis. 

 Fd, an electron-carrying iron-sulfur (Fe-S) protein, is the native redox partner of the best-

characterized FeFe-hydrogenases (Demuez et al. 2007). An Fd also receives electrons from 

photosystem I in plants, suggesting that it could be adapted to mediate light-driven H2 production. 

We chose Fd as an intermediate with this future application in mind. A Fd homolog, fdx, is found in 

E. coli, where it plays an essential role as a scaffold site for iron-sulfur cluster assembly (Nakamura et 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 This section is adapted from Barstow et al, 2011. 
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al. 1999). E. coli does not appear to use Fd as an electron carrier in the metabolic network, instead 

relying on NAD(P)H. We therefore hypothesized that Fd chemistry would be insulated from native 

metabolism. 

 The kegg pathway database (Kanehisa et al. 2008) identifies three enzymes that produce 

essential metabolites using Fd as an electron source. Glutamate synthase, nitrite reductase and SIR 

activities are all essential for the growth of E. coli in minimal medium. The native bacterial enzymes 

draw electrons from NADPH to produce glutamate, ammonia and sulfide, respectively. The 

analogous enzymes in plants yield the same products while drawing electrons from Fd, a common 

redox carrier in those species. While all three products are indispensable for E. coli viability, sulfide is 

consumed in the smallest molar quantity (Feist et al. 2007). We therefore chose to employ SIR, 

reasoning that the small metabolic requirement would afford more tolerance for suboptimal 

performance of the heterologous pathway. 

 SIR is not essential on cysteine-containing rich media, but it becomes essential on selective 

media containing only oxidized sulfur sources such as sulfate or sulfite. In the absence of the native 

E. coli NADPH-dependent SIR, cysI, the synthetic pathway is the only metabolic source of reduced 

sulfur. If the components of this pathway are insulated from any endogenous electron sources, then 

hydrogenase activity will also be essential for growth. Increasing O2 concentrations, by inactivating 

the hydrogenase, will eventually inhibit the ability of host cells to grow on sulfite. This synthetic 

pathway therefore enables a genetic selection for hydrogenase mutants with an ability to support 

growth in high O2. 
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Figure 3.7 Genetic insulation of the synthetic pathway. A) E. coli BL21(DE3) cysI cells were 
transformed with plasmids expressing zmFNR, soFD and zmSIR. The cysI deletion conveys a 
requirement for reduced sulfur, which the heterologous pathway supplies. Cells were grown for 24 
hours on selective media with our without atmospheric O2. All three factors were required to rescue 
growth under aerobic conditions (left plate). Expression of zmFNR was not required under 
anaerobic conditions (right plate), indicating that soFD was receiving electrons from another source. 
B) Genetic deletions were targeted to eliminate potential endogenous redox partners for ferredoxin, 
therefore linking sulfide production specifically to a synthetic electron source. Also deleted were the 
catalytic subunits of each native hydrogenase, ensuring that only exogenous hydrogen was present in 
our system. C) Each deletion strain was transformed with soFD, zmSIR and either zmFNR or an 
empty plasmid. Growth was measured after 18 hours at 37°C under strict anaerobic conditions, as 
described in the methods. Sequential deletions reduced the nonspecific anaerobic background 
growth, with the largest effect produced by the deletion of ydbK. The final deletion strain, EW11, 
showed no growth defect in rich media and was used in all later experiments. 

Synthetic ferredoxin-dependent sulfite reduction 

We first sought to establish that the native E. coli BL21(DE3) SIR could be replaced with a 

Fd-dependent pathway (Figure 3.7A). Deletion of the cysI SIR did not impair growth on rich media 

provides no interacting source of reduced ferredoxin or
ferredoxin-reductase activity under these conditions.
We then provided a heterologous source of reduced

ferredoxin in the form of corn-derived (Zea mays)

ferredoxin-NADP+ reductase (zmFNR). This enzyme
links soFD to the endogenous NADPH pool by catalyz-
ing redox exchange between the two electron carriers
[47]. FNR requires no maturation factors and is unaf-
fected by O2, therefore it serves as a hydrogenase-inde-
pendent control source of electrons for our pathway.
Expression of zmFNR with soFD and zmSIR rescued
growth of the cysI mutant on sulfate in aerobic selective
media. The growth rescue required all three factors as
well as IPTG induction of the expression plasmids. This
result established that the ferredoxin and sulfite reduc-
tase components of our pathway were functional and
insulated from native metabolism under aerobic
conditions.
However, we found that heterologous zmFNR was not

required to rescue growth when the selective strain was
grown without ambient O2 (Figure 2A). While soFD and
zmSIR expression were both still essential, this undesir-
able background growth indicated that the native meta-
bolic machinery could donate electrons to ferredoxin in
anoxic conditions. We did not observe anaerobic growth
upon expression of zmSIR alone, indicating that elec-
trons were entering the pathway through soFD.
Anaerobiosis effects global physiological adaptations in

E. coli[48]. The transition from respiratory to fermenta-
tive growth is accompanied by a drop in cytosolic redox
potential concomitant with an excess of reducing
equivalents generated by glycolysis. A variety of meta-
bolic pathways are expressed specifically in anaerobic
conditions to dispose of electrons through electron
acceptors including acetate, fumarate, nitrate and H2.
Sulfite in our system represents a high potential electron
sink, consistent with the increased tendency for elec-
trons to enter the pathway under these conditions.
To produce the strictest possible connection between

the heterologous pathway and strain fitness under selec-
tion, we sought to identify and eliminate any endogen-
ous anaerobic electron sources. We selected 6 candidate
interacting genes as potential nonspecific electron
donors. Candidates were identified based on their
homology to known ferredoxin-reducing proteins, with
preference given to genes known to be induced
anaerobically.
The following six candidate genes were deleted in the

BL21(DE3) parent strain: fpr, ydbK, hcr, yeaX, hcaD,
frdB. The genes were deleted serially, in a single host
strain, in order to expose and eliminate potentially
redundant or epistatic interactions of the candidate
genes with our pathway (Figure 2B). The fpr gene
encodes an anaerobic flavodoxin-NADP+ reductase[49].
Overexpression of ydbK, a putative pyruvate:flavodoxin
oxidoreductase, has been shown to drive hydrogenase
activity through ferredoxin in E. coli[50]. The hcr locus
encodes an anaerobically expressed NADH
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Figure 2 Genetic insulation of the synthetic pathway. A) E. coli
BL21(DE3) cysI cells were transformed with plasmids expressing
zmFNR, soFD and zmSIR. The cysI deletion conveys a requirement
for reduced sulfur, which the heterologous pathway supplies. Cells
were grown for 24 hours on selective media with or without
atmospheric O2. All three factors were required to rescue growth
under aerobic conditions (left plate). Expression of zmFNR was not
required under anaerobic conditions (right plate), indicating that
soFD was receiving electrons from another source. B) Genetic
deletions were targeted to eliminate potential endogenous redox
partners for ferredoxin, therefore linking sulfide production
specifically to a synthetic electron source. Also deleted were the
catalytic subunits of each native hydrogenase, ensuring that only
exogenous H2 was present in our system. C) Each deletion strain
was transformed with soFD, zmSIR and either zmFNR or an empty
plasmid. Growth was measured after 18 hours at 37°C under strict
anaerobic conditions, as described in the methods. Sequential
deletions reduced the nonspecific anaerobic background growth,
with the largest effect produced by the deletion of ydbK. The final
deletion strain, EW11, showed no growth defect in rich media and
was used in all later experiments.

Barstow et al. Journal of Biological Engineering 2011, 5:7
http://www.jbioleng.org/content/5/1/7
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(LB), but eliminated growth on selective media with sulfate as the sole source of metabolizable 

sulfur. Expression of corn (Zea mays) sulfite reductase (zmSIR) alone, or together with spinach Fd 

(soFD), failed to rescue growth. This indicated that the E. coli host provides no interacting source of 

reduced Fd or ferredoxin-reductase activity under these conditions. 

 We then provided a heterologous source of reduced Fd in the form of corn-derived (Zea 

mays) ferredoxin-NADP+ reductase (zmFNR). This enzyme links soFD to the endogenous NADPH 

pool by catalyzing redox exchange between the two electron carriers (Yonekura-Sakakibara et al. 

2000). FNR requires no maturation factors and is unaffected by O2; therefore it serves as a 

hydrogenase-independent control source of electrons for our pathway. Expression of zmFNR with 

soFD and zmSIR rescued growth of the cysI mutant on sulfate in aerobic selective media. The growth 

rescue required all three factors as well as IPTG induction of the expression plasmids. This result 

established that the ferredoxin and sulfite reductase components of our pathway were functional and 

insulated from native metabolism under aerobic conditions. 

 However, we found that heterologous zmFNR was not required to rescue growth when the 

selective strain was grown without ambient O2 (Figure 3.7A). While soFD and zmSIR expression 

were both still essential, this undesirable background growth indicated that the native metabolic 

machinery could donate electrons to ferredoxin in anoxic conditions. We did not observe anaerobic 

growth upon expression of zmSIR alone, indicating that electrons were entering the pathway 

through soFD. 

 Anaerobiosis effects global physiological adaptations in E. coli (Iuchi & Weiner 1996). The 

transition from respiratory to fermentative growth is accompanied by a drop in cytosolic redox 

potential concomitant with an excess of reducing equivalents generated by glycolysis. A variety of 

metabolic pathways are expressed specifically in anaerobic conditions to dispose of electrons 

through electron acceptors including acetate, fumarate, nitrate and hydrogen. Sulfite in our system 
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represents a high potential electron sink, consistent with the increased tendency for electrons to 

enter the pathway under these conditions. 

 To produce the strictest possible connection between the heterologous pathway and strain 

fitness under selection, we sought to identify and eliminate any endogenous anaerobic electron 

sources. We selected 6 candidate interacting genes as potential nonspecific electron donors. 

Candidates were identified based on their homology to known ferredoxin-reducing proteins, with 

preference given to genes known to be induced anaerobically. 

 The following six candidate genes were deleted in the BL21(DE3) parent strain: fpr, ydbK, hcr, 

yeaX, hcaD, frdB. The genes were deleted serially, in a single host strain, in order to expose and 

eliminate potentially redundant or epistatic interactions of the candidate genes with our pathway 

(Figure3.7B). The fpr gene encodes an anaerobic flavodoxin-NADPH reductase!(Jenkins & 

Waterman 1994). Overexpression of ydbK, a putative pyruvate:flavodoxin oxidoreductase, has been 

shown to drive hydrogenase activity through ferredoxin in E. coli (Kalim Akhtar & Jones 2009). The 

hcr locus encodes an anaerobically expressed NADH oxidoreductase that catalyzes the reduction of 

the hybrid cluster protein Hcp, an iron-sulfur protein with some homology to ferredoxin!

(Boxhammer et al. 2008). YeaX is a predicted oxidoreductase bearing Fe-S clusters that may 

associate with the ferredoxin-like YeaW. HcaD encodes a Ferredoxin:NADH reductase involved in 

the degradation of 3-phenylpropionate. FrdB is an Fe-S protein involved in the anaerobic reduction 

of fumarate as a terminal electron acceptor. Within the 4-subunit menaquinol-fumarate 

oxidoreductase complex, FrdB shuttles electrons from the quinone pool to the catalytic flavoprotein 

FrdA!(Cecchini et al. 2002). 

 We further deleted catalytic subunits of the three characterized endogenous hydrogenases, 

hycE, hyaB and hybC (Maeda et al. 2007), and the putative but normally silent hydrogenase hyfG (Self 

et al. 2004). All native E. coli hydrogenases are of the NiFe-class, unrelated to the FeFe-class and 
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therefore unlikely to interact directly with our pathway. However, eliminating all native hydrogenases 

ensures that any H2 production or consumption in our system could be attributed to the exogenous 

hydrogenase. 

 The knockout strains were transformed with zmSIR and soFD. Strains also received zmFNR 

as a synthetic electron source or an empty vector control. As described in the methods, growth was 

assayed anaerobically overnight in selective liquid media. The results of these experiments are shown 

in Figure 3.7. 

 The sequential knockout of candidate ferredoxin-interacting genes from the selection host 

improved the insulation of the test pathway from the endogenous redox pool. The first deletion, fpr, 

produced no measurable effect on strain growth. The largest contribution to the elimination of 

background growth came from the knockout of ydbK, with further deletions only modestly 

decreasing the background growth. These results are consistent with the effects of individual genes 

observed by Agapakis and colleagues (Agapakis et al. 2010). The mutations had no individual or 

cumulative deleterious effect on strain growth when zmFNR was expressed. We designate as EW11 

the final BL21(DE3)-derived strain, which bears the following complete genotype: E. coli B F– dcm 

ompT hsdS(rB
– mB

–) gal λ(DE3) cysI fpr ydbK hcr yeaX hcaD frdB hycE hyaB hybC hyfG. All subsequent 

experiments were performed in EW11 cells. 

 Sulfide production by our pathway was confirmed spectrophotometrically by the formation 

of methylene blue, as described in the methods. Wild-type BL21 cells, cultured anaerobically in 

defined medium, produce small amounts of sulfide: 10 µM (±10 at 95% confidence). No sulfide was 

detected in cultures of EW11 host cells, consistent with the deletion of cysI. Expression of soFD and 

zmSIR in EW11 resulted in sulfide accumulation only to a mean level of 2 µM (±1). When zmFNR 

was also expressed as a source of electrons, sulfide levels increased dramatically to 200 µM (±30). 

Similarly, when the caHydA hydrogenase and maturation factors were expressed, sulfide levels 
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reached 100 µM (±27). Supplying the hydrogenase with atmospheric H2 further raised sulfide 

production to 160 µM (±17). These results are consistent with the design of our pathway as a 

synthetic source of essential reduced sulfur. 

Biochemical hydrogenase O2-tolerance in situ 

We sought to initiate our selection with a wild-type hydrogenase with the highest possible 

native activity and O2-tolerance. We reasoned this would improve the probability of evolving an 

enzyme with properties exceeding those described in nature. This also would allow us to perform 

our selection in the presence of some O2, reducing the observed anaerobic background growth. 

Biochemical techniques allow the in vitro determination of purified hydrogenase activity and O2-

tolerance (Baffert et al. 2008). But because genetic selection can be performed only in vivo, we 

assayed hydrogenase O2-tolerance in cell lysates that approximate the cytosolic context. 

 E. coli expressing a hydrogenase derived from either Clostridium acetobutylicum (caHydA), 

Clostridium saccharobutylicum (csHydA), or Chlamydomonas reinhardtii (crHydA), were grown to saturation 

in liquid culture under strict anaerobiosis. In each case the hydrogenase was coexpressed with the 

requisite maturation factors HydEF and HydG from C. reinhardtii, which are known to mature 

clostridial FeFe-hydrogenases!(Böck et al. 2006). Culture lysates were exposed to O2 for fixed 

periods of time and remaining hydrogenase activity was measured biochemically, as described in the 

methods. 

 The three hydrogenases were found to differ in both O2-tolerance and maximal activity 

levels, as shown in Figure 3.8. The anaerobic activities of the clostridial hydrogenases, caHydA and 

csHydA, were comparable to each other and both substantially higher than the activity of the 

Chlamydomonas enzyme, crHydA. While our assay controlled for cell density, the in situ context of our 

system did not account for possible differences in expression level, maturation or folding efficiency. 

Replacing the C. reinhardtii maturation factors with those derived from C. acetobutylicum yielded the 
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same in situ activity for all three hydrogenases (not shown). While the in situ assay does not reflect 

biochemical specific activities, it measures the effective activity in E. coli expressing each 

hydrogenase, the relevant parameter for our genetic selection. 

!
Figure 3.8 O2-tolerance for three hydrogenases in situ. Cells expressing a hydrogenase from 
either C. acetobutylicum (caHydA), C. saccharobutylicum (csHydA) or C. reinhardtii (crHydA) were exposed 
to 10% O2 at 1 atm total pressure for the indicated times. Remaining activity was assessed with 
methyl viologen, as described in the methods. Three biological replicates are plotted for each time 
point. Significant differences in both maximal activity and O2-tolerance were evident. Hydrogenase 
inactivation by O2 was well described by first order kinetics, and the best-fit exponential decay 
curves are shown. The caHydA enzyme exhibited a characteristic half-life of 8 (±0.8) minutes, the 
csHydA enzyme 2.7 (±0.2) minutes and crHydA 1.0 (±0.3) minutes, including 95% confidence 
intervals. 

 We also observed substantial variation in the natural O2-tolerance of the three enzymes. In 

each case the inactivation by O2 could be well-described by first-order reaction kinetics, resulting in 

an exponential decrease of activity with time. Exposure to 0.1 atm O2 partial pressure degraded 

activity of caHydA with a characteristic half-life of 8 (±0.8) minutes, including a 95% confidence 

interval. The csHydA enzyme showed a half-life of 2.7 (±0.2) minutes in O2, and crHydA activity 

degraded still more rapidly, with a half-life of 1.0 (±0.3) minutes. The half-life measurements are 

intensive biochemical properties of the enzymes in situ, independent of possible differences in 

hydrogenase expression or maturation levels. 

half-life of 8 (± 0.8) minutes, including a 95% confidence
interval. The csHydA enzyme showed a half-life of 2.7
(± 0.2) minutes in O2, and crHydA activity degraded
still more rapidly, with a half-life of 1.0 (± 0.3) minutes.
The half-life measurements are intensive biochemical
properties of the enzymes in situ, independent of possi-
ble differences in hydrogenase expression or maturation
levels.
The differences in O2 tolerance are striking. The clos-

tridial enzymes caHydA and csHydA share 81% amino
acid sequence similarity and nearly identical domain
architecture. C. acetobutylicum and C. saccharobutyli-
cum also inhabit similar strictly anaerobic ecological
niches[57]. The algal crHydA is more divergent, only
53% similar to caHydA, yet shares the conserved cataly-
tic domain. Chlamydomonas, a eukaryote, exhibits a
generally aerobic metabolism. All three enzymes in this
experiment receive identically assembled FeFe cluster
active sites from shared maturation factors. Yet the half-
life of caHydA in O2 is twice that of csHydA and 8
times that of crHydA. Because caHydA and csHydA
showed higher activity and superior O2 tolerance, we
chose to focus on those enzymes for further study.

The ferredoxin-hydrogenase interaction
The synthetic pathway we propose operates in two
redox steps, hydrogenase to ferredoxin and ferredoxin
to sulfite reductase. Each step must be both efficient
and well-insulated for the overall design to be effective.

We therefore devised independent in situ assays for
each step of the pathway, as depicted in Figure 4A. By
evaluating the performance of various ferredoxins in
these assays, we sought to identify the ferredoxin best
suited for a genetic selection. An optimal ferredoxin
would demonstrate a robust interaction with both
hydrogenase and sulfite reductase, while remaining insu-
lated from nonspecific interactions with the endogenous
redox pool.
We first tested the hydrogenase-ferredoxin connec-

tions, employing an independent source of electrons for
ferredoxin. In this assay, adapted from Agapakis et al.
[55], each ferredoxin is reduced by exogenous pyruvate-
ferredoxin oxidoreductase derived from Desulfovibrio
africanus (daPFOR), before transferring electrons to the
hydrogenase. The overall activity of this pathway is mea-
sured as H2 production in vivo, described in the
methods.
The direction of the hydrogenase reaction is the

reverse of that sought for the final selection pathway, i.e.
it is producing rather than consuming H2. FeFe-
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Figure 3 O2 tolerance for three hydrogenases in situ. Cells
expressing a hydrogenase from either C. acetobutylicum (caHydA), C.
saccharobutylicum (csHydA) or C. reinhardtii (crHydA) were exposed
to 10% O2 at 1 atm total pressure for the indicated times.
Remaining activity was assessed with methyl viologen, as described
in the methods. Three biological replicates are plotted for each time
point. Significant differences in both maximal activity and O2

tolerance were evident. Hydrogenase inactivation by O2 was well
described by first order kinetics, and the best-fit exponential decay
curves are shown. The caHydA enzyme exhibited a characteristic
half-life of 8 (± 0.8) minutes, the csHydA enzyme 2.7 (± 0.2) minutes
and crHydA 1.0 (± 0.3) minutes, including 95% confidence intervals.
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Figure 4 Stepwise optimization of pathway design. A) The
proposed pathway operates in two steps, with electrons flowing
first from HydA to FD, then from FD to SIR. Substituting PFOR for
SIR allows an independent test of the HydA-FD interaction.
Substituting FNR for HydA allows an independent test of the FD-SIR
interaction. B) PFOR-driven H2 production in vivo with a panel of
ferredoxins. H2 production in the presence of PFOR confirms the
ability of a ferredoxin to couple with hydrogenase. H2 production in
the absence of PFOR suggests that a ferredoxin is reduced by a
nonspecific endogenous source, which would tend to confound our
genetic selection. C) FNR-rescued growth with a panel of
ferredoxins under anaerobic conditions. Growth with FNR confirms
the ability of a ferredoxin to couple with SIR. FNR-independent
growth suggests that a ferredoxin is not well insulated from
endogenous redox sources. All experiments were conducted under
anaerobic conditions with the EW11 strain, as described in the
methods. Error bars are 95% confidence intervals.
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 The differences in O2-tolerance are striking. The clostridial enzymes caHydA and csHydA 

share 81% amino acid sequence similarity and nearly identical domain architechture. C. acetobutylicum 

and C. saccharobutylicum also inhabit similar strictly anaerobic ecological niches!(Keis et al. 2001). The 

algal crHydA is more divergent, only 53% similar to caHydA, yet shares the conserved catalytic 

domain. Chlamydomonas, a eukaryote, exhibits a generally aerobic metabolism. All three enzymes in 

this experiment receive identically assembled FeFe-cluster active sites from shared maturation 

factors. Yet the half-life of caHydA in O2 is twice that of csHydA and 8 times that of crHydA. 

Because caHydA and csHydA showed higher activity and superior O2-tolerance, we chose to focus 

on those enzymes for further study. 

The ferredoxin-sulfite reductase interaction 

Optimal function of the second step in our pathway requires a robust and specific redox 

exchange of the mediating Fd with zmSIR. We therefore used zmFNR as an independent source of 

electrons to characterize the interaction between our panel of ferredoxins and the zmSIR. Growth 

was measured in anaerobic selective media for strain EW11 with and without zmFNR expression. 

The interactions with both zmFNR and zmSIR contribute to the ability of a given Fd to facilitate 

growth in this system. As above, growth in the absence of zmFNR expression reflects the tendency 

of an Fd to receive electrons nonspecifically from the endogenous redox pool. 

 The results of growth assays from the second test pathway are shown in Figure 3.9. In 

contrast to the results of the H2-production assay, we found that the clostridial ferredoxin caFD 

showed the worst performance in the SIR assay, producing no significant growth. Each of the other 

ferredoxins tested, soFD, zmFD and crFD, were able to effectively rescue the sulfide auxotrophy. In 

the case of the zmFD and crFD, we also observed significant background growth in the absence of 

zmFNR expression, indicating nonspecific interactions of these ferredoxins with native metabolism. 

The soFD produced no observable background growth under these conditions. 
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Figure 3.9 FNR-rescued growth with a panel of ferredoxins under anaerobic conditions. 
Growth with FNR confirms the ability of a ferredoxin to couple with SIR. FNR-independent 
growth suggests that a ferredoxin is not well insulated from endogenous redox sources. All 
experiments were conducted under anaerobic conditions with the EW11 strain, as described in the 
methods. Error bars are 95% confidence intervals. 

 None of the Fd tested performed optimally in both the SIR and hydrogenase interaction 

assays (Agapakis et al. 2010). In both cases the differences in performance may be attributed to the 

distinction between plant-type and bacterial-type ferredoxins. The soFD, zmFD and crFD proteins all 

belong to the plant-type class of ferredoxins. These proteins carry electrons in a characteristic Fe2S2 

active center (Fukuyama 2004). In contrast, caFD is a bacterial-type ferredoxin with a Fe4S4 cluster!

(Bertini et al. 1995). Plant and bacterial ferredoxins share structural and sequence homology (Otaka 

& Ooi 1989; Matsubara et al. 1979) and can functionally substitute for one another in some 

cases(Tagawa & Arnon 1962). However, it seems likely that the relative divergence of bacterial caFD 

precludes an interaction with either zmFNR or zmSIR, both of which natively pair with plant-type 

ferredoxins. 

 We also noted an apparent tendency to higher background activities for ferredoxins with 

higher redox potentials. Reactions with electrons from the endogenous redox pool may become 

more thermodynamically favorable as the redox potential of the ferredoxin increases. Among the 

half-life of 8 (± 0.8) minutes, including a 95% confidence
interval. The csHydA enzyme showed a half-life of 2.7
(± 0.2) minutes in O2, and crHydA activity degraded
still more rapidly, with a half-life of 1.0 (± 0.3) minutes.
The half-life measurements are intensive biochemical
properties of the enzymes in situ, independent of possi-
ble differences in hydrogenase expression or maturation
levels.
The differences in O2 tolerance are striking. The clos-

tridial enzymes caHydA and csHydA share 81% amino
acid sequence similarity and nearly identical domain
architecture. C. acetobutylicum and C. saccharobutyli-
cum also inhabit similar strictly anaerobic ecological
niches[57]. The algal crHydA is more divergent, only
53% similar to caHydA, yet shares the conserved cataly-
tic domain. Chlamydomonas, a eukaryote, exhibits a
generally aerobic metabolism. All three enzymes in this
experiment receive identically assembled FeFe cluster
active sites from shared maturation factors. Yet the half-
life of caHydA in O2 is twice that of csHydA and 8
times that of crHydA. Because caHydA and csHydA
showed higher activity and superior O2 tolerance, we
chose to focus on those enzymes for further study.

The ferredoxin-hydrogenase interaction
The synthetic pathway we propose operates in two
redox steps, hydrogenase to ferredoxin and ferredoxin
to sulfite reductase. Each step must be both efficient
and well-insulated for the overall design to be effective.

We therefore devised independent in situ assays for
each step of the pathway, as depicted in Figure 4A. By
evaluating the performance of various ferredoxins in
these assays, we sought to identify the ferredoxin best
suited for a genetic selection. An optimal ferredoxin
would demonstrate a robust interaction with both
hydrogenase and sulfite reductase, while remaining insu-
lated from nonspecific interactions with the endogenous
redox pool.
We first tested the hydrogenase-ferredoxin connec-

tions, employing an independent source of electrons for
ferredoxin. In this assay, adapted from Agapakis et al.
[55], each ferredoxin is reduced by exogenous pyruvate-
ferredoxin oxidoreductase derived from Desulfovibrio
africanus (daPFOR), before transferring electrons to the
hydrogenase. The overall activity of this pathway is mea-
sured as H2 production in vivo, described in the
methods.
The direction of the hydrogenase reaction is the

reverse of that sought for the final selection pathway, i.e.
it is producing rather than consuming H2. FeFe-
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described by first order kinetics, and the best-fit exponential decay
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Figure 4 Stepwise optimization of pathway design. A) The
proposed pathway operates in two steps, with electrons flowing
first from HydA to FD, then from FD to SIR. Substituting PFOR for
SIR allows an independent test of the HydA-FD interaction.
Substituting FNR for HydA allows an independent test of the FD-SIR
interaction. B) PFOR-driven H2 production in vivo with a panel of
ferredoxins. H2 production in the presence of PFOR confirms the
ability of a ferredoxin to couple with hydrogenase. H2 production in
the absence of PFOR suggests that a ferredoxin is reduced by a
nonspecific endogenous source, which would tend to confound our
genetic selection. C) FNR-rescued growth with a panel of
ferredoxins under anaerobic conditions. Growth with FNR confirms
the ability of a ferredoxin to couple with SIR. FNR-independent
growth suggests that a ferredoxin is not well insulated from
endogenous redox sources. All experiments were conducted under
anaerobic conditions with the EW11 strain, as described in the
methods. Error bars are 95% confidence intervals.
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plant-type ferredoxins the soFD, with a redox potential of -420 mV (Yonekura-Sakakibara et al. 

2000), showed the lowest nonspecific activity in both assays. The zmFD at -345 mV(Yonekura-

Sakakibara et al. 2000) and crFD at -390 mV (Terauchi et al. 2009), exhibited higher backgrounds. 

This is also consistent with the theory that ferredoxin interactions are governed by Fe-S cluster 

redox potentials(Moulis & Davasse 1995; Guerrini et al. 2008). 

 We chose soFD as a best functional compromise for the design requirements of our 

pathway. This ferredoxin clearly demonstrates an ability to function in both redox steps (Figures 3.2 

and 3.9), and showed the least nonspecific activity in each. It is also one of the biochemically best 

characterized ferredoxins and a model for ferredoxin-photosystem interactions (Kovalenko et al. 

2011). 

O2 sensitivity of hydrogenase-rescued E. coli 

We next characterized in situ the behavior of the complete synthetic rescue pathway 

incorporating soFD, zmSIR and a hydrogenase electron source. In particular, we sought to quantify 

the effect of O2 on the growth of the selection strain in conditions as similar as possible to those 

that would be encountered in a genetic selection. Strain EW11 expressing soFD, zmSIR, and 

hydrogenase maturation factors was transformed with either caHydA, csHydA, or crHydA. Cells were 

plated at low density on selective plates under custom atmospheres with varying O2 pressures. 

Growth was quantified by measuring the size of colonies formed after three days, as described in the 

methods. 

 The dose-response relationship of O2 with various selection strains is depicted in Figure 

3.10. Negative control strains expressing only soFD, zmSIR, and maturation factors showed no 

measurable growth under any atmosphere (Figure 3.10A). Positive control strains expressing the O2-

tolerant zmFNR as an electron source showed robust growth under all conditions. Growth for the 
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positive control tended to increase with increasing O2, consistent with the energetic advantages of 

aerobic metabolism in E. coli. 

!
Figure 3.10 Hydrogenase-rescued growth is O2-dependent and H2-dependent. The genetically 
insulated EW11 strain expressing soFD, zmSIR, and hydrogenase maturation factors was 
transformed with zmFNR (A), empty vector (A), caHydA (B), csHydA (C), or crHydA (D). Cells were 
plated at low density under custom atmospheres at varying O2 levels with and without H2. Colony 
sizes were measured after 3 days by imaging and automated analysis, as described in the methods. 
Representative images illustrating the effects of O2 and H2 on colony size are displayed in (E), with 
green circles indicating computationally identified colonies. Growth of strains rescued by each 
hydrogenase decreased monotonically with increasing O2 levels, becoming nearly undetectable at 
10% O2. Atmospheric H2 improved growth but was not required for growth, suggesting an 
alternative source of reducing equivalents for the hydrogenase. Indicated for each curve is a best-fit 
sigmoid of the form area = a/(1+exp(b⋅(O2-c))). Error bars are 95% confidence intervals. 

 Hydrogenase-rescued strains showed O2-dependent growth (Figure 3.10B-D). For each 

hydrogenase, growth was the best in 0% O2 and decreased monotonically until almost no growth 

was detectable in 10% O2. Growth supported by a hydrogenase was always less than that observed 

with zmFNR, with colonies less than half as large forming even under strict anaerobiosis. The 

caHydA enzyme was the most effective hydrogenase at supporting growth over all conditions, 

followed by csHydA and crHydA. This ordering is consistent with the in situ biochemical properties 

we determined previously. Interestingly, we detected only weak differences in the O2-dependent 

growth profiles of the hydrogenases relative to the differences in their in vivo activity levels and O2-

tolerance. For example, caHydA shows roughly two-fold higher activity and an eight-fold longer 

zmSIR and a hydrogenase electron source. In particular,
we sought to quantify the effect of O2 on the growth of
the selection strain in conditions as similar as possible
to those that would be encountered in a genetic selec-
tion. Strain EW11 expressing soFD, zmSIR, and hydro-
genase maturation factors was transformed with either
caHydA, csHydA, or crHydA. Cells were plated at low
density on selective plates under custom atmospheres
with varying O2 pressures. Growth was quantified by
measuring the size of colonies formed after three days,
as described in the methods.
The dose-response relationship of O2 with various

selection strains is depicted in Figure 5. Negative control
strains expressing only soFD, zmSIR, and maturation
factors showed no measurable growth under any atmo-
sphere (Figure 5A). Positive control strains expressing
the O2-tolerant zmFNR as an electron source showed
robust growth under all conditions. Growth for the posi-
tive control tended to increase with increasing O2, con-
sistent with the energetic advantages of aerobic
metabolism in E. coli.
Hydrogenase-rescued strains showed O2-dependent

growth (Figure 5B-D). For each hydrogenase, growth
was the best in 0% O2 and decreased monotonically
until almost no growth was detectable in 10% O2.
Growth supported by a hydrogenase was always less
than that observed with zmFNR, with colonies less than
half as large forming even under strict anaerobiosis. The

caHydA enzyme was the most effective hydrogenase at
supporting growth over all conditions, followed by
csHydA and crHydA. This ordering is consistent with
the in situ biochemical properties we determined pre-
viously. Interestingly, we detected only weak differences
in the O2-dependent growth profiles of the hydroge-
nases relative to the differences in their in vivo activity
levels and O2 tolerance. For example, caHydA shows
roughly two-fold higher activity and an eight-fold longer
half-life than crHydA. Yet the strain rescued with
crHydA produced colonies only about 30% smaller and
reached 50% growth inhibition at the same O2 level.
Although growth in this assay was strictly dependent

on hydrogenase expression, we found that growth did
not require the addition of H2 to the atmosphere. Larger
colonies were produced in the presence of H2 with all
hydrogenases at most O2 levels, yet significant growth
was still observed upon replacement of H2 with N2.
Representative images illustrating the effect of H2 and
O2 on colony size are shown in Figure 5E. H2-indepen-
dent growth was more O2-sensitive, reaching 50% inhi-
bition at roughly 2% ambient O2 for all hydrogenases,
against 5% for H2-supported growth. When supplied
with H2, strains expressing respectively caHydA, csHydA
and crHydA were half-maximally inhibited by O2 levels
of 5.2% (± 0.5), 5.7% (± 0.4), and 6.1% (± 0.7), including
95% confidence intervals. Without H2, the same level of
inhibition was respectively reached at O2 levels of 2.5%
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Figure 5 Hydrogenase-rescued growth is O2-dependent and H2-dependent. The genetically insulated EW11 strain expressing soFD, zmSIR,
and hydrogenase maturation factors was transformed with zmFNR (A), empty vector (A), caHydA (B), csHydA (C), or crHydA (D). Cells were
plated at low density under custom atmospheres at varying O2 levels with and without H2. Colony sizes were measured after 3 days by imaging
and automated analysis, as described in the methods. Representative images illustrating the effects of O2 and H2 on colony size are displayed in
(E), with green circles indicating computationally identified colonies. Growth of strains rescued by each hydrogenase decreased monotonically
with increasing O2 levels, becoming nearly undetectable at 10% O2. Atmospheric H2 improved growth but was not required for growth,
suggesting an alternative source of reducing equivalents for the hydrogenase. Indicated for each curve is a best-fit sigmoid of the form area =
a/(1+exp(b·(O2-c))). Error bars are 95% confidence intervals.
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half-life than crHydA. Yet the strain rescued with crHydA produced colonies only about 30% smaller 

and reached 50% growth inhibition at the same O2 level. 

 Although growth in this assay was strictly dependent on hydrogenase expression, we found 

that growth did not require the addition of H2 to the atmosphere. Larger colonies were produced in 

the presence of H2 with all hydrogenases at most O2 levels, yet significant growth was still observed 

upon replacement of H2 with N2. Representative images illustrating the effect of H2 and O2 on 

colony size are shown in Figure 3.10E. H2-independent growth was more O2-sensitive, reaching 

50% inhibition at roughly 2% ambient O2 for all hydrogenases, against 5% for H2-supported growth. 

When supplied with H2, strains expressing respectively caHydA, csHydA and crHydA were half-

maximally inhibited by O2 levels of 5.2% (±0.5), 5.7% (±0.4), and 6.1% (±0.7), including 95% 

confidence intervals. Without H2, the same level of inhibition was respectively reached at O2 levels 

of 2.5% (±0.1), 2.2% (±0.2), and 2.3% (±0.3). This growth could not be attributed to endogenous H2 

production, as the EW11 strain lacks all native hydrogenase activity. 

Ferredoxin choice strongly affected the growth of the selection host in the growth-response 

assay. The substitution of zmFD for soFD in this pathway resulted in much larger colony sizes by 

area (data not shown). Yet cells expressing zmFD also showed significant nonspecific background 

growth in the absence of zmFNR or caHydA, consistent with results shown in Figure 3.9. We chose 

to pursue a genetic selection only in strains demonstrating strictly hydrogenase-dependent growth.7 

 

DISCUSSION AND CONCLUSIONS 

Insulation of a synthetic hydrogen metabolism circuit in bacteria8 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 Barstow et al 2011 further details the results of the SIR-based selection, which I was less directly 
involved in. The principle findings are summarized in the Discussion and Conclusions section of 
this chapter. 
8 This section is adapted from Agapakis et al, 2010. 
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We created an artificial pathway to produce the biofuel hydrogen in E. coli. The pathway 

consists of the proteins pyruvate-ferredoxin oxidoreductase (PFOR), Fd, and a hydrogenase 

(expressed in the presence of hydrogenase maturation factors). This pathway produces a theoretical 

maximum of two molecules of hydrogen per input glucose, and still allows acetyl-CoA production 

from pyruvate. We characterized the relative efficacy of hydrogen production using various 

combinations of PFOR, Fd, and hydrogenase molecules from different species, and found that 

PFOR from D. africanus in combination with Fd and hydrogenase from C. acetobutylicum was the most 

active pathway, predicted in part by previous in vitro data (King et al. 2006; Moulis & Davasse 1995; 

Pieulle et al. 1999). 

To direct electron flow from Fd into hydrogenase, we first deleted genes encoding six other 

proteins with which PFOR and/or Fd might interact. Of these, only deletion of ydbK, encoding a 

putative E. coli PFOR, resulted in enhanced hydrogen production. In addition, in the absence of the 

PFOR from D. africanus, deletion of ydbK resulted in a decrease in the background level of hydrogen. 

These results provide further evidence that ydbK is a functional PFOR that can interact with a variety 

of electron acceptors, particularly the spinach Fd (Kalim Akhtar & Jones 2009). 

The iron-sulfur proteins in our synthetic circuit present a modular system, with proteins 

from disparate species able to interact and produce high levels of hydrogen. Such modular systems 

are valuable for further synthetic biological manipulation and experimentation. The synthetic 

pathway presented here is a relatively simple method for the analysis of activities and electron 

transfer properties of hydrogenases, ferredoxins, and PFOR genes from any number of species, or 

engineered synthetic electron transfer proteins. These in vivo data are a valuable complement to in 

vitro binding constants and kinetic parameters of the enzymes and will be useful in further designing 

and optimizing microbial systems for hydrogen production.  
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Such synthetic biological systems can also be used to better understand biological electron 

transfer systems. The role of ferredoxins in E. coli metabolism is poorly characterized, with Fd 

performing many unknown but required functions in the cell. Here we tested deletions of six iron-

sulfur proteins expected to interact with Fd, many of which are previously uncharacterized. While 

only one gene deletion (∆ydbK) affected our specific hydrogen production pathway, combinatorial 

deletions may affect hydrogen production in different ways, or may affect other synthetic electron 

transfer pathways. Further deletions of iron-sulfur oxidoreductases and combinations thereof may 

lead to a more complete understanding of electron transfer systems in the E. coli cytoplasm, as well 

as the development of a host strain for expression of heterologous electron transfer pathways for 

synthetic biology. Such a strain would have to retain the ability to mature iron-sulfur clusters but 

limit the function of proteins that can interact with Fd and Fd oxidoreductases to ensure optimal 

electron flux through the synthetic pathway. Such specialized strains of E. coli may be optimized for 

other types of synthetic pathway designs and may be better equipped for industrial purposes than 

proposed “minimal” cells (Forster & Church 2006), as they would retain many of the mechanisms 

that allow for robust growth and protein expression. 

Electron transfer systems such as our hydrogenase pathway are an untapped resource for 

synthetic biology, which seeks to design biological pathways as predictably as electronic circuits 

(Andrianantoandro et al. 2006). Electrons are unique metabolites whose movement in biological 

systems occurs by quantum-mechanical tunneling between protein-bound cofactors such as iron-

sulfur clusters. As a result, escape by diffusion into an aqueous phase is avoided, offering distinctive 

opportunities for control. The circuit described here moves electrons from higher to lower energy, 

while performing work in the form of hydrogen production. The rationally constructed insulation of 

the pathway through elimination of side reactions, interaction surface optimization, and protein 
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fusion or scaffolding9, indicate that all four methods are viable for synthetic circuit design and all 

strategies may play a role in the evolution of complex isolated circuits in natural metabolism. This 

type of synthetic-biological analysis may yield insights into natural mechanisms for controlling 

electron flow, and may provide new approaches for metabolic engineering and bioenergy. 

 

Selection systems for the directed evolution of oxygen-tolerant [FeFe]-hydrogenases 

 We describe two genetic selection circuits that potentially couple E. coli growth to 

hydrogenase function. One strategy, based on the hydrogen producing PFOR-Fd-hydrogenase 

interaction, did not yield a strain suitable for selection experiments. Unlike the SIR-based selection 

strategy, this selection required the hydrogenase-dependent circuit to integrate into central 

metabolism; it is possible that the amount of pathway throughput we observed (indirectly via 

hydrogen production in vivo) was insufficient to support growth. In all experiments described in this 

chapter, oxidoreductases, Fd, HydA, and the maturation factors were all overexpressed via T7 

polymerase. This protein overexpression exacerbated the cellular metabolic burden. Ultimately, the 

superior performance of the SIR-based selection, which supplied essential reduced sulfur but was 

not involved in central carbon metabolism, led us to choose this system for oxygen tolerance 

experiments. Even the SIR-based selection, however, failed to yield hydrogenases with improved 

oxygen tolerance (Barstow et al. 2011)10. 

 

Outcome of the SIR-based selection11 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 See Agapakis et al 2010 for details on the interaction surface optimization and protein 
fusion/scaffolding approaches 
10 I am omitting sections of the Barstow et al 2011 manuscript that cover the generation of mutated 
hydrogenases and the oxygen tolerance selections. 
11 This paragraph and the following paragraphs in this section are adapted from Barstow et al 2011. 
Although I did not conduct experiments related to the generation and selection of mutated 
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 The genetic selection for O2-tolerance produced no hydrogenases with O2-tolerance 

exceeding that of the wild-type, and only one with a comparable activity level. Instead, we observed 

a widespread loss of H2-production activity among selected hydrogenases (Barstow et al. 2011). We 

speculate that the mutants identified by genetic selection confer growth by enhancing H2-

independent electron transfer to ferredoxin. Consistent with this hypothesis are the results of Figure 

3.10, indicating that hydrogenase, but not H2, is essential for growth under selection. 

 We found significant enrichment of mutations neutralizing positive surface charges of the 

hydrogenase. Electrostatic forces are known to have an important role in the kinetics and specificity 

of intermolecular interactions (Mittag et al. 2010; Davis & McCammon 1990). Fd proteins such as 

those used in our pathway display numerous and conserved negatively charged surface residues, 

which are thought to govern the specific recognition of various Fd redox partners (Moulis & 

Davasse 1995). Site-directed mutagenesis of lysine residues on the surface of Anabaena FNR was 

found to block interaction with its native Fd!(Schmitz et al. 1998). Our selection pathway employs a 

non-native pairing of spinach Fd and clostridial hydrogenase, invoking suboptimally co-adapted 

electrostatic interactions. The mutation of surface lysines may enhance ferredoxin-hydrogenase 

charge complementarity (Chang et al. 2007). This could allow for more efficient electron transfer to 

ferredoxin, an essential activity for host viability. 

 Our selection also isolated a number of highly truncated hydrogenase variants which were 

found to retain some function. Variants BB22 and BB05 lacked portions of the small C-terminal 

hydrogenase subunit but were still competent for hydrogen production (Barstow et al. 2011). 

Similarly truncated putative hydrogenases have been identified in the termite hindgut metagenome 

(Warnecke et al. 2007). Even more severely truncated variants showed no hydrogenase activity, but 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
hydrogenases, I include discussion of the outcome of these experiments to place this project in the 
broader context of biohydrogen production. 
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were nevertheless capable of rescuing growth. Variant BB09, for example, retained only the N-

terminal ferredoxin-like domains, which were nevertheless sufficient to facilitate electron transfer to 

our synthetic pathway. Future work to identify the minimal structural elements required for 

hydrogenase function may help to structurally couple hydrogenases to other electron sources and 

sinks. 

 Our pathway allows O2-tolerant electron sources such as zmFNR to be distinguished from 

O2-sensitive sources such as caHydA by their effects on host fitness. Therefore an O2-tolerant 

hydrogenase, once produced, could in principle be isolated using our selection. That no such 

hydrogenase was found suggests that other mutations exist to alter hydrogenase redox activity 

independently of the described O2-sensitive catalytic core (Stripp et al. 2009). Mutations of this sort 

may be more common than those specifically altering properties of the active site. The evolution of 

O2-tolerance may also require more simultaneous mutations than were sampled here, or more 

extensive structural alterations. The structural features that optimize O2-tolerance might also change 

when the direction of hydrogenase activity favors consumption versus production. Future efforts 

may benefit from combining genetic selection with high-throughput techniques to biochemically 

characterize hydrogenases, currently in development (Stapleton & Swartz 2010). 

 The data presented in Figure 3.10 suggest that each hydrogenase can be reduced by an 

unknown endogenous electron source other than H2. This electron source is eliminated by oxygen, 

but apparently through a different mechanism than that which directly inactivates the catalytic H-

cluster (Stripp et al. 2009). Such a model would explain the apparent discrepancy between our in vivo 

and in vitro O2-tolerance assays. While Figure 3.7 shows different kinetics for the oxygen inactivation 

of each hydrogenase in vitro, Figure 3.10 shows all three enzymes support comparable O2-tolerant 

growth. Hydrogenase activity in our system might also be limited by oxygen sensitivity of the 

maturation factors, rather than the mature enzymes. To our knowledge, potential interactions of 
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HydEFG with oxygen have not yet been directly examined. An in vivo selection system would 

become even more valuable in such a case, as mutagenesis and selection could naturally be extended 

to the maturation factors. 

 We have shown that engineering can successfully insulate a synthetic electron transfer 

pathway from the endogenous E. coli redox pool. Minimizing losses to the cell through insulation of 

an artificial pathway allows more rational control of an engineered metabolic flux. We have 

demonstrated the use of convenient in vivo assays to validate isolated components of a synthetic H2 

metabolism. The results of our assays revealed trade-offs in the choice of pathway components, 

allowing compromises to meet design goals. Finally, we have successfully tied an essential part of 

cellular metabolism, the synthesis of cysteine, to hydrogenase activity. By eliminating or disabling 

this activity with O2, we can halt cellular metabolism. These results demonstrate the utility of this 

pathway in a genetic selection for O2-tolerant hydrogenases. We anticipate that future work to 

characterize the H2-independent hydrogenase activity, and to optimize ferredoxin-hydrogenase 

electron transfer, will allow for more strict selection of hydrogen catalysts with desired properties. 

 

MATERIALS AND METHODS 

Insulation of a synthetic hydrogen metabolism circuit in bacteria12 

Plasmids and cloning 

All cloning was done in E. coli DH5α. Hydrogenase genes from Chlamydomonas reinhardtii and 

the ferredoxin I gene from Spinacia olearcea were commercially synthesized by Codon Devices 

(Cambridge, MA), codon optimized for expression in Saccharomyces cerevisiae and acceptable for use in 

E. coli for wide applicability (see Appendix A, figure S1 for nucleotide sequences). Hydrogenases 

from Clostridium acetobutylicum and Clostridium saccharobutylicum were cloned from plasmids received 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 This section is adapted from Agapakis et al, 2010. 
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from Matthew Posewitz (National Renewable Energy Laboratory, Golden, CO). Hydrogenase genes 

HydA and HydB were cloned from Shewanella oneidensis using colony PCR of bacterial cultures from 

Colleen Hansel (Harvard University, Cambridge, MA). Thermotoga maritima HydA was cloned from 

genomic DNA provided by Kenneth Noll (University of Connecticut, Storrs, CT). PFOR and 

ferredoxin [27] were cloned from Clostridium acetobutylicum genomic DNA (ATCC, Manassas, VA). 

Zea mays ferredoxin was cloned from genomic DNA isolated from corn using DNeasy Plant Mini 

Kit (Qiagen, Valencia, CA). PFOR from Desulfovibrio africanus was isolated from plasmid pLP1 [28] 

provided by Laetitia Pieulle (Centre National de la Recherche Scientifique, Marseille, France) and 

ydbK was obtained through colony PCR of E. coli BL21. 

Protein expression 

All protein expression and hydrogenase activity assays were performed in E. coli BL21 

(DE3). Cells were transformed with modified pCDF-duet with C. reinhardtii HydEF in MCS1 and C. 

reinhardtii HydG in MCS2, and with modified pACYC-duet with C. acetobutylicum PFOR or E. coli 

ydbK in MCS1 or Desulfovibrio africanus PFOR cloned into the downstream NdeI and AvrII sites of 

MCS2. Hydrogenase/ferredoxin pairs were transformed either in each multiple cloning site of 

modified pET-duet, or for the S. oneidensis hydrogenase HydA in MCS1, HydB in MCS2, and 

ferredoxin in MCS1 of modified pCOLA-duet. To compare in vitro hydrogen production using 

maturation factors from Clostridium acetobutilicum, we used plasmids provided by Matthew Posewitz 

(pCDF-duet with CaHydE in MCS1, CaHydF in MCS2 and pET-duet with CaHydA in MCS1 and 

CaHydG in MCS2 (King et al. 2006)). 

E. co l i  Gene Deletion 

Hydrogenase knockout (∆hycE, ∆hyaB, ∆hybC) and ∆fpr, ∆ydbK, ∆hcr, ∆yeaX, ∆hcaD, or ∆frdB 

single deletion strains were made by sequential P1 transduction from the Keio collection (Baba et al. 

2006) into BL21(DE3) ∆tonA, followed by removal of the KanR marker by standard procedures. 
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SDS-Page and Western Blotting 

E. coli cells were lysed with Bacterial Protein Extraction Reagent (B-PER, Pierce, Rockford, 

IL), protein samples were normalized using the Bradford assay (Bio-Rad, Hercules, CA), diluted into 

SDS-PAGE loading buffer and loaded onto a 4-20% Tris/glycine/SDS acrylamide gel. a-Strep-tag II 

antibody (HRP-conjugated, Novagen, Gibbstown, NJ) or a-ferredoxin primary antibody (Agrisera, 

Vännäs, Sweden) and a-Rabbit IgG secondary antibody were used. 

Hydrogen production assays 

Bacterial cultures were grown aerobically for two hours until reaching an OD600 of 

approximately 0.15 in LB media with appropriate antibiotic (50 µg/ml ampicillin, 25 µg/ml 

spectinomycin, 25 µg/ml kanamycin, and/or 12.5 µg/ml chloramphenicol) in 40 ml glass serum 

vials, induced with 1mM IPTG (and 2 µg/ml anhydrous tetracycline when relevant for the induction 

of scaffold proteins) and sparged with argon. For the methyl viologen assay, adapted from King et. 

al. (King et al. 2006), vials were sparged for 2 hours and then lysed with assay buffer containing 50 

mM Tris pH 7.0, 50% B-PER, 10mM methyl viologen (Sigma, St. Louis, MO) and 50mM sodium 

dithionite (Fisher, Pittsburgh, PA), the vials were capped with rubber septa, the cells were vortexed 

and allowed to rock overnight at room temperature. Hydrogen concentration in the headspace gas 

was measured by gas chromatography (Shimadzu GC-14A). In vivo hydrogen production assays were 

performed in a similar fashion, except that cultures were supplemented with 0.5% glucose at the 

time of IPTG induction, sparged for 30 minutes and simply capped and shaken ovenight at 37°C 

before measuring headspace gas composition. Glucose curves were measured in cells pretreated 

overnight with 1mM IPTG then immediately diluted into LB + variable glucose + 1mM IPTG, then 

sparged and grown overnight. All hydrogen production values were normalized to an OD600 of 0.15. 
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A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism13 

Cloning and gene synthesis 

All cloning was performed in E. coli DH5α using standard BioBrick assembly 

techniques(Phillips & Silver 2006). Final constructs were assembled in commercial Duet vectors 

(Novagen) with multiple cloning sites modified to accept BioBrick parts. The plasmids used in these 

experiments are listed in table 1. Complete vector sequences are provided as supplementary 

information. 

Zea mays sulfite reductase (GenBank BAA23641) was cloned from total RNA. The 

ferredoxin-NADPH reductase (FNR) gene from Zea mays (GenBank AAB40034) was synthesized by 

Codon Devices. Chloroplast transit peptides were omitted from all plant-derived constructs. The 

codon usage of synthetic genes was optimized by the manufacturer for heterologous expression. 

Selective and induction media 

Selective media was a standard M9 formulation, supplemented with additional glucose, 

sulfate, ferric iron and a rich mix of supplements less cysteine and methionine. Induction media for 

hydrogenase expression was LB with added glucose, ferric iron, phosphate buffer and Baker's 

antifoam reagent. Exact media recipes are provided as additional files. 

Anaerobic technique and custom atmospheres 

Anaerobic liquid culture was performed in 40ml serum vials sparged with nitrogen and 

sealed with SubaSeal rubber septa (Sigma-Aldrich). To maintain anaerobiosis during handling, 

samples were drawn and reagents added by piercing the septa with non-coring syringe needles. 

 Agar plates were incubated under defined gas mixtures within sealed Vacu-Quick jars 

(Almore International). The ambient atmosphere was removed by several cycles of evacuation and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 This section is adapted from Barstow et al 2011. Materials and methods redundant with those in 
Agapakis et al 2010 have been removed. 
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replacement with pure nitrogen before supplying a custom atmosphere. Aluminosilicate desiccant 

packets were added to prevent moisture accumulation within the jars. 

Growth assays 

Cells were grown to saturation in induction media and washed 3x with phosphate-buffered 

saline (PBS). Cells were resuspended in selective media at an initial OD600 of 0.01. Final ODs were 

measured after 18 hours of growth at 37°C. Anaerobic conditions, when appropriate, were 

introduced as described above. 

In s i tu  hydrogenase activity assays 

Cells were grown to saturation in anaerobic induction media. Samples were drawn to 

determine cell density by OD. Fresh serum vials containing 25 ml of induction LB were 

anaerobically inoculated with 108 cells (~5ml). Following incubation at 37°C for 2 hours, hydrogen 

production was stopped by the addition 2ml methanol. Accumulated headspace hydrogen was 

measured by gas chromatography (Shimadzu GC-14A). 

In vi tro  hydrogenase activity assays 

Hydrogenase activities were measured with a biochemical methyl viologen assay adapted 

from King et al.(King et al. 2006). Hydrogenase-expressing E. coli were grown to saturation in 20 mL 

of induction media under anaerobic conditions. Samples were drawn to determine cell density by 

OD. Cells were lysed with 1ml of lysis buffer consisting of 20ml B-PER II protein extraction 

reagent (Thermo scientific), 500 µL Baker’s antifoam B, 100 units DNAse I and 50mg dithionite. 

Antifoam and DNAse I were added to prevent foaming of the lysate. Dithionite served to scavenge 

dissolved O2 in the buffer. Lysis continued for 15 minutes under continuous nitrogen sparging. 

Lysed cultures were sealed and injected with 1 mL of methyl viologen assay buffer consisting of 20 

mL 1 M Tris at pH 8, 300 mg methyl viologen and 3 g dithionite. Following 2 hours of incubation at 
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37 ˚C, H2 production was stopped with 2 mL of methanol. Accumulated headspace hydrogen was 

measured by gas chromatography. 

Sulfide production assays 

Sulfide production was measured spectrophotometrically by the methylene blue 

method(Cline 1969). Bacteria were grown to saturation in selective media with IPTG and 

appropriate antibiotics, supplemented with 100 mg/L cysteine to allow growth of all strains. 

Cultures were diluted 1:50 to 25 ml in 40 ml sealed serum vials. Vials were flushed with either pure 

N2 or 40% H2 in N2 and grown for 6 hours at 37 ˚C. Cuvettes were prepared with 2.5 mL assay 

solution containing N,N-Dimethyl-1,4-phenylenediammonium dichloride (200 µM), FeCl (600 µM) 

and HCl (60mM). 25 µL of filtered media was added to assay cuvettes and allowed to react for 1 

hour. Absorbance was measured at 660 nm and compared to a standard curve to calculate sulfide 

concentrations. Statistics were inferred from three biological replicates. 

Hydrogenase O2-tolerance assays 

Hydrogenase half-lives in O2 were measured using an adaptation of the in vitro activity assay 

above. Following anaerobic lysis, a customized sparging apparatus was used to bubble O2 through 

the cultures at a constant partial pressure of 0.1 atm for defined time points between 5 and 25 

minutes. Cultures were then flushed for 5 minutes with pure nitrogen before being sealed and 

assayed with methyl viologen assay buffer, as above. Measurements at each time point were taken 

for 3 biological replicates. 

Colony growth assays under custom atmospheres 

Cells were grown to saturation in induction media. Residual nutrients were removed by 3x 

washing with PBS. Cell densities were measured with a hemocytometer and diluted to a final 

concentration of 1 cell/µL. Fifty microliters (≈ 50 cells) were dispensed onto selective plates and 

transferred Vacu-Quick jars. The jars were filled with 15% H2, O2 varying from 0-12.5%, and a 
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balance of nitrogen to a total internal pressure of 1 atm. Incubation was carried out at 37 ˚C for 72 

hours. Plates were photographed in an inverted camera stage (Figure 3.10E). Colonies were 

identified and sized with an image analysis script implemented in Matlab (MathWorks). Each data 

point represents size data collected from roughly 50 individual colonies. 

 

Design of a PFOR-based genetic selection for oxygen tolerant hydrogenases 

Gene cloning and gene deletion were conducted as described above. Hydrogen production 

in vivo was conducted as in (Agapakis et al. 2010). For the growth assays described in Table 3.1, TYA 

media (Zhu et al. 2008) was used. TYA media contains (per liter): 10.0 g tryptone, 5.0 g NaCl, 1.0 g 

yeast extract, 1.36 g Na(CH3COO)·3H2O. Cells were grown to saturation at 37°C in liquid TYA 

media, then back-diluted to an OD600 of approximately 0.3 into TYA media containing 100 µM 

IPTG. After 2 days of growth, 50 µL of each culture were transferred to solid agar TYA plates 

containing 100 µM IPTG. Plates were grown for 72 hours at 37°C under ambient air or a 100% 

nitrogen atmosphere as described above. 

 

Supporting information for this chapter is available as Appendix A. 
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Chapter 4 

Circadian Rhythm Controls Light-Independent Metabolic 

Oscillations in Cyanobacteria1 

 

ABSTRACT 

 The metabolism of cyanobacteria is critically dependent on light availability. Thus, 

cyanobacteria have evolved robust circadian clocks to synchronize with this essential resource. 

Although the global circadian regulation of gene expression is well documented, the circadian 

control of metabolism has not been measured at the network level. To determine the impact of 

circadian regulation on metabolism, we conducted a metabolomic analysis of the model 

cyanobacterium Synechococcus elongatus PCC 7942 using targeted mass spectrometry. We detected over 

200 metabolites, tracking variation in metabolic abundance during a 24-hr day/night period as well 

as during 48 hrs under constant light. The majority of metabolites appear to be controlled by light 

input rather than the circadian clock. However, we also identified a subset of metabolites that 

oscillate in abundance with a 24-hr period. Surprisingly, these metabolic oscillations are governed by 

the Kai clock despite constant light availability.  Furthermore, circadian-dependent disaccharide 

oscillations appear to reinforce clock entrainment.  Thus, this work provides insight into the extent 

of transcriptional control over metabolite concentration and into the dynamic regulation of 

photosynthetic metabolism. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This chapter has been submitted for publication as: Boyle, P.M., Taylor, N.D., Savage, D.F., Asara, 
J.M., and Silver, P.A. Circadian Rhythm Controls Light-Independent Metabolic Oscillations in 
Cyanobacteria. 
Contributions: P.M.B, D.F.S., and P.A.S. designed research; P.M.B, N.D.T., D.F.S., and J.M.A. 
performed research; P.M.B. and P.A.S. analyzed data and wrote the paper. 
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INTRODUCTION 

 Cells must adjust their metabolism to compensate for changes in their environment. For 

photoautotrophic organisms, light is a primary resource that is periodically available. As a result, 

cyanobacteria are the only prokaryotes to have evolved circadian clocks; these clocks allow 

cyanobacteria to anticipate the diurnal cycling of light intensity and to adjust to seasonal trends in 

day length (Dong & Golden 2008). In Synechococcus elongatus PCC 7942 (hereafter S. elongatus), it has 

been estimated that the expression of 30-100% of genes is governed by the circadian rhythm 

(Vijayan et al. 2009; Ito et al. 2009). Loss of function mutations in circadian clock genes decrease the 

fitness of S. elongatus under diurnal conditions (Woelfle et al. 2004). 

 The KaiC protein serves as the master regulator of the circadian clock in S. elongatus (Tomita 

et al. 2005; Nishiwaki et al. 2004). The proteins KaiA and KaiB, along with ATP, are necessary and 

sufficient to establish oscillations in the phosphorylation state of KaiC in vitro (Wold et al. 2001; 

Nakajima et al. 2005). Light-driven changes in intracellular energy state appear to entrain the Kai 

clock (Rust et al. 2011), but the influence of circadian regulation on intracellular metabolite 

concentrations is not well understood. Furthermore, feedback between metabolites other than 

ATP/ADP and the circadian clock may be important to regulate of circadian rhythms in vivo. 

 Metabolites under circadian control are expected to oscillate in an entrainment dependent 

and light independent manner. Entrainment is a hallmark feature of circadian clocks: once entrained 

by diurnal stimuli, circadian clocks continue to oscillate with an approximate 24-hr period even if the 

stimuli are removed (Roenneberg & Foster 1997). In S. elongatus, growth under a 12hr:12hr 

light:dark rhythm (“LD”) results in 24-hr Kai oscillations for 3 days following a shift to a 24hr:0hr 

light:dark rhythm (“LL”) (Kondo et al. 1993; Golden 2007). Systems that are regulated by the 

circadian rhythm also oscillate post-entrainment, as has been demonstrated with gene expression in 
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S. elongatus (Vijayan et al. 2009; Ito et al. 2009). Therefore, we expect metabolites that accumulate 

as a function of enzyme transcript levels (and by extension a function of the Kai clock) to oscillate in 

LL conditions post-entrainment. 

 In this study we tracked over 200 metabolites in entrained cultures of S. elongatus. By tracking 

the abundance of metabolites post-entrainment, we directly observed the extent of circadian control 

over metabolism. Metabolism in S. elongatus depends on both light input and circadian entrainment 

as regulators of the metabolic network. Since the transcriptome of S. elongatus is so tightly controlled, 

even under LL conditions, this work also provides insight into the role of enzyme transcript 

abundance in metabolic control. The interaction of carbon sources, reducing power, and enzyme 

concentration is important in the control of all metabolic networks; S. elongatus is an ideal organism 

for dissecting these interactions in a robust but non-steady state system. 

 

RESULTS 

 We monitored metabolic concentrations via targeted liquid chromatography-tandem mass 

spectrometry (LC/MS/MS) in entrained cultures of S. elongatus (Kelly et al. 2011; Locasale et al. 

2012; Yuan et al. 2012; Kelly et al. 2011; Locasale et al. 2012; Yuan et al. 2012). A full list of 

metabolites monitored is available in Table 4.1. For all experiments, S. elongatus was entrained by two 

consecutive 12hr:12hr LD periods (See Materials and Methods for details on entrainment and 

growth conditions). We first examined metabolic dynamics at a 2-hr resolution over a 24hr 12:12 

LD period post entrainment. 107 of the 171 metabolites tracked over the 24hr period reached peak 

concentrations during the 12hr light period (Figure 4.1A, File S1A). This is consistent with 

metabolite abundances increasing in response to continual photosynthetic activity when light is 

present. K-means clustering (4 clusters, 1000 replicates) of these metabolites suggested that 

additional light-independent regulation also affected metabolite concentrations. Two of the four 
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clusters, representing over 45% of measured metabolites, reached maximal concentrations during 

discrete time windows (Figure 4.1B). 

!
Figure 4.1 Metabolomic profiling of a 24-hr LD cycle. (A) Heatmap of 145 metabolites tracked 
(see Materials and Methods for details). K-means clustering revealed a cluster that peaks early in the 
day (green bar) and a cluster that peaks late in the day (orange bar).  (B) Comparison of early (green) 
and late (orange) peaking clusters. See supplemental Table 4.2 for a listing of clustered metabolites. 
(C) PLSR analysis indicates that metabolic activity is regulated primarily while light is present. This is 
evidenced by the tight clustering of the samples collected in the dark (black circles) versus the time-
dependent organization of the samples collected in the light (white circles). Axes are labeled with the 
percentage of the variance in the response variable explained by the PLSR model. Numbers indicate 
the circadian time of sample collection, error bars represent the standard deviation of the 3 technical 
replicates taken at each timepoint. 

 If there is light-dependent regulation of metabolite concentration in S. elongatus, metabolite 

concentrations in the 24 hr LD dataset should be predictive of lighting status. To test this 

assumption, we employed partial least squares regression analysis (PLSR). PLSR is a partially 

supervised technique that considers a multiparametric matrix of predictor values and uses that 

dataset to model a dependent matrix of response values. PLSR constructs orthogonal axes that best 

describe the variance of the predictor and response values (Wold et al. 2001). We applied two-

component PLSR to the 24-hr dataset to predict lighting status as the response variable (see 

Materials and Methods for parameters). The resulting model (R2 PLS = 95.16%) tightly clustered the 
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data collected during the dark, while spreading the light timepoints out roughly according to time of 

day in the first two principal components (Figure 4.1C). 

 The time-dependent spacing of the daytime timepoints in the PLSR model is a result of the 

underlying structure of the data, and not the lighting status variable, as no information on time of 

sample collection was incorporated into the model. The vast majority of the variance explained by 

PLSR is in the first component, which clusters early day and late day time-points separately. This 

indicates that S. elongatus metabolism is regulated primarily during light periods when the 

photosystems are active. 

 To distinguish between metabolites under circadian regulation versus those that simply 

respond to photosynthetic activity, we tracked metabolite dynamics for 48 hr at LL. In LL 

conditions, light-responsive metabolites are expected to remain fairly invariant in concentration, 

while circadian metabolites should oscillate in abundance with a 24-hr period. Under the conditions 

of the previous 24-hr experiment, cell division occurred approximately once every 12 hrs; we 

therefore increased the CO2 concentration to 2% and the temperature to 35°C such that cell 

doubling time was reduced to approximately 8 hrs (see Materials and Methods). This was done to 

ensure that any 24-hr oscillations would be generated by circadian regulation rather than the cell 

cycle. To track the status of the Kai clock during these experiments, we integrated a bacterial 

luciferase operon under the control of the circadian PsbAI promoter into the genome (Kondo et al. 

1993). For all subsequent experiments, wild-type (WT) S. elongatus includes this luciferase reporter 

integrated into the genome (see Materials and Methods for details). In addition, we also constructed 

strain ΔKaiABC, which differs from the WT reporter strain in that the entire KaiABC locus has been 

deleted (see Supporting Information for a full list of strains and plasmids). 

 During the 48-hr LL experiment, the luciferase reporter confirmed that the circadian clock 

maintained a 24-hr period in the WT cells, while the ΔKaiABC cells were arrhythmic (Figure 4.2A 
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and B). 217 metabolites were detected over the course of the experiment (File S1B). Unlike the 24hr 

LD dataset, unsupervised methods to cluster the WT metabolite data failed to identify obvious 

clusters of correlated metabolites (Figure 4.2C). 

Three-component PLSR (R2 PLS = 95.79) of the WT data over 48 hrs in LL provides insight 

into the role of light in metabolic concentrations (Figure 4.3A). For this analysis, the circadian 

luciferase signal was employed as the dependent response variable, such that metabolite data is used 

to predict Kai-dependent luciferase activity (see Materials and Methods for details). The first 2 PLSR 

components separate samples collected during the subjective day and night, while maintaining 

clustering of samples collected at the same circadian time. As a control, performing the same PLSR 

analysis on the ΔKaiABC data, again using the WT luciferase signal as the response variable, did not 

significantly separate the timepoints or identify subjective day/night transitions (Figure 4.5). An 

interesting outlier is the hr 0 sample, which was taken at the dark to light transition. This suggests 

that the activation of lighting at this timepoint had a greater effect on metabolite concentrations than 

the status of the circadian clock. Both the WT and ΔKaiABC samples demonstrated this behavior, 

further indicating that this effect is circadian-independent. Of the 216 metabolites measured in the 

WT sample, 107 reached their maximum at hr 0, as compared to 18 of 171 in the 24-hr LD 

experiment. 
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Figure 4.2 Metabolomic profiling of a 48-hr LL period. (A) Design of the circadian luciferase 
reporter used in this study. (B) Luciferase activity during the 48-hr measurement period. Two full 
oscillations of the circadian rhythm are evident in the WT sample. The luciferase activity in the 
ΔKaiABC sample responds to the dark to light transition at hr 0, then remains flat for the duration 
of the LL period. Error bars represent the standard deviation of 3 technical replicates taken at each 
timepoint. Diagonal lines represent subjective night hours. (C) Heatmap of 139 metabolites tracked. 
Metabolites are organized in descending order of the WT circadian score (see Materials and 
Methods). 
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!
Figure 4.3 Circadian analysis of 48-hr LL data. 
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Figure 4.3, continued. Circadian analysis of 48-hr LL data. (A) PLSR analysis, using the WT 
luciferase signal as the response variable. Axes are labeled with the percentage of the variance in the 
response variable explained by the PLSR model. White and black markers indicate whether the 
sample was collected during subjective day or subjective night, respectively. Subjective day and 
subjective night samples are segregated, with samples collected near the subjective day/night 
transition near 0 on the 1st component axis. Circles and squares denote whether the sample was 
collected on day 1 or day 2 of the experiment, respectively. Timepoints and error bars are 
represented identically to Figure 4.1C. (B) Histogram of periods calculated for each metabolite via 
Cosiner analysis. Metabolites with periods less than or equal to 12 hrs or greater than 36 hours are 
considered arrhythmic by this analysis. The ΔKaiABC distribution closely matches that of an 
expected random distribution (see Materials and Methods for details). The WT distribution deviates 
from the random distribution, with a greater number of metabolites with periods between 22 and 26 
hrs (inset). (C) WT metabolites that displayed circadian periodicity (see Materials and Methods for 
selection criteria). The WT luciferase signal from this experiment is reproduced above the heatmap. 

 To identify metabolites with apparent 24-hr periods, we applied a modified Cosiner 

algorithm to the 48-hr LL dataset (Vijayan et al. 2009; Kucho et al. 2005). In comparison to the 

ΔKaiABC sample, the WT sample possessed fewer metabolites with periods less than 12 hrs, the 

shortest period that we attempted to identify. In addition, there was a clear peak at 24 hrs in the WT 

histogram that was not present in the ΔKaiABC histogram (Figure 4.3B). The ΔKaiABC histogram 

resembles the expected period distribution of randomized samples, while the WT data clearly 

deviates from a random distribution (Figure 4.3B). We identified 19 putative circadian metabolites in 

the WT dataset via the Cosiner algorithm (Figure 4.3C). Running the same analysis on the ΔKaiABC 

data identified 4 putative circadian metabolites (File S1C); this result is likely to be representative of 

the false positive rate of circadian identification. 

 The most striking putative circadian trajectory belonged to sucrose/trehalose, which also 

peaked in the late day during the 24-hr LD experiment (Figure 4.4A). The metabolic precursor 

sucrose/trehalose-6-phosphate may also display circadian periodicity (Figure 4.4B), although this 

compound was not measured with sufficient fidelity to definitively support that observation. 

Currently, our instrumentation is unable to distinguish between sucrose and trehalose. Therefore, to 

determine which compound was detected, and to elucidate the potential role of that compound in 



 117 

the circadian clock, we knocked out the enzymes responsible for their synthesis. Both sucrose and 

trehalose can be synthesized from UDP-glucose (Figure 4.4C). Sucrose phosphate synthase is 

encoded by spsA in cyanobacteria (Porchia & Salerno 1996; Curatti et al. 1998). Although no open 

reading frame in S. elongatus PCC 7942 is annotated as a trehalose phosphate synthase, the ORF 

syc1355_d in S. elongatus PCC 6301 has been annotated as a trehalose phosphate synthase. BLAST 

of syc1355_d against the S. elongatus PCC 7942 genome revealed that syc1355_d is nearly identical to 

the dpm gene in S. elongatus PCC 7942 (Altschul et al. 1990) (Figure 4.6). We therefore knocked out 

both spsA and dpm in the WT strain background with the PsbAI-luciferase reporter. 

 While the ΔspsA strain showed no significant disruption of pPsbAI-luciferase activity, the 

Δdpm luciferase signal peaks earlier in the day upon release into LL conditions (Figures 4.4D and 

4.7). Targeted LC/MS/MS of these strains and the WT strain revealed that the sucrose/trehalose 

concentration was decreased in the ΔspsA strain, and increased in the Δdpm strain (Figure 4.4E, File 

S1D). This indicated that both sucrose and trehalose are present in S. elongatus. It also indicated 

that the circadian disruptions observed in the Δdpm strain were likely to be the result of increased 

sucrose concentrations, not decreased trehalose concentrations, as evidenced by the three-fold 

increase in sucrose/trehalose observed in the Δdpm strain. Furthermore, both gene deletions 

increased glucose-6-phosphate and fructose-6-phosphate concentrations, likely due to flux 

redistribution in the sucrose/trehalose synthesis pathways (Figure 4.4E). Remarkably, these 

metabolic differences were evident despite a relatively uniform pPsbAI-luciferase signal at the time of 

sample collection (Figure 4.4D, collection at t = 12.5 hr in LL). The metabolic impact of the dpm 

deletion disrupted circadian-dependent control of gene expression under LL conditions (Figure 

4.4D). This result presents a potential role of circadian-regulated metabolites in reinforcing Kai 

clock entrainment in LL conditions. 
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Figure 4.4 Disaccharide oscillations under LL conditions, and phenotypes of mutants 
defective in disaccharide synthesis. (A) Sucrose/trehalose and (B) sucrose-6-
phosphate/trehalose-6-phosphate concentrations over the course of the 48-hour LL 
experiment.  Units in both (A) and (B) are the calculated peak area for that SRM, normalized to the 
OD at 750 nm (See Materials and Methods). (C) Biosynthesis of sucrose and trehalose. In S. 
elongatus, spsA has been verified as the sole sucrose-phosphate synthase, while dpm is a putative 
trehalose-phosphate synthase. (D) Representative luciferase dynamics of ΔspsA and Δdpm strains of 
S. elongatus with the pPsbAI-luciferase reporter. Time 0 represents the beginning of LL conditions 
following 2 LD entrainment periods. No measurements were made during subjective night hours, as 
indicated by dotted lines. Y-axes are arbitrary luciferase units normalized to the OD at 750 nm. (E) 
Selected sucrose and trehalose biosynthetic intermediates compared at 12.5 hrs in LL. Reported 
values are SRM peak area normalized to OD, expressed as a percentage of the area/OD in the WT 
sample. Metabolites were extracted from entrained cultures of WT, ΔspsA, and Δdpm, and analyzed 
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Figure 4.4, continued. via targeted LC/MS/MS. Full metabolite data from this experiment are 
included as File S1D. The luciferase data from this experiment is presented in Figure 4.7. s/t = 
sucrose/trehalose, UDPg = UDP-D-glucose, g6p = glucose-6-phosphate, f6p = fructose-6-
phosphate, s/t-6p = sucrose/trehalose-6-phosphate. 

 

DISCUSSION 

 By observing metabolic dynamics in entrained cultures of S. elongatus under LD and LL 

conditions, we isolated the influence of the circadian rhythm from that of photosynthetic activity on 

the metabolic network. A high proportion of circadian metabolites under LL conditions would have 

implied that circadian oscillations in gene expression directly regulate the metabolic network. 

Instead, we observed that while time dependent regulation is evident under LD conditions, 

metabolite fluctuations are largely non-circadian under LL conditions. These data demonstrated that 

much of S. elongatus metabolism is “upstream” of the circadian clock and relatively insensitive to 

transcriptional regulation. This finding has important implications for the metabolic engineering of 

cyanobacteria, since many metabolites do not vary as a function of the global oscillations in gene 

expression. Interestingly, spsA and dpm transcript levels under LL conditions do resemble the 

observed sucrose/trehalose oscillations (Ito et al. 2009; Vijayan et al. 2009)(Figure 4.8). This 

indicates that enzyme expression oscillations can contribute to metabolite oscillations, but that 

expression oscillations alone are insufficient to cause this behavior. 

 The S. elongatus circadian system is ideal for investigating the consequences of 

transcriptional variation on intracellular metabolites. Earlier work to unite transcriptome and 

metabolome data from Escherichia coli (E. coli) demonstrated that perturbation of enzyme 

expression does not necessarily impact the concentrations of associated metabolites. Instead, it was 

observed that enzyme deletions often lead to re-routing of metabolic flux without appreciable 

changes in enzyme or metabolite concentrations (Ishii et al. 2007). In S. elongatus, gene expression 

does not reach a single steady-state since most gene transcripts are under circadian control (Ito et al. 
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2009; Vijayan et al. 2009). Likewise, metabolite levels also do not reach a steady-state under LD 

conditions. The combination of circadian and light control results in the discrete regulation of 

metabolite concentrations, as evidenced in our 24-hr LD experiment (Figure 4.1). The opportunity 

to abolish circadian regulation of transcription then allowed us to determine to what extent 

transcriptional regulation influenced metabolite levels.  

 Our data indicate that circadian-regulated metabolites such as sucrose may be serving to 

reinforce the circadian rhythm when the lighting rhythm is disrupted (Figure 4.4D).  However, these 

metabolites do not appear to entrain the Kai oscillator itself. This agrees with previous studies 

demonstrating that intracellular redox status, which is largely determined by the presence of light 

and associated photosynthesis, entrains the circadian clock in S. elongatus (Rust et al. 2011). Sucrose 

may improve the robustness of Kai oscillations by stabilizing the energy state (i.e. ATP/ADP and 

NADH/NAD+ ratios) oscillations that occur under a diurnal lighting rhythm. Alternatively, 

disaccharides such as sucrose and trehalose have been identified as osmoprotectants in S. elongatus 

(Blumwald et al. 1983; Niederholtmeyer et al. 2010). Modulation of chromosomal superhelicity has 

been shown to be part of the osmotic stress response in E. coli (Cheung et al. 2003). In S. elongatus, 

chromosomal superhelicity is under circadian control (Vijayan et al. 2011); sucrose oscillations may 

reinforce the periodicity of superhelicity in LL conditions. Interestingly, sucrose has been identified 

as a circadian regulator in higher plants (Dalchau et al. 2011). Cyanobacteria and plants both conduct 

oxygenic photosynthesis but differ greatly in their circadian clock architectures (Mackey 2007). 

Sucrose oscillations may be a common feature of circadian-regulated photosynthetic metabolism.  

 With the exception of the candidate metabolites identified in this study, the contribution of 

circadian oscillations in gene expression does not appear to result in circadian metabolic oscillations. 

This is surprising, given that as many as 70% of metabolic enzymes appear to be transcriptionally 

controlled by the circadian clock in S. elongatus (Vijayan et al. 2009). This has implications for the 
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modeling of metabolic control; transcriptome data is insufficient to understand metabolic dynamics, 

requiring direct measurement of the metabolome.  

 Cyanobacteria such as S. elongatus show great promise as a platform for solar-driven 

metabolic engineering (Ducat et al. 2011). To better realize this goal, our data can be employed to 

time the expression of exogenous enzymes with the availability of endogenous substrates. Together 

with work to analyze the spatial dynamics of S. elongatus metabolism (Savage et al. 2010), our results 

contribute towards a spatiotemporal atlas of photoautotrophic metabolism. 

 

MATERIALS AND METHODS 

Strain Construction 

 All relevant strains, plasmids, and oligos are described in Tables S3-5. Wild-type Synechococcus 

elongatus PCC 7942 was acquired from the American Type Culture Collection (ATCC). S. elongatus 

cells were transformed following standard protocols by incubating 108 cells overnight in the dark 

with 100 ng of plasmid DNA and immediately plating on selective media (Clerico et al. 2007). 

 The psbAI promoter was amplified from S. elongatus genomic DNA, and cloned in front of 

the luxCDABE operon from Photorhabdus luminescens (Kishony & Leibler 2003). This luciferase 

construct was cloned into pAM2314 with EcoRI and NotI. This vector integrates gene constructs 

into Neutral Site I in the S. elongatus genome, a locus that has been shown to permit gene integration 

without affecting strain phenotype (Mackey et al. 2007; Savage et al. 2010). 

 Gene knockouts were generated by in-frame deletion of the intended gene using an 

antibiotic resistance cassette. Gene knockout plasmids were constructed as follows. 800 bp flanking 

regions for each open reading frame to be deleted were amplified from S. elongatus genomic DNA 

using a BioBrick-like strategy in which BioBrick restriction sites were added to each part (Phillips & 

P. Silver 2006). A table of DNA oligonucleotides used in cloning is shown in Table 4.5. Briefly, 
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EcoRI and SpeI were used for upstream restriction sites and HindIII and NotI were used as 

downstream sites. The final part was therefore EcoRI – upstream flanking sequence SpeI – 

antibiotic resistance cassette – HindIII – downstream flanking sequence – NotI. This part was 

ligated into the V0120 vector digested with EcoRI and NotI.  For the deletion of the KaiABC locus, 

the hygromycin resistance cassette cloned from pUV15tetORm (Addgene) was used. For all other 

deletions, a chloramphenicol resistance cassette cloned from plasmid pACYCDuet-1 (Novagen) was 

used. Knockouts were created by transforming S. elongatus using the appropriate plasmid as 

described above and verified by colony PCR on single colonies isolated following colony 

purification of transformed strains. 

Growth Conditions 

 For the 24-hr LD experiment, S. elongatus was grown in BG11 media at pH 8.8 (SIGMA) at 

25°C under illumination of 3000 lux (~80 µE m2 s-1) via F15T8 fluorescent bulbs (Gro-Lux, 15W; 

Sylvania). Antibiotic concentrations were 10 µg/ml for each antibiotic. Cultures were stirred at 200 

rpm via a magnetic stir bar. For all subsequent experiments, S. elongatus was grown at 35°C with CO2 

controlled at 2% in a Multitron shaking incubator (Infors HT). Shaking was set to 150 rpm, and 

illumination parameters remained at 3000 lux (~80 µE m2 s-1) via F15T8 fluorescent bulbs (Gro-Lux, 

15W; Sylvania). BG11 media (SIGMA) was supplemented with 1 g/L HEPES and adjusted to pH 

8.8 to prevent media acidification by the increased CO2 concentration. 

Sample Collection for LC/MS/MS Analysis 

 Cells were harvested at an OD750 of 0.5-0.8. For the 24-hr LD experiment, 1.8 ml of cells 

were collected, and centrifuged immediately at 21,000 rcf for 1 min in a microcentrifuge. The 

resulting pellets were then resuspended in 500 uL 80% (v/v) methanol at dry ice temperatures. 

Following brief vortexing, the samples were incubated on dry ice for 10 min. The samples were then 

centrifuged at 21,000 rcf for 1 min in a microcentrifuge at 4°C. The resulting supernatant was saved, 
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and the pellets were re-suspended in 250 uL 80% (v/v) methanol at dry ice temperatures. Vortexing, 

dry ice incubation, and centrifugation were repeated twice more; the resulting supernatants for each 

sample were pooled to a 1 mL final volume. For all subsequent experiments, 4 mL of cells were 

transferred to 16 mL 100% methanol, and centrifuged immediately at 4,000 rcf for 5 min at 4°C. 

The resulting pellets were then resuspended in 500 uL 80% (v/v) methanol at dry ice temperatures, 

and the remaining extraction protocol proceeded as in the 24-hr LD experiment. All pooled 

supernatants were stored at -80°C immediately following collection. 

Targeted LC/MS/MS Analysis 

 Samples were evaporated to dryness in a refrigerated speed vac, and resuspended using 20 µl 

high performance liquid chromatography (HPLC)-grade water for mass spectrometry. We injected 

10 µl and analyzed it using a 5500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX) 

coupled to a Prominence HPLC system (Shimadzu) using selected reaction monitoring (SRM) of a 

total of 249 endogenous water soluble metabolites for analyses of samples. Some metabolites were 

targeted in both the positive and negative ion mode for a total of 297 SRM transitions using 

positive/negative ion polarity switching. ESI voltage was 5,000 V in the positive ion mode and 

−4,500 V in the negative ion mode. The dwell times were 4 ms per SRM transition, and the total 

cycle time was 1.89 s. Samples were delivered to the MS using a 2.0 mm internal diameter × 15 cm 

Luna NH2 hydrophilic interaction chromatography (HILIC) column (Phenomenex) at 300 µl/min. 

Gradients were run starting from 85% buffer B (HPLC-grade acetonitrile) to 42% buffer B from 0–

5 min; 42% buffer B to 0% buffer B from 5–16 min; 0% buffer B held from 16–24 min; 0% buffer 

B to 85% buffer B from 24–25 min; and 85% B held for 7 min to re-equilibrate the column. Buffer 

A was comprised of 20 mM ammonium hydroxide and 20 mM ammonium acetate in 95:5 

water:acetonitrile. Peak areas from the total ion current for each metabolite SRM transition were 

integrated using MultiQuant v1.1 software (Applied Biosystems). 



 124 

 Metabolites with defined SRM are listed in Table 4.1. Metabolite peak area data for all 

experiments is reported in File S1. The number of metabolites reported as detected in each 

experiment is the number of metabolites with a quantifiable peak area in at least one timepoint. For 

heatmap visualization and Cosiner analysis, we required that a metabolite be detected in all 

timepoints. 

Luciferase Measurement 

 Triplicate samples of each culture were transferred to a white, clear bottom 96-well plate 

(Corning, product #3632) and incubated in the dark for 10 minutes at room temperature. After brief 

shaking in the dark, optical density at 750 nm and luciferase activity (3 s observation) were measured 

on a SpectraMax M5 Microplate Reader (Molecular Devices). 

Circadian Period Estimation 

 Raw integrated peak data from the LC/MS/MS analysis for each sample in the 48-hr LL 

experiment was imported into MATLAB (Mathworks) and normalized by the OD 750 at each time 

point. Log2 transformed and linearly detrended data was analyzed via the Cosiner method (Vijayan 

et al. 2009; Kucho et al. 2005). 241 cosine waves, with periods between 12 and 36 hrs at 0.1-hr 

increments, were used for the comparison. For each metabolite trace, the period was assigned based 

on the cosine wave with the minimum Euclidean distance from that trace (Kucho et al. 2005). As in 

reference (Kucho et al. 2005), we required that each putative circadian metabolite have a Cosiner 

error factor (Ef < 0.2). To increase the stringency of this method, we made the following additional 

requirements: that the estimated period be between 22 and 26 h (versus 18 to 26.8 h in reference 

Kucho et al. 2005). We also required that the peak to trough distance for each day (over the 2 day 

experiment) was different to a significance of p < 0.1. We also generated 105 randomly permuted 

metabolite traces from the 48-hr data for comparison (Ito et al. 2009). We required putative 

circadian metabolites to have periods closer to 24 hrs than 99% of the metabolites in the random 
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set, i.e. an empirical p < 0.1. 19 metabolites in the WT sample and 4 metabolites in the ΔKaiABC 

sample met these criteria. A circadian score was assigned to each metabolite, equal to the average 

peak to trough p value for each day multiplied by the p value of the metabolite versus the random 

set. This score was used to determine the sorting order of WT metabolites in Figure 4.2C. All values 

calculated in these analyses are included in File S1C. 

Partial Least Squares Regression (PLSR) 

 PLSR analysis was performed as described in (Wold et al. 2001) via the MATLAB plsregress 

function. The predictor matrix X contained the log2 transformed metabolite data for the given 

experiment. The response matrix Y contained the lighting status (0 = dark, 1 = light) for the 24-hr 

LD experiment, and the WT luciferase status (OD-adjusted luciferase units as shown in Figure 4.2B) 

for the 48-hr LL experiment. The number of components selected (2 components for the 24-hr LD 

experiment and 3 components for the 48-hr LL experiment) was based on minimization of mean 

squared error and 2-way cross-validation. 
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SUPPLEMENTAL FIGURES AND TABLES 
 
File S1 is available upon request and includes the following data. This dataset will be included as 
online supporting information when this work is published. 

File S1A. Full LC/MS/MS data from 24-hr LD experiment 
File S1B. Full LC/MS/MS data from 48-hr LL experiment 
File S1C. Results of Cosiner analysis from 48-hr LL experiment 
File S1D. Full LC/MS/MS data from WT, ΔspsA, Δdpm experiment 

 
 
 
 
 
 

!
Figure 4.5 PLSR of 48-hr LL ΔKaiABC  data with WT luciferase data as the response 
variable. While this PLSR model superficially separates subjective day and night samples, some 
separation is expected due to the use of the luciferase signal from the WT data as the response 
variable. Since the separation between subjective day and night samples is not significant, this 
indicates that the ΔKaiABC data is a poor predictor of the WT luciferase status. 
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!
Figure 4.6 Sequence alignment of S. e longatus PCC 6301 syc1355_d vs. S. e longatus  PCC 
7942 dpm. Aligment performed via the ClustalW2 multiple sequence alignment tool 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

dpm             MSRGAIASYAGQQFASEPQWLALPFLSLVIPTFNEAENIQPLLLQLNELLDRALADRYEL 60
syc1355_d       ------------------------------------------------------------
                                                                            

dpm             IVVDDDSPDRTWALAEQLQPKLPMLTVLRRQGDRGLATAVVYGWQRAQGEILGVIDGDLQ 120
syc1355_d       -MVDDDSPDRTWALAEQLQPKLPMLTVLRRQGDRGLATAVVYGWQRAQGEILGVIDGDLQ 59
                 :**********************************************************

dpm             HPPETLLALIQTMQAGADLAVASRNVSGGGVSDWSVWRRLGSRGAQLLGLLILPEVLGRV 180
syc1355_d       HPPETLLALIQTMQAGADLAVASRNVSGGGVSDWSVWRRLGSRGAQLLGLLILPEVLGRV 119
                ************************************************************

dpm             SDPMSGYFMVRRSRLDLPSLQPRGYKILLEVIAKGQIRQIREVGFIFRERSQGESKVTAR 240
syc1355_d       SDPMSGYFMVRRSRLDLPSLQPRGYKILLEVIAKGQIRQIREVGFIFRERSQGESKVTAR 179
                ************************************************************

dpm             EYWHYLQHLCSLRLQRWESARFLKFVGAGATGVIVDSVVLYLLHDPSRLGWPLLLSKFIA 300
syc1355_d       EYWHYLQHLCSLRLQRWESARFLKFVGAGATGVIVDSVVLYLLHDPSRLGWPLLLSKFIA 239
                ************************************************************

dpm             AEVAILNNFVFNEFWTFGDLARGSQRRYWPRRFLKFNLICSLGIFLNLLILSLLVEGLKL 360
syc1355_d       AEVAILNNFVFNEFWTFGDLARGSQRRYWPRRFLKFNLICSLGIFLNLLILSLLVEGLKL 299
                ************************************************************

dpm             HYLPSNWVAIAVVTLWNFWLNRKLTWVG 388
syc1355_d       HYLPSNWVAIAVVTLWNFWLNRKLTWVG 327
                ****************************
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!
Figure 4.7 pPsbAI-luciferase data corresponding to metabolites measured in Figure 4.4E. 
Metabolite samples graphed in Figure 4.4E were collected 12.5 hrs into the LL period, as indicated 
by the dotted red line. No measurements were made during subjective night hours, as indicated by 
dotted lines. Y-axes are arbitrary luciferase units normalized to the OD at 750 nm. As in Figure 
4.4D, the Δdpm luciferase signal begins to peak earlier in the subjective day after 24 hours in LL. 
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!
Figure 4.8 Comparison of enzyme expression levels from Ito et al 2009 and Vijayan et al 2009 
to selected metabolites. 
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Figure 4.8, continued. Comparison of enzyme expression levels from Ito et al 2009 and 
Vijayan et al 2009 to selected metabolites. Asterisks denote time points in the Ito et al data where 
only a single sample was collected. For all other time points, n=2 for Ito et al data, and n=1 for 
Vijayan et al data. 

!
!
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Table 4.1. List of metabolites monitored in each experiment 

24-hr LD experiment 48-hr LL experiment WT, ΔspsA, Δdpm hr 12.5 

glyoxylate 

glycolate 

pyruvate 

lactate 

2-oxobutanoate 

acetoacetate 

glycerate 

uracil 

fumarate 

Maleic acid 

2.keto-isovalerate 

Guanidoacetic acid 

succinate 

Methylmalonic acid 

3.S-methylthiopropionate 

nicotinate 

taurine 

Pyroglutamic acid 

Citraconic acid 

2-ketohaxanoic acid 

N.Acetyl.L-alanine 

oxaloacetate 

Hydroxyisocaproic acid 

malate 

hypoxanthine 

anthranilate 

p-aminobenzoate 

p-hydroxybenzoate 

acetylphosphate 

Carbamoyl phosphate 

a-ketoglutarate 

Phenylpropiolic acid 

2.oxo.4-methylthiobutanoate 

2.Hydroxy.2-methylbutanedioic acid 

3-methylphenylacetic acid 

xanthine 

Hydroxyphenylacetic acid 

2,3-dihydroxybenzoic acid 

orotate 

dihydroorotate 

allantoin 

glyoxylate 

glycolate 

pyruvate 

lactate 

2-oxobutanoate 

acetoacetate 

glycerate 

uracil 

fumarate 

Maleic acid 

2-keto-isovalerate 

Guanidoacetic acid 

succinate 

Methylmalonic acid 

3-S-methylthiopropionate 

nicotinate 

taurine 

Pyroglutamic acid 

Citraconic acid 

2-ketohaxanoic acid 

N-Acetyl-L-alanine 

oxaloacetate 

Hydroxyisocaproic acid 

malate 

hypoxanthine 

anthranilate 

p-aminobenzoate 

p-hydroxybenzoate 

acetylphosphate 

Carbamoyl phosphate 

a-ketoglutarate 

Phenylpropiolic acid 

2-oxo-4-methylthiobutanoate 

2-Hydroxy-2-methylbutanedioic acid 

3-methylphenylacetic acid 

xanthine 
Hydroxyphenylacetic acid 

2,3-dihydroxybenzoic acid 

orotate 

dihydroorotate 

allantoin 

glyoxylate 

glycolate 

pyruvate 

lactate 

2-oxobutanoate 

acetoacetate 

glycerate 

uracil 

fumarate 

Maleic acid 

2-keto-isovalerate 

Guanidoacetic acid 

succinate 

Methylmalonic acid 

3-S-methylthiopropionate 

nicotinate 

taurine 

Pyroglutamic acid 

Citraconic acid 

2-ketohaxanoic acid 

N-Acetyl-L-alanine 

oxaloacetate 

Hydroxyisocaproic acid 

malate 

hypoxanthine 

anthranilate 

p-aminobenzoate 

p-hydroxybenzoate 

acetylphosphate 

Carbamoyl phosphate 

a-ketoglutarate 

Phenylpropiolic acid 

2-oxo-4-methylthiobutanoate 

2-Hydroxy-2-methylbutanedioic acid 

3-methylphenylacetic acid 

xanthine 

Hydroxyphenylacetic acid 

2,3-dihydroxybenzoic acid 

orotate 

dihydroorotate 

allantoin 
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Aminoadipic acid 

Indole.3-carboxylic acid 

phenylpyruvate 

Atrolactic acid 

Phenyllactic acid 

quinolinate 

phosphoenolpyruvate 

Uric acid 

dihydroxy.acetone-phosphate 

D.glyceraldehdye.3-phosphate 

sn.glycerol.3-phosphate 

shikimate 

aconitate 

allantoate 

Ascorbic acid 

2-Isopropylmalic acid 

N.carbamoyl.L.aspartate-nega 

Pyrophosphate 

glucono.?-lactone 

myo-inositol 

hydroxyphenylpyruvate 

homocysteic acid 

4-Pyridoxic acid 

3-phosphoglycerate 

Indoleacrylic acid 

Kynurenic acid 

citrate-isocitrate 

isocitrate 

citrate 

2.dehydro.D-gluconate 

D-gluconate 

D.erythrose.4-phosphate 

Xanthurenic acid 

lipoate 

D-glucarate 

deoxyribose-phosphate 

pantothenate 

prephenate 

deoxyuridine 

ribose-phosphate 

thymidine 

uridine 

deoxyinosine 

Aminoadipic acid 

Indole-3-carboxylic acid 

phenylpyruvate 

Atrolactic acid 

Phenyllactic acid 

quinolinate 

phosphoenolpyruvate 

Uric acid 

dihydroxy-acetone-phosphate 

D-glyceraldehdye-3-phosphate 

sn-glycerol-3-phosphate 

shikimate 

aconitate 

allantoate 

Ascorbic acid 

2-Isopropylmalic acid 

N-carbamoyl-L-aspartate-nega 

Pyrophosphate 

glucono-?-lactone 

myo-inositol 

hydroxyphenylpyruvate 

homocysteic acid 

4-Pyridoxic acid 

3-phosphoglycerate 

Indoleacrylic acid 

Kynurenic acid 

citrate-isocitrate 

isocitrate 

citrate 

2-dehydro-D-gluconate 

D-gluconate 

D-erythrose-4-phosphate 

Xanthurenic acid 

lipoate 

D-glucarate 

deoxyribose-phosphate 

pantothenate 

prephenate 

deoxyuridine 

ribose-phosphate 

thymidine 

uridine 

deoxyinosine 

Aminoadipic acid 

Indole-3-carboxylic acid 

phenylpyruvate 

Atrolactic acid 

Phenyllactic acid 

quinolinate 

phosphoenolpyruvate 

Uric acid 

dihydroxy-acetone-phosphate 

D-glyceraldehdye-3-phosphate 

sn-glycerol-3-phosphate 

shikimate 

aconitate 

allantoate 

Ascorbic acid 

2-Isopropylmalic acid 

N-carbamoyl-L-aspartate-nega 

Pyrophosphate 

glucono-?-lactone 

myo-inositol 

hydroxyphenylpyruvate 

homocysteic acid 

4-Pyridoxic acid 

3-phosphoglycerate 

Indoleacrylic acid 

Kynurenic acid 

citrate-isocitrate 

isocitrate 

citrate 

2-dehydro-D-gluconate 

D-gluconate 

D-erythrose-4-phosphate 

Xanthurenic acid 

lipoate 

D-glucarate 

deoxyribose-phosphate 

pantothenate 

prephenate 

deoxyuridine 

ribose-phosphate 

thymidine 

uridine 

deoxyinosine 
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shikimate.3-phosphate 

D.glucono.?.lactone.6-phosphate 

hexose-phosphate 

glucose.1-phosphate 

glucose.6-phosphate 

fructose.6-phosphate 

1,3-diphopshateglycerate 

2,3-Diphosphoglyceric acid 

S.ribosyl.L.homocysteine-nega 

inosine 

6.phospho.D-gluconate 

xanthosine 

D.sedoheptulose.1.7-phosphate 

N.acetyl.glucosamine.1-phosphate 

glutathione-nega 

dUMP-nega 

Geranyl-PP 

O8P-O1P 

dTMP-nega 

cyclic-AMP 

fructose.1,6-bisphosphate 

trehalose-sucrose 

Cellobiose 

orotidine.5-phosphate 

SBP 

trans, trans-farnesyl diphosphate 

S.adenosyl.L.homocysteine-nega 

dCDP-nega 

5.phosphoribosyl.1-pyrophosphate 

Deoxycholic acid 

OBP 

dTDP-nega 

CDP-nega 

UDP-nega 

Cholic acid 

trehalose.6-Phosphate 

Thiamine pyrophosphate 

adenosine 5-phosphosulfate 

ADP-nega 

dGDP-nega 

IDP-nega 

GDP-nega 

CDP-ethanolamine 

shikimate-3-phosphate 

D-glucono-?-lactone-6-phosphate 

hexose-phosphate 

glucose-1-phosphate 

glucose-6-phosphate 

fructose-6-phosphate 

1,3-diphopshateglycerate 

2,3-Diphosphoglyceric acid 

S-ribosyl-L-homocysteine-nega 

inosine 

6-phospho-D-gluconate 

xanthosine 

D-sedoheptulose-1-7-phosphate 

N-acetyl-glucosamine-1-phosphate 

glutathione-nega 

dUMP-nega 

Geranyl-PP 

O8P-O1P 

dTMP-nega 

cyclic-AMP 

fructose-1,6-bisphosphate 

trehalose-sucrose 

Cellobiose 

orotidine-5-phosphate 

SBP 

trans, trans-farnesyl diphosphate 

S-adenosyl-L-homocysteine-nega 

dCDP-nega 

5-phosphoribosyl-1-pyrophosphate 

Deoxycholic acid 

OBP 

dTDP-nega 

CDP-nega 

UDP-nega 

Cholic acid 

trehalose-6-Phosphate 

Thiamine pyrophosphate 

adenosine 5-phosphosulfate 

ADP-nega 

dGDP-nega 

IDP-nega 

GDP-nega 

CDP-ethanolamine 

shikimate-3-phosphate 

D-glucono-?-lactone-6-phosphate 

hexose-phosphate 

glucose-1-phosphate 

glucose-6-phosphate 

fructose-6-phosphate 

1,3-diphopshateglycerate 

2,3-Diphosphoglyceric acid 

S-ribosyl-L-homocysteine-nega 

inosine 

6-phospho-D-gluconate 

xanthosine 

D-sedoheptulose-1-7-phosphate 

N-acetyl-glucosamine-1-phosphate 

glutathione-nega 

dUMP-nega 

Geranyl-PP 

O8P-O1P 

dTMP-nega 

cyclic-AMP 

fructose-1,6-bisphosphate 

trehalose-sucrose 

Cellobiose 

orotidine-5-phosphate 

SBP 

trans, trans-farnesyl diphosphate 

S-adenosyl-L-homocysteine-nega 

dCDP-nega 

5-phosphoribosyl-1-pyrophosphate 

Deoxycholic acid 

OBP 

dTDP-nega 

CDP-nega 

UDP-nega 

Cholic acid 

trehalose-6-Phosphate 

Thiamine pyrophosphate 

adenosine 5-phosphosulfate 

ADP-nega 

dGDP-nega 

IDP-nega 

GDP-nega 

CDP-ethanolamine 
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FMN 

cholesteryl sulfate 

dCTP-nega 

dUTP-nega 

dTTP-nega 

CTP-nega 

UTP-nega 

CDP-choline 

dATP-nega 

Taurodeoxycholic acid 

ATP-nega 

dGTP 

GTP-nega 

UDP.D-glucose 

UDP.D-glucuronate 

ADP.D-glucose 

guanosine 5.diphosphate,3-diphosphate 

UDP.N.acetyl-glucosamine 

glutathione disulfide-nega 

NAD+_nega 

NADH-nega 

dephospho.CoA-nega 

cyclic bis(3->5) dimeric GMP 

NADP+_nega 

NADPH-nega 

coenzyme A-nega 

acetyl.CoA-nega 

propionyl.CoA-nega 

butyryl-CoA 

acetoacetyl.CoA-nega 

malonyl.CoA-nega 

3.hydroxybutyryl-CoA 

succinyl.CoA.methylmalonyl.CoA-nega 

3.hydroxy.3.methylglutaryl.CoA-nega 

Urea 

ethanolamine 

Imidazole 

glycine 

alanine 

betaine aldehyde 

choline 

4-aminobutyrate 

dimethylglycine 

FMN 

cholesteryl sulfate 

dCTP-nega 

dUTP-nega 

dTTP-nega 

CTP-nega 

UTP-nega 

CDP-choline 

dATP-nega 

Taurodeoxycholic acid 

ATP-nega 

dGTP 

GTP-nega 

UDP-D-glucose 

UDP-D-glucuronate 

ADP-D-glucose 

guanosine 5-diphosphate,3-diphosphate 

UDP-N-acetyl-glucosamine 

glutathione disulfide-nega 

NAD+_nega 

NADH-nega 

dephospho-CoA-nega 

cyclic bis(3->5) dimeric GMP 

NADP+_nega 

NADPH-nega 

coenzyme A-nega 

acetyl-CoA-nega 

propionyl-CoA-nega 

butyryl-CoA 

acetoacetyl-CoA-nega 

malonyl-CoA-nega 

3-hydroxybutyryl-CoA 

succinyl-CoA-methylmalonyl-CoA-nega 

3-hydroxy-3-methylglutaryl-CoA-nega 

2-hydroxygluterate 

Urea 

ethanolamine 

Imidazole 

glycine 

alanine 

betaine aldehyde 

choline 

4-aminobutyrate 

FMN 

cholesteryl sulfate 

dCTP-nega 

dUTP-nega 

dTTP-nega 

CTP-nega 

UTP-nega 

CDP-choline 

dATP-nega 

Taurodeoxycholic acid 

ATP-nega 

dGTP 

GTP-nega 

UDP-D-glucose 

UDP-D-glucuronate 

ADP-D-glucose 

guanosine 5-diphosphate,3-diphosphate 

UDP-N-acetyl-glucosamine 

glutathione disulfide-nega 

NAD+_nega 

NADH-nega 

dephospho-CoA-nega 

cyclic bis(3->5) dimeric GMP 

NADP+_nega 

NADPH-nega 

coenzyme A-nega 

acetyl-CoA-nega 

propionyl-CoA-nega 

butyryl-CoA 

acetoacetyl-CoA-nega 

malonyl-CoA-nega 

3-hydroxybutyryl-CoA 

succinyl-CoA-methylmalonyl-CoA-nega 

3-hydroxy-3-methylglutaryl-CoA-nega 

2-hydroxygluterate 

2-deoxyglucose-6-phosphate 

Urea 

ethanolamine 

Imidazole 

glycine 

alanine 

betaine aldehyde 

choline 
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serine 

cytosine 

Creatinine 

proline 

indole 

betaine 

valine 

threonine 

homoserine 

purine 

cysteine 

creatine 

nicotinamide 

Imidazoleacetic acid 

thymine 

DL-Pipecolic acid 

N-Acetylputrescine 

hydroxyproline 

leucine-isoleucine 

ornithine 

asparagine 

aspartate 

adenine 

Methylcysteine 

homocysteine 

methylnicotinamide 

histidinol 

lysine 

glutamine 

O-acetyl-L-serine 

glutamate 

methionine 

guanine 

histidine 

2-Aminooctanoic acid 

carnitine 

Methionine sulfoxide 

phenylalanine 

Pyridoxamine 

pyridoxine 

1-Methyl-Histidine 

N-acetyl-L-ornithine 

arginine 

dimethylglycine 

serine 

cytosine 

Creatinine 

proline 

indole 

betaine 

valine 

threonine 

homoserine 

purine 

cysteine 

creatine 

nicotinamide 

Imidazoleacetic acid 

thymine 

DL-Pipecolic acid 

N-Acetylputrescine 

hydroxyproline 

leucine-isoleucine 

ornithine 

asparagine 

aspartate 

adenine 

Methylcysteine 

homocysteine 

methylnicotinamide 

histidinol 

lysine 

glutamine 

O-acetyl-L-serine 

glutamate 

methionine 

guanine 

histidine 

2-Aminooctanoic acid 

carnitine 

Methionine sulfoxide 

phenylalanine 

Pyridoxamine 

pyridoxine 

1-Methyl-Histidine 

N-acetyl-L-ornithine 

4-aminobutyrate 

dimethylglycine 

serine 

cytosine 

Creatinine 

proline 

indole 

betaine 

valine 

threonine 

homoserine 

purine 

cysteine 

creatine 

nicotinamide 

Imidazoleacetic acid 

thymine 

DL-Pipecolic acid 

N-Acetylputrescine 

hydroxyproline 

leucine-isoleucine 

ornithine 

asparagine 

aspartate 

adenine 

Methylcysteine 

homocysteine 

methylnicotinamide 

histidinol 

lysine 

glutamine 

O-acetyl-L-serine 

glutamate 

methionine 

guanine 

histidine 

2-Aminooctanoic acid 

carnitine 

Methionine sulfoxide 

phenylalanine 

Pyridoxamine 

pyridoxine 

1-Methyl-Histidine 
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citrulline 

N-carbamoyl-L-aspartate 

glucosamine 

tyrosine 

Phosphorylcholine 

3-phospho-serine 

N6-Acetyl-L-lysine 

Acetyllysine 

N-acetyl-glutamine 

N-acetyl-glutamate 

Ng,NG-dimethyl-L-arginine 

Acetylcarnitine DL 

tryptophan 

Kynurenine 

N-acetyl-glucosamine 

Flavone 

cystathionine 

5-methoxytryptophan 

Cystine 

cytidine 

biotin 

deoxyadenosine 

Glycerophosphocholine 

acadesine 

D-glucosamine-6-phosphate 

D-glucosamine-1-phosphate 

thiamine 

S-ribosyl-L-homocysteine-posi 

deoxyguanosine 

adenosine 

1-Methyladenosine 

guanosine 

L-arginino-succinate 

S-methyl-5-thioadenosine 

7-methylguanosine 

dCMP 

glutathione 

dTMP 

CMP 

UMP 

dAMP 

Nicotinamide ribotide 
aminoimidazole carboxamide 
ribonucleotide 

arginine 

citrulline 

N-carbamoyl-L-aspartate 

glucosamine 

tyrosine 

Phosphorylcholine 

3-phospho-serine 

N6-Acetyl-L-lysine 

Acetyllysine 

N-acetyl-glutamine 

N-acetyl-glutamate 

Ng,NG-dimethyl-L-arginine 

Acetylcarnitine DL 

tryptophan 

Kynurenine 

N-acetyl-glucosamine 

Flavone 

cystathionine 

5-methoxytryptophan 

Cystine 

cytidine 

biotin 

deoxyadenosine 

Glycerophosphocholine 

acadesine 

D-glucosamine-6-phosphate 

D-glucosamine-1-phosphate 

thiamine 

S-ribosyl-L-homocysteine-posi 

deoxyguanosine 

adenosine 

1-Methyladenosine 

guanosine 

L-arginino-succinate 

S-methyl-5-thioadenosine 

7-methylguanosine 

dCMP 

glutathione 

dTMP 

CMP 

UMP 

dAMP 

Nicotinamide ribotide 

N-acetyl-L-ornithine 

arginine 

citrulline 

N-carbamoyl-L-aspartate 

glucosamine 

tyrosine 

Phosphorylcholine 

3-phospho-serine 

N6-Acetyl-L-lysine 

Acetyllysine 

N-acetyl-glutamine 

N-acetyl-glutamate 

Ng,NG-dimethyl-L-arginine 

Acetylcarnitine DL 

tryptophan 

Kynurenine 

N-acetyl-glucosamine 

Flavone 

cystathionine 

5-methoxytryptophan 

Cystine 

cytidine 

biotin 

deoxyadenosine 

Glycerophosphocholine 

acadesine 

D-glucosamine-6-phosphate 

D-glucosamine-1-phosphate 

thiamine 

S-ribosyl-L-homocysteine-posi 

deoxyguanosine 

adenosine 

1-Methyladenosine 

guanosine 

L-arginino-succinate 

S-methyl-5-thioadenosine 

7-methylguanosine 

dCMP 

glutathione 

dTMP 

CMP 

UMP 

dAMP 
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thiamine-phosphate 

dGMP 

AMP 

IMP 

S-adenosyl-L-methioninamine 

GMP 

xanthosine-5-phosphate 

riboflavin 

S-adenosyl-L-homoCysteine-posi 

S-adenosyl-L-methionine 

folate 

7,8-dihydrofolate 

5-methyl-THF 

Diiodothyronine 

glutathione disulfide-posi 

NAD+_posi 

NADH 

dephospho-CoA-posi 

NADP+_posi 

NADPH 

coenzyme A-posi 

FAD 

acetyl-CoA-posi 

propionyl-CoA-posi 

acetoacetyl-CoA-posi 

malonyl-CoA-posi 

succinyl-CoA-posi 

 

 

 

 

 
 

 

aminoimidazole carboxamide ribonucleotide 

thiamine-phosphate 

dGMP 

AMP 

IMP 

S-adenosyl-L-methioninamine 

GMP 

xanthosine-5-phosphate 

riboflavin 

S-adenosyl-L-homoCysteine-posi 

S-adenosyl-L-methionine 

folate 

7,8-dihydrofolate 

5-methyl-THF 

Diiodothyronine 

glutathione disulfide-posi 

NAD+_posi 

NADH 

dephospho-CoA-posi 

NADP+_posi 

NADPH 

coenzyme A-posi 

FAD 

acetyl-CoA-posi 

propionyl-CoA-posi 

acetoacetyl-CoA-posi 

malonyl-CoA-posi 

succinyl-CoA-posi 

sarcosine 

 

 

 

 
 

Nicotinamide ribotide 

aminoimidazole carboxamide ribonucleotide 

thiamine-phosphate 

dGMP 

AMP 

IMP 

S-adenosyl-L-methioninamine 

GMP 

xanthosine-5-phosphate 

riboflavin 

S-adenosyl-L-homoCysteine-posi 

S-adenosyl-L-methionine 

folate 

7,8-dihydrofolate 

5-methyl-THF 

Diiodothyronine 

glutathione disulfide-posi 

NAD+_posi 

NADH 

dephospho-CoA-posi 

NADP+_posi 

NADPH 

coenzyme A-posi 

FAD 

acetyl-CoA-posi 

propionyl-CoA-posi 

acetoacetyl-CoA-posi 

malonyl-CoA-posi 

succinyl-CoA-posi 

sarcosine 

putrescine 

spermidine 

spermine 
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Table 4.2. Clustered metabolites in Figure 4.1B!
!

Early day cluster (green) Late day cluster (orange) 

fumarate 

Maleic acid 

2.keto-isovalerate 

Hydroxyisocaproic acid 

malate 

p-hydroxybenzoate 

a-ketoglutarate 

2.Hydroxy.2-methylbutanedioic acid 

orotate 

dihydroorotate 

Aminoadipic acid 

Indole.3-carboxylic acid 

2-Isopropylmalic acid 

Pyrophosphate 

Indoleacrylic acid 

D.erythrose.4-phosphate 

ribose-phosphate 

uridine 

glucose.1-phosphate 

D.sedoheptulose.1.7-phosphate 

N.acetyl.glucosamine.1-phosphate 

UDP.N.acetyl-glucosamine 

betaine aldehyde 

choline 

dimethylglycine 

Creatinine 

betaine 

valine 

leucine-isoleucine 

methionine 

N-acetyl-L-ornithine 

citrulline 

N-carbamoyl-L-aspartate 

tryptophan 

N-acetyl-glucosamine 

biotin 

L-arginino-succinate 

UMP 
 

phosphoenolpyruvate 

3-phosphoglycerate 

Kynurenic acid 

citrate-isocitrate 

citrate 

deoxyribose-phosphate 

trehalose-sucrose 

CDP-nega 

dGDP-nega 

dGTP 

NAD+_nega 

serine 

proline 

threonine 

Imidazoleacetic acid 

asparagine 

aspartate 

lysine 

glutamine 

histidine 

arginine 

tyrosine 

S-methyl-5-thioadenosine 

CMP 

AMP 

IMP 

S-adenosyl-L-methionine 

NAD+_posi 
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Table 4.3. Strains used in this study2!
Strain Genotype Source 
Synechococcus 
elongatus PCC 
7942 

WT ATCC 

BA-000021 NSI::pPsbAI-luxCDABE/SmR3 This work 
BA-000022 PSCB0001 KaiABC::HygR4 This work 
BA-000023 PSCB0002 spsA::CmR5 This work 
BA-000024 PSCB0002 dpm::CmR This work 

 
 
Table 4.4. Plasmids used in this study2 

Plasmid Description Source 
V0120 Silver Standard high-copy biobrick 

vector 
(Phillips & P. A. Silver 
n.d.) 

pAM2314 Neutral Site I (NSI) integration vector (Mackey et al. 2007) 
pPS3230 NSI integration vector with pPsbAI-

luxCDABE construct, SmR 
This work 

pPS3231 V0120 + KaiABC:: HygR deletion 
construct 

This work 

pPS3232 V0120 + spsA::CmR deletion 
construct 

This work 

pPS3233 V0120 + dpm::CmR deletion 
construct 

This work 

 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Available upon request 
3 SmR: Spectinomycin resistance cassette 
4 HygR: Hygromycin resistance cassette 
5 CmR: Chloramphenicol resistance cassette!
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Table 4.5. Oligos used in this study!!
Oligo Sequence 
Hyg-F AAAACTAGTTCTGTCTATTTCGTTCATCCAT 
Hyg-R AAAAAGCTTCTAAAGCCGCTAGCCC 
KaiABC-KO-UP-F GATCGATCGAATTCATGAAGATTCGTAACGTATCCA

TGG 
KaiABC-KO-UP-R GATCGATCACTAGTCTAGCCAGCGATCGCG 
KaiABC-KO-DN-
F GATCGATCAAGCTTCGCAGTCGCTCCTGTCA 
KaiABC-KO-DN-
R 

GATCGATCGCGGCCGCTTAAGCAGCTTCGCCAGCA
G 

Cm-F AAAACTAGTGCACCTCAAAAACACCATCATACA 
Cm-R AAAAAGCTTCTGCCACCGCTGAGCAAT 
SpsA-KO-UP-F AAAGAATTCGCCCCAGAGCCAAATCC 
SpsA-KO-UP-R AAAACTAGTGCGCTAGTCAGCCTCACAG 
SpsA-KO-DN-F AAAAAGCTTCCTTTTCAGTTAAAGATTGGGC 
SpsA-KO-DN-R AAAGCGGCCGCGCGGCTTTTACAGTCGCTAC 
dpm-KO-UP-F AAAGAATTCACAGAATTGCGTCGTGTCG 
dpm-KO-UP-R AAAACTAGTATTGCTCAGAGAGCCGCTAG 
dpm-KO-DN-F AAAAAGCTTTGCACGGATGGAATCCAC 
dpm-KO-DN-R AAAGCGGCCGCCTTCGGAAGAAACGTTGCG 
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Chapter 5 

Conclusions 

 

 

 

“Systems biology eats synthetic biology.” 

— Andy Ellington 
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SYNTHETIC BIOLOGY: THE NEXT GENERATION 

 In considering the future development of synthetic biology, progress in biological design is 

often compared to progress in transistor and microchip design. Most dramatically, the cost of DNA 

sequencing and DNA synthesis has fallen exponentially, similar to Moore’s law for transistor density 

(Carlson 2010). This comparison often leads to the conclusion that synthetic biology will develop 

similarly to the computer revolution, where rapid development of off-the-shelf standardized 

components enabled enthusiasts to design new personal computers. While synthetic biology may 

someday be similarly accessible to home users, biological design is currently too unpredictable to 

compare to computer hardware design. Perhaps a more appropriate comparison is to the advent of 

powered flight, when extensive trial and error was used to reveal the basic flight principles (Carlson 

2010). 

Synthetic biologists hope to discover biological design principles—a set of rules that would 

govern the design of new biological systems—in order to eliminate the trial and error required to 

yield functional devices. To date, much of this effort has centered on defining and characterizing 

modular biological parts, developing strategies for device isolation, and chassis minimization (Boyle 

& Silver 2009; Boyle & Silver 2011). While this research has been quite productive, this progress has 

not translated into a unified philosophy for designing biology. Identifying biological design 

principles will allow us to design biology in a “biological” manner rather than depending on design 

metaphors from other disciplines. 

 

THE BIOLOGICAL ENGINEERING DESIGN CYCLE 

 A complicating issue in the search for biological design principles is that natural biological 

systems are evolved, not designed. Yet, natural selection has yielded common sequences, folds, and 

motifs that appear in a variety of contexts throughout biology. Most successful applications of 
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synthetic biology have exploited these evolved modular parts (Agapakis & Silver 2009, Appendix F). 

In synthetic devices, each individual module (such as a promoter or a protein domain) often fills the 

role it evolved to perform, while the devices are capable of novel behavior due to the manner in 

which the modules are connected. Thus, evolved biological elements can be rearranged to perform 

emergent complex behaviors. Biological design principles will likely be informed by evolution, either 

through rational design that provides devices with high fitness for the desired task, or by embracing 

irrational design to rapidly evolve devices with the desired function (Boyle & Silver 2011). 

 While we currently lack fundamental design principles, engineering design cycles may 

improve our ability to predictably engineer biology. There are two essential properties of an 

engineering design cycle (Figure 5.1). First, the test portion of the cycle must identify designs that 

fail to perform the desired task. Second, the results of the test phase must facilitate improvement of 

the model for the next turn of the cycle. Ideally, an engineering design cycle fails gracefully: 

unexpected results from each turn of the cycle help improve the model. Ultimately, such a cycle may 

reveal biological design principles. 

!
Figure 5.1 The ideal engineering design cycle. Models for the a priori design of biological 
systems do not necessarily have to be accurate. Instead, imperfect models that can be refined by 
experimental results can facilitate the iterative development of improved biological systems. 

 

BUILD

MODEL

TEST
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MODELING AND TESTING AT THE NETWORK SCALE 

 A confounding factor in effectively integrating the model and test phases is that a model’s 

predictions are often difficult to experimentally verify, and vice versa. In the case of metabolic 

engineering, researchers are primarily concerned with the conversion efficiency from feedstock to 

product. However, as demonstrated in this dissertation and other metabolic engineering efforts, 

understanding internal metabolic fluxes is important to improving pathway throughput (Chapter 2, 

Fell 1997; Solomon & Prather 2011). Flux balance analysis and other constraint-based metabolic 

models estimate metabolic flux values, but metabolic fluxes themselves are difficult to measure 

directly. Unlike the genome and the transcriptome, which are composed of nucleic acid polymers, 

the metabolome is a complex mixture of small molecules with disparate chemical properties. As a 

result, mass spectrometry approaches that measure 13C flux are time consuming and only measure a 

subset of the metabolic network (Yuan et al. 2008; Bennett et al. 2009). These technical limitations 

could potentially be resolved by developing frameworks to translate data between networks that can 

be modeled and networks that can be measured (Figure 5.2). 

 
Figure 5.2 Design trade-offs in the meta-ome. Between the genome (the –ome that we can 
directly manipulate) and the phenome (the –ome that we aim to influence) lie several layers of 
regulation that impact cell behavior. The distinct properties of each layer affect the biological design 
cycle. The transcriptome (orange) is easy to measure, but transcript levels are difficult to relate to 
metabolite concentrations. The metabolome (green) is more difficult to measure, but constraint-
based genome scale models can make a priori predictions of the entire metabolic network. 

the genome

behold the meta-ome

the phenome

easy to 
measure

hard to 
model/

hard to 
measure

easy to 
model/
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 Synthetic biologists seek to control the phenome of biological systems; this is accomplished 

by engineering the genome of these systems. Between these two layers are several layers of 

regulation, each with unique properties that define our ability observe and model that layer (Figure 

5.2). As described in Chapter 1, several studies have explored the integration of data from the 

transcriptome layer with network-scale data from the metabolome layer (Bradley et al. 2009; Fendt et 

al. 2010; Ishii et al. 2007; Moxley et al. 2009). Although this research is in its early stages, the work 

done thus far suggests that transcriptome data is insufficient to reconstruct the status of the 

metabolome. Our work in Chapter 4 observed metabolic dynamics in S. elongatus under control of 

the kai circadian clock. This system was chosen in part because the transcriptome of S. elongatus is 

globally regulated by the kai clock, thus it would be reasonable to expect that circadian oscillations 

would likewise be prevalent in the metabolome. Instead, we observed that other factors, such as the 

presence of light, had an equal or greater effect on metabolome status. Similarly, other studies have 

observed that metabolite concentrations often remain constant in response to enzyme perturbations 

(Ishii et al. 2007; Fendt et al. 2010), and that transcript-metabolite correlations are dependent on 

factors such as media composition and the type of metabolite (Bradley et al. 2009). 

 Given the mixed results observed thus far, it is clear that simple correlation of transcriptome 

and metabolome data is unlikely to yield universal insight into the regulation of metabolism (Bradley 

et al. 2009). Instead, global comparisons of the transcriptome and metabolome at the network scale 

can inform more detailed analysis at the pathway level. For example, transcriptome analysis of our 

formic acid producing yeast revealed coordinated regulation of the serine-glycine biosynthesis 

pathway. Based on this analysis, we identified 3-phosphoglycerate dehydrogenase as having a high 

degree of flux control over this pathway, and observed that overexpressing this enzyme improved 

formic acid yields (Chapter 2). Similarly, the circadian regulation of sucrose production that we 

observed in cyanobacteria would have been difficult to identify a priori from transcriptome data. In-
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depth analysis of the sucrose pathway could potentially reveal how global oscillations in 

transcription impact local pathway dynamics (Chapter 4). Detailed kinetic approaches to studying 

metabolism, such as Metabolic Control Analysis (Fell 1997), are too complex to model the entire 

metabolome (Schuster et al. 1999), but are ideally suited for local pathway modeling. Thus, 

integrating small-scale and network-scale approaches enhances engineering design cycles. 

 

SYSTEMS SYNTHETIC BIOLOGY 

 In an effort to facilitate the development of biological engineering design cycles, this 

dissertation has presented systems approaches to modeling and testing biological designs. Synthetic 

biology resembles systems biology in reverse: quantitative models of biological components are used 

to build new interactions rather than to understand endogenous interactions. Synthetic biology often 

differs from systems biology in the consideration of network-scale biological systems: synthetic 

biologists commonly seek to build devices that are orthogonal or otherwise insulated from the host 

chassis. While this approach is valuable for improving the robustness of many synthetic devices, 

including the hydrogenase-based circuits we constructed in Chapter 3 of this work, it is not feasible 

for many metabolic engineering objectives. As demonstrated in Chapter 2, re-routing central 

metabolic flux towards a desired product is a systems problem, involving the entire metabolic 

network and associated regulatory networks. 

 Network-scale models and measurements provide insight into unanticipated interactions 

between synthetic devices and host systems. In Chapter 2, our model identified a non-intuitive set of 

gene knockouts that improved formic acid production; the enzymes targeted were not closely 

associated with the serine-glycine biosynthesis pathway that produces formic acid in yeast. Also in 

Chapter 2, systems-level analysis of transcription changes identified unforeseeable regulatory 

responses to our gene knockouts. Together, these results underscore the value of design cycles: the 
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model identified a strain unlikely to have been isolated via experimental screening, and our 

subsequent experiments identified strain improvements that could not have been discovered by our 

model. 

 Network-scale effects also complicate efforts to integrate modular parts and devices into 

new hosts. In Chapter 3, for example, we deleted genes to increase carbon flux to the hydrogenase 

circuits and to eliminate unwanted ferredoxin-mediated side reactions that would siphon reducing 

equivalents away from the circuits. Selecting genes to knock out was done primarily in an ad hoc 

manner, via literature searches and bioinformatics. This process was time-consuming, and many of 

the knockouts had no effect on phenotype or were deleterious. This experience underscores the 

importance of part characterization, even in well-studied hosts such as Escherichia coli. Once again, 

systems biology approaches will be essential: we must study how host networks impact device 

function, not just individual proteins. 

Conversely, we must also study how devices impact network behavior. The Kai clock is a 

robust modular oscillator that exhibits circadian phosphorylation oscillations in vitro (Nakajima et al. 

2005), and in vivo these oscillations control most of the transcriptional network of Synechococcus 

elongatus (Ito et al. 2009; Vijayan et al. 2009). Systems biology analysis of this system is important to 

establishing synthetic biology design principles, as it is a natural example of what we aim to engineer: 

network-scale control of host systems via a well-characterized modular device. 

Given recent successes in DNA synthesis, DNA sequencing, and DNA assembly, the 

“build” phase of the synthetic biology engineering design cycle is no longer limiting (Boyle & Silver 

2009). What remains are tasks well suited to systems biology: network-scale modeling and network 

scale measurement of biological systems. Both modeling and measurement are dependent on each 

other: models provide potential explanations for measurements, and measurements identify 

oversights in models. As demonstrated in this dissertation, a combined modeling and measurement 
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approach is an integral part of establishing biological design cycles. The future of synthetic biology 

as an engineering discipline will be determined by design cycles that fully integrate the model, build, 

and test phases. 
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Appendix A 

Supporting Information for Chapter 31 

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Portions of the work presented in this chapter were published in the following papers: 

1. Agapakis, C. M., Ducat, D.C., Boyle, P.M., Wintermute, E.H., Way, J.C., & Silver, P.A. 
Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 4, 3 (2010). 

2. Barstow, B., Agapakis, C. M.*, Boyle, P.M.*, Gerald, G.*, Silver, P.A., & Wintermute, E.H. 
A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J Biol Eng 
5, 7–7 (2011). *Equal contribution. 
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!

 Supplementary Information for Agapakis et. al. “Insulation of a synthetic 
hydrogen metabolism circuit in bacteria” 
 
 
>Cr.HydA1;AAL23572 
gaattcgcggccgcttctagagctgcaccagccgcagaagctcctttgtctcatgttcaacaggccttag 
ccgagcttgcaaaaccaaaggatgaccctactagaaaacacgtatgtgtccaagtggccccagctgttag 
ggtagcaattgctgaaacacttggtttggcccctggagcaaccactccaaagcagttagctgagggccta 
agaaggcttggttttgatgaagtgttcgacacattgtttggagccgatttaaccataatggaagagggct 
cagaattgttacatagactaactgaacaccttgaggcacatcctcactccgacgaaccattgcctatgtt 
cacaagttgctgtccaggttggatcgctatgttagaaaaaagctatcctgatctaattccatacgtgagc 
tcatgcaagtcccctcaaatgatgttggccgcaatggttaaaagttatttagctgagaagaaaggtatag 
ccccaaaggatatggtaatggtcagcatcatgccatgtaccagaaaacaatctgaagcagacagggattg 
gttttgcgttgacgctgatcctactcttagacagttggatcatgtgattacaaccgttgagttaggaaat 
atattcaaggaaagaggcatcaacctagccgaacttccagagggtgaatgggacaatcctatgggagtag 
gttcaggcgcaggtgtcttgtttggaactacaggcggcgtgatggaagctgctttaaggactgcctacga 
gctattcaccggtacaccattgcctagattatcccttagtgaagttaggggaatggatggtattaaagaa 
actaacattaccatggtaccagcacctggctctaagtttgaggaattgttaaaacatagagctgccgcaa 
gagctgaagccgcagctcacggaacaccaggtcctctagcatgggacggcggtgctggattcactagcga 
ggatggtaggggcggcataacattgagagtcgccgttgcaaatggattaggtaacgctaaaaagcttatc 
accaaaatgcaagccggcgaagcaaagtatgattttgtggagattatggcttgtccagccggatgtgttg 
gtggaggcggacaacctagatcaactgacaaagcaataacacagaagaggcaagctgccctatacaattt 
ggatgaaaaatccactttaagaagaagtcatgaaaacccatctatcagggagctttatgacacctacttg 
ggtgaacctttaggtcacaaggcacatgaactattgcacacacattatgtagctggcggagtcgaggaaa 
aagatgaaaagaaaactagtagcggccgctgcag 
 
>Cr.HydEF;AAS92601 
gaattcgcggccgcttctagagctgcacatgcctctgcttcaaaagcaactccagatgttcctgtagacg 
atcttccacctgcccacgctagagcagccgtcgccgcagctaataggagagccagggcaatggcttccgc 
cgaagcagctgccgagacattaggtgactttctaggacttggcaagggtggattgagtccaggcgcaacc 
gctaacttagatagagaacaagtgctaggtgttcttgaggccgtatggagaaggggtgacttgaatttag 
aaagagcattgtatagccatgctaacgccgtcactaataaatactgtggaggcggtgtgtattacagagg 
attagttgagttctctaacatttgccagaatgattgttcatattgcggtataaggaacaatcaaaaggag 
gtatggagatacacaatgcctgtcgaagaagttgtggaggttgcaaaatgggccctagaaaacggcatca 
ggaatattatgcttcagggtggagaacttaagaccgagcaaagattagcttacctagaagcctgtgtaag 
agcaataagggaggaaactacacaattggatttagaaatgagagctagagccgcatccaccactacagct 
gaggccgcagctagtgcacaggctgacgccgaagcaaaaaggggtgaaccagagcttggcgtcgtggtta 
gcttgtctgtaggtgaattacctatggaacaatacgagagactatttagagctggagccaggagatatct 
tatcaggattgaaacctcaaatccagatttgtacgcagctttacaccctgaaccaatgtcctggcatgcc 
agagtcgagtgcctaagaaacttgaagaaagcaggttatatgttaggcactggagttatggtgggccttc 
ctggccaaacattgcacgacttagctggtgatgttatgttctttagggatataaaggccgacatgatcgg 
aatgggtccattcattactcagcctggcaccccagcaacagataaatggactgctctatacccaaatgct 
aacaagaatagtcatatgaaatctatgtttgacttgaccacagccatgaacgcattagtaagaattacta 
tgggtaatgtcaacataagcgctacaaccgcccttcaagcaatcattcctactggaagagaaatagccct 
agagaggggtgccaatgtggttatgccaatcttgacacctactcagtatagagaatcataccaattatat 
gaaggcaagccatgtattaccgatacagcagtacaatgtagaaggtgccttgatatgagattgcattccg 
tcggaaaaaccagtgctgccggtgtttggggtgaccctgcatctttcttacacccaatagtgggcgttcc 
tgtaccacatgatctatcatctcctgctttggccgcagctgccagcgcagactttcacgaggtcggagct 
ggtccatggaaccctatcaggttagaaagacttgttgaagtgccagatagataccctgatccagacaatc 
atggtaggaaaaaggccggcgcaggaaaaggcggcaaggctcacgattcccatgacgatggagatcatga 
cgatcaccatcaccatcatggtgccgcaccagctggtgccgcagctggcaaaggaaccggtgccgcagct 
attggcggcggagccggtgctagcagacagagagtagctggcgccgcagctgcctcagcaaggttgtgtg 
ctggagccagaagagcaggtagggtcgttgcttctcctctaagaccagccgcagcttgcaggggtgtggc 
cgttaaggcagctgctgccgcagctggcgaggacgccggagcaggtacaagcggtgtaggctccaatatt 
gtcaccagtcctggaatagcttcaaccacagcccacggtgttccaagaatcaacattggcgtgttcggag 
taatgaatgcaggtaaatctactttagtcaacgctttggcccaacaagaagcatgtatagttgatagcac 
ccctggtacaactgctgacgtcaagaccgttcttttagaactacatgcattgggcccagctaaattactt 
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gatacagccggattggatgaggtaggtggtctaggcgacaagaaaagaaggaaggcattaaatactttga 
aagaatgcgatgtcgctgttcttgtggtagacaccgatacagccgcagctgccatcaaatccggaagatt 
agcagaggccctagaatgggaaagtaaggtcatggagcaggctcacaaatacaacgtttcacctgtgttg 
ttattgaatgtaaagagcagaggccttccagaagcccaagcagccagcatgctagaagccgttgcaggca 
tgttagatccttccaaacagattccaaggatgtcattggacttagcttctactcctcttcatgagagaag 
tacaataactagcgcctttgtcaaggaaggagcagttaggtcctcaagatacggtgctccactacctggt 
tgtttgccaagatggtctttaggcaggaacgccagattgcttatggtgattccaatggatgcagaaaccc 
ctggaggtagactattaaggccacaagctcaagtaatggaggaagccatcagacactgggcaacagtctt 
gagtgttagattagacttggatgctgccaggggtaaacttggccctgaagcatgtgagatggaaagacag 
aggttcgatggagtaattgctatgatggagagaaatgacggtccaactctagttgtgaccgattctcaag 
ccatagacgtcgttcatccttggacattagatagatcctcaggcaggccattggtgcctatcactacctt 
tagtattgcaatggcttatcaacagaacggaggtagacttgatccatttgtagaaggcctagaagcctta 
gagacattgcaagacggcgatagagtcttaatatctgaagcatgcaatcataataggatcacttcagctt 
gtaacgacattggaatggttcaaatacctaataagttggaagctgcacttggtggtaaaaagctacagat 
tgagcacgctttcggcagagaatttccagaattagagtctggaggtatggatggcttgaaacttgccatc 
cattgcggaggttgtatgattgatgcacaaaagatgcagcaaagaatgaaagacctacacgaagctggtg 
tacctgttaccaactatggcgtgttctttagctgggccgcatggccagatgctttaaggagagccttgga 
accttggggagtcgagcctccagttggtacacctgcaactccagctgccgcacctgctaccgccgcatcc 
ggtgtgactagtagcggccgctgcag 
 
>Cr.HydG;AAS92602 
gcggccgcttctagaactgctcatggtaaagcatctgccacaagagaatatgctggagattttttgccag 
gcaccactatttcacacgcatggtccgttgagagggaaacacatcacagatacaggaatcctgccgagtg 
gataaacgaagctgcaatccataaggccttagaaaccagtaaagctgacgcacaagatgctggtagagta 
agagagattctagccaaggcaaaagaaaaggctttcgtcactgaacacgccccagtgaatgcagagagca 
aatctgaatttgttcagggacttacattggaagagtgtgctaccttaataaacgtagactcaaataacgt 
cgaactaatgaatgagatcttcgatactgcccttgcaattaaggaaaggatatatggcaacagagtggtt 
ttgtttgctcctttatacatcgccaatcattgcatgaacacatgtacctattgcgcattcagatccgcta 
ataaaggtatggaaaggagtattttgactgacgatgatttaagagaggaagtagccgcactacaaaggca 
gggtcatagaaggattcttgctttgacaggagaacacccaaagtacacttttgacaatttcttacatgct 
gtcaacgttatagccagcgtgaaaaccgagcctgaaggctctatcaggagaattaatgttgaaatcccac 
ctctatcagtatccgatatgagaaggttgaagaacacagacagtgtcggtacttttgtgttattccaaga 
gacctatcacagagatacatttaaagttatgcatccatctggacctaagagcgatttcgactttagagta 
cttactcaagatagggcaatgagagctggtttggacgatgtcggcatcggtgccttatttggactatacg 
attataggtacgaagtttgtgcaatgcttatgcactcagaacatttggagagagaatataatgctggtcc 
acatacaatttccgtgcctagaatgaggccagccgacggcagtgagttatctatagcacctccataccca 
gttaacgatgctgacttcatgaagctagtagcagtcttgagaatcgctgtgccttataccggtatgattt 
tatcaactagagaatctccagaaatgaggagcgcccttttgaaatgcggaatgtcccagatgagtgcagg 
ttcaagaacagatgttggcgcttaccacaaggatcatactttatctaccgaggccaatctaagcaaattg 
gcaggacaatttacattacaagacgaaagacctactaacgaaattgtaaagtggcttatggaggaaggtt 
atgtcccatcctggtgtaccgcttgttacaggcagggcagaacaggtgaagatttcatgaatatatgcaa 
agccggagacatccacgatttttgtcatcctaacagtctattgactttacaagagtatcttatggattac 
gcagacccagatttgaggaagaaaggtgaacaggttattgctagagagatgggccctgacgcctcagaac 
cattatctgcacaaagcagaaagaggctagaaagaaaaatgaagcaagtgttggagggtgaacatgatgt 
ttatttaactagtagcggccg 
 
>So.Fd;1704156A 
gcggccgcttctagagctgcatataaagttactttggtaacaccaaccggtaatgtcgaatttcaatgtc 
ctgatgacgtgtacattttagacgccgctgaggaagagggaatagatctaccatattcttgcagagcagg 
ctcatgttccagttgcgccggtaagcttaaaactggaagcttgaaccaggatgaccaatctttcttagat 
gatgaccagatcgatgaaggctgggttctaacatgtgctgcataccctgtatcagacgtcaccattgaaa 
ctcataaggaggaagaacttacagccactagtagcggccg 
 
Figure S1. Sequence of codon optimized commercially synthesized genes. Gene names listed as 
Organism.Gene Name; GenBank Accession Number (Cr=Chlamydomonas reinhardtii, So=Spinacia 
olearcea) 
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Table S1: Primers used for cloning and mutagenesis of heterologous pathway components 



 158 

!
! !

 

 
 
Figure S2. Sequence of modified multiple cloning sites of Novagen Duet Vectors. 5ʼ 
phosphorylated oligonucleotide inserts (Integrated DNA Technologies, red text) were inserted between 
Nco I and Afl II sites in MCS1 and Nde I and Avr II of MCS2 of Novagen Duet Vectors 
pET-Duet, pACY-duet, pCDF-duet, and pCOLA-duet for heterologous expression of up to eight BioBrick 
sequences 
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Ca              ---MKTIIINGVQFNTDEDTTILKFARDNNIDISALCFLNNCNNDINKCEICTVEVEG-T 56 
Cs              ---MINIVIDEKTIQVQENTTVIQAALANGIDIPSLCYLNECGN-VGKCGVCAVEIEGKN 56 
Cr              ------------------------------------------------------------ 
So              MNKKKHLFAEDSFFLSRRKFMAVGAAFVAALAIPIGWFT--------------------S 40 
Tm              ---MKIYVDGREVIINDNERNLLEALKNVGIEIPNLCYLSEASIYG---ACRMCLVEING 54 
                                                                             
 
Ca              GLVTACDTLIEDGMIINTNSDAVNEKIKSRISQLLDIHEFKCGPCNRRENCEFLKLVIKY 116 
Cs              NLALACITKVEEGMVVKTNSEKVQERVKMRVATLLDKHEFKCGPCPRRENCEFLKLVIKT 116 
Cr              ------------------------------------------------------------ 
So              KLERRNEYIKARSQGLYKDDSLAKTRVSHANPAVEKYYKEFGGEPLGHMSHELLHTHFVD 100 
Tm              QITTSCTLKPYEGMKVKTNTPEIYEMRRNILELILATHNRDCTTCDRNGSCKLQKYAEDF 114 
                                                                             
 
Ca              KARASKPFLPKDKTEYVDERSKSLTVDRTKCLLCGRCVNACGKNTETYAMKFLNKNGKTI 176 
Cs              KAKANKPFVVEDKSQYIDIRSKSIVIDRTKCVLCGRCEAACKTKTGTGAISICKSESGRI 176 
Cr              ------------------------------------------------------------ 
So              RTKLSSMTTTTYQPGEIQG---LIKINASKCKGCDACKQFCPTHAINGASGAVHS----- 152 
Tm              GIRKIR--FEALKKEHVRDESAPVVRDTSKCILCGDCVRVCEEIQGVGVIEFAKRGFESV 172 
                                                                             
 
Ca              IGAEDEKCFDDTNCLLCGQCIIACPVAALSE-KSHMDRVKNALNAPEKHVIVAMAPSVRA 235 
Cs              VQATGGKCFDDTNCLLCGQCVAACPVGALTE-KTHVDRVKEALEDPNKHVIVAMAPSIRT 235 
Cr              ------------------APAAEAPLSHVQQALAELAKPKDDPTRKHVCVQ--VAPAVRV 40 
So              --------IDEDKCLSCGQCLINCPFSAIEETHSALETVIKKLADKNTTVVGIIAPAVRV 204 
Tm              VTTAFDTPLIETECVLCGQCVAYCPTGALSI-RNDIDKLIEALES-DKIVIGMIAPAVRA 230 
                                       .* . :      :    .     .  *   :**::*. 
 
Ca              SIGELFNMGFGVDVTGKIYTALRQLGFDKIFDINFGADMTIMEEATELVQRIEN------ 289 
Cs              SMGELFKLGYGVDVTGKLYASMRALGFDKVFDINFGADMTIMEEATEFIERVKN------ 289 
Cr              AIAETLGLAPGATTPKQLAEGLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHP 100 
So              AIGEEFGLGTGELVTGKLYGAMNQAGF-KIFDCNFAADLTIMEEGSEFIHRLHANVKGEA 263 
Tm              AIQEEFGIDEDVAMAEKLVSFLKTIGFDKVFDVSFGADLVAYEEAHEFYERLKK------ 284 
                :: * : :  .   . ::   :.  ** ::**  *.**:.  **. *: .*:         
 
Ca              --NGPFPMFTSCCPGWVRQAENYYPELLNNLSSAKSPQQIFGTASKTYYPSISGLDPKNV 347 
Cs              --NGPFPMFTSCCPAWVRQVENYYPEFLENLSSAKSPQQIFGAASKTYYPQISGISAKDV 347 
Cr              HSDEPLPMFTSCCPGWIAMLEKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDM 160 
So              NAG-PLPQFTSCCPGWVRYLETRYPALLPNLSTAKSPQQMAGTVAKTYGAKVYQMQPENI 322 
Tm              --GERLPQFTSCCPAWVKHAEHTYPQYLQNLSSVKSPQQALGTVIKKIYARKLGVPEEKI 342 
                  .  :* ******.*:   *  **  :  :*: ****   .:  *.  .    :  :.: 
 
Ca              FTVTVMPCTSKKFEADRPQME------------KDGLRDIDAVITTRELAKMIKDAKIPF 395 
Cs              FTVTIMPCTAKKFEADREEMY------------NEGIKNIDAVLTTRELAKMIKDAKINF 395 
Cr              VMVSIMPCTRKQSEADRDWF---------CVDADPTLRQLDHVITTVELGNIFKERGINL 211 
So              FTVSVMPCTSKKLEASRPEFNSAWQYHQEHGANSPSYQDIDAVLTTREMAQLLKLLDIDL 382 
Tm              FLVSFMPCTAKKFEAEREEHEG----------------IVDIVLTTRELAQLIKMSRIDI 386 
                . *:.**** *: **.*                      :* *:** *:.:::*   * : 
 
Ca              AKLEDSEADPAMGEYSGAGAIFGATGGVMEAALRSAKDFAENAELEDIEYKQVRGLNGIK 455 
Cs              ANLEDEQADPAMGEYTGAGVIFGATGGVMEAALRTAKDFVEDKDLTDIEYTQIRGLQGIK 455 
Cr              AELPEGEWDNPMGVGSGAGVLFGTTGGVMEAALRTAYELFTGTPLPRLSLSEVRGMDGIK 271 
So              ANTAEYQGDSLFSEYTGAGTIFGTTGGVMEAALRTAHKVLTGTEMAKLEFEPVRGLKGVK 442 
Tm              NRVEPQPFDRPYGVSSQAGLGFGKAGGVFSCVLSVLNEEIG---IEKVDVKSPE--DGIR 441 
                 .      *   .  : **  ** :***:...*    .      :  :.    .  .*:: 
 
Ca              EAEVEINNNKYN---------------------------------------------VAV 470 
Cs              EATVEIGGENYN---------------------------------------------VAV 470 
Cr              ETNITMVPAPGSKFEELLKHRAAARAEAAAHGTPGPLAWDGGAGFTSEDGRGGITLRVAV 331 
So              SASVSLFDTELN---------------------------------------QDVTVNVAV 463 
Tm              VAEVTLKDGTSFKG--------------------------------------------AV 457 
                 : : :                                                    ** 
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Ca              INGAS-NLFKFMKSGMINEKQYHFIEVMACHGGCVNGGGQPHVNPKDLEKVDIKKVRASV 529 
Cs              INGAA-NLAEFMNSGKILEKNYHFIEVMACPGGCVNGGGQPHVSAKEREKVDVRTVRASV 529 
Cr              ANGLG-NAKKLITKMQAGEAKYDFVEIMACPAGCVGGGGQPRSTDKA-----ITQKRQAA 385 
So              VHDMGNNIEPVLRDVMAGTSPYHFIEVMNCAGGCVNGGGQP-----------IEGKGSSW 512 
Tm              IYGLG-----KVKKFLEERKDVEIIEVMACNYGCVGGGGQPYPNDSR-----IREHRAKV 507 
                  . .      : .        .::*:* *  ***.*****           :        
 
Ca              LYNQDEHLSKRKSHENTALVKMYQNYFGKPGEGRAHEILHFKYKK--------------- 574 
Cs              LYNQDKNLEKRKSHKNTALLNMYYDYMGAPGQGKAHELLHLKYNK--------------- 574 
Cr              LYNLDEKSTLRRSHENPSIRELYDTYLGEPLGHKAHELLHTHYVAGGVEEKDEKKTSSGR 445 
So              LGNI-------------------------------------------------------- 516 
Tm              LRDTMGIKSLLTPVENLFLMKLYEEDLKD--EHTRHEILHTTYRPRRRYPEKDVEILPVP 565 
                * :                                                          
 
Ca              ------------------------------------------------------------ 
Cs              ------------------------------------------------------------ 
Cr              C----------------------------------------------------------- 446 
So              ------------------------------------------------------------ 
Tm              NGEKRTVKVCLGTSCYTKGSYEILKKLVDYVKENDMEGKIEVLGTFCVENCGASPNVIVD 625 
                                                                             
 
Ca              -------------------- 
Cs              -------------------- 
Cr              -------------------- 
So              -------------------- 
Tm              DKIIGGATFEKVLEELSKNG 645 
 

Figure S3. Sequence alignment of five hydrogenases Protein sequences of Clostridium 
acetobutylicum (Ca), Clostridium saccharobutylicum (Cs), Chlamydomonas reinhardtii (Cr), and 
Thermotoga maritima (Tm) HydA and Shewanella oneidensis HydB + HydA aligned using 
ClustalW web server (http://www.ebi.ac.uk/Tools/clustalw/). Catalytic site binding area 
highlighted in bold with critical cysteine residues in red. 
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Figure S4. Deletion of competing reactions leads to hydrogen circuit insulation. A.) Domain 

structure of deleted ferredoxin-homology genes. FD-ferredoxin; fpr-flavodoxin:NADP+ reductase; hcr-

NADH oxidoreductase; yeaX-predicted oxidoreductase; hcaD-ferredoxin:NAD+ reductase; frdB-fumarate 

reductase; ydbK-putative pyruvate-ferredoxin oxidoreductase. Genes were identified by BLAST homology 

search of the Escherichia coli genome against Spinacia olearcea ferredoxin I. Domain structure 

schematized from NCBI conserved domain search.  

 

 

A 

B 
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HydA1           APAAEAPLSHVQQALAELAKPKDDPTRKHVCVQVAPAVRVAIAETLGLAPGATTPKQLAE 60 
HydA2           -ATATDAVPHWKLALEELDKPKDG-GRKVLIAQVAPAVRVAIAESFGLAPGAVSPGKLAT 58 
                 .:*  .:.* : ** ** ****.  ** : .************::******.:* :**  
 
HydA1           GLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHPHSDEPLPMFTSCCPGWIAML 120 
HydA2           GLRALGFDQVFDTLFAADLTIMEEGTELLHRLKEHLEAHPHSDEPLPMFTSCCPGWVAMM 118 
                *** ****:******.*********:******.***********************:**: 
 
HydA1           EKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDMVMVSIMPCTRKQSEADRDWF 180 
HydA2           EKSYPELIPFVSSCKSPQMMMGAMVKTYLSEKQGIPAKDIVMVSVMPCVRKQGEADREWF 178 
                *****:***:**********:.****:**:**:**..**:****:***.***.****:** 
 
HydA1           CVDADPTLRQLDHVITTVELGNIFKERGINLAELPEGEWDNPMGVGSGAGVLFGTTGGVM 240 
HydA2           CVS-EPGVRDVDHVITTAELGNIFKERGINLPELPDSDWDQPLGLGSGAGVLFGTTGGVM 237 
                **. :* :*::******.*************.***:.:**:*:*:*************** 
 
HydA1           EAALRTAYELFTGTPLPRLSLSEVRGMDGIKETNITMVPAPGSKFEELLKHR-------- 292 
HydA2           EAALRTAYEIVTKEPLPRLNLSEVRGLDGIKEASVTLVPAPGSKFAELVAERLAHKVEEA 297 
                *********:.*  *****.******:*****:.:*:******** **: .*         
 
HydA1           AAARAEAAAHGTPG-PLAWDGGAGFTSEDGRGGITLRVAVANGLGNAKKLITKMQAGEAK 351 
HydA2           AAAEAAAAVEGAVKPPIAYDGGQGFSTDDGKGGLKLRVAVANGLGNAKKLIGKMVSGEAK 357 
                ***.* **..*:   *:*:*** **:::**:**:.**************** ** :**** 
 
HydA1           YDFVEIMACPAGCVGGGGQPRSTDKAITQKRQAALYNLDEKSTLRRSHENPSIRELYDTY 411 
HydA2           YDFVEIMACPAGCVGGGGQPRSTDKQITQKRQAALYDLDERNTLRRSHENEAVNQLYKEF 417 
                ************************* **********:***:.******** ::.:**. : 
 
HydA1           LGEPLGHKAHELLHTHYVAGGVEEKDEKKTSSGRC 446 
HydA2           LGEPLSHRAHELLHTHYVPGGAEADA--------- 443 
                *****.*:**********.**.* .           
 
Figure S5. Alignment of Chlamydomonas reinhardtii HydA1 and HydA2. ClustalW alignment of 
HydA1 and HydA2 with mutations predicted to improve the binding between HydA2 and ferredoxin (Long 
et. al., 2009) highlighted in red. 
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Plasmids used in Barstow et al 2011 
 

!
! !Gene deletions

Sequential gene deletions were constructed by P1 phage
transduction from the Keio collection[34]. Serial dele-
tions were enabled by removing the transduced kanamy-
cin resistance marker though homologous recombination
at flanking FRT sites. Transient expression of the Flp
recombinase was facilitated by the 705-Flp plasmid,
which exhibits temperature-sensitive recombinase
expression and a temperature-sensitive replication origin
[35]. Kanamycin marker integration and subsequent
removal was confirmed for all loci by PCR.

Selective and induction media
Selective media was a standard M9 formulation, supple-
mented with additional glucose, sulfate, ferric iron and a
rich mix of supplements less cysteine and methionine.
Induction media for hydrogenase expression was LB
with added glucose, ferric iron, phosphate buffer and
Baker’s antifoam reagent. Exact media recipes are pro-
vided in additional file 2.

Anaerobic technique and custom atmospheres
Anaerobic liquid culture was performed in 40 mL
serum vials sparged with N2 and sealed with SubaSeal®

rubber septa (Sigma-Aldrich). To maintain anaerobio-
sis during handling, samples were drawn and reagents
added by piercing the septa with non-coring syringe
needles.
Agar plates were incubated under defined gas mix-

tures within sealed Vacu-Quick jars (Almore Interna-
tional). The ambient atmosphere was removed by
several cycles of evacuation and replacement with pure
N2 before supplying a custom atmosphere. Aluminosili-
cate desiccant packets were added to prevent moisture
accumulation within the jars.

Growth assays
Cells were grown to saturation in induction media and
washed 3× with phosphate-buffered saline (PBS). Cells
were resuspended in selective media at an initial OD600

of 0.01. Final ODs were measured after 18 hours of

Table 1 Plasmids used in this study
Name Constructs Backbone Resistance Source

Hydrogenase activity in vivoA

pET.mp1 caHydE caHydA pETDuet-1 Ampicillin Matthew Posewitz[31]

pCDF.mp2 caHydF caHydG pCDFDuet-1 Spectinomycin Matthew Posewitz[31]

pACYC.ew3 daPFOR pACYCDuet-1 Chloramphenicol This work

pACYC.ew4 daPFOR soFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew5 daPFOR zmFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew6 daPFOR crFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew7 daPFOR caFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew8 soFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew9 zmFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew10 crFD pACYCDuet-1 Chloramphenicol This work

pACYC.ew11 caFD pACYCDuet-1 Chloramphenicol This work

FNR-supported growthB

pCDF.ew12 zmFNR pCDFDuet-1 Spectinomycin This work

pACYC.ew13 soFD zmSIR pACYCDuet-1 Chloramphenicol This work

pACYC.ew14 zmFD zmSIR pACYCDuet-1 Chloramphenicol This work

pACYC.ew15 crFD zmSIR pACYCDuet-1 Chloramphenicol This work

pACYC.ew16 caFD zmSIR pACYCDuet-1 Chloramphenicol This work

pACYC.ew17 zmSIR pACYCDuet-1 Chloramphenicol This work

Hydrogenase-supported growth and selectionC

pACYC.ew18 crHydEF crHydG pACYCDuet-1 Chloramphenicol This work

pET.ew19 soFD zmSIR pETDuet-1 Ampicillin This work

pCDF.ew20 crHydA pCDFDuet-1 Spectinomycin This work

pCDF.ew21 caHydA pCDFDuet-1 Spectinomycin This work

pCDF.ew22 csHydA pCDFDuet-1 Spectinomycin This work

Duet vector backbones (Novagen) were used for all protein expression. Complete vector sequences are provided in additional file 1. A) Plasmids mp1-ew11 were
used to generate PFOR-driven hydrogenase activity data for Figure 4. B) Plasmids ew12-ew17 were used to assess knockout strain insulation for Figure 2. They
were also used to measure ferredoxin performance in Figure 4. C) Plasmids ew18-ew22 facilitated the hydrogenase O2 tolerance measurements in Figure 3. They
were also used in the hydrogenase-supported growth curves in Figure 5 and for the genetic selection.

Barstow et al. Journal of Biological Engineering 2011, 5:7
http://www.jbioleng.org/content/5/1/7

Page 3 of 15
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Media recipes used in Barstow et al 2011 
 
Selective Media 
Selective media was a standard M9 formulation, supplemented with additional glucose, sulfate, ferric 
iron and a rich mix of amino acids less cysteine and methionine. 
 
15 g   Agar  
12.8 g  Na2HPO4⋅7H2O 
3 g   KH2PO4 
0.5 g   NaCl 
1 g   NH4Cl 
0.1 mL  1M CaCl2 
10 mL  1M MgSO4 
25 mg   Ferric citrate 
0.5 g   Sulfur dropout powder 
100 mL  20% Glucose 
1M IPTG 1mL 
 
Sulfur dropout powder is a rich supplement mix with cysteine and methionine omitted: 

Amino acids  Nucleotide bases 
Alanine 2.0 g Leucine 10.0 g  Adenine 0.5 g 
Arginine 2.0 g Lysine 2.0 g  Uracil 2.0 g 
Asparagine 2.0 g Methionine 0.0 g    
Aspartic acid 2.0 g Phenylalanine 2.0 g  Vitamins 
Cysteine 0.0 g Proline 2.0 g  p-Aminobenzoic acid 0.2 g 
Glutamic acid 2.0 g Serine 2.0 g  Inositol 2.0 g 
Glutamine 2.0 g Threonine 2.0 g  Adenine 0.5 g 
Glycine 2.0 g Tryptophan 2.0 g  Uracil 2.0 g 
Histidine 2.0 g Tyrosine 2.0 g    
Isoleucine 2.0 g Valine 2.0 g    

 
Induction media 
Induction media for hydrogenase expression was LB with added glucose, ferric iron, phosphate 
buffer and Baker's antifoam reagent. 
 
5 g   Bacto tryptone 
2.5 g   Bacto yeast extract  
5 g   Sodium chloride 
1.2 g   KH2PO4 
7.2 g  K2HPO4 
2.5 mL  20% Glucose 
12.5 mg  Ferric citrate 
1 mL   1M IPTG 
50 µL   Baker’s antifoam B 
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Appendix B 

Harnessing nature's toolbox: regulatory elements for 

synthetic biology1 

 !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Originally published as: 
Boyle, P. M. & Silver, P. A. Harnessing nature's toolbox: regulatory elements for synthetic biology. 
Journal of the Royal Society, Interface / the Royal Society 6 Suppl 4, S535–46 (2009). Reprinted with 
permission from the editor. 
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REVIEW

Harnessing nature’s toolbox: regulatory
elements for synthetic biology

Patrick M. Boyle and Pamela A. Silver*

Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue,
WAB 536, Boston, MA 02115, USA

Synthetic biologists seek to engineer complex biological systems composed of modular
elements. Achieving higher complexity in engineered biological organisms will require
manipulating numerous systems of biological regulation: transcription; RNA interactions;
protein signalling; and metabolic fluxes, among others. Exploiting the natural modularity at
each level of biological regulation will promote the development of standardized tools for
designing biological systems.

Keywords: biological regulation; natural modularity; standardized tools

1. INTRODUCTION

By analogy to other engineering disciplines, synthetic
biologists aim to construct complex ‘devices’ as
assemblies of well-defined modular parts. The synthetic
biology approach is predicated on the idea that modular
biological elements exist, which can be repurposed or
modified for the construction of new devices (Drubin
et al. 2007).

The unique capabilities of biological organisms make
them an attractive target for engineering. Living cells
are self-replicating, self-repairing chemical factories
that can, in principle, be reconfigured by altering
their DNA blueprint. The development of DNA
synthesis technology has allowed researchers to create
any DNA sequence they desire, even entire genomes
(Gibson et al. 2008). The ability to synthesize DNA
promises to make the entire repertoire of known
biological diversity available to synthetic biologists.

Despite this power, rationally designed biological
devices rarely function entirely as predicted, and are
often less robust than natural systems. With the price
of DNA synthesis falling and worldwide interest in
synthetic biology rising, the progress of synthetic
biology has not been limited by funding or ambition.
Instead, progress made in the last decade of synthetic
biology research has revealed the unique difficulties of
engineering living systems. In particular, endogenous
regulatory systems often interfere with the function of
synthetic biological devices (Arkin & Fletcher 2006).

Improving our ability to engineer biology will require
an improved ability to predictably regulate biological

systems. Natural biological systems are regulated at
many levels: transcription; RNA processing; trans-
lation; protein–protein interactions; and protein–
substrate interactions all exert control on cellular
processes. The spatial and temporal organization of
these myriad control systems is vital to their proper
function. The fact that RNA interference, an integral
control mechanism in eukaryotes, was only discovered
in the late 1990s demonstrates that we are still
discovering fundamental building blocks of biological
systems (Fire et al. 1998).

The identification of biological modules with
regulatory functions will allow the construction of
more complex devices. For decades, promoters have
been used to control the expression of recombinant
genes (Reznikoff et al. 1969; Casadaban 1975).
Similarly, modular protein elements, such as zinc
fingers, allow the design of novel protein interactions
(Drubin et al. 2007). Harnessing biological modularity
provides insight into engineering biological regulation.
In this review, we will explore recent advances in the
field of synthetic biology, with emphasis on the
development of biological modules for the regulation
of synthetic devices.

2. TRANSCRIPTIONAL SIGNAL PROCESSING

It has long been understood that transcription factors
target specific DNA elements to control gene
expression (Jacob & Monod 1961). Promoters are
modular DNA elements that can be used to drive the
transcription of a gene, a property that has often been
exploited for biological research (Casadaban 1975). As
a well-understood mechanism of biological regulation,
transcriptional control has been a feature of many
synthetic devices.
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Transcriptional control can be exploited for signal
integration, i.e. processing multiple inputs and produ-
cing well-defined outputs. The operations that signal
integration elements perform can be represented as
logic gates. Boolean logic gates integrate two or more
input signals and output one of two values (Irving
1961). For example, a two-input AND gate returns an
output of ‘true’ when both inputs are true, and returns
‘false’ when either or both of the inputs are false
(table 1). Transcriptional devices can serve as logic
gates by producing outputs based on the state of input
promoters; an AND gate would produce a certain
output only if both input promoters were induced.

Ideally, signal integration elements and promoter
inputs would be functionally separate in a synthetic
device. For example, replacing an ara promoter with a
lac promoter should modify the specificity of the device
from arabinose to lactose without affecting how the rest
of the device functions. Towards this end, a ‘modular’
AND gate was developed, allowing the modification of
the promoter inputs and the gate output, leaving the
core logic module intact (figure 1a; Anderson et al.
2007). Two promoters receive input to the device: one
drives the expression of a T7 polymerase containing two
amber mutations (T7ptag), while the other directs
expression of the amber-suppressing tRNA supD.
When both promoters are activated, supD expression
allows the proper translation of T7ptag, which in turn
transcribes a reporter gene with a T7 promoter. The
original input promoters were induced by salicylate and
arabinose for the expression of supD and T7ptag,
respectively, with green fluorescent protein (GFP) as
the output reporter.

This supD/T7ptag AND gate was intended to be
modular, in that the device functions as an AND gate
regardless of the input promoters or the output protein.
To confirm modular function, the device inputs were
replaced with magnesium-repressed and AI-1-inducible

(LuxR quorum sensor) promoters, and the output was
replaced with the invasin gene that triggers the
invasion of mammalian cells. Although the initial
reconfiguration of the device did not perform as an
AND gate, tuning expression by varying the ribosome-
binding sites of each promoter restored functionality.
The new device allows Escherichia coli cells to invade
mammalian cells in the case that exogenous magnesium
is absent and the AI-1 signal is present. Importantly,
the signal integration portion of the device was
unmodified, and only minimal tuning was required to
restore logic gate function after vastly altering the
device inputs and outputs.

Producing high-fidelity outputs is as important as
proper signal integration. Ideally, a synthetic device will
remain in a persistent output state until the input state is
changed. Genetic toggle switches have been demon-
strated, incorporating transcriptional feedback loops to
ensure that the device remains in one of two stable states
(figure 1b; Gardner et al. 2000). Devices that feature
oscillatory outputs based on transcriptional feedback
have also been constructed (Elowitz & Leibler 2000;
Stricker et al. 2008). ‘Memory devices’ feature a
persistent output in response to a transient input; they
are activated by a specific input and remain active after
the input is removed (Ajo-Franklin et al. 2007).

A memory device constructed in the yeast Sacchar-
omyces cerevisiae transmits a fluorescent response for
many generations following a transient stimulus
(figure 1c; Ajo-Franklin et al. 2007). The device
features two fluorescently labelled genes: a red fluor-
escent protein (RFP)-tagged sensor gene, which, when
expressed, activates the transcription of a yellow
fluorescent protein (YFP)-tagged auto-feedback gene.
The auto-feedback gene possesses the same transcrip-
tional activator module as the sensor gene, thus the
auto-feedback gene activates its own expression
following the transient stimulus. Experimentation and
quantitative models of the device suggested that tight
regulation of transcription was required to maintain
memory. Leaky promoters would trigger activation of
the device in the absence of inducer, and the concen-
tration of the auto-feedback protein following induction
needs to remain above the threshold for maintaining
memory following cell division. The final device
exhibits the required bistability, maintaining the YFP
signal even after the inducer was removed.

3. RNA SIGNAL PROCESSING

RNA is a versatile molecule with a variety of roles in
cellular functions. The ability of RNA to transmit
genetic information as well as conduct enzymatic
catalysis has led to the hypothesis that early life used
RNA in lieu of DNA and proteins (Bartel & Unrau
1999). Regulatory RNAs can exert control by antisense
binding with mRNA, by conformational changes that
disrupt transcription or translation or by ribozyme
activity (Isaacs et al. 2006; Saito & Inoue 2008). In
the context of synthetic biology, many devices have
been constructed that take advantage of RNA-
mediated regulation.

Table 1. Basic two-input logic gates. (Each gate produces a
single true or false output based on the state of two inputs
(Irving 1961). F, ‘false’; T, ‘true’; NAND, ‘not AND’; NOR,
‘not OR’.)

gate

input

outputA B

AND F F F
T F F
F T F
T T T

OR F F F
T F T
F T T
T T T

NAND F F T
T F T
F T T
T T F

NOR F F T
T F F
F T F
T T F

2 Review. Harnessing nature’s toolbox P. M. Boyle and P. A. Silver

J. R. Soc. Interface

 on 4 March 2009rsif.royalsocietypublishing.orgDownloaded from 



 168 

Riboswitches are regulatory RNAs that bind
small molecules or peptides via a specific aptamer
domain (Patel et al. 1997). Natural riboswitches can be
found in the 5 0 untranslated region (UTR) of mRNA,
where ligand binding triggers a conformational change
that can negatively or positively modulate transcrip-
tion or translation (Mandal & Breaker 2004; Tucker &
Breaker 2005; Isaacs et al. 2006). Catalytic RNAs such
as hammerhead ribozymes (HHRz; Khvorova et al.
2003) can even be attached to riboswitches to construct
ligand-dependent ribozymes (Win & Smolke 2008).

In the context of synthetic devices, riboswitches
allow promoter-independent control of gene expression.
For example, RNA ‘antiswitches’ have been engineered
in S. cerevisiae (Bayer & Smolke 2005). An antiswitch
is an RNA molecule containing a ligand-binding
aptamer domain and an antisense regulator domain.
Antiswitches can be designed to activate or repress
translation in response to ligand binding. ‘Off anti-
switches’ feature an antisense domain that is stabilized
as a stem loop in the absence of ligand, permitting
translation of the targeted mRNA. Ligand binding to
the aptamer domain triggers a conformational change,
exposing the antisense domain and repressing trans-
lation. ‘On antiswitches’, on the other hand, feature an
antisense domain that forms a stem loop when the
ligand is bound, releasing the mRNA target from
repression. Importantly, the aptamer and antisense
domains are functionally modular; exchanging a
theophylline aptamer domain for a tetracycline apta-
mer domain changes the specificity of an antiswitch to
tetracycline without altering the antisense targeting.

The modularity of riboswitches has been exploited
to construct logic gates (Win & Smolke 2008).
Riboswitch logic gates incorporate ‘sensor’, ‘transmitter’
and ‘actuator’ domains (figure 2a). The sensor domain
consists of a ligand-dependent aptamer, and the
conformational change triggered by ligand binding alters
the conformation of the transmitter domain. Attaching

the sensor and transmitter to an actuator domain, in this
case an HHRz, confers ligand-dependent ribozyme
activity. The devices were embedded in the 30 UTR of
mRNA transcripts, such that HHRz activation triggers
mRNA cleavage leading to decreased expression. More
complex devices were constructed by linking pairs of
sensor domains, linked by transmitters, to a single
actuator. Rearrangement of dual sensor domains relative
to an actuator domain yielded AND, NOR, NAND and
OR gates (figure 2b).

Other devices were also constructed by placing two
sensor–actuator pairs in series on an mRNA. One such
device is a ‘bandpass filter’, so named because
expression of the reporter protein only occurs at
intermediate inducer concentrations, with low and
high inducer concentrations leading to mRNA
degradation. This was accomplished by including a
‘buffer gate’ that prevents ribozyme cleavage in the
presence of theophylline as well as an ‘inverter gate’ on
the same mRNA that activates ribozyme cleavage in
the presence of theophylline.

Boolean logic gates have also been designed with
small interfering RNAs (siRNAs; Rinaudo et al. 2007).
In these devices, inputs trigger siRNA expression, with
each siRNA targeting a specific mRNA. The targeted
mRNA molecules each encode a repressor protein such
as LacI that repress the expression of a fluorescent
protein reporter. For example, an AND gate consists of
two mRNAs driven by the same promoter, but with
different 3 0 UTR targets, A and B. EachmRNA encodes
LacI or LacI–KRAB to repress the expression of the
reporter protein. The presence of both siRNA A and
siRNA B is required to knock down the mRNAs and
allow reporter expression. An OR gate was constructed
by expressing a single mRNA for the repressor protein,
with two 3 0 UTR targets, such that siRNA A or siRNA
B is sufficient for knockdown.

This siRNA-based logic allowed the construction
of devices that evaluate complex expressions such as

SupD
input A

T7ptag
input B

* *

TAG
TAG

TAG = ser
T7

PT 7

output

(a) (b)

(c)

repressor B
promoter A

repressor A
promoter B
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transcriptional
activator Pcyc
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galactose
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Figure 1. Synthetic devices based on transcriptional logic. (a) A modular AND gate. Two input promoters control the expression
of the SupD tRNA suppressor and a T7 polymerase with two TAG stop codons, denoted by asterisks. Activation of both input
promoters allows SupD to suppress the early stop codons by inserting serine, and the functional T7 protein activates expression
of the reporter (Anderson et al. 2007). (b) A genetic toggle switch. Bistability is achieved via two mutually repressing genes.
Addition of inducer molecules allows switching between stable states (Gardner et al. 2000). (c) A cellular memory device.
Galactose induces expression of an RFP-tagged transcriptional activator that triggers expression of a YFP-tagged reporter. The
YFP-tagged protein then activates itself, maintaining YFP expression (Ajo-Franklin et al. 2007).
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‘(A AND B AND C) OR (D AND E)’ and ‘(A AND C
AND E) OR (NOT(A) AND B)’ (figure 2b), with A, B,
C, D and E representing different inputs. Every possible
input combination was experimentally verified, with
the second device yielding the only incorrect output,
returning false in the case that A and E were true and B
and C were false (Rinaudo et al. 2007).

RNA logic devices demonstrate that RNA can
regulate complex synthetic networks. Both the ribo-
switch and RNAi-based devices take advantage of
antisense base pairing to confer specificity between
synthetic RNA inputs and their mRNA targets.
Modular riboswitches may prove to be portable to a
wide range of host species, as RNA folding and
ribozyme activity occur independently of the host
cellular machinery. Complex RNA regulatory devices
in natural systems, such as the S-adenosyl-methionine/
adenosylcobalamin NOR gate in Bacillus clausii,
demonstrate that RNA aptamers are an effective
means of responding to changes in metabolite concen-
trations (Nahvi et al. 2002; Stoddard & Batey 2006).

In higher eukaryotes, introns appear to be an
important regulatory element at the mRNA level.
Approximately 95 per cent of the average human gene
is made up of introns (Lander et al. 2001; Venter et al.
2001). Both introns and exons must be transcribed;
introns are removed from the mRNA prior to trans-
lation. In the development of multicellular organisms,
one suggested role for introns is in regulating the timing
of gene expression, as intron processing increases the
time between transcription and translation. Time delay
coupled with autoinhibition can produce oscillations,
and oscillatory gene expression is often observed in
development (Swinburne & Silver 2008).

To study the role of intron length in development, an
intron-containing device was constructed (Swinburne

et al. 2008). The device contained an intron, a
fluorescent reporter and the Tet repressor, which
negatively inhibited its own expression. The device
demonstrated pulses of expression in mammalian cells,
and the frequency of the pulses was dependent on intron
length. As in the endogenous genes of higher eukary-
otes, introns may provide an additional layer of control
to synthetic devices.

4. SYNTHETIC PROTEIN SIGNALLING

Proteins do not interact the way components on a
circuit board do. Identical components such as resistors
can be placed on the same circuit board and not
interfere with one another, because the wiring keeps
them connected only to components they were intended
to interact with. Proteins, however, can diffuse
throughout the cellular compartment that contains
them, interacting with any suitable binding partners.

Evolution has found a solution to orthogonal
signalling that still allows cells to use the same protein
components for multiple processes (Bhattacharyya
et al. 2006). Classes of proteins, such as kinases, share
a common mechanism of action but can act on a variety
of targets. This is often achieved by varying com-
binations of adapter domains and effector domains.
Signalling protein interactions are often mediated by
events such as phosphorylation that change binding
affinities and ‘rewire’ the network (Pawson 2007).

Prokaryotic two-component signalling systems pro-
vide a simple model system for studying protein
interactions. Canonical two-component systems consist
of a membrane-bound receptor with ligand-dependent
histidine kinase (HK) activity and a response regulator
(RR) protein, usually a transcription factor (West &
Stock 2001).

gene of interest

A B B A

(a) (b)

ligands ribozyme
-    -
A   -
-   B
A   B

active
active
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inactive

AND gate NAND gate
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A   -
-   B
A   B

inactive
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inactive
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mRNA 1 YFP
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target A target C target E

target NOT A target B

A C B E
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NOT A

C E

B

(A and C and E) or (not (A) and B)

input
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A

A
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transmitter
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Figure 2. RNA-based logic gates. (a) Modular ribozymes consist of ‘actuators’ (red) that contain the HHRz ribozyme;
‘transmitters’ that transmit conformational changes to the actuator; and ‘sensors’, the RNA aptamers that bind ligands.
An arrow next to the actuator denotes that the ribozyme is active in the absence of ligand. A crossed out arrow denotes that
the ribozyme is inactive in the absence of ligand. Multiple sensor domains can be added to either end of the actuator. An example
AND gate and NAND gate are shown, multiple actuators can also be incorporated in series on a single mRNA (Win & Smolke
2008). (b) Evaluation of complex logic in an RNAi-based device. Input A represses transcription of the ‘A’ siRNA and activates
transcription of the ‘NOT A’ siRNA. Inputs C, B and E repress transcription of their respective siRNAs. Each siRNA
downregulates the expression of its target mRNA if expressed (Rinaudo et al. 2007).
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The rational design of two-component signalling
systems has recently been demonstrated (Skerker et al.
2008).Multiple sequence alignments of HK andRR pairs
identified residues that covaried, representing interact-
ing partners. Modification of as few as three interacting
residues in the HK EnvZ (an E. coli osmolarity sensor)
switched the EnvZ HK phosphorylation specificity from
its cognate RR OmpR to the non-cognate RR RstA,
which is not normally induced by osmotic changes.
Additionally, the RR specificity of EnvZ was switched to
that of CC1181, a Caulobacter crecentus sensor protein.
This research establishes a protocol for the rational
design of two-component systems, as well as validating
methods of HK–RR interaction prediction. The
existence of two-component systems in eukaryotes
(Saito 2001) implies that novel HK–RR pairs could
augment eukaryotic devices as well.

Eukaryotic signalling cascades are usually more
complex than two-component systems, but eukaryotic
signalling proteins can still be reprogrammed to accept
new inputs. For example, a guanine nucleotide
exchange factor (GEF) was modified to be responsive
to protein kinase A (PKA; Yeh et al. 2007). Active
GEFs catalyse the exchange of GDP for GTP bound to
Rho GTPases, and, in turn, GTP-bound Rho activates
downstream effectors (Rossman et al. 2005). To build a
synthetic GEF, researchers replaced the cognate
autoinhibitory domain of the CDC42-specific GEF
Itsn1 with a PKA-dependent autoinhibitory domain,
leaving the GEF catalytic domain intact (figure 3; Yeh
et al. 2007). The addition of forskolin, a PKA activator,
induces production of filopodia in mammalian cells,
indicating Itsn1 signalling. Substituting different GEF
catalytic domains also produced new signalling
behaviours, and signalling cascades involving two
synthetic GEFs were also functional (Yeh et al. 2007).

Protein domains can be combined to produce novel
switch-like behaviour. A chimeric protein with two
separate ligand-binding domains could act as a switch
or an OR gate if only one ligand-binding domain could
be occupied at a time. To isolate new protein switches,
researchers overlapped functional ligand-binding
domains and peptides in chimeric proteins, such that
correct folding of one domain would disrupt folding of
the other (Sallee et al. 2007). Out of 25 candidates,
seven chimeric proteins yielded functional switches,
with domains that are unstructured in the absence of
ligand showing the highest likelihood of success (Sallee
et al. 2007).

Protein ligands that bind cell surface receptors can
also be used as modular regulatory elements. One such
device, a chimeric-activating protein, was constructed
by connecting an epidermal growth factor (EGF)
ligand and an interferona-2a (IFNa-2a) ligand via a
flexible linker (Cironi et al. 2008). The EGF ligand acts
as a targeting element, binding the EGF receptor
(EGFR). The IFNa-2a ligand triggers the desired
action of the device, binding IFNa-2a–IFNa receptor
2 (IFNAR2) and activating the Jak–Stat pathway
(Platanias 2005). In the chimeric activator, the IFNa-2a
ligand was mutated to reduce its binding affinity for
IFNAR2. Reducing IFNa-2a binding affinity had
the desired effect: IFNa-2a-mediated activation of the

Jak–Stat pathway occurs only when both EGFR and
IFNAR2 were present on the cell surface. EGF binding
to EGFR brings IFNa-2a closer to the cell surface,
increasing the likelihood of IFNa-2a–IFNAR2 binding
and subsequent Jak–Stat signalling. As well as having
therapeutic applications, chimeric activators could be
incorporated into synthetic devices for intercellular
signalling (Cironi et al. 2008).

These synthetic protein devices demonstrate that
the rearrangement of natural protein modules can
yield new behaviours. To achieve protein–protein
interactions that are truly orthogonal to an existing
protein network, however, it may be necessary to
design new protein interactions. There is evidence that
new types of signalling, such as tyrosine kinase
signalling, evolved in response to the saturation
of previous signalling networks (King et al. 2003;
Bhattacharyya et al. 2006). The engineering of novel
signalling systems may permit synthetic devices to
operate in cells without the interference of the
endogenous protein network.

Modification of protein interfaces and binding
pockets (as opposed to the rearrangement of modular
elements discussed previously) has proven to be an
effective method of altering protein specificity. Compu-
tational modelling of protein interfaces is often similar
to ab initio modelling of whole proteins, although the
scope of the model is reduced to the interface in
question (Kortemme & Baker 2004). By modifying the
interacting surface of one protein and predicting
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morphological
changes
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PDZ
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PDZ
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Figure 3. A synthetic GEF re-routes PKA signalling to
activate the CDC42 pathway. The Dbl homology–pleckstrin
homology domain (DH–PH) from a GEF involved in CDC42
signalling is combined with a PDZ domain and a PKA target
peptide. The PDZ domain is normally bound to the target
peptide, inactivating the DH–PH. Forskolin activates PKA
that phosphorylates the target peptide. Phosphorylation of
the target allows the DH–PH to activate CDC42 signalling
(Yeh et al. 2007).
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compensating mutations in a binding partner protein,
natural protein–protein interfaces have been success-
fully redesigned (Kortemme et al. 2004). Similarly, the
rational design of ligand-binding pockets led to
engineered periplasmic binding protein receptors
capable of binding trinitrotoluene, L-lactate and
serotonin (Looger et al. 2003).

5. METABOLIC ENGINEERING

The rational design of organisms to produce important
metabolites such as biofuels and drugs has been labelled
as the defining application of synthetic biology
(Brenner et al. 2006). Rational reconfiguration of
metabolism is also an enormous challenge; metabolite
levels are regulated in many ways, and small changes in
gene regulation can have amplified effects on the
metabolome (Raamsdonk et al. 2001; Kell 2006).
As demonstrated in the following examples, the
construction of a ‘metabolic device’ requires substantial
rewiring of the host cell.

A significant effort in metabolic engineering has been
the production of amorphadiene in E. coli (Martin et al.
2003) and artemisinic acid in S. cerevisiae (Ro et al.
2006), both precursors to the anti-malarial drug
artemisinin. In both cases, the amorphadiene synthase
(ADS) gene from Artemisia annua L was heterolo-
gously expressed, and flux through the host metabolic
network was redirected towards ADS. In the case of
S. cerevisiae, expressing the ADS is sufficient for
amorphadiene production, albeit with low yields.
Adjusting the expression levels of five genes involved
in the production of farnesyl pyrophosphate (FPP,
converted to amorphadiene by ADS) yielded a 500-fold
increase in amorphadiene production (figure 4).
Screening a library of A. annua cytochrome P450
expressed sequence tags yielded an enzyme that
catalysed the conversion of amorphadiene to artemi-
sinic acid, which was then integrated into the engin-
eered strain along with NADPH : cytochrome P450
oxidoreductase. In the case of artemisinic acid, as well
as in many other metabolic engineering efforts, the
redirection of flux via adjustments in gene regulation
was paramount in achieving commercially viable yields
(Keasling 2008).

Re-routing metabolic flux via gene deletions can
force cells to produce more of a desired product.
Genome-scale simulations of cellular metabolism such
as flux balance analysis (FBA), which we will explore in
§6, can predict beneficial gene deletions. This approach
has been validated for several metabolic engineering
efforts, including the production of lycopene in E. coli
(Alper et al. 2005), and in the case of our own efforts
to produce formic acid in S. cerevisiae (Kennedy et al.
in preparation). Results in both studies suggested that
further regulatory modifications would boost yields.
In silico strain design coupled with tight regulation of
enzyme levels by synthetic devices will undoubtedly be
essential to future metabolic engineering efforts.

As in protein signalling networks, modular manipu-
lation of metabolic enzymes would facilitate the
development of new pathways. However, unlike signal-
ling proteins, metabolic enzymes are rarely structurally

modular. For example, metabolic enzymes often
contain allosteric regulatory sites and the active site
within a single domain, confounding efforts to decouple
allosteric regulation and catalysis (Bhattacharyya et al.
2006). A notable exception is enzymes such as polyke-
tide synthases (PKS), which are not only modular, but
their spatial arrangement can also be exploited to
create new products.

Rational engineering of PKS assembly lines would
open up new possibilities for the synthesis of organic
molecules. Polyketides are assembled by linear
complexes of PKS proteins, with each PKS performing
catalysis on the growing polyketide chain (figure 5).
Evolutionary rearrangement of PKS modules has
generated a diverse array of natural products, including
many antibiotics (Robinson 1991). PKS proteins possess
N- and C-terminal ‘docking domains’ for attachment
to other PKS (Thattai et al. 2007). Combinatorial
shuffling of PKS modules resulted in the in vivo
synthesis of novel polyketides (Menzella et al. 2005).
Computational modelling of potential PKS products
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Figure 4. Engineered pathway for artemisinic acid production
in S. cerevisiae. Blue arrows indicate enzymes indirectly
upregulated by expression of upc2-1. Green arrows indicate
enzymes that were directly upregulated. The red repression
arrow indicates that ERG9 was placed under the control of a
methionine-repressed promoter, reducing flux to squalene
synthesis. Green boxes indicate the exogenous enzymes ADS
and CYP71AV1 and the redox partner protein CPR (Ro et al.
2006). CoA, coenzyme A; HMG-CoA, 3-hydroxy-3-methyl-
glutaryl-CoA; IPP, isopentenylpyrophosphate; GPP, geranyl
pyrophosphate.
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suggests that billions of possible molecules could be
synthesized via engineered PKS combinations, and that
it may be possible to predict PKS combinations that
will produce a desired compound (González-Lergier
et al. 2005).

Our ability to conduct ‘retro-biosynthesis’, the
rational design of biological routes to target
compounds, is limited both by our knowledge of enzyme
properties and our ability to override regulation in
biological systems (Prather & Martin 2008). The
diversity of compounds synthesized by natural organ-
isms suggests that biological chassis are an ideal
platform for chemical production. It has been noted
that the development of synthetic biology is paralagous
to the development of synthetic chemistry; the
synthesis of many important organic compounds was
achieved before chemists understood covalent bonds
(Yeh & Lim 2007). Similarly, efforts to re-engineer
metabolism will contribute to a more complete under-
standing of metabolic systems and cellular regulation.

6. METABOLIC MODELLING

The state of the cellular metabolic network is a function
of the network topology, the physical properties of
enzymes and the regulation of enzyme levels and
activity. Rational design of metabolism will require
accurate models of the metabolic network and how
the network is regulated. The complexity of metab-
olism has necessitated trade-offs in the formulation
of metabolic models. In general, current models of
metabolism fall into one of two categories: constraint-
based models and kinetic models.

Most constraint-based models of metabolism are
based on the framework of FBA, a technique that
simulates the entire metabolic network of an organism
(Varma & Palsson 1994). The only required parameter
for an FBA model is a stoichiometric matrix that
contains all known metabolic reactions of an organism.
Constraints are placed on certain fluxes, defining
nutrient availability and relative uptake rates as well
as thermodynamic constraints on the reversibility of
reactions. It is assumed that, at steady state, the net

flux of the system is fixed. The model is then solved for
the optimization of an objective function such as
maximization of biomass. Since FBA models do not
consider enzymatic parameters beyond the stoi-
chiometry of each reaction, the availability of compre-
hensive databases such as the Kyoto Encyclopedia of
Genes and Genomes (http://www.kegg.com) has fos-
tered the development of FBA models for many
organisms (Varma & Palsson 1994; Duarte et al.
2004; Becker & Palsson 2005; Feist et al. 2007; Lee
et al. 2008; Senger & Papoutsakis 2008). Owing to the
genome-scale nature of constraint-based models, in
silico screens have been applied to predictions of gene
essentiality (Edwards & Palsson 2000; Thiele et al.
2005; Samal et al. 2006; Becker & Palsson 2008) and the
related metabolic engineering problem of predicting
gene knockouts for strain optimization (Burgard et al.
2003; Alper et al. 2005; Kennedy et al. in preparation).

The successful application of FBA in a variety of
organisms demonstrates the use of constraint-based
models in the context of metabolism. However, even in
the unlikely case that enzyme kinetics are unimportant
to determine metabolic flux, traditional FBA models
assume that a cell’s entire complement of enzymes is
available at all times. Regulation can be modelled
implicitly, via methods such as minimization of
metabolic adjustment, which assumes that regulation
will force mutant flux distributions to be as similar to
the wild-type distribution as possible (Segrè et al.
2002). Models such as regulatory FBA attempt to
explicitly model regulation by switching fluxes on and
off, based on the experimental data of enzyme
expression in various growth conditions (Covert et al.
2001; Covert & Palsson 2002; Herrgård et al. 2006).

Experimental efforts to modify transcription factor
behaviour have underscored the importance of
regulation to metabolic fluxes. One such approach,
known as ‘global transcription machinery engineering’,
yields improved strains by screening transcription
factor mutants. For example, a more ethanol-tolerant
strain of S. cerevisiae was isolated by mutagenizing the
TATA-binding protein SPT15 (Alper et al. 2006). The
global influence of transcription factors makes them a
powerful tool for strain construction; unfortunately,
this has also made it difficult to predict the full effects
of transcription factor modification. Future genome-
scale models may include genome-scale models of
transcriptional regulation, but comprehensive infor-
mation on transcription factor interactions is not
presently available.

Metabolic regulation in vivo is influenced by enzyme
and substrate concentrations and the kinetic para-
meters of each enzyme. Kinetic models sacrifice the
genome scale of constraint-based models in favour of
detailed quantitative modelling of specific pathways.
Unlike FBA, metabolic control analysis (MCA)
accounts for the kinetic parameters of all enzymes in
the pathway, along with the concentrations of the
enzymes and the metabolites involved (Fell 1997).
Control coefficients for each enzyme, based on
experimentally measured parameters, define the
amount of influence an enzyme has on a pathway.
A key concept of MCA is multisite modulation,
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Figure 5. The DEBS1 PKS that catalyses the first steps in
synthesizing 6-deoxyerythronolide B. Blue domains comprise
the loading module, containing an acyl transferase (AT) and
an acyl carrier protein (ACP). Two extender modules, in
green and orange, each contain a ketosynthase (KS), an AT,
a ketoreductase (KR) and an ACP (Menzella et al. 2005).
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i.e. there is no ‘master’ enzyme or rate-limiting step in a
pathway; instead, each enzyme in the pathway has a
non-zero control coefficient, and the control coefficients
of all the enzymes in the pathway sum to 1. Thus, MCA
can identify enzymes with high control coefficients, and
quantitatively predict the impact of adjusting the
concentration or rate of those enzymes. Unfortunately,
the detailed nature of MCA models makes
them impossible to apply on the genome scale until
more comprehensive data on enzyme kinetics have
been collected.

Even if ‘omics’ technologies generate a complete list
of parameters for genome-scale MCA, the resulting
dataset would still be difficult to model (Schuster 1999).
One approach to reducing the complexity of a genome-
scale model is to group metabolic fluxes into modules,
provided that the groupings are functionally relevant.
Although individual metabolic enzymes are rarely
composed of modular elements, considering groups of
enzymes as higher order modules may yield adequate
models for understanding metabolic network kinetics at
a genome scale.

There is evidence that higher order modularity exists
in metabolic networks. Metabolic networks appear to
be both scale free and hierarchical (Ravasz et al. 2002).
Modularity is inherent in such networks, which implies
that metabolic networks contain modules of small
reaction networks linked to highly connected hubs
(Jeong et al. 2000; Guimerà & Nunes Amaral 2005).
Modelling approaches such as elementary flux modes
analysis (Schuster et al. 1999, 2000; Klamt & Stelling
2002) and modular MCA (Schuster et al. 1993;
Acerenza & Ortega 2007; Poolman et al. 2007) attempt
to identify modular reaction sets, generating simplified
network models. Identifying modular elements of
metabolism may reveal generalized methods for manip-
ulating metabolic regulation in engineered organisms.

7. SUBCELLULAR ENGINEERING

In computer science, abstraction allows the construc-
tion of higher orders of modularity (Abelson et al.
1996). Computer software usually takes inputs and
returns outputs without involving the user in the
intervening calculations. Within complex computer
programs, there is further abstraction between
modules, separating elements such as memory manage-
ment and input/output control. Similarly, subcellular
compartments are an evolutionary form of abstraction;
eukaryotic cells possess membrane-bound organelles
with specialized and well-defined tasks. Regulated
transport limits interaction between the organelle and
the rest of the cell to a set of defined inputs and outputs.
Metabolite and protein interactions within the orga-
nelle are abstracted from the cytosolic environment.
Although prokaryotes lack membrane-bound orga-
nelles, protein-bound compartments such as carboxy-
somes exist in certain species (Price et al. 2008). In the
context of synthetic devices, abstraction afforded by
subcellular compartments could limit the interference
of endogenous regulation with the engineered
regulation of the device.

Lysosomes, peroxisomes and many other organelles
contain enzymes or metabolites that are harmful to the
host cell (Page et al. 1998; Yeldandi et al. 2000).
Metabolic reactions that would be thermodynamically
unfavourable in the cytosol are often found in organelles
(Feldman & Sigman 1983). Organelles could conceiv-
ably harbour engineered pathways that would be
incompatible with the cytoplasm.

The specialized machinery of organelles could
augment synthetic devices. Chloroplasts and mito-
chondria, being of endosymbiotic origin (Embley &
Martin 2006), are the most sophisticated eukaryotic
organelles and have useful properties for engineered
systems. These organelles possess subcompartments of
their own, the thylakoids in the case of chloroplast and
the matrix in the case of the mitochondrion (Frey &
Mannella 2000; Mustárdy et al. 2008). In addition, both
organelles can generate electrochemical gradients
between their subcompartments (Dimroth et al. 2000).

Although no completed examples of synthetic
organelle devices exist, there is reason to believe that
engineering organelles is feasible. In the case of many
organelles, such as chloroplasts (Soll & Schleiff 2004),
mitochondria (Truscott et al. 2003) and peroxisomes
(Léon et al. 2006), the targeting of arbitrary proteins to
these compartments has been described. Chloroplasts
and mitochondria also have self-contained genomes,
although gene integration into their genomes is more
complex than nuclear integration (Bonnefoy & Fox
2007; Verma & Daniell 2007).

Genome-wide metabolic models often have difficul-
ties modelling organelle metabolism (Satish Kumar
et al. 2007). However, since organelles compartment-
alize their metabolic reactions, they can be abstracted
from the rest of cellular metabolism. Inputs and outputs
from a detailed kinetic model of organelle metabolism
could be interfaced with a genome-scale constraint-
based metabolic model. In this manner, detailed models
of the organelle in question could be combined with
global models for the rest of the cell.

8. MULTISPECIES DEVICES

In nature, environmental niches are often colonized by
microbial consortia rather than a single dominating
species. This may confer a group advantage to
cooperating species. In the bovine rumen, multispecies
microbial biofilms manage to degrade cellulosic
biomass (McAllister et al. 1994). Engineered co-
cultures may be able to achieve similarly difficult
tasks (Brenner et al. 2008).

Co-cultures have been applied to the breakdown of
lignocellulose, an important carbon source for biofuels
(Eiteman et al. 2008). In current industrial processes,
hydrolysis of lignocellulose yields a mix of five-carbon
sugars, such as xylose, and six carbon sugars, such as
glucose. In the presence of both xylose and glucose,
E. coli will preferentially feed on glucose first.
A co-culture of two E. coli strains, one that is deficient
in xylose usage and the other that is deficient in glucose
usage, breaks down the sugar mixture more effectively
than a monoculture (Eiteman et al. 2008).
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Synthetic biology offers a range of devices that may
allow the coordination of gene regulation between two
species, such as quorum-sensing cell–cell signalling
devices (Weber et al. 2007; Balagaddé et al. 2008;
Brenner et al. 2008). The major task of synthetic
devices in co-culture systems may be to exert a selective
pressure to maintain a co-culture. Advances in meta-
bolic modelling will improve our ability to design
dependencies between strains, such as a requirement for
cross-feeding.

9. CONCLUSIONS

The defining question of synthetic biology research
moving forward will not be whether biology can be
engineered, but how to develop engineering principles
for biological systems. Understanding natural regulat-
ory systems, developing improved regulatory systems
for synthetic devices and properly interfacing
synthetic devices with host cells will play a large role
in this process.

The synthetic devices presented here have demons-
trated that functioning devices can be constructed,
even though our understanding of biological systems is
incomplete. In the most promising cases, engineering
progress has also provided new biological insights.
There is also much to be learned from building
synthetic devices that do not work as planned.
Designing synthetic devices in an iterative fashion,
with experimental results allowing improved models
and vice versa, will allow increasingly complex device
designs. In addition, modelling shortfalls and unex-
pected experimental outcomes may shed light on new
mechanisms of endogenous biological regulation.

The success of synthetic biology endeavours depends
heavily on understanding how biological systems are
regulated. In natural systems, there are regulated
interactions between DNA, RNA, proteins and meta-
bolites. Identifying modular regulatory elements such
as promoters and riboswitches has been essential to the
progress of synthetic biology. There is considerable
evidence that genomic rearrangements and horizontal
gene transfer have driven the evolution of new
biological capabilities. Similarly, the identification of
biological modules that confer new functionality when
assembled in different contexts will drive the progress of
synthetic biology.
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Synthetic biologists combine modular biological ‘‘parts’’ to create higher-order devices. Metabolic
engineers construct biological ‘‘pipes’’ by optimizing the microbial conversion of basic substrates to
desired compounds. Many scientists work at the intersection of these two philosophies, employing
synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do
more than simply improve product yields; they can expand the array of products that are tractable to
produce biologically. In this review, we explore the application of synthetic biology techniques to next-
generation metabolic engineering challenges, as well as the emerging engineering principles for
biological design.
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1. Introduction

Engineering cellular metabolism requires an understanding of
the metabolic reactions involved as well as the regulatory
elements that affect metabolic throughput. Our ability as engi-
neers to modulate metabolic pathways has been augmented in
recent years by the influx of methods and biological devices from
the field of synthetic biology (Fig. 1).

A primary goal of synthetic biology is to develop engineering
principles for biology—to translate a quantitative understanding
of biological systems into a methodology for building living
devices out of standardized biological parts. The advent of cost
effective DNA sequencing and de-novo synthesis has resulted in a
tremendous increase in the number of potential biological parts
available to synthetic biologists (Boyle and Silver, 2009). The
development of assembly standards and open databases has
facilitated the development and sharing of these parts (Anderson
et al., 2010; Knight, 2003; Phillips and Silver, 2006) (http://
partsregistry.org/). The panoply of synthetic biological devices
developed over the last decade has demonstrated that quantitative
control over biological systems is possible in many contexts
(Agapakis and Silver, 2009; Arkin and Fletcher, 2006; Boyle and
Silver, 2009; Drubin et al., 2007; Endy, 2005; Haynes and Silver,
2009; Tyo et al., 2007).

Many synthetic biology endeavors also fall under the umbrella
of metabolic engineering. Maximizing the production of a desired
metabolite from a given feedstock mandates a quantitative

evaluation and adjustment of cellular metabolism. To achieve
this, synthetic biologists and metabolic engineers have sought
fundamental engineering principles for biology. These principles
have been inspired by traditional engineering disciplines as well
as the unique properties of biological systems. In this review, we
will explore both rational and evolutionary approaches to
improving metabolic pathways.

2. Transcriptional and translational pathway control

A central challenge for every metabolic engineering project is
to maximize product yields through pathway optimization
(Keasling, 2010). Natural metabolic pathways are controlled by
myriad regulatory systems, for example transcription factors and
promoters that can be repurposed by synthetic biologists to
modulate pathway components. Ideally, a quantitative under-
standing of the transcription, translation, interactions, and
kinetics of a metabolic pathway as well as how that pathway
interfaces with the host cell’s metabolism enables the metabolic
engineer to tune pathway components to maximize product
yields. In practice, our ability to tune pathways has improved as
the fundamental principles of metabolism and biological regula-
tion continue to be discovered.

Many synthetic regulatory devices to date have leveraged
elements of biology’s ‘‘central dogma’’—transcription, translation,
as well as RNA processing—to modulate device behavior (Boyle
and Silver, 2009). In the context of metabolic engineering,
modifications to biological regulation are intended to maximize
metabolic flux to the desired product. In most cases, this is
accomplished via adjustments in enzyme expression levels, along
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with the elimination of competing pathways via gene knockout
(Stephanopoulos, 1999).

The structure and function of evolved metabolic networks
suggests that this process of pathway optimization requires an
understanding of how control is distributed across the entire
pathway (Dekel and Alon, 2005; Fell, 1997; Zaslaver et al., 2004).
In essence, pathway optimization is a multivariate problem, with
no single ‘‘rate limiting step’’ to target. Furthermore, simple
overexpression of pathway enzymes is often detrimental to
product yields, through both the depletion of essential cellular
reserves and the buildup of toxic metabolic intermediates (Alper
et al., 2005; Jones et al., 2000; Raab et al., 2005). Efforts to model
synthetic biological circuits have also revealed that desired device
behavior is highly dependent on the concentration of the device
components within cells (Ajo-Franklin et al., 2007; Anderson
et al., 2007; Elowitz and Leibler, 2000). As a consequence,
methods for the control of protein expression levels are essential
to metabolic engineering and synthetic biology in general.

2.1. The rational approach

Ideally, a quantitative understanding of the pathway to be
engineered can allow metabolic engineers to determine optimal
expression level of pathway elements a priori. Synthetic biologists
have found that tight control of protein concentrations is required
to achieve robust behavior of genetic circuits (Ajo-Franklin et al.,
2007; Anderson et al., 2007; Boyle and Silver, 2009). Forward
engineering of metabolic pathways can be facilitated by a variety
of standardized and characterized control elements available to
the metabolic engineering community.

For decades, promoter elements have been used to modify
gene expression (Reznikoff et al., 1969). In recent years, a number
of groups have assembled and characterized promoter libraries

for common industrial hosts, such as Escherichia coli, Saccharo-
myces cerevisiae, and Pichia pastoris (Alper et al., 2005; Cox et al.,
2007; Davis et al., 2010; Hartner et al., 2008; Nevoigt et al., 2006).
In each case, native promoters were mutated or recombined to
generate a group of promoters of varying strengths. Work has
begun to develop standard metrics for promoter characterization,
but remains dependent on high-throughput screening of promo-
ter libraries rather than in silico prediction (Bayer, 2010; Kelly
et al., 2009). This issue is compounded by the contextual varia-
bility of expression levels in response to environmental factors
such as temperature or carbon source (Kelly et al., 2009).

Ribosome Binding Sites (RBS) mediate translation initiation,
with variation in RBS sequence directly affecting translation
efficiency. Thermodynamic models of translation initiation have
been generated that now allow a priori design of RBS appropriate
for a desired expression level. The RBS Calculator (http://salis.psu.
edu/software/) generates a customized RBS for a given gene based
on the desired translation initiation rate, gene sequence, and host
organism. The RBS Calculator was successfully utilized to predict
RBS combinations that would permit the desired operation of a
synthetic AND gate (Salis et al., 2009), a device that is highly
dependent on the expression levels of the inputs to produce AND
gate output (Anderson et al., 2007).

Modification of RNA degradation rates can also control steady-
state expression levels. In S. cerevisiae, the Rnt1p RNAse recog-
nizes and cleaves a specific class of RNA hairpin (Lamontagne
et al., 2003). When Rnt1p target hairpins are placed in the
untranslated region (UTR) of an mRNA transcript, Rnt1p degrada-
tion lowers the effective expression level of the target gene. A
library of variable Rnt1p target hairpins has been constructed that
permits quantitative control of S. cerevisiae gene expression
(Babiskin and Smolke, 2011). A subset of this library was inserted
into the 30 UTR of GFP, mCherry, and squalene synthase (ERG9).

Fig. 1. Parts and pipes for the optimization of metabolic pathways. (A) Synthetic biologists use a variety of parts to adjust the functioning of metabolic pathways.
Transcription machinery, enzyme promoters, ribosome binding sites (RBS), and translational machinery can be modified to adjust the concentration of an enzyme. RNA
devices can modulate mRNA degradation and translation efficiency. Pathway enzymes can be assembled on scaffolds to optimize the spatial organization of a pathway.
Genome editing approaches can be used to adjust host metabolism to improve flux through the target pathway. (B) A ‘‘pipe’’ of key pathway enzymes can be tuned to
increase product titers. In this conceptual example, enzyme flux is represented by the size of the gray arrows. Metabolite concentrations are represented by the size of the
circles between enzymes. In this example, increasing the concentration of the second and third enzymes in the pathway increases the titer of the product. Note that
decreasing the concentration of intermediate metabolites can be beneficial; this is often the case when intermediates are harmful to the host cell. Increasing enzymes does
not always improve product titers and can in fact be detrimental. In this review, we present synthetic biological parts that enable optimization of metabolic pipes.
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The strong rank order correlation of expression level between the
GFP and mCherry variants (r¼0.848) and between the GFP and
ERG9 variants (r¼0.844) indicates that Rnt1p elements are
largely modular (Babiskin and Smolke, 2011).

Constitutive promoters and RNA elements are useful for
maintaining a steady-state expression level. In a non-steady-state
environment, cells maintain homeostasis by reacting to environ-
mental changes; endogenous metabolic pathways dynamically
respond to changes in intracellular metabolite concentrations.
Regulated gene expression (Beckwith, 1967; Jacob and Monod,
1961), RNA riboswitches (Mandal and Breaker, 2004), and allos-
teric control of enzyme activity (Monod et al., 1963) provide this
control over a wide range of contexts and timescales. Designing
similar dynamics into engineered pathways could improve the
performance of engineered strains at industrial scales, where
reactor conditions are not always uniform (Holtz and Keasling,
2010).

Modular RNA elements can be designed to provide a dynamic
response to intracellular metabolite levels. Riboswitches are
natural RNA elements that undergo a conformational change in
response to a small-molecule ligand. When riboswitches are part
of an mRNA molecule, this conformational change modulates the
translation of the mRNA sequence. (Nahvi et al., 2002; Stoddard
and Batey, 2006). Many riboswitches have been discovered in
untranslated regions of mRNAs encoding for metabolic enzymes,
offering a post-transcriptional layer of control over enzyme levels.

The potential for RNA-based multisite pathway modulation is
exemplified in the 11 known S-adenosylmethionine (SAM)
dependent riboswitches of Bacillus subtilis. In B. subtilis, much of
the methionine biosynthesis pathway is regulated by SAM
dependent riboswitches. These riboswitches function primarily
through SAM-dependent conformational changes that trigger
premature transcriptional termination, although a smaller subset
disrupts translation initiation instead. Remarkably, each of the 11
riboswitches is independently tuned to a different SAM concen-
tration. Furthermore, the termination efficiency of each SAM
riboswitch in both the ligand bound and unbound conformations
are different for each gene (Tomsic et al., 2008). Augmenting
engineered metabolic pathways with small-molecule responsive
RNA regulators could offer similarly distributed control (Beisel
and Smolke, 2009).

A variety of synthetic RNA regulators have been designed to
control gene expression. Synthetic RNA regulators can interact in
cis with mRNA via aptamer domains to respond to small mole-
cules (Bayer and Smolke, 2005; Win and Smolke, 2008), or make
use of trans-acting RNA elements expressed off of an inducible
promoter (Callura et al., 2010; Isaacs et al., 2004). Robust methods
have been developed for the selection of RNA aptamer domains
(Gilbert and Batey, 2005), and modular RNA elements can be
combined to generate higher-order behaviors. For example, pairs
of RNA aptamer domains alternately promoting or inhibiting
translation of a transcript can serve as ‘‘bandpass filters,’’ permit-
ting mRNA translation between the range of concentrations set by
the aptamer domains (Win and Smolke, 2008) (Fig. 2). Combining
promoters and RBS tuned for steady-state performance with
dynamically regulated RNA regulators may improve the robust-
ness of engineered pathways.

2.2. The rationally irrational approach

Synthetic biologists strive to make biology ‘‘engineerable‘‘—to
discover modular biological elements that can be predictably
assembled and designed to function robustly. Efforts to produce
and characterize libraries of standardized parts have made pro-
gress towards this goal, yet the complexity of biological systems
has kept biological engineering firmly in the trial and error stage.

Even synthetic devices with well-defined parameters for desired
behavior require exhaustive characterization of the biological
components to achieve functionality (Ajo-Franklin et al., 2007;
Anderson et al., 2007). However, trial and error through the
process of evolution has generated the biological diversity that
synthetic biologists seek to redesign. In addition to traditional
engineering principles, engineers of biological systems have
access to the tools of selection and evolution; these tools can be
leveraged to discover improvements to metabolic pathways. The
ability to use these ‘‘rationally irrational’’ approaches is a core
advantage to engineering biological systems.

Early metabolic engineering efforts relied on genomic mutagen-
esis to generate strains with desired properties (Stephanopoulos,
1999). If the phenotype of interest is accessible via a single
mutation, mutagenesis is an acceptable approach. If the desired
phenotype requires multiple mutations, however, the combinator-
ial expansion of the library size required to identify that phenotype
makes untargeted mutagenesis practically infeasible (Dietrich et al.,
2010b). Generating variation in a targeted subset of the genome
enriches the resulting library for mutants with relevant phenotypes
(Carr and Church, 2009).

Mutagenesis of the cellular transcriptional machinery can be
used to adjust gene expression levels. In engineered cells, endo-
genous regulation often interferes with the functioning of hetero-
logous pathways. Global Transcription Machinery Engineering
(gTME) is an approach that modifies relative transcription rates
across all genes simultaneously by selectively mutagenizing genes
involved in the initiation of transcription. For example, mutagen-
esis of the S. cerevisiae TATA-binding protein SPT15 and selection
for improved ethanol tolerance yielded a mutant with a 20%
higher biomass yield than the parent strain (Alper et al., 2006).
GTME in E. coli, targeting the primary sigma factor s70, saw similar
gains when applied to ethanol tolerance as well as 50% gains when
applied to lycopene production (Alper and Stephanopoulos, 2007).

Fig. 2. An RNA-regulated bandpass filter. Two modular RNA regulators added to
the 30 untranslated region of an mRNA can be used to control mRNA translation in
response to the concentration of a small molecule. Each regulator contains a self-
cleaving ribozyme, coupled to an RNA aptamer domain. The activator gate
ribozyme is repressed by the inducer, while the inverter gate ribozyme is activated
by the same inducer. If the inducer concentration is between the ligand-binding
thresholds of the two gates, both ribozymes are inactive and translation of the
transcript is permitted (Win and Smolke, 2008).
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A more targeted approach to pathway adjustment is to
selectively alter the regulation of pathway genes. Introducing
RNAse cleavage sites or hairpin structures that alter mRNA
stability into intergenic regions can result in different translation
rates for two ORFs on the same mRNA (Smolke et al., 2000).
Tunable Intergenic Regions (TIGR) are synthetic RNA constructs
that include two hairpins joined by a RNAse cleavage site, and can
be used to connect co-transcribed ORFs. Libraries of TIGR ele-
ments with a wide variety hairpin structures can be inserted
between two co-transcribed genes to screen for optimal transla-
tion ratios (Pfleger et al., 2006).

TIGR elements have been used to improve the production of
mevalonate in E. coli (Pfleger et al., 2006). This pathway requires
the expression of acetoacetyl-CoA thiolase (AtoB), as well as the
heterologous expression of hydroxy-methylglutaryl-CoA synthase
(HMGS) and hydroxy-methylglutaryl-CoA reductase (HMGR).
Inserting a library of TIGR elements into the AtoB-HMGS-HMGR
operon identified a combination that increased mevalonate titers
seven-fold over the initial AtoB-HMGS-HMGR operon. Each of the
four best mevalonate producers identified in the screen lowered
the expression levels of HMGS and HMGR relative to AtoB (Pfleger
et al., 2006). HMG-CoA, the product of HMGS, was later shown to
be cytotoxic to E. coli (Kizer et al., 2008); the best operons
identified in the TIGR-mevalonate screen maintained or lowered
HMG-CoA concentrations 11 h post-induction versus the parent
strain (Pfleger et al., 2006).

New mutagenesis strategies are enabling iterative and simulta-
neous mutation of gene regulatory elements. Multiplex Automated
Genome Engineering (MAGE) is a high throughput technique for the
directed evolution of microbial genomes (Wang et al., 2009). MAGE
combines both rational design and directed evolution approaches;
specific genomic targets are selected for mutagenesis. For each
genomic target, pools of degenerate oligonucleotides that retain
homology to the target sequence are electroporated into the cells to
be engineered. Multiple pools of oligonucleotides can be combined
in a single electroporation step, allowing multiple genomic loci to
be modified simultaneously. Iterative rounds of electroporation and
growth generate a mixed population of cells with a variety of
mutations at loci of interest (Fig. 3).

The utility of MAGE in improving pathway flux was evaluated
in the context of engineered lycopene production in E. coli.
Twenty endogenous genes known to affect lycopene yields were
targeted with alternative RBS oligos. Simultaneously, four genes
known to direct flux to competing pathways were targeted with
oligos harboring nonsense mutations. Over 35 MAGE cycles,
approximately 15 billion genetic variants were generated. Screen-
ing colonies based on the red pigmentation of lycopene identified
a variant that produced fivefold more lycopene than the parent
strain (Wang et al., 2009).

Combinatorial approaches are powerful tools for pathway optimi-
zation because they can adjust multiple gene levels simultaneously.
Iterative pathway improvement, in which a single gene level is
adjusted at a time, can fail to identify global maxima accessible by
simultaneous perturbation (Alper and Stephanopoulos, 2007). Both
gene knockout and upregulation studies have shown that mutations
often interact in a cooperative and non-linear manner with regards to
metabolite production (Kennedy et al., 2009). As a further complica-
tion, many modern metabolic engineering efforts involve the hetero-
logous expression of enzymes from several different species in an
unoptimized host (Agapakis et al., 2010; Bayer et al., 2009; Martin
et al., 2003; Ro et al., 2006). Engineering these chimeric pathways to
interface with host metabolism demands many factors be adjusted
simultaneously.

Generating genomic or pathway-specific variation in gene
regulation is only the first step in pathway optimization. Each
approach outlined in this section was paired with a screening or

selection strategy to identify improved product yields. Pathways
that are not observable via high-throughput assays are less
amenable to screening approaches. Selection strategies that con-
nect pathway output to cell viability are designed ad hoc, and
success is not guaranteed (Dietrich et al., 2010a). The lack of
generalized methods for pathway screening and selection cur-
rently limits the broad application of combinatorial pathway
optimization methods.

3. Spatial pathway control

The spatial organization of cellular components is tightly con-
trolled in all organisms, including prokaryotes. For example, many
cyanobacteria target photosystems and electron transport machinery
to a highly ordered thylakoid membrane (Nelson and Yocum, 2006),
while maintaining carbon fixation enzymes in separate protein-
bound compartments positioned along the cell axis (Savage et al.,
2010) (Fig. 4C and D). Co-localization of pathway enzymes to the
same subcellular organelle or compartment can increase the local
concentration of pathway intermediates and exclude competing
cytosolic pathways. Multienzyme complexes often arrange enzymes
in defined stoichiometric ratios to improve enzyme saturation (Zhou
et al., 2001). Direct linkage of enzyme active sites via substrate
tunnels has also been observed in nature, such as in the synthesis of
tryptophan (Hyde et al., 1988). The success of spatial pathway control
in nature has led synthetic biologists to develop methods for
adjusting the physical arrangement of metabolic pathways.

3.1. Scaffolds

Co-localization of related enzymes via direct linkage or scaf-
fold proteins is an evolutionary development that has inspired
new approaches to metabolic engineering. Polyketide synthases
are modular enzymes that pass the growing polyketide chain
from one enzymatic module to the next, much like an assembly
line (Menzella et al., 2005). Cellulosomes are massive bacterial

Grow cells to 
mid-log phase,

induce β protein

Add oligonucleotides 
and electroporate

Recover cells in 
new media

Fig. 3. The Multiplex Automated Genome Engineering (MAGE) cycle. MAGE
incorporates oligonucleotides into E. coli by electroporation, with the l-Red b
protein integrating the oligonucleotides into the genome. Oligonucleotides can be
synthesized to introduce mutations at precise genomic loci. Iterated rounds of
MAGE introduce increasing amounts of diversity at these loci, although many cells
are killed at the electroporation step (Wang et al., 2009).
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complexes that arrange enzymes on scaffolds on the cell surface.
The highly ordered arrangement of cellulosome enzymes facil-
itates the breakdown of plant cellulose, and work to heterolo-
gously express cellulosome assemblies has demonstrated that
scaffolding increases enzyme activity in a cooperative manner
(Gilbert, 2007; Mitsuzawa et al., 2009; Moraı̈s et al., 2010a,
2010b; Tsai et al., 2009).

Synthetic scaffolds have been constructed to improve the
production of mevalonate (Dueber et al., 2009). As with the
application of TIGR elements to the mevalonate pathway, the
enzymes AtoB, HMGS, and HMGR were co-expressed in E. coli.
Attachment of these enzymes to a scaffold protein was achieved
by fusing the enzymes to the metazoan protein–protein interac-
tion ligands GBD, SH3, and PDZ, respectively. Co-expressing a
synthetic scaffold protein with cognate binding domains for the
protein tags permitted all three enzymes to co-localize on the
scaffold (Fig. 4A). Varying the number and order of binding sites
for each tag allowed the enzyme stoichiometry on the scaffold to
be tuned, as well as the relative positioning of each enzyme
(Dueber et al., 2009).

Attaching the mevalonate pathway to the scaffold resulted in a
striking 77-fold improvement in mevalonate yield over the
unscaffolded pathway (Dueber et al., 2009). The scaffolding
system appears to be generalizable to other metabolic pathways,
as demonstrated by the use of the same scaffolding system for the
production of glucaric acid in E. coli. Once again, the scaffold
boosted product titers, with adjustments to scaffold binding site
ratios increasing titers fivefold over the parent strain (Dueber
et al., 2009; Moon et al., 2010).

The GBD/SH3/PDZ scaffolding system has been extended to a
heterologous hydrogen production pathway (Agapakis et al.,
2010). Pyruvate:ferredoxin oxidoreductase (PFOR) from Desulfo-
vibrio africanus and ferredoxin and an [FeFe]-hydrogenase from
Clostridium acetobutylicum were heterologously coexpressed with
a scaffold. Unlike the mevalonate or glucaric acid pathways, the
key intermediate for hydrogen production is not a small molecule.
Instead, PFOR reduces the ferredoxin protein, which delivers the
electrons to the hydrogenase. Despite this important difference,
placing pathway components on a synthetic scaffold also resulted

in increased product yields. The length of the linker between each
component and the scaffold-binding ligand, the distance between
binding sites on the scaffold, and the ratio and order of ligand
binding sites all affected pathway yields. The study saw a
threefold increase in hydrogen production with the best scaffold
configuration over an unscaffolded parent strain. This work, along
with evidence from natural and engineered signaling pathways
(Bashor et al., 2008), demonstrate the utility of scaffolding in
improving the specificity of protein–protein interactions.

Structural RNA and DNA devices are powerful alternatives to
protein structures for spatially arranging biological parts. Tools
for predicting secondary structures from the primary nucleic acid
sequence are becoming sufficiently robust to enable the design of
new RNA and DNA structures ab initio (Andronescu et al., 2004;
Douglas et al., 2009). The field of DNA nanotechnology has
demonstrated the versatility of DNA as a structural molecule
(Aldaye et al., 2008; Shih and Lin, 2010), and RNA-based designs
are beginning to be constructed in much the same manner
(Chworos et al., 2004; Guo, 2010).

Functional in vivo RNA architectures were recently developed
to scaffold a metabolic pathway. These RNA assemblies were used
to coordinate the PFOR/ferredoxin/hydrogenase system in E. coli.
Hydrogenase and ferredoxin proteins linked to PP7 and MS2
aptamer proteins were spatially organized onto an extended
RNA scaffold bearing the corresponding RNA aptamers (Fig. 4B).
As with the GBD/SH3/PDZ scaffold, hydrogen production bene-
fited from scaffolding: the RNA scaffold increased hydrogen yield
by 48-fold over the unscaffolded system (Delebecque et al., 2011).
Since a vast array of multidimensional structures has already
been designed with nucleic acids (Aldaye et al., 2008; Shih and
Lin, 2010), there is great potential in the exploration of complex
geometries for spatial optimization of metabolic pathways.

The exact mechanism behind yield improvements seen with
scaffolds in various applications remains unclear (DeLisa and
Conrado, 2009). Protein intermediates such as ferredoxin, which
diffuse more slowly than small molecules, are likely to benefit
from the local increase in concentration afforded by tethering to
the scaffold (Agapakis et al., 2010; Cironi et al., 2008). For
pathways with small molecule intermediates, it is more difficult

S. chlorophenolicum
R. metallidurans

Hg(II) Hg(0)

PCP

degradation
products

PDZSH3GBD

HMGS
AtoB

HMGR

PP7MS2

Fd
H2 ase

5'

3'

Fig. 4. Spatial optimization in natural and synthetic pathways across multiple scales. (A) At the protein scale, synthetic scaffolds can be used to bind mevalonate pathway
enzymes in close proximity to each other. The scaffold contains binding domains for the GBD, SH3, and PDZ protein tags (Dueber et al., 2009). (B) Synthetic scaffolds also
work for electron-transfer proteins, such as ferredoxin (Fd) and an [FeFe]-hydrogenase (H2ase). In this example, an RNA scaffold was used to coordinate hydrogen
production. RNA aptamers specific for the MS2 and PP7 protein tags allow control over enzyme binding. A 50 extension (shown in green) allows attachment of this RNA
building block onto extended scaffold architectures (Delebecque et al., 2011). (C) The carboxysome coordinates enzymes at a larger subcellular scale. RuBisCO (green) is
tightly packed inside the icosahedral carboxysome shell (yellow). Carbonic anhydrase (not shown) provides RuBisCO with gaseous CO2 inside the carboxysome (Savage
et al., 2010). Carboxysome image used with permission from Bruno Afonso and David Savage. (D) At the cellular scale, carboxysomes in S. elongatus are evenly spaced
across the length of the cell (Savage et al., 2010). (E) At the multicellular scale, microbial consortia can be assembled via microfluidic devices. Fibers of the PCP-degrading S.
chlorophenolicum can be protected from Hg inhibition when coated with the Hg-reducing R. metallidurans (Kim et al., 2011).
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to prove that the local concentration of metabolic intermediates is
increased near the scaffold. In the case of the mevalonate, the
results are certainly indicative of increased pathway flux, as
buildup of HMG-CoA is toxic to E. coli (Dueber et al., 2009).
Importantly, synthetic scaffolds offer an elegant mechanism for
balancing pathway flux through the precise adjustment of
enzyme stoichiometries.

3.2. Subcellular compartments

Membrane- and protein-bound compartments encapsulate
metabolic processes in prokaryotes and eukaryotes. Active trans-
port or selective diffusion can boost substrate concentrations as
well as protect a pathway from competing reactions. Compart-
ments often host metabolic reactions that are harmful to the rest
of the cell, or are thermodynamically infeasible in the cytoplasm
(Chance et al., 1979; Feldman and Sigman, 1983; Page et al., 1998).

Many prokaryotes target critical metabolic reactions to pro-
tein-bound microcompartments. Perhaps the most well-studied of
these compartments is the bacterial carboxysome, a structure that
contains the key carbon fixation enzymes ribulose-1.5-bispho-
sphate carboxylase-oxygenase (RuBisCO) and carbonic anhydrase
(Fig. 4C). The carboxysome is an evolutionary adaptation for a
difficult metabolic task: to promote the fixation of gaseous carbon
dioxide by RuBisCO while preventing oxygen from interfering with
the reaction. The intricate organization of carboxysomes within
Synechococcus elongatus suggests that the spatial positioning of
carbon fixation is vital, even at the micron scale (Savage et al.,
2010). Given the need for carbon-neutral or carbon-negative fuel
sources (Savage et al., 2008), the bacterial carbon fixation machin-
ery is a likely target for metabolic engineering.

Recent work has raised the possibility of repurposing prokar-
yotic microcompartments for metabolic engineering. The propa-
nediol utilization (pdu) machinery of several bacterial species is
enclosed in a proteinaceous shell much like a carboxysome
(Parsons et al., 2008; Yeates et al., 2011). The pdu ‘‘metabolo-
some’’ of Citrobacter freundii was shown to confer the ability to
metabolize propanediol when expressed heterologously in E. coli.
Furthermore, electron micrographs appear to show successful
assembly of the pdu shell proteins to form microcompartments
in E. coli (Parsons et al., 2008). Intriguingly, there is evidence that
the N-terminal domains of non-shell pdu proteins can be appro-
priated to target heterologous proteins to the metabolosome
interior (Fan et al., 2010; Parsons et al., 2010). The pairing of
microcompartment shells with novel biosynthetic pathways may
expand the reach of bacterial metabolic engineering.

In eukaryotes, methods have been developed for the targeting
of heterologous proteins to many membrane-bound organelles
(Hood and Silver, 1999; Léon et al., 2006; Soll and Schleiff, 2004;
Truscott et al., 2003). Efforts to synthesize methyl halides in S.
cerevisiae have demonstrated the utility of localizing exogenous
enzymes in appropriate subcellular environments. Researchers
noted that the primary substrates of methyl halide transferases
(MHT), SAM, and halide ions are sequestered in the yeast vacuole.
Targeting the MHT from Batis maritima to the vacuole increased
yields of methyl iodide by nearly 50 mg/L-h over targeting the
identical MHT to the cytosol (Bayer et al., 2009). The benefits of
compartmentalization are likely to be even greater for the
heterologous expression of biosynthetic pathways that require
an organelle, such as penicillin synthesis (Gidijala et al., 2009;
Meijer et al., 2010).

3.3. Microbial consortia

The natural world has demonstrated that consortia and com-
munities of organisms are capable of performing metabolic

conversions that are difficult or thermodynamically unfavorable
to do in a single cell (Wintermute and Silver, 2010a). From an
engineering perspective, co-culture offers many of the same
advantages as subcellular compartmentalization: incompatible
metabolic reactions can be conducted in separate organelles or
cells. The bovine rumen, which is itself compartmentalized,
harbors a rich assortment of microorganisms that together
metabolize cellulose (Annison and Bryden, 1998; Hungate,
1947; McAllister et al., 1994). Even communities of soil bacteria
appear to be highly ordered (Young and Crawford, 2004). The
success of microbial cooperation in the natural world has inspired
efforts to engineer synthetic microbial consortia (Brenner et al.,
2007, 2008; Eiteman et al., 2008; Kim et al., 2008; Shou et al.,
2007; Wintermute and Silver, 2010b).

In recent years, efforts to model and construct stable engi-
neered co-cultures have intensified in the systems and synthetic
biology communities. Synthetic consortia have been established
through the exchange of signaling molecules governing quorum-
sensing circuits (Brenner et al., 2007) as well as the exchange of
essential metabolites among complementary auxotrophs (Shou
et al., 2007; Wintermute and Silver, 2010b). Constraint-based
modeling frameworks familiar to metabolic engineers have been
adapted to multi-organism systems, facilitating the development
of compatible synthetic consortia (Klitgord and Segr!e, 2010;
Wintermute and Silver, 2010b).

As with proteins, the spatial arrangement of microbial con-
sortia can be optimized for greater product yields. In a unique
approach, wild-type Sphingobium chlorophenolicum and Ralstonia
metallidurans were used as modular parts to assemble a structure
capable of degrading pentachlorophenol (PCP) in the presence of
Hg(II) (Kim et al., 2011) (Fig. 4E). PCP and Hg(II) are particularly
harsh industrial pollutants that are often produced together.
While S. chlorophenolicum is capable of degrading PCP, it is
inhibited by Hg(II). R. metallidurans, a mercuric ion reducer, can
reduce Hg(II) to Hg(0). Microfluidic laminar flow devices were
used to assemble fibers of S. chlorophenolicum wrapped in a
protective shell of R. metallidurans. The hybrid fibers were capable
of fully degrading 120 mM PCP in the presence of micromolar
Hg(II). A well-mixed solution of both species was essentially
incapable of PCP degradation.

Synthetic microbial consortia consisting of wild-type organ-
isms may be well suited for bioremediation and other ecologically
sensitive applications. Wild-type organisms are not subject to
laws and regulations concerning the deployment of genetically
modified organisms into the environment. Ideally, spatially opti-
mized consortia assembled of species native to polluted areas
could be administered to accelerate the bioremediation process.
The possibility of engineered microbes simultaneously obsoles-
cing harsh industrial processes while cleaning up existing indus-
trial pollution is an attractive vision for the future.

4. Modeling and measuring the metabolic network

In many ways, metabolites are the ‘‘dark matter’’ of the
cell—their existence, intracellular concentrations, and fluxes are
difficult to derive from genomic information and difficult to
experimentally measure (Blow, 2008). Combining tools for char-
acterizing the status of the metabolome with robust metabolic
models is a foundational mission for systems and synthetic
biology.

Genome-scale constraint-based models of cellular metabolism
have been invaluable tools for in silico screening of mutant
backgrounds suitable for metabolic engineering. These models
incorporate the stoichiometry of all known metabolic reactions in
a cell subject to linear or quadratic constraints, such as mass
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balance, media composition, and thermodynamic limits on flux
direction (Schellenberger et al., 2011; Segr!e et al., 2002; Varma
and Palsson, 1994). The result is a steady-state approximation of
metabolic fluxes. Metabolic reactions can be added and removed
to model heterologous gene expression and gene knockouts,
respectively. Models of this type have successfully been employed
to identify genetic modifications to improve product yields (Bro
et al., 2006; Brochado et al., 2010; Burgard et al., 2003; Kennedy
et al., 2009; Pharkya et al., 2004).

In order to model the entire metabolic network, constraint-
based models eschew kinetic parameters and do not predict
metabolite concentrations (Varma and Palsson, 1994). More
quantitative approaches such as Metabolic Control Analysis are
also more dependent on experimentally determined parameters;
errors in parameter estimation become increasingly problematic
as the model size increases (Schuster, 1999). Thus, constraint-
based models are preferable for the forward engineering of the
metabolic network, while detailed kinetic models of select path-
ways are beneficial for pathway tuning. As with all biological
modeling, experimental analysis is crucial for evaluating the
predictive value of metabolic models in a given context.

Multiple studies have attempted to reconcile transcriptome
data with proteomic or metabolomic measurements in engi-
neered cells (Bradley et al., 2009; Fendt et al., 2010; Ishii et al.,
2007; Moxley et al., 2009). The integration of -omics level data
with network-scale metabolic models benefits both a priori
prediction as well as post hoc evaluation of metabolic engineering.
In particular, developing quantitative models for the relationship
between transcript levels and metabolite pools and fluxes would
allow metabolomic data to be inferred from the vast number of
microarray datasets that are already available (Yizhak et al.,
2010). The chemically uniform nature of mRNA transcripts allows
the reliable collection of total mRNA in a single extraction
condition. Due to the chemical diversity of small molecules
within cells, extraction conditions limit the extent of the meta-
bolome that is observed (Yanes et al., 2011).

Coordination between gene expression and metabolite con-
centrations appears to be dependent on the type of perturbation.
Comparison of the transcriptome and metabolome in E. coli over a
range of growth rates revealed that enzyme transcript and protein
levels increased with increasing growth rates while metabolite
pools remained steady (Ishii et al., 2007). It was also noted that
gene deletions that reverse the flux direction of the pentose
phosphate pathway did not significantly alter enzyme levels or
metabolite pool sizes. In addition, it was observed that metabolic
enzymes do not appreciably up-regulate to compensate for
enzyme knockouts (Ishii et al., 2007). Another study comparing
the transcriptome and metabolome of S. cerevisiae during carbon
and nitrogen starvation observed coordinated changes in expres-
sion and metabolite levels. In this study, a network model
identified novel coordinated gene-metabolite pairs in this dataset
(Bradley et al., 2009).

Further work is required to identify contexts in which tran-
script levels correlate to metabolite concentrations. Comparison
of the above studies suggests a differential metabolic response to
enzyme knockouts versus shifting media conditions (Bradley
et al., 2009; Ishii et al., 2007); this could be a consequence of
evolutionary selection for robustness against condition changes
(Cornelius et al., 2011; Segr!e et al., 2002). Alternatively, E. coli and
S. cerevisiae may simply respond differently to metabolic pertur-
bations. A significant confounding issue is that major metabolic
flux alterations can occur without major shifts in enzyme or
metabolite concentrations (Fell, 1997; Ishii et al., 2007).

Two recent studies measured transcriptomic and metabolomic
shifts in S. cerevisiae in response to the deletion of global
regulatory genes rather than enzymes (Fendt et al., 2010;

Moxley et al., 2009). Following the deletion of the Gcn4p, a global
stress response regulator, it was observed that flux control was
highest among metabolites that were involved in many enzy-
matic reactions (Moxley et al., 2009). This raises the possibility of
utilizing network topology to inform metabolic engineering. In
the case of central carbon metabolism, deletion of the glycolysis-
activating transcription factor Gcr2p showed a negative correla-
tion between enzyme levels and associated metabolite levels
(Fendt et al., 2010). This could be indicative of a buffering
phenomenon, in which changes in metabolite pools counteract
enzyme concentration changes to maintain a steady pathway flux.

A grand unifying theory of metabolism has not yet arisen from
these meta-omics studies. It is possible that a truly general
relationship between gene expression and metabolic concentra-
tions does not exist but several important observations about
their correlation have been made. Overall, it appears that evolved
metabolic networks are quite robust in response to genetic and
environmental perturbations. This is corroborated by many of the
metabolic engineering efforts that we have reviewed, in which
multiple perturbations were required to improve product yields.
This could also explain why conservative modeling frameworks
such as Minimization of Metabolic Adjustment (MOMA) are often
more accurate than models that assume that mutant flux is
optimized for maximum growth. Instead, MOMA-derived solu-
tions assume that mutant fluxes are regulated by the cell to
approximate the wild-type flux distribution (Segr!e et al., 2002).
Integrative data from –omics scale datasets may help to identify
genes that disrupt the resistance to perturbations in pathways of
interest.

5. Conclusions

As a practical application of synthetic biology, metabolic
engineering has field-tested emerging biological design princi-
ples. Through these efforts, it has become increasingly apparent
that rational design approaches are limited by our understanding
of biological systems. The complexity of living cells far surpasses
the complexity of human-made devices. The tremendous
improvement in DNA sequencing and assembly techniques is
now bringing about an era in which cells themselves can be man-
made devices (Benders et al., 2010; Gibson et al., 2010; Lartigue
et al., 2009), but our ability to modify cells has outpaced our
ability to predict how those modifications will function. Fortu-
nately, the ability of living systems to self-replicate has led animal
and plant breeders, geneticists, molecular biologists, metabolic
engineers, and now synthetic biologists to utilize selective pres-
sure in their research.

Incorporating irrational design into synthetic biology does not
require an abandonment of forward engineering approaches.
Instead, the emerging engineering design cycle of synthetic
biology and metabolic engineering appears to include both in
silico modeling and prediction as well as directed evolution and
screening. Similarly, experimental analysis remains invaluable for
hypothesis generation as well as confirmation. In our own work,
we utilized FBA to predict knockout combinations in S. cerevisiae
likely to increase production of formic acid. Our initial strain
produced formic acid as predicted, but at modest levels. Expres-
sion analysis and metabolic phenotyping allowed us to identify
further genetic interventions that boosted formic acid titers
(Kennedy et al., 2009). In the case of the mevalonate-based
isoprenoid pathway, transcriptomic and metabolomic methods
revealed that the cytotoxicity of HMG-CoA was causing stress
responses that negatively impacted isoprenoid titers (Kizer et al.,
2008; Martin et al., 2003). Based on these experiments, research-
ers were able to counteract the effect by varying pathway
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expression levels (Pfleger et al., 2006), by the addition of palmitic
acid (Kizer et al., 2008), and by the use of engineered scaffolds
(Dueber et al., 2009). Undoubtedly genome-scale optimization
approaches such as gTME and MAGE can identify further regula-
tory adjustments that have not been predicted.

The ability to synthesize any DNA sequence has increased the
reach of metabolic engineering. Modern metabolic engineering
efforts often assemble parts from disparate species into novel
pathways. Recent work to produce fatty acids in E. coli utilized
heterologous genes from S. cerevisiae, M. musculus, A. calcoaceticus,
A. baylyi ADP1, Z. mobilis ZM4, C. stercorarium, B. ovatus, U.
california, C. hookeriania, and A. thaliana, sampling multiple
expression level combinations (Steen et al., 2010). Low-cost
synthesis will undoubtedly drive more ‘‘synthetic metagenomics’’
studies, in which libraries of homologous enzymes are synthe-
sized and evaluated (Bayer et al., 2009). Demands for renewable
energy have led synthetic biologists to construct more spatially
complex pathways, such as the expression of the electron transfer
apparatus in E. coli (Jensen et al., 2010). Exploring all relevant
expression level variants and spatial arrangements becomes
increasingly difficult in these complex pathways.

The engineering of complex pathways can be divided into two
stages: a proof of concept stage where novel enzyme combina-
tions are determined to produce a desired product, and an
optimization stage where regulatory adjustments are made to
improve product yields. As engineered biosynthetic pathways
become more complex, they also become more difficult to tune.
New biofabrication facilities such as the BIOFAB (http://www.
biofab.org/) seek to abstract pathway optimization from pathway
design by developing rapid prototyping services. The BIOFAB is
intended to provide new libraries of characterized regulatory
elements, as well as facilitate prototyping of collaborator’s syn-
thetic devices via high-throughput cloning and testing (Bayer,
2010). Applying forward engineering and directed evolution
approaches in a high-throughput manner will generate parts
and data that will improve our ability to rationally engineer cells.

The growth of synthetic biology has often been compared to
the personal computer revolution of the late twentieth century.
The home personal computer was made possible by the avail-
ability of high-quality off-the-shelf electronic components that
could be assembled by technically inclined enthusiasts. Molecular
biologists have generated a vast assortment of biological parts,
but inadequate characterization has limited their general useful-
ness. In many ways, the current stage of synthetic biology is more
analogous to the early days of heavier-than-air flight. Despite our
current sophistication regarding the computational design of
aircraft, flight principles were first elucidated through exhaustive
wind tunnel experiments and test flights (Carlson, 2010). Simi-
larly, the successes and failures of synthetic biology continue to
reveal biological design principles.

Funding

P.M.B is supported by the Harvard University Center for the
Environment and the NSF Synthetic Biology Engineering Research
Center. P.A.S is supported by the Department of Defense (DOD
W81XWH-08-1-0608) and the National Institutes of Health
(NIHGM36373-22).

Acknowledgments

We would like to thank Christina Agapakis, Camille Delebec-
que, and Jake Wintermute for their critical reading of the

manuscript. We would also like to thank Christian Boehm for
assistance with the manuscript.

References

Agapakis, C.M., Ducat, D.C., Boyle, P.M., Wintermute, E.H., Way, J.C., Silver, P.A.,
2010. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J. Biol.
Eng. 4, 3.

Agapakis, C.M., Silver, P.A., 2009. Synthetic biology: exploring and exploiting
genetic modularity through the design of novel biological networks. Mol.
Biosyst. 5, 704–713.

Ajo-Franklin, C.M., Drubin, D.A., Eskin, J.A., Gee, E.P., Landgraf, D., Phillips, I., Silver,
P.A., 2007. Rational design of memory in eukaryotic cells. Genes Dev. 21,
2271–2276.

Aldaye, F.A., Palmer, A.L., Sleiman, H.F., 2008. Assembling materials with DNA as
the guide. Science (New York, NY) 321, 1795–1799.

Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, G., 2005. Tuning genetic control
through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683.

Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G., 2006. Engineering
yeast transcription machinery for improved ethanol tolerance and production.
Science 314, 1565–1568.

Alper, H., Stephanopoulos, G., 2007. Global transcription machinery engineering: a
new approach for improving cellular phenotype. Metab. Eng. 9, 258–267.

Anderson, J.C., Dueber, J.E., Leguia, M., Wu, G.C., Goler, J.A., Arkin, A.P., Keasling,
J.D., 2010. BglBricks: A flexible standard for biological part assembly. J. Biol.
Eng. 4, 1.

Anderson, J.C., Voigt, C., Arkin, A.P., 2007. Environmental signal integration by a
modular AND gate. Mol. Syst. Biol. 3, 133.

Andronescu, M., Fejes, A.P., Hutter, F., Hoos, H.H., Condon, A., 2004. A new
algorithm for RNA secondary structure design. J. Mol. Biol. 336, 607–624.

Annison, E.F., Bryden, W.L., 1998. Perspectives on ruminant nutrition and meta-
bolism I. Metabolism in the rumen. Nutr. Res. Rev. 11, 173–198.

Arkin, A.P., Fletcher, D.A., 2006. Fast, cheap and somewhat in control. Genome Biol.
7, 114.

Babiskin, A.H., Smolke, C.D., 2011. A synthetic library of RNA control modules for
predictable tuning of gene expression in yeast. Mol. Syst. Biol. 7, 471.

Bashor, C.J., Helman, N.C., Yan, S., Lim, W.A., 2008. Using engineered scaffold
interactions to reshape MAP kinase pathway signaling dynamics. Science 319,
1539–1543.

Bayer, T.S., 2010. Grand challenge commentary: transforming biosynthesis into an
information science. Nat. Chem. Biol. 6, 859–861.

Bayer, T.S., Smolke, C.D., 2005. Programmable ligand-controlled riboregulators of
eukaryotic gene expression. Nat. Biotechnol. 23, 337–343.

Bayer, T.S., Widmaier, D.M., Temme, K., Mirsky, E.A., Santi, D.V., Voigt, C.A., 2009.
Synthesis of methyl halides from biomass using engineered microbes. J. Am.
Chem. Soc. 131, 6508–6515.

Beckwith, J.R., 1967. Regulation of the lac operon. Recent studies on the regulation
of lactose metabolism in Escherichia coli support the operon model. Science
156, 597–604.

Beisel, C.L., Smolke, C.D., 2009. Design principles for riboswitch function. PLoS
Comput. Biol. 5, e1000363.

Benders, G.A., Noskov, V.N., Denisova, E.A., Lartigue, C., Gibson, D.G., Assad-Garcia,
N., Chuang, R.-Y., Carrera, W., Moodie, M., Algire, M.A., Phan, Q., Alperovich, N.,
Vashee, S., Merryman, C., Venter, J.C., Smith, H.O., Glass, J.I., Hutchison, C.A.,
Cloning whole bacterial genomes in yeast. Nucl. Acids Res., 2010.

Blow, N., 2008. Metabolomics. biochemistry’s new look. Nature 455, 697–700.
Boyle, P.M., Silver, P.A., 2009. Harnessing nature’s toolbox: regulatory elements for

synthetic biology. J. Roy. Soc., Interface/Roy. Soc. 6 (Suppl. 4), S535–S546.
Bradley, P.H., Brauer, M.J., Rabinowitz, J.D., Troyanskaya, O.G., 2009. Coordinated

concentration changes of transcripts and metabolites in Saccharomyces cere-
visiae. PLoS Comput. Biol. 5, e1000270.

Brenner, K., Karig, D.K., Weiss, R., Arnold, F.H., 2007. Engineered bidirectional
communication mediates a consensus in a microbial biofilm consortium. Proc.
Natl. Acad. Sci. USA 104, 17300–17304.

Brenner, K., You, L., Arnold, F.H., 2008. Engineering microbial consortia: a new
frontier in synthetic biology. Trends Biotechnol. 26, 483–489.

Bro, C., Regenberg, B., Förster, J., Nielsen, J., 2006. In silico aided metabolic
engineering of Saccharomyces cerevisiae for improved bioethanol production.
Metab. Eng. 8, 102–111.

Brochado, A.R., Matos, C., Møller, B.L., Hansen, J., Mortensen, U.H., Patil, K.R., 2010.
Improved vanillin production in baker’s yeast through in silico design. Microb.
Cell Factor. 9, 84.

Burgard, A., Pharkya, P., Maranas, C., 2003. Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol. Bioeng. 84, 647–657.

Callura, J.M., Dwyer, D.J., Isaacs, F.J., Cantor, C.R., Collins, J.J., 2010. Tracking, tuning,
and terminating microbial physiology using synthetic riboregulators. Proc.
Natl. Acad. Sci. USA 107, 15898–15903.

Carlson, R.H., 2010. Biology is Technology: The Promise, Peril, and New Business of
Engineering Life. Harvard University Press, Cambridge, MA.

Carr, P.A., Church, G.M., 2009. Genome engineering. Nat. Biotechnol. 27,
1151–1162.

Chance, B., Sies, H., Boveris, A., 1979. Hydroperoxide metabolism in mammalian
organs. Physiol. Rev. 59, 527–605.

P.M. Boyle, P.A. Silver / Metabolic Engineering ] (]]]]) ]]]–]]]8

Please cite this article as: Boyle, P.M., Silver, P.A., Parts plus pipes: Synthetic biology approaches to metabolic engineering. Metab. Eng.
(2011), doi:10.1016/j.ymben.2011.10.003



!

 187 

Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, P., Oroudjev, E., Hansma, H.G.,
Jaeger, L., 2004. Building programmable jigsaw puzzles with RNA. Science 306,
2068–2072.

Cironi, P., Swinburne, I.A., Silver, P.A., 2008. Enhancement of cell type specificity by
quantitative modulation of a chimeric ligand. J. Biol. Chem. 283, 8469–8476.

Cornelius, S.P., Lee, J.S., Motter, A.E., 2011. Dispensability of Escherichia coli’s latent
pathways. Proc. Natl. Acad. Sci. USA 108, 3124–3129.

Cox, R.S., Surette, M.G., Elowitz, M.B., 2007. Programming gene expression with
combinatorial promoters. Mol. Syst. Biol. 3, 145.

Davis, J.H., Rubin, A.J., Sauer, R.T., Design, construction and characterization of a set
of insulated bacterial promoters. Nucl. Acids Res., 2010.

Dekel, E., Alon, U., 2005. Optimality and evolutionary tuning of the expression
level of a protein. Nature 436, 588–592.

Delebecque, C.J., Lindner, A.B., Silver, P.A., Aldaye, F.A., 2011. Organization of
intracellular reactions with rationally designed RNA assemblies. Science (New
York, NY) 333, 470–474.

DeLisa, M.P., Conrado, R.J., 2009. Synthetic metabolic pipelines. Nat. Biotechnol.
27, 728–729.

Dietrich, J.A., McKee, A.E., Keasling, J.D., 2010a. High-throughput metabolic
engineering: advances in small-molecule screening and selection. Annu. Rev.
Biochem. 79, 563–590.

Dietrich, J.A., Mckee, A.E., Keasling, J.D., 2010b. High-throughput metabolic
engineering: advances in small-molecule screening and selection. Annu. Rev.
Biochem. 79, 563–590.

Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M.,
Shih, W.M., 2009. Rapid prototyping of 3D DNA-origami shapes with caDNAno.
Nucl. Acids Res. 37, 5001–5006.

Drubin, D.A., Way, J.C., Silver, P.A., 2007. Designing biological systems. Genes Dev.
21, 242–254.

Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal, A.V.,
Prather, K.L.J., Keasling, J.D., 2009. Synthetic protein scaffolds provide modular
control over metabolic flux. Nat. Biotechnol. 27, 753–759.

Eiteman, M.A., Lee, S.A., Altman, E., 2008. A co-fermentation strategy to consume
sugar mixtures effectively. J. Biol. Eng. 2, 3.

Elowitz, M.B., Leibler, S., 2000. A synthetic oscillatory network of transcriptional
regulators. Nature 403, 335–338.

Endy, D., 2005. Foundations for engineering biology. Nature 438, 449–453.
Fan, C., Cheng, S., Liu, Y., Escobar, C.M., Crowley, C.S., Jefferson, R.E., Yeates, T.O.,

Bobik, T.A., 2010. Short N-terminal sequences package proteins into bacterial
microcompartments. Proc. Natl. Acad. Sci. USA 107, 7509–7514.

Feldman, R.I., Sigman, D.S., 1983. The synthesis of ATP by the membrane-bound
ATP synthase complex from medium 32Pi under completely uncoupled
conditions. J. Biol. Chem. 258, 12178–12183.

Fell, D.A., 1997. Understanding Control of Metabolism. Portland Press, London, UK.
Fendt, S.-M., Buescher, J.M., Rudroff, F., Picotti, P., Zamboni, N., Sauer, U., 2010.

Tradeoff between enzyme and metabolite efficiency maintains metabolic
homeostasis upon perturbations in enzyme capacity. Mol. Syst. Biol. 6, 356.

Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Y., Algire, M.A.,
Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., Merryman, C., Vashee, S.,
Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A.,
Young, L., Qi, Z.-Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchison,
C.A., Smith, H.O., Venter, J.C., Creation of a bacterial cell controlled by a
chemically synthesized genome. Science, 2010.

Gidijala, L., Kiel, J.A.K.W., Douma, R.D., Seifar, R.M., van Gulik, W.M., Bovenberg,
R.A.L., Veenhuis, M., van der Klei, I.J., 2009. An engineered yeast efficiently
secreting penicillin. PLoS ONE 4, e8317.

Gilbert, H.J., 2007. Cellulosomes: microbial nanomachines that display plasticity in
quaternary structure. Mol. Microbiol. 63, 1568–1576.

Gilbert, S.D., Batey, R.T., 2005. Riboswitches: natural SELEXion. Cell Mol. Life Sci.
62, 2401–2404.

Guo, P., 2010. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5,
833–842.

Hartner, F.S., Ruth, C., Langenegger, D., Johnson, S.N., Hyka, P., Lin-Cereghino, G.P.,
Lin-Cereghino, J., Kovar, K., Cregg, J.M., Glieder, A., 2008. Promoter library
designed for fine-tuned gene expression in Pichia pastoris. Nucl. Acids Res. 36,
e76.

Haynes, K.A., Silver, P.A., 2009. Eukaryotic systems broaden the scope of synthetic
biology. J. Cell Biol. 187, 589–596.

Holtz, W.J., Keasling, J.D., 2010. Engineering static and dynamic control of
synthetic pathways. Cell 140, 19–23.

Hood, J.K., Silver, P.A., 1999. In or out? Regulating nuclear transport. Curr. Opin.
Cell Biol. 11, 241–247.

Hungate, R.E., 1947. Studies on cellulose fermentation: III. The culture and
isolation for cellulose-decomposing bacteria from the rumen of cattle. J.
Bacteriol. 53, 631–645.

Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W., Davies, D.R., 1988. Three-
dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme
complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857–17871.

Isaacs, F.J., Dwyer, D.J., Ding, C., Pervouchine, D.D., Cantor, C.R., Collins, J.J., 2004.
Engineered riboregulators enable post-transcriptional control of gene expres-
sion. Nat. Biotechnol. 22, 841–847.

Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba,
M., Hirai, K., Hoque, A., Ho, P.Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada,
S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K.,
Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori,

H., Tomita, M., 2007. Multiple high-throughput analyses monitor the response
of E. coli to perturbations. Science 316, 593–597.

Jacob, F., Monod, J., 1961. Genetic regulatory mechanisms in the synthesis of
proteins. J. Mol. Biol. 3, 318–356.

Jensen, H.M., Albers, A.E., Malley, K.R., Londer, Y.Y., Cohen, B.E., Helms, B.A.,
Weigele, P., Groves, J.T., Ajo-Franklin, C.M., 2010. Engineering of a synthetic
electron conduit in living cells. Proc. Natl. Acad. Sci. USA.

Jones, K.L., Kim, S.W., Keasling, J.D., 2000. Low-copy plasmids can perform as well
as or better than high-copy plasmids for metabolic engineering of bacteria.
Metab. Eng. 2, 328–338.

Keasling, J.D., 2010. Manufacturing molecules through metabolic engineering.
Science 330, 1355–1358.

Kelly, J.R., Rubin, A.J., Davis, J.H., Ajo-Franklin, C.M., Cumbers, J., Czar, M.J., De Mora,
K., Glieberman, A.L., Monie, D.D., Endy, D., 3, 2009. Measuring the activity of
BioBrick promoters using an in vivo reference standard. J. Biol. Eng., 4.

Kennedy, C.J., Boyle, P.M., Waks, Z., Silver, P.A., 2009. Systems-level engineering of
nonfermentative metabolism in yeast. Genetics 183, 385–397.

Kim, H.J., Boedicker, J.Q., Choi, J.W., Ismagilov, R.F., 2008. Defined spatial structure
stabilizes a synthetic multispecies bacterial community. Proc. Natl. Acad. Sci.
USA 105, 18188–18193.

Kim, H.J., Du, W., Ismagilov, R.F., 2011. Complex function by design using spatially
pre-structured synthetic microbial communities: degradation of pentachlor-
ophenol in the presence of Hg(ii). Integr. Biol. (Camb.) 3, 126–133.

Kizer, L., Pitera, D.J., Pfleger, B.F., Keasling, J.D., 2008. Application of functional
genomics to pathway optimization for increased isoprenoid production. Appl.
Environ. Microbiol. 74, 3229–3241.

Klitgord, N., Segr!e, D., 2010. Environments that induce synthetic microbial
ecosystems. PLoS Comput. Biol. 6, e1001002.

Knight, T., 2003. Idempotent vector design for standard assembly of biobricks.
DSpace. MIT Artificial Intelligence Laboratory; MIT Synthetic Biology Working
Group.

Lamontagne, B., Ghazal, G., Lebars, I., Yoshizawa, S., Fourmy, D., Elela, S.A., 2003.
Sequence dependence of substrate recognition and cleavage by yeast RNase III.
J. Mol. Biol. 327, 985–1000.

Lartigue, C., Vashee, S., Algire, M., Chuang, R., Benders, G., Ma, L., Noskov, V.,
Denisova, E., Gibson, D., Assad-Garcia, N., Alperovich, N., Thomas, D., Merry-
man, C., Hutchison, C., Smith, H., Venter, J., Glass, J., Creating bacterial strains
from genomes that have been cloned and engineered in yeast. Science, 2009.

Léon, S., Goodman, J.M., Subramani, S., 2006. Uniqueness of the mechanism of
protein import into the peroxisome matrix: transport of folded, co-factor-
bound and oligomeric proteins by shuttling receptors. Biochim. Biophys. Acta
1763, 1552–1564.

Mandal, M., Breaker, R.R., 2004. Gene regulation by riboswitches. Nat. Rev. Mol.
Cell Biol. 5, 451–463.

Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D., 2003. Engineer-
ing a mevalonate pathway in Escherichia coli for production of terpenoids. Nat.
Biotechnol. 21, 796–802.

McAllister, T.A., Bae, H.D., Jones, G.A., Cheng, K.J., 1994. Microbial attachment and
feed digestion in the rumen. J. Anim. Sci. 72, 3004–3018.

Meijer, W.H., Gidijala, L., Fekken, S., Kiel, J.A.K.W., van den Berg, M.A., Lascaris, R.,
Bovenberg, R.A.L., van der Klei, I.J., 2010. Peroxisomes are required for efficient
penicillin biosynthesis in Penicillium chrysogenum. Appl. Environ. Microbiol.
76, 5702–5709.

Menzella, H.G., Reid, R., Carney, J.R., Chandran, S.S., Reisinger, S.J., Patel, K.G.,
Hopwood, D.A., Santi, D.V., 2005. Combinatorial polyketide biosynthesis by de
novo design and rearrangement of modular polyketide synthase genes. Nat.
Biotechnol. 23, 1171–1176.

Mitsuzawa, S., Kagawa, H., Li, Y., Chan, S.L., Paavola, C.D., Trent, J.D., 2009. The
rosettazyme: a synthetic cellulosome. J. Biotechnol. 143, 139–144.

Monod, J., Changeux, J.P., Jacob, F., 1963. Allosteric proteins and cellular control
systems. J. Mol. Biol. 6, 306–329.

Moon, T.S., Dueber, J.E., Shiue, E., Prather, K.L.J., 2010. Use of modular, synthetic
scaffolds for improved production of glucaric acid in engineered E. coli. Metab.
Eng. 12, 298–305.

Moraı̈s, S., Barak, Y., Caspi, J., Hadar, Y., Lamed, R., Shoham, Y., Wilson, D.B., Bayer,
E.A., 2010a. Cellulase-xylanase synergy in designer cellulosomes for enhanced
degradation of a complex cellulosic substrate. mBio, 1.

Moraı̈s, S., Barak, Y., Caspi, J., Hadar, Y., Lamed, R., Shoham, Y., Wilson, D.B., Bayer,
E.A., 2010b. Contribution of a xylan-binding module to the degradation of a
complex cellulosic substrate by designer cellulosomes. Appl. Environ. Micro-
biol. 76, 3787–3796.

Moxley, J.F., Jewett, M.C., Antoniewicz, M.R., Villas-Boas, S.G., Alper, H., Wheeler,
R.T., Tong, L., Hinnebusch, A.G., Ideker, T., Nielsen, J., Stephanopoulos, G., 2009.
Linking high-resolution metabolic flux phenotypes and transcriptional regula-
tion in yeast modulated by the global regulator Gcn4p. Proc. Natl Acad. Sci.
USA 106, 6477–6482.

Nahvi, A., Sudarsan, N., Ebert, M.S., Zou, X., Brown, K.L., Breaker, R.R., 2002. Genetic
control by a metabolite binding mRNA. Chem. Biol. 9, 1043.

Nelson, N., Yocum, C.F., 2006. Structure and function of photosystems I and II.
Annu. Rev. Plant Biol. 57, 521–565.

Nevoigt, E., Kohnke, J., Fischer, C.R., Alper, H., Stahl, U., Stephanopoulos, G., 2006.
Engineering of promoter replacement cassettes for fine-tuning of gene expres-
sion in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 5266–5273.

Page, L.J., Darmon, A.J., Uellner, R., Griffiths, G.M., 1998. L is for lytic granules:
lysosomes that kill. Biochim. Biophys. Acta 1401, 146–156.

P.M. Boyle, P.A. Silver / Metabolic Engineering ] (]]]]) ]]]–]]] 9

Please cite this article as: Boyle, P.M., Silver, P.A., Parts plus pipes: Synthetic biology approaches to metabolic engineering. Metab. Eng.
(2011), doi:10.1016/j.ymben.2011.10.003



!

 188 

!

Parsons, J.B., Dinesh, S.D., Deery, E., Leech, H.K., Brindley, A.A., Heldt, D., Frank, S.,
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The field of synthetic biology seeks to develop engineering principles for biological systems. Along these lines, synthetic biol-
ogy can address human metabolic disease through the development of genetic approaches to the study and modification of
metabolism. The re-engineering of natural metabolic states provides fundamental understanding of the integrated components
underlying dysfunctional metabolism. Alternatively, the development of biological devices that can both sense and affect met-
abolic states could render unique control over disease states. In this chapter, we discuss the advancement of synthetic biolog-
ical approaches to monitoring and engineering metabolism, as well as prospects for synthetic biology’s future role in the
prevention and treatment of metabolic disease.

One goal of synthetic biology is to develop engineering
principles and tools for biology. The characterized com-
ponents of fundamental biological processes provide a
platform for uniquely redesigned biological parts and
devices, and the processes themselves can be re-engi-
neered for improved or alternative functions. Since the
advent of recombinant DNA technology in the 1970s,
genes, promoters, and other biological parts have become
modularized and rearranged in increasingly complex man-
ners. During the last decade, the development of cost-
effective DNA sequencing and de novo synthesis has
accelerated the generation of new biological parts and bio-
engineering techniques (Boyle and Silver 2009). As our
ability to engineer biological systems increases, so too
does our ability to address existing biological problems.

The study and treatment of human disease has bene-
fitted from recombinant DNA and synthetic biology ap-
proaches. Disease initiation and progression are strongly
linked to impaired pathways of metabolic, regulatory, or
protein complexes (Li et al. 2011). Complex dysfunc-
tions that are not adequately addressed by small-molecule
drugs or peptides may be repaired with synthetic biolog-
ical devices. Correcting aberrant metabolism is arguably
the most challenging pathway to address, given the diffi-
culty in monitoring intracellular metabolites. Biological
devices that sense and respond to metabolism may be bet-
ter equipped to correct metabolism at the cellular scale.
Within this chapter, the terms dysfunctional metabolism
and metabolic disease generally describe any disorder
characterized by metabolic dysregulation. This includes
diabetes, obesity, cancer, cardiovascular disease, Alz-
heimer disease, and Crohn disease (Suhre et al. 2011).

Whereas some of these metabolic diseases are due
to the altered or missing function of a single gene, many

are complex polygenic disorders that have proven difficult
to cure (Newgard 1992). The initial promise of recombi-
nant DNA technology to cure genetic disorders has not
been completely realized (Newgard 1992). It was quickly
discovered that greater understanding of existing meta-
bolic pathways and their dysfunction is fundamental to
improving disease treatment, including diseases stemming
from a single affected gene. The accumulation of meta-
bolic pathway knowledge and model-based evaluation of
dysfunction has facilitated our ability to engineer natural
metabolism. These advancements, combined with im-
proved gene synthesis and gene-transfer technologies,
have also permitted the construction of synthetic devices
that can sense and affect metabolism (for review, see
Weber and Fussenegger 2009). In this chapter, we discuss
both the engineering of natural metabolism and the con-
struction of synthetic devices for metabolism and show
how these two approaches have established synthetic biol-
ogy as a valuable tool against metabolic disease.

ENGINEERING HUMAN METABOLISM

Metabolic engineering—the application of recombi-
nant DNA technology to direct carbon flux toward pro-
duction of a desired compound—has driven our under-
standing of metabolic control in recent years. Although
focused primarily on microbial cell engineering, this
research has revealed principles that are broadly applica-
ble to human metabolism. Furthermore, synthetic tools
for manipulating metabolic flux can be used to correct
disease-associated metabolic defects. Therapeutics de-
rived through synthetic biology for metabolic diseases
are likely to build upon these engineering efforts in sim-
pler systems.

3These authors contributed equally to this work.
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A challenge in metabolic engineering is that control of
metabolic flux is often distributed throughout a pathway,
rather than a single enzyme serving as a rate-limiting step
(Thomas and Fell 1996; Fell 1997). Consequently, engi-
neered pathways must typically be tuned to maximize
throughput, often by adjustment of enzyme concentra-
tions (Dekel and Alon 2005; Boyle and Silver 2009;
Wang et al. 2009). Multisite control is likely to be a prop-
erty of biological devices that reroute metabolic flux in
the human body.

To achieve quantitative control over metabolism, a
wide array of biological control elements, such as pro-
moters, ribosome-binding sites, and riboswitches, have
been repurposed or synthesized (Boyle and Silver 2009).
The efficacy and robustness of control elements are espe-
cially critical in a therapeutic context, as compared with
traditional metabolic engineering. Microbes are often
engineered to simply act as pipes for chemical conver-
sions, tuned to continuously produce a target compound.
In contrast, biological devices destined for the human
body will require stringent logic and control. For exam-
ple, bacteria that target tumors for destruction must distin-
guish between normal and cancerous tissue, to avoid
destroying healthy cells (Anderson et al. 2007).

Achieving an appropriately strict regulation of meta-
bolic networks requires a quantitative understanding of
network properties. Models of microbial metabolism have
been instrumental to many metabolic engineering efforts
(Burgard et al. 2003; Pharkya et al. 2004; Bro et al. 2006;
Kennedy et al. 2009; Wintermute and Silver 2010). In the
context of human biology, models are important tools in
analyzing metabolomic data, predicting drug behavior,
and identifying metabolic flux modes that characterize dis-
ease. Because the assistive tools of mutagenesis and selec-
tion are not available for human systems, models are vital to
understanding human metabolism.

Modeling frameworks such as Flux Balance Analysis
(FBA) and its derivatives have been instrumental in the
engineering of microbial metabolism (Varma and Pals-
son 1994; Boyle and Silver 2009; Gianchandani et al.
2010). FBA-type models take advantage of our near-
comprehensive understanding of the stoichiometry of
metabolic networks across many species. In essence,
these models incorporate all known metabolic reactions
in an organism and identify a steady-state flux distribu-
tion that maximizes or minimizes a user-defined objec-
tive function (Feist and Palsson 2010). To increase their
biologic relevance and minimize the number of optimal
flux distributions, FBA-type models further incorporate
constraints such as limits on nutrient-uptake rate. The
details on the formulation, selection of constraints and
objective functions, optimization strategies, and practical
applications of these models have been extensively
reviewed (Fig. 1) (Varma and Palsson 1994; Edwards
et al. 2002; Oberhardt et al. 2009; Terzer et al. 2009).
In this chapter, we present progress in the adaptation of
these models to mammalian systems.

Mammalian biology is inherently more complex than
that of bacteria or yeast. Models of mammalian tissues,
tumors, or cell lines must integrate constraints on gene

expression and multicellular interactions that are repre-
sentative of a given tissue type. These parameters are
often inferred from microarray datasets, starting with a
generic model of human metabolism and removing unex-
pressed enzymes (Duarte et al. 2007; Jerby et al. 2010).
Cell-specific extracellular metabolite availability and
objective functions improve model accuracy. The rela-
tively low-parameter requirements of FBA-type models
also allows multicellular metabolic interactions to be mod-
eled (Stolyar et al. 2007; Wintermute and Silver 2010).

Most problematic for constraint-based approaches is
the formulation of appropriate objective functions for
mammalian cells. When modeling microbes, it is com-
monly assumed that laboratory-adapted strains such as
Escherichia coli are tuned for rapid growth (Ibarra et al.
2002). In contrast, many cells in the human body are
not constantly dividing (Berk 2005). Even proliferative
cancer cells are likely to be governed by more complex ob-
jectives than rapid growth. Rather than defining an objec-
tive function a priori, many researchers have instead opted
to infer the wild-type flux distribution from transcriptomic
and proteomic data (Shlomi et al. 2008; Jerby et al. 2010;
Lewis et al. 2010).

A multitissue model of brain metabolism was recently
constructed to study Alzheimer disease (Fig. 1) (Lewis
et al. 2010). Multiple “omics” datasets guided construc-
tion of metabolic networks relevant to each modeled
cell type: astrocytes, glutamatergic neurons, GABAergic
neurons, and cholinergic neurons. Relevant extracellular
metabolic reactions such as those related to the endothe-
lium, blood supply, and the interstitial spaces between
cells were also included.

Because gene deletion simulations are a common ap-
plication of constraint-based approaches, these models
of neuron metabolism were used to simulate enzyme de-
ficiencies common to Alzheimer disease, such as de-
creased mitochondrial pyruvate dehydrogenase activity
(Bubber et al. 2005; Lewis et al. 2010). This simulation
is achieved by removing a network reaction and recalcu-
lating the flux distribution of the mutant network (Segrè
et al. 2002; Burgard et al. 2003; Duarte et al. 2004; Ken-
nedy et al. 2009; Rocha et al. 2010). In lieu of an objective
function for brain energy metabolism, researchers instead
used Monte Carlo sampling to identify feasible flux dis-
tributions (Lewis et al. 2010). These simulations provided
mechanistic insight into the expression changes observed
in microarray datasets, including the identification of
neuronal pathways that may limit synthesis of acetyl-CoA
and, by extension, the neurotransmitter acetylcholine in
Alzheimer neurons.

Network-scale models of metabolism may be instru-
mental in the analysis of complex metabolic dysfunction.
For example, cancer genome studies have revealed that
cancer cells often contain multiple gene-copy-number
changes and mutations (Beroukhim et al. 2010). Evi-
dence of multisite control in cancer metabolism suggests
that several enzymes must be modulated to correct or halt
metabolism in cancer cells (Rasnick and Duesberg 1999;
Moreno-Sánchez et al. 2010; Schrattenholz et al. 2010).
Metabolic models that can integrate omics data will be
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useful in diagnosing and identifying therapeutic strat-
egies. As in the Alzheimer disease example, inferring
metabolic objective functions of cancer cells will identify
metabolic pathways to be targeted for modulation with
drugs or synthetic devices.

SYNTHETIC DEVICES
FOR METABOLIC DYSFUNCTION

Given a quantitative understanding of metabolic dys-
function, we must then be able to correct these dysfunc-
tions in a predictable manner. Engineered biological
pathways termed synthetic circuits or devices may be
designed to execute useful functions within single living
human cells. Synthetic circuits offer a more controlled
approach to traditional drug and gene therapies, such
as the ability to dynamically silence, activate, and tune
the expression of desired genes and drugs (Khalil and
Collins 2010). Simply put, synthetic devices detect an
environmental signal (e.g., hypoxia) that is processed
by a genetic logic circuit, which filters the signal and acti-
vates a cellular response (e.g., drug delivery) (Fig. 2). Such
circuits can communicate a cell’s metabolic state and pro-
vide a therapeutic biological action. Organisms ranging

from bacteria to mammalian cells provide an abundance
of existing modular sensory regulatory circuits, the com-
ponents of which can be transferred to synthetic circuits
in human cells. Using cues from nature, synthetic circuits
have been designed to regulate cells at the transcriptional,
translational, or posttranslational level for the purpose of
studying and treating metabolic disease.

TRANSCRIPTIONAL REGULATION

One way that cells mobilize a response to metabolic
perturbations is via transcription. In simple terms, an in-
put signal modulates the binding of transcription factor
proteins at binding sites near promoters, conferring a
gene activity state. Following this design, synthetic cir-
cuits have been engineered with endogenous or artificial
transcription factors fused to activators or repressors that
bind natural or synthetic elements within a minimal pro-
moter to control gene output. Sensitivity and specificity
can be introduced to this synthetic system by various
methods (for review, Burrill and Silver 2010): adding,
subtracting, or mutating binding sites; using activators
and repressors of varying strengths; or inserting intronic
sequences in promoter regions to tune transcriptional

Figure 1. Constraint-based modeling of mammalian tissues. (A) Tissue-specific constraint-based models start with a genome-scale
metabolic network. These networks, such as Homo sapiens build 1 (Duarte et al. 2007; http://gcrg.ucsd.edu/Organisms), contain
all possible metabolic reactions defined in the human genome. Tissue-specific datasets, such as expression microarrays, are then
used to define the particular subset of reactions that occurs in a given tissue. This reduced network is then used to model the tissue
of interest. (B) A visualization of constraint-based modeling. Constraints on metabolic fluxes, input rates, and output rates define
the bounds of the feasible flux space for a given metabolic network. To determine which flux mode is most likely to exist in the tissue
to be modeled, an objective function is chosen, which defines the metabolic flux that the system seeks to optimize. Although many
solution algorithms exist, most involve the intersection of the objective function with the surface of the feasible flux space. (C ) Com-
partmentalization of a human brain metabolic model (Lewis et al. 2010). Cell-specific models were defined for astrocytes, glutama-
tergic neurons, GABAergic neurons, and cholinergic neurons. Metabolic networks for the endothelium, blood, and interstitial space
(int) connected the cell-specific metabolic networks. Mitochondria (mito) for each cell type were also modeled as discrete metabolic
compartments within each cell type. Exchange fluxes, the input and output rates of metabolites, were experimentally measured and
used to fine-tune the model.
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Figure 2. Synthetic devices for metabolic dysfunction. (A) Synthetic reversal of epigenetic silencing (Haynes and Silver 2011). A
Polycomb chromodomain (PC) fused to a transcription factor (TF) binds the methylation mark H3K27me3 (star) on chromatin
(circles), thereby activating gene expression. (B) Synthetic memory device (Burrill and Silver 2011). DNA damage transiently activates
a red fluorescent protein (RFP)-labeled trigger gene via a damage-inducible promoter from the yeast gene HUG1. The trigger gene
produces the transcription factor LexA fused to a DNA-binding domain. The trigger transactivator subsequently induces memory loop
gene expression, producing a yellow fluorescent protein (YFP)-labeled LexA transcription factor that binds to corresponding sites
located within its own promoter. After the DNA damaging agent is removed, the memory loop remains stably expressed. (C ) Synthetic
switch (Deans et al. 2007). In the on state, IPTG binds to LacI repressor proteins (orange), thus freeing lac operator (LacO) sites and
permitting EGFP and TetR transcription. TetR proteins (yellow) further enhance EGFP expression by binding to a tet operator (TetO)
site located upstream of the RNAi module (pink), thus repressing short hairpin RNA (shRNA) transcription. In the off state, LacI
repressor proteins are constitutively expressed and bind to LacO sites in the transgene, thereby repressing EGFP expression. LacI
repressor proteins also bind to LacO sites in TetR, causing TetR repression. Thus, shRNA is transcribed and silences EGFP. (D) Syn-
thetic cell-type detector (Xie et al. 2011). Using markers characteristic of HeLa cancer cells, a sensor motif for markers expressed high
and low was engineered. The HeLa-high motif is comprised of a double-inversion module (R1 and R2) that allows expression only if
the marker is present at or above its level in HeLa but represses the output if the marker is low. A HeLa-low marker sensor was imple-
mented by fusing repeats of complementary target sites into the output’s 30-UTR. Multiple sensors were combined by fusing their
corresponding microRNA (miRNA) targets in the output’s 30-UTR. If expression levels match that of HeLa cells, the proapoptotic
protein hBax is activated. (E) Synthetic signaling cascade (Ye et al. 2011). Blue-light-mediated photoisomerization of the retinal chro-
mophore triggers melanopsin conformational changes that activate the Gaq-type G protein (Gaq), phospholipase C (PLC), and phos-
phokinase C (PKC). Consequently, calcium ion influx occurs via transient receptor potential channels (TRPCs), ultimately resulting in
activation of the transcription factor, nuclear factor of activated T cells (NFAT), and induction of NFAT-inducible transgenes.
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rates (Swinburne et al. 2008). The primary motivation in
the design of these control elements is to ensure that a
synthetic circuit behaves in a predictable, controlled man-
ner, which is critical when translating such devices to
human studies.

Several systems have been designed in which a signal-
responsive transcription factor is fused to a DNA-binding
domain that binds to an engineered promoter upstream of
a reporter gene. This design has been used to report on
hormone concentrations (Braselmann et al. 1993), hypox-
ia (Tang et al. 2005), redox levels (Weber et al. 2006), and
chromatin modifications (Hansen et al. 2008). In recent
work by Haynes et al. (Haynes and Silver 2011), Poly-
comb chromatin protein was used to engineer artificial
transcription factors that recognize repressive histone
methylation marks and activate silenced, disease-related
genes in human cancer cells (Fig. 2A). In other examples,
custom-built transcription factors composed of zinc-fin-
ger DNA-binding domains respond to external stimuli
by targeting specific mammalian genes. Endogenous
genes that are silenced in many cancers—such as the anti-
angiogenic pigment epithelium derived factor (Yokoi
et al. 2007) and the breast tumor suppressor maspin (Bel-
tran et al. 2007)—have been reactivated in mammalian
cell culture using this method.

Other transcription-based biosensors employ minimal
promoters with natural regulatory DNA elements that
are activated by environment-responsive, endogenous
transcription factors, producing sensors capable of report-
ing the presence of progesterone (Strähle et al. 1987),
DNA damage (Ohno et al. 2008), and glucocorticoid hor-
mone (Meijsing et al. 2009). Circuits such as those
described are capable of providing valuable information
about the internal metabolic environment. This informa-
tion can then be potentially used for restoring misregu-
lated metabolism in a therapeutic setting. Furthermore,
the described devices are highly modular, making them
amenable to the study of multiple diseases.

In some cases, it might be desirable to use a synthetic
circuit that controls transcription by processing more
complex input logic. Examples include memory circuits
and oscillators, both of which naturally mediate gene
expression to control metabolism, signaling pathways,
and cell differentiation. Biological memory can be
defined as a sustained cellular response to a transient
stimulus (Burrill and Silver 2011). One way that cells
accomplish this task is through bistable transcriptional
states, such that a chemical state becomes defined as
on or off in response to environmental input and, given
certain parameters, can be inherited through DNA repli-
cation and cell division. Synthetic memory circuits mod-
eled from this design are capable of sensing external
inputs and producing permanent expression of a reporter
(e.g., fluorescent protein, specific gene, or drug). Two
have been recently designed in yeast—both use transcrip-
tional positive feedback to convert a transient exposure to
galactose (Ajo-Franklin et al. 2007) or DNA damage
(Burrill and Silver 2011) into sustained expression of a
fluorescent reporter (Fig. 2B). If transferred to mamma-
lian systems, memory devices such as these could be

used to study the long-term effects of particular stimuli
on a cell population or provide long-term gene or drug
dosage in response to transient inputs.

Synthetic mammalian oscillators based on their natural
counterparts can control the periodic expression of
desired genes for therapeutic reasons. Indeed, most hor-
mones are released in time-dependent pulses, and repli-
cating these patterns in hormone dosage to patients may
decrease side effects and improve response (Khalil and
Collins 2010). One circuit that could be used for such a
purpose is the sense–antisense transcriptional device
engineered by Tigges et al. (2009). The device encodes
a positive and a time-delayed negative-feedback loop
that enables self-sustained oscillatory mammalian gene
expression. The work shows that oscillation frequency,
amplitude, and damping rates can be tuned by adding reg-
ulatory elements (e.g., repressors, activators) responsive
to artificial chemical inputs or by altering the network
topology. Another engineered oscillator allows for pulses
of gene expression via negative feedback. The pulses can
vary in transcription time by using increasingly long
introns to lengthen the time required for gene transcrip-
tion (Swinburne et al. 2008). Such a device could be
used to tightly regulate synthetic gene expression in
mammalian systems.

A final example of a more complex transcription regu-
lator is a synthetic genetic counter (Friedland et al. 2009).
Control over drug release might be integrated by pro-
gramming a synthetic system to self-destruct after a spe-
cific number of gene or drug release pulses or cell cycles.
Many of these transcriptional tools to control drug and
gene delivery have yet to be successfully engineered in
human cells, but their development in bacteria and
yeast is laying the groundwork for future translational
applications.

TRANSLATIONAL REGULATION

RNA molecules are an attractive target for bioengi-
neering owing to their many functional capacities. These
functions include splicing RNA, catalyzing biochemical
reactions, and regulating gene expression (Khalil and
Collins 2010). Synthetic biologists have used RNA to
achieve direct and tight regulation of protein concentra-
tions primarily via RNA interference (RNAi) and func-
tional RNAs (ribozymes, riboswitches) (Haynes and Silver
2009).

RNAi uses sequence complementarity to silence target
messenger RNA (mRNA). As such, RNAi constructs can
be designed against any desired RNA. Bioengineers have
used RNAi to tighten control and tweak the expression
dynamics of synthetic systems. Greber et al. (2008) dem-
onstrated that intronic short interfering RNAs (siRNAs)
can reduce basal gene expression of inducible transcrip-
tion systems (Greber et al. 2008). Deans et al. (2007)
designed an inducible switch in mammalian cells that
produces shRNAs to prevent leaky expression of trans-
genes (Fig. 2C).

Other synthetic devices use functional RNAs to control
circuit behavior (Bayer and Smolke 2005; Beisel et al.

SYNTHETIC BIOLOGY TOOLS FOR DISEASE AND METABOLISM 5

 Press
Cold Spring Harbor Laboratory on December 15, 2011 - Published by symposium.cshlp.orgDownloaded from 



!

 195 

2008). Ribozymes, antiswitches, and shRNA switches
contain an aptamer domain (sensor) involved in specific
ligand recognition and an expression platform that con-
trols gene activity by causing mRNA conformational
changes (Mulhbacher et al. 2010). The flexibility and
ease of design of synthetic aptamer domains for a wide
range of target ligands makes them a valuable synthetic
biology tool (Win and Smolke 2009). Ribozymes can
specifically cleave target RNA and have been effectively
used in gene therapy for cancer and other diseases (Win
and Smolke 2008; Culler et al. 2010; Mulhbacher et al.
2010). For example, a hammerhead ribozyme targeting
the human epidermal growth factor receptor HER-2
reversed the malignant phenotype of breast cancer cells
(He et al. 2010). Metabolite-binding riboswitches also
represent a novel solution to sensing and studying meta-
bolic disease. To date, synthetic riboswitches have been
built to sense thiamine pyrophosphate, lysine, flavin
mononucleotide, and guanine (Mulhbacher et al. 2010).
The pairing of switchable aptamer domains with ribo-
zymes that degrade an mRNA in a ligand-dependent
manner allows a rapid regulatory response to changes in
intracellular metabolite concentrations (Win and Smolke
2008). The construction of aptamer domains responsive
to other environmental conditions or metabolites could
serve as future therapeutic and research tools for disease.

Other RNAi-based synthetic devices can process mul-
tiple inputs, making it possible to specifically detect dis-
eases characterized by several metabolic signals. A mam-
malian logic evaluator composed of genes containing
multiple synthetic RNAi target sequences was shown to
correctly detect up to five siRNA inputs (Rinaudo et al.
2007). In a recent paper, Xie et al. (2011) showed that
expression of endogeneous miRNAs characteristic of cer-
vical cancer cells could trigger apoptosis via a synthetic
transcriptional device regulating expression of human
Bcl-2-associated X protein hBax (Fig. 2D). Circuits such
as these are useful in situations where a single metabolic
signal does not define an environment. The continued
engineering of logic circuits that evaluate endogenous cel-
lular inputs will lead the way to synthetic devices that can
sense and correctly respond to complex physiological
conditions.

CELL-SIGNALING REGULATION

At the posttranslational level, signal transduction path-
ways represent another platform for synthetic regulation
of human cells. Cell-signaling pathways are often misre-
gulated in metabolic diseases and are thus a target for
therapeutic intervention. The sensor element for many
signaling pathways is a membrane-bound or nuclear
protein receptor. Whereas environment-responsive pro-
moters and RNA aptamers are derived from nature or
selections, protein receptors can be designed at the level
of molecular interaction (Khalil and Collins 2010). Exist-
ing signaling pathways provide many further components
that can be harnessed to build tunable, sensitive, and spe-
cific synthetic pathways, such as the number and spacing
of proteins in a given cascade. Thus, signal transduction

pathways constitute a modular method for programming
protein-based regulators.

The construction of chimeric protein ligands that bind
receptors in a precise and predictable manner can increase
the specificity of synthetic devices for target cell types.
For example, a chimera was designed to specifically
bind to cells with both epidermal growth factor (EGF)
receptor and interferona-2a (IFNa-2a) receptor (Cironi
et al. 2008). These authors demonstrated that a series of
IFNa-2a mutations could progressively decrease the on
rate and dissociation constant of the IFNa-2a-IFNa re-
ceptor 2 (IFNAR2) interaction (Cironi et al. 2008). This
quantitative knowledge was then applied to the design
of chimeras in which IFNa receptor activation depends
on the presence of EGF receptor on the same cell. This
work illustrates the value of a quantitative approach to
tool design and suggests useful techniques for modulat-
ing protein–protein interactions.

A number of synthetic approaches have addressed the
abnormal cell signaling associated with diabetes mellitus.
Diabetes develops when insulin is inadequately produced
by the pancreas or not effectively used by cells, resulting
in the failure of glucose absorption from blood for cellu-
lar energy. It has been argued that cell-based treatments
for insulin-dependent diabetes may provide more physio-
logic regulation of blood glucose levels than daily insulin
injections (Zhang et al. 2008). Surrogate b cells have
been developed to synthesize functional insulin in re-
sponse to changing glucose levels, thus re-establishing
a normal metabolic signaling pathway. This was accom-
plished both in human cell culture (Bara and Sambanis
2008) and mouse models (Zhang et al. 2008), the latter
revealing that blood glucose levels could be reduced to
normal using this method. These studies suggest that
the use of genetically engineered cells to express human
insulin might be a powerful therapeutic approach to dia-
betes treatment.

Other synthetic approaches to diabetic regulation have
involved inserting entirely new signaling pathways into
human cells and mice. In one example, the investigators
designed a light-inducible signaling cascade to control
transgene expression of the glucagon-like peptide 1, a
protein that increases insulin secretion. The implantation
of the device in diabetic mice coincided with the dissipa-
tion of glycemic excursions (Fig. 2E) (Ye et al. 2011). In
another system, the glyoxylate shunt pathway was intro-
duced to mammalian liver cells and mice (Dean et al.
2009). Mice expressing the shunt exhibited increased
fatty-acid oxidation and decreased tendencies toward
diet-induced obesity. This work offers new synthetic
tools for studying and manipulating biological networks
to correct metabolic disorders.

TOOL DELIVERY

Decades of experience in molecular genetics and gene
therapy have demonstrated the importance of caution
when designing novel genetic therapeutics (Denèfle
2011). In developing therapeutic synthetic devices for
human cells, it is important to anticipate deleterious off-
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target effects and host–cell interactions. In cases where
engineered human cells need to be delivered to the human
body, the cells will probably need to be implanted
(Ausländer et al. 2011). To prevent immune system rejec-
tion of nonautologous cells and the side effects of im-
munosuppressive drugs, one might want to encapsulate
engineered cells in a biocompatible, semipermeable mem-
brane. This technology has been limited so far by in-
adequate nutrient transport and undesirable immune
responses (Ausländer et al. 2011). Recent efforts have
focused on developing submicron scale coatings to reduce
cell mass and incorporating anti-inflammatory capabilities
into synthetic membranes (Ausländeret al. 2011). This area
of work will have to carefully but continually improve to
actualize the potential of cell-based therapeutics.

Delivery methods and efficacy will also depend on the
cell type to be engineered. Immortalized cancer cell lines
common to laboratory research are unlikely to be utilized
in human therapies. Engineered stem cells, however, are
more stable and predictable to engineer and have already
been used safely in several clinical trials (Denèfle 2011;
Trounson et al. 2011). In particular, mesenchymal stem
cells (MSCs) possess many advantageous cellular charac-
teristics, such as ease of isolation, high expansion poten-
tial, and genetic stability. For these reasons, MSCs are
popular therapeutic and engineering platform candidates
(Le Blanc and Ringdén 2007).

An alternative to engineering human cells is to design
synthetic microbial devices that interact with human cells.
Several factors make the prospect of synthetic microbial
therapeutics more likely in the near term than devices that
modify mammalian cells. Microbial engineering is gener-
ally easier because microbes have smaller genomes, grow
faster, and are more genetically accessible than mammalian
cells (Weber and Fussenegger 2009). Furthermore, micro-
bial treatments are likely to be more transient than gene-
therapy-type approaches, rendering them potentially safer.
Whereas the mislocalization of microbes in the human
body can itself cause disease, the human body is home to
trillions of symbiotic microbes; engineering these species
in their respective niches may be a successful strategy.

For example, synthetic microbial devices might be
used in the selective destruction of cancer cells, therein
providing the benefits of traditional chemotherapy with-
out the negative side effects (Anderson et al. 2006,
2007; Cironi et al. 2008). To this end, cancer-targeting
bacteria have been developed in which their ability to
invade and kill cancer cells is linked to environmental
signals that are specific to the tumor microenvironment
(such as hypoxia and bacterial aggregation). At the center
of this device is a modular AND gate that triggers cell
invasion only if the two inputs are detected (Anderson
et al. 2006). This system is composed of modular parts,
such that the system is adaptable to different cancer types.
Recently, nonpathogenic or immunogenic photosynthetic
bacteria were engineered with invasin and listeriolysin to
invade the cytoplasm of mammalian cells (Agapakis
et al. 2011). This work presents the possibility of using
photosynthetic bacteria as a novel chassis for synthetic
devices in human systems.

It should be noted that the safe delivery of both men-
tioned bacterial devices to patients may be problematic,
because an immune response against engineered bacteria
would be highly undesirable. The human gut is a likely
target for engineered bacteria. The average person har-
bors approximately 160 bacterial species in his or her
gut, with about 1014 individual microbial cells (Qin et al.
2010; Tilg and Kaser 2011). The variety of species found
in a single person can depend on the person’s location,
diet, and disease state, among other factors. Cross talk
between the host and the microbiome is also implicated
in disease risk and progression, including obesity, cardi-
ovascular disease, diabetes, cancer, Crohn’s disease,
ulcerative colitis, and the metabolic syndrome (Martins
Dos Santos et al. 2010; Tilg and Kaser 2011). There is tre-
mendous potential for engineered microbes to observe,
diagnose, and potentially treat these diseases.

The species composition (and therefore the metabolic
state) of the gut microbiome is maintained through inter-
cellular communication, both between the host and the
microbiome and within the microbiome itself. Ideally,
engineered microbes in the gut will participate in this
communication to maintain homeostasis. Two signaling
peptides, glucagon-like peptide 1 (GLP-1) and pancreatic
and duodenal homeobox gene 1 (PDX-1), have been dem-
onstrated to induce insulin synthesis in the intestinal epi-
thelium (Yoshida et al. 2002; Suzuki et al. 2003). E. coli
engineered to secrete GLP-1 and PDX-1 in response to
glucose were demonstrated to trigger insulin production
in Caco-2 cells (Duan et al. 2008). Introduction of this
device into the gut of diabetic patients could restore
glucose-dependent insulin production. A similar device,
this time secreting Vibrio cholerae quorum-sensing mol-
ecules, was capable of preventing V. cholerae propagation
in mice (Duan and March 2010). Prophylactic engineered
bacteria have also shown promise in preventing HIV
infection of the cervicovaginal mucosa (Rao et al. 2005;
Liu et al. 2006; Yu et al. 2009; Duan and March 2010;
Lagenaur et al. 2011).

Fecal transplantation is emerging as a clinical treat-
ment for gastrointestinal infections, particularly for Clos-
tridium dificile (Palmer 2011; Tilg and Kaser 2011). The
primary benefit of fecal transplantation is the recoloniza-
tion of the gastrointestinal tract by commensal microbes
that were eradicated during the treatment of the initial
infection. The introduction of engineered bacteria to the
gastrointestinal tract may prevent infection altogether.
Beyond the use of natural probiotic bacteria, or the con-
stitutive secretion of recombinant peptides by engineered
bacteria, we envision that bacteria equipped with synthet-
ic gene circuits might sense unwanted changes in the body
and react by secreting drugs or signaling molecules. This
secondary immune system could augment the body’s nat-
ural defenses to fight disease at preclinical stages.

CONCLUSIONS AND OUTLOOK

In this chapter, we have provided an overview of the
synthetic biology tools available for human disease and
metabolism. Whereas some of these techniques have been
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successfully applied to human patients, many synthetic bio-
logy tools remain at the laboratory bench. Successful
transition to the clinic will require the development of
robust delivery methods and significant improvement in
device reliability and specificity. These objectives are
in line with the ultimate goals of synthetic biology—to
build biological systems with defined and predictable
functions. Ultimately, smart synthetic devices, which tar-
get themselves to the correct tissues and regulate their
own dosage, may be safer and more effective than current
therapeutics.

We have touched upon existing and proposed methods
for introducing synthetic tools to the human body. To
date, synthetic biologists have constructed a diverse array
of components that may contribute to future therapeutics,
but assembly of a complete device that is ready for human
testing has yet to be realized. Therapeutic implantation
of synthetic biological devices is but one application
of these tools; synthetic biological devices have already
enhanced our understanding of disease and metabolism.

The maturation of synthetic biology in the medical
arena is dependent on further scientific and regulatory
development. To be considered for clinical trials, the reli-
ability and accuracy of synthetic devices must be in-
creased. The limited number of animal experiments
conducted thus far (Duan and March 2010; Lagenaur
et al. 2011; Ye et al. 2011) speaks to the infancy of the
field. The complexity of engineered mammalian devices
has tended to lag behind progress in the synthetic biology
of simpler systems. The modularization of genetic cir-
cuits, that is, repurposing and combining devices to pro-
duce new functions or operate in different cell types, has
been difficult. Our own experience with memory devices
(and the experience of others with logic gates) has taught
us that devices can be modularized, but that more than a
simple promoter swap is often necessary (Ajo-Franklin
et al. 2007; Anderson et al. 2007; Burrill and Silver
2011). These issues are not insurmountable, but they do
lengthen the time horizon for building clinical-grade de-
vices. Navigating the complex pharmaceutical regulatory
landscape will present an entirely different yet arduous
challenge. These issues raise the importance of accelerat-
ing the mammalian engineering design cycle: We must
expand work in therapeutically relevant cell lines, incor-
porate improved models of device function, and better
integrate with the related fields of stem cell therapy and
tissue engineering.

The stakes for human applications of synthetic biology
are higher than for applications confined to bioreactors.
In developing synthetic biology tools for human health,
we must continually consider the relevant ethical and
social issues surrounding this research (Yearley 2009).
Taking initiative in these areas will be essential to the
responsible development of synthetic biological thera-
peutics. Recent experience in the development of exper-
imental therapies has underscored the importance of cau-
tion in developing human trials (Marshall 1999; Gabardi
et al. 2011). Balancing risks with the transformative po-
tential benefits of synthetic biology will be a continual and
necessary challenge as synthetic biology enters the clinic.
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Abstract  

Background 

Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. 

Standardized methods advocated by the synthetic biology community can accelerate the plant 

design cycle; ultimately making plant engineering more widely accessible to bioengineers 

who can contribute diverse creative input to the design process.  

Results 

This paper presents work done largely by undergraduate students participating in the 2010 

International Genetically Engineered Machines (iGEM) competition. Described here is a 

framework for engineering the model plant Arabidopsis thaliana with open-source, 

standardized vectors and parts available through the MIT Registry of Standard Biological 

Parts (www.partsregistry.org). This system was used to engineer a proof-of-concept plant that 

expresses a taste-inverting exogenous protein, miraculin.  

Conclusions 

Collectively, our work is intended to facilitate plant synthetic biology. We envision a future 

where plant biotechnology can be designed by and tailored to the needs of the consumer at 

local rather than industrial scales. This kind of personalized genetic engineering can 

potentially decrease the environmental cost of agriculture, enhance foods’ nutritional value, 

and increase public understanding of genetically modified organisms. 

 

Keywords 
iGEM, synthetic biology, Arabidopsis, plant biotechnology, miraculin 
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Background  
Humans have long used selective breeding to modify plant characteristics such as growth 

rate, seed size, and flavor [1]. For much of agricultural history, the targeted traits reflected the 

needs of local growers and consumers, creating a vast array of crop varieties. Advances in the 

field of genetics and the advent of recombinant DNA technology accelerated our ability to 

manipulate food crops [1-5]. The introduction of multiple genes (termed gene stacking in 

plants) has made plants accessible to synthetic biology applications [6-11]. 

 Despite these advances, industrial interests and gene patents have significantly limited 

the development of diverse platforms for plant engineering methods and applications. 

Monocultural approaches are widely favored in industrial agriculture and this monopolizes 

agricultural engineering, which threatens food security, public health, and ecosystem 

stability. Of the thousands of edible plant species, just five contribute to the majority of 

agricultural output: wheat, rice, soy, corn, and rape [12]. Furthermore, the number of 

industrial patents claimed on protocols related to Agrobacterium tumefaciens, the gram-

negative soil bacterium widely used for plant genetic engineering, has significantly increased 

over the last thirty years [13]. The labyrinth of patent and intellectual property rights for plant 

biotechnological processes and materials, including Agrobacterium-mediated protocols, 

creates an obstacle to the private and public use of plant engineering tools.  

 This work aims to create an open-source, standardized, and modular system for the 

production of genetically enhanced plants to facilitate their adoption by diverse users outside 

of industry and academia. Ideally, an open-source plant engineering system is customizable, 

yet has convenient standard features that minimize the need to re-invent common steps such 

as transferring genetic material into the plant. We demonstrate the feasibility of small-scale, 

personalized engineering projects in the model organism, Arabidopsis thaliana (Arabidopsis), 

using a BioBrick-modified plant vector system (Figure 1). As a proof-of-principle, 

Arabidopsis was modified to express miraculin, a flavor-inverting protein from Synsepalum 
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dulcificum that is consumed as a novelty product. Beyond creative gastronomy, we imagine 

this system being used to enhance the nutritional content of edible plants or help allergy 

sufferers enjoy the benefits of fresh home-grown produce (Figure 1). The development of 

efficient transformation techniques for many plants remains a key hurdle for commercial and 

personal agriculture. However, flexible genetic customization of plants also requires a system 

of easily transferable, standardized components such as those presented here. We hope this 

work will lead to techniques that yield a diversity of produce tailored to individual, 

community, and local environmental needs.  

 

Results  

Design of BioBrick compatible vectors for Arabidopsis transformation 

Arabidopsis is readily transformed by Agrobacterium: when a plant is injured, Agrobacterium 

localizes to the wound site and naturally transfers the T-DNA region of its tumor-inducing 

(Ti) plasmid into the plant cell [14]. The T-DNA localizes to the nucleus and integrates into 

the plant’s chromosomal DNA. A series of open-source vectors (the pORE series) has been 

developed from Agrobacterium’s Ti plasmid to allow transformation of heterologous DNA 

into plants via Agrobacterium [14].  pORE vectors come equipped with a multiple cloning 

site (MCS) containing twenty-one unique restriction endonuclease sites. Reporters or 

promoters are included to create expression vectors, reporter vectors, or vectors that can carry 

an exogenous promoter or open reading frame. This vector series offers either glufosinate 

resistance via the pat gene, or kanamycin resistance via the nptII gene, to enable the selection 

of successfully transformed plants. 

 We developed a new set of six BioBrick DNA assembly-compatible plant 

transformation vectors based on the pORE series (Table 1). Vectors V1 and V2 (modified 

Open vectors) contain no promoter or reporter gene, allowing integration of constructs under 
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the control of a chosen promoter (Figure 2A, Table 1). Vectors V3 and V4 (modified 

Expression vectors) contain the constitutive pENTCUP2 promoter upstream of the MCS 

(Figure 2B, Table 1), while V5 and V6 (modified Reporter vectors) contain no promoter but 

have either the reporter gusA or soluble modified GFP (smgfp) downstream of the cloning 

site (Figure 2C, Table 1). Each vector contains an MCS that is compatible with three widely 

used BioBrick standards (RFC 10, 20, 23, www.partsregistry.org).  

Expression of standardized flavor protein genes in industrial microorganisms 

Using the Biobricked vectors, we sought to modify the taste of Arabidopsis, specifically 

enhancing the sweetness of a bitter plant without altering sugar content. Several naturally 

occurring proteins are 100 – 3000 times sweeter than sugar by weight [15]. Brazzein, 

monellin, thaumatin, pentadin, mabinlin, and curculin are sweet proteins found in a variety of 

African and South Asian fruits, with no sequence similarity or common features [16]. 

Brazzein, isolated from the West African fruit Pentadiplandra brazzeana, is the smallest of 

these proteins with only 54 amino acids. It has a high heat tolerance, surviving 80° C 

exposure for several hours, and was previously expressed heterologously in Escherichia coli 

(E. coli) [16], Zea mays [17], and Lactobacillus lactis [18]. 

 Miraculin, isolated from the berries of the West African plant Richadella dulcifica, 

does not taste sweet on its own. Rather, it acts as a flavor-inverter by binding to taste 

receptors on the tongue in a pH-dependent manner, causing sour foods to taste sweet [19]. A 

1 µM miraculin solution is sufficient to activate this inversion, where 20 mM citrate 

corresponds to the sweetness of 300 mM sucrose [20]. Miraculin is a glycosylated 

homodimer that has been heterologously expressed in lettuce [21], tomato [22], and even E. 

coli [20], indicating that endogenous Richadella glycosylation is not required for functional 

expression. 
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 Full-length miraculin and brazzein protein expression from standardized open reading 

frames was tested in E. coli and the yeast Saccharomyces cerevisiae. Brazzein and miraculin 

genes were commercially synthesized and codon-optimized for expression in Arabidopsis. 

Biobrick-compatible restriction enzyme sites bracketed each open reading frame. Constructs 

were tagged at either the N- or C-terminus with the Strep-II tag [23] for western blot analysis. 

Miraculin (Figure 3A) and brazzein (Figure 3B) were expressed from an IPTG inducible T7 

promoter in E. coli. Monomeric miraculin was expressed at very low levels at approximately 

24 kDa regardless of tag location, which is consistent with previous work [20]. Brazzein was 

highly expressed in the same system at about 12 kDa, regardless of the tag location, which is 

also consistent with previous results [16]. Brazzein was also highly expressed from the 

constitutive TEF and copper-inducible CUP1 promoters in yeast (Figure 3C). The higher 

molecular weight of the Strep-II tagged brazzein observed by western blot in yeast, compared 

to E. coli (~35 kDa versus 12 kDa) is likely due to yeast-specific glycosylation of the 

brazzein protein[24]. While expression of the miraculin gene was not verified in yeast we 

attempted integration of both miraculin and brazzein constructs in Arabidopsis. 

Expression of flavor proteins in Arabidopsis 

We successfully introduced two different BioBrick plant vectors into Arabidopsis and 

selected for seeds carrying genomically-integrated miraculin and brazzein transgenes. 

Miraculin- or brazzein-encoding DNA was introduced into Arabidopsis via Agrobacterium-

mediated transformation [25] under control of the pENTCUP2 promoter and the NosT 

transcriptional terminator on either the V3 (glufosinate resistance) or V4 (kanamycin 

resistance) BioBrick vector. Transformed seeds were selected on MS-agar, and resistant 

plants were moved to soil and allowed to produce seeds. T1 generation seeds were collected 

and re-plated on selective plates. Resistant plants were once again moved to soil and allowed 

to produce T2 generation seeds. While integration of both the miraculin and brazzein genes 
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into the plant genome was verified by PCR (Figure 4A), only miraculin RNA expression was 

detected (Figure 4B). Furthermore, miraculin protein expression was verified by western blot 

on whole cell protein (Figure 5). A band was detected at ~ 40 - 45 kDa that was not present in 

a protein sample from a control plant of the same background strain; this protein size is 

consistent with that previously observed for a glycosylated miraculin monomer in lettuce 

[21]. The antibody shows significant background binding (see Additional file 1, Figure S1), 

however, taken together (with the RNA expression data) these data indicate that the miraculin 

protein is expressed in our transgenic plants. We present a unique application of open-source, 

standardized, modular parts to engineer plants, establishing a new avenue for the personalized 

genetic enhancement of non-commercial agriculture. 

 

Discussion and Conclusions 
Genetic engineering of plants at the industrial scale is well established. Technological 

advances have yielded crops that reduce food production costs through resistance to pests, 

herbicide, drought, and flood [26]. Additionally, modification of crops (e.g., rice) to contain 

pro-vitamins can help treat health issues such as vitamin A deficiency in countries where 

staple foods do not provide the necessary nutrients [26, 27]. However, small-scale 

experimental horticulture, farming, and gardening have been excluded from producing 

innovative contributions due to the lack of accessible tools for the genetic modification of 

plants. The availability of standardized plant vectors in the Registry of Standard Biological 

Parts will facilitate the development of small-scale plant engineering projects. 

We have modified existing open-source plant integration vectors to make them 

compatible with the BioBrick assembly standard 23 [28], demonstrated that they can be used 

to integrate transgenes in Arabidopsis, and showed successful integration and expression of 

the taste modifying protein miraculin. All constructs have been submitted to the Registry of 
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Biological Parts (www.partsregistry.org) and are available as a resource for the synthetic 

biology and plant engineering community. These include vectors modified from the pORE 

vector series [14], plant specific regulatory elements (e.g., promoters, terminators), resistance 

markers, and the coding sequence of miraculin.  The vector series features variations 

containing the constitutive promoter pENTCUP2 (V3 and V4), visible reporters gusA or 

smGFP (V5 and V6), or a simple multiple cloning site (V1 and V2), allowing expression of a 

gene from a promoter of choice. 

In addition to using these vectors to express exogenous proteins, we have considered 

integrating constructs expressing hairpin RNAs [29] or artificial microRNAs [30] to knock 

down the expression of endogenous genes. This strategy is particularly powerful in that 

synthesizing a DNA sequence to match any gene transcript of choice allows the regulation of 

potentially any plant protein. For instance, this approach could be used reduce allergenic 

protein levels [31]. Alternatively, microRNAs could be targeted to metabolic regulators so 

that key metabolites, such as pigments or nutrients, are allowed to accumulate [32] and 

enhance the color or nutritional content of the plant. Modification of existing open-source 

vectors to conform to the BioBrick assembly standard allows them to be integrated into a 

BioBrick cloning based workflow. In addition to simplifying the construction of more 

complex genetic devices, adhering to an assembly standard allows for the possibility of 

automation of assembly.  

We hope that availability of plant integration vectors compatible with a common 

assembly standard will facilitate the use of plants as a chassis in synthetic biology. This work 

demonstrates the feasibility of customizing the genetic makeup of plants with open-source 

and standardized components. Garden-scale design of food plants, in which the gardener 

selects desirable traits, can be made possible through the availability of low-cost or free 

genetic parts. Personalized engineering of plants to modify flavor, nutritional value, or 
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allergenicity could create a new class of synthetic organic foods that are grown and consumed 

at a local scale. 

 

Materials and methods 

Plasmids and cloning 

Gene assembly was performed in E. coli DH5α using BioBrick assembly standard 21 [28], 

and all described parts were submitted to the BioBrick Registry. Arabidopsis pORE series 

vectors were provided by The Arabidopsis Information Resource (TAIR) and engineered to 

support BioBrick cloning through PCR-based methods (see Additional file 1, Table S1). 

pORE Open Series vectors O1 and O2 were digested with SpeI and SacII and ligated with an 

annealed oligonucleotide insert with NheI and SacII overhangs containing the BioBrick 

Multiple Cloning Site (MCS) to create vectors V1 and V2.  pORE Expression Series vectors 

E3 and E4 were likewise digested with HindIII and SpeI and ligated with an insert PCR 

amplified from the expression vectors containing HindIII site upstream from the pENTCUP2 

promoter and the BioBrick MCS and an NheI site downstream to create vectors V3 and V4.  

pORE Reporter Series vectors R1, containing the gusA reporter, and R3, containing the 

smgfp reporter, were digested with HindIII and SpeI and ligated with inserts containing the 

reporter gene PCR amplified with primers containing a HindIII site followed by the BioBrick 

MCS upstream and NheI downstream, yielding vectors V5 and V6. 

Brazzein and miraculin were codon optimized for expression in Arabidopsis, 

commercially synthesized (Mr. Gene, Regensburg, Germany), and assembled with the 

pENTCUP2 promoter and NosT transcriptional terminator. Completed constructs were 

subcloned from BioBrick assembly vector V0120 to BioBrick modified pORE vectors 

through digestion with EcoRI and PstI. 
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Plant Maintenance 

Wild-type Col-0 Arabidopsis thaliana seeds were sterilized by washing with 70% ethanol, 

0.1% Triton X-100, followed by two 95% ethanol washes and two sterile dH2O washes. 

Seeds were then plated on 1X Murashige & Skoog (MS) media with 0.7% agar supplemented 

with 150 uM carbenicillin and placed in the dark at 4 ºC for three days before moving to an 

incubator with 16 h illumination at 20 ºC and 8 h dark at 15 ºC per day to allow seeds to 

germinate. Once plants produced secondary leaves, they were moved to soil and allowed to 

mature and produce seeds. Seeds were collected and stored at 4 ºC. 

Plant Transformation 

Agrobacterium-mediated transformation was performed according to previously reported 

techniques [25]. Briefly, Agrobacterium was made electro-competent by washing in cold 

sterile water and resuspending in 10% glycerol. Vector DNA was dialyzed to remove excess 

salt, and electroporated into Agrobacterium. Kanamycin resistant colonies were grown in 

YEB media, spread on YEB plates, and allowed to form a lawn. Lawns were scraped and 

suspended in a solution of 20% YEB, 4% sucrose (w/v), and 0.024% Silwet L-77 surfactant 

(Helena Chemical Company, Collierville, TN). Wild-type Col-0 Arabidopsis flowers were 

dipped in the Agrobacterium solution and allowed to grow and develop seed pods. Seeds 

were collected from mature plants and selected on 1x MS media with 0.7% agar 

supplemented with 5 mg/L glufosinate or 50 µg/ml kanamycin.  

E. coli and yeast protein expression 

In BL21(DE3) E. coli, StrepII-tagged brazzein and miraculin were inserted at multiple 

cloning site 1 of a BioBrick-modified pET-duet vector [33]. Cells were grown to mid-log 

phase and induced with a final concentration of 1 mM IPTG. Protein expression was 

measured by western blot. 
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 In PSY580a yeast S. cerevisiae, StrepII-tagged brazzein was cloned with the 

constitutive TEF promoter or the copper-inducible CUP1 promoter and integrated at the 

LEU2 locus. Transformants were grown in YEPD media with 0.3 mM CuSO4 to induce 

protein expression, which was measured by western blot. 

Verification of genomic transgenes 

Genomic DNA was extracted using the DNEasy kit (Qiagen) and amplified by PCR (see 

Additional file 1, Table S2). Whole cell DNA Whole cell RNA was collected using the plant 

RNEasy kit (Qiagen). cDNA was synthesized with the SuperScript III First-Strand synthesis 

kit (Invitrogen). qPCR was performed with primer pairs (see Additional file 1, Table S2) 

amplifying 100 base pair amplicons within target genes to identify expression of heterologous 

genes or endogenous gene knockdown.  

SDS-Page and Western Blotting 

Protein samples were extracted from Arabidopsis, E. coli, and yeast and normalized using the 

Bradford assay (Bio-Rad, Hercules, CA). Samples were diluted into SDS-PAGE loading 

buffer and loaded onto a 4-20% Tris/glycine/SDS acrylamide gel. α-Strep-tag II antibody 

(HRP-conjugated, Novagen, Gibbstown, NJ) was used to measure brazzein and miraculin 

protein expression in yeast and E. coli, and α-miraculin antibody [21] (provided by Tadayoshi 

Hirai, Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan) 

was used to detect levels of miraculin expression in Arabidopsis. Monoclonal Anti-β-Tubulin 

antibody (Sigma-Aldrich, St-Louis, MO) was used to detect tubulin in Arabidopsis. 

 

List of abbreviations used  
MCS: multiple cloning site  
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Figure Legends 

Figure 1 - An open-source, standardized, and modular system for the production of 
genetically-modified plants. 

Genetic parts obtained from the BioBrick Registry were assembled and inserted into modified 

vectors (Open, Expression, or Reporter) in E. coli. These parts may be assembled to build 

constructs to impact a wide variety of plant phenotypes. Once assembled, these vectors were 

transformed into Agrobacterium. Using the floral dip procedure, Agrobacterium infected 

Arabidopsis, thereby transferring the assembled construct. Once seeds were produced, they 

were plated on selective media to obtain transgenic plants carrying the assembled construct. 

Figure 2 - Schematic of BioBrick plant vectors.  

(A) Modified Open vectors are based on TAIR vectors pORE O1 and O2 [14]. They are 

designed for general insertion of a construct. (B) Modified Expression vectors are based on 

TAIR vectors pORE E3 and E4 [14]. They contain an inducible promoter preceding the 

BioBrick MCS, to permit user-controlled expression of the inserted construct. (C) Modified 

Reporter vectors are based on TAIR vectors pORE R1 and R2 [14]. They contain a reporter 

gene following the BioBrick MCS, such that expression of the reporter follows that of the 

inserted construct.  
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Figure 3 - BioBrick miraculin and brazzein protein expression in bacteria and yeast.  

(A) Miraculin and (B) brazzein BioBricks were expressed from an IPTG-inducible promoter 

in E. coli with an N- or C-terminal Strep-II tag . (C) Brazzein BioBrick was expressed in 

yeast from pTEF or pCup1 promoters C- terminal Strep-II tag.  

Figure 4 - BioBrick miraculin DNA and RNA expression in Arabidopsis. 

(A) Integration of the miraculin and brazzein genes in the Arabidopsis genome was 

confirmed. (B) Miraculin RNA was constitutively expressed in Arabidopsis however 

brazzein expression was not detected. act: actin control; b: brazzein primer set; m1-m3; 

miraculin primer sets. 

Figure 5 - BioBrick miraculin protein is expressed in Arabidopsis.  

Miraculin was constitutively expressed in transgenic plant, as compared to control plant 

(WT). Closed arrow: miraculin band. Open arrows: non-specific bands. 

 

Tables 

Table 1 – Features of BioBrick plant vectors 

Vector Biobrick 
Registry ID 

Bacterial 
Resistance 

Plant 
Resistance 

Promoter Reporter Original 
pORE 
vector 

V1 BBa_K382000 Kan Pat none none pORE O1 
V2 BBa_K382001 Kan nptII none none pORE O2 
V3 BBa_K382002 Kan Pat pENTCUP2 none pORE E3 
V4 BBa_K382003 Kan nptII pENTCUP2 none pORE E4 
V5 BBa_K382004 Kan nptII none gusA pORE R1 
V6 BBa_K382005 Kan nptII none smgfp pORE R3 
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Additional files 

Additional file 1 – Supplementary Data for Personalized Genetic Engineering of 
Plants. 

Contains tables of primer sequences describing primers used to modify pORE vectors, verify 

integration of transgenes, and RNA expression as well as the uncropped western blot shown 

in Figure 5. 
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Appendix F 

Natural strategies for the spatial optimization of metabolism 

in synthetic biology1 

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 This manuscript was written as an invited review for Nature Chemical Biology, and has been 
accepted for publication. The following is the final preprint draft of the manuscript, and is 
reproduced with permission from the Editor. 
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Abstract 

 Metabolism is a highly interconnected web of chemical reactions that power life. 

While the stoichiometry of metabolism is well understood, the multi-dimensional aspects 

of metabolic regulation in time and space remain difficult to define, model, and engineer. 

Complex metabolic conversions can be performed by multiple species working 

cooperatively, exchanging metabolites via structured networks of organisms and 

resources. Within cells, metabolism is spatially regulated as well, via sequestration in 

subcellular compartments and through the assembly of multi-enzyme complexes. 

Metabolic engineering and synthetic biology have had success in engineering 

metabolism in the first and second dimensions, designing linear metabolic pathways 

and channeling metabolic flux. More recently, engineering of the third dimension has 

improved output of engineered pathways through isolation and organization of multi-cell 

and multi-enzyme complexes. This review highlights natural and synthetic examples of 

three dimensional metabolism both inter- and intra-cellularly, offering tools and 

perspectives for biological design. 
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 Cellular metabolism can accomplish chemical feats at specificities, temperatures, 

and pressures that chemists and chemical engineers can only dream of. Synthetic 

biology and metabolic engineering seek to turn living cells into microbial factories: self-

regenerating machines producing renewable fuels, medicines, and materials. Learning 

from natural strategies for solving complex metabolic problems can significantly 

optimize the behavior of these biotechnologies. In this review we discuss how natural 

and synthetic metabolic pathways can be optimized through spatial organization, from 

the cell scale across microbial consortia, to the protein scale inside cellular enzyme 

complexes. Our story begins inside the cockroach hindgut, where a remarkable 

methane production system shows the importance of multi-scale spatial regulation in 

enzymatic pathways. 

 The cockroach gut may seem like a strange place to start a review about cellular 

metabolism, but cockroaches contain a multilayered and surprisingly structured 

metabolism that allows them to digest and survive off of an extraordinarily wide range of 

food sources, including cellulose-rich materials such as paper1. Cellulose degradation 

requires the coordinated behavior of many different enzymes and multiple cellular 

pathways, and indeed only a relatively small number of microbial organisms have 

evolved the necessary enzymatic systems. Herbivorous animals, including cockroaches, 

thus digest cellulose by outsourcing the breakdown chemistry to a complex community 

of these microbes—protozoa, archaea, bacteria, and fungi in the bovine rumen or insect 

hindgut that perform a series of linked chemical reactions (Fig. 1). Microbial 

communities living in the hindgut of cockroach species such as Periplaneta americana 
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can anaerobically digest cellulose, using carbon dioxide as a terminal electron acceptor 

to generate up to 4ml of methane per insect per day1.  

 Investigating this methane production revealed an unexpected source: the 

anaerobic eukaryote Nyctotherus ovalis. N. ovalis, is required for healthy cockroach 

growth and present at high cell densities (up to 5-6 x 104 cells/ml) in the hindgut1. 

Methanogenesis is rare in biology and had only been observed in archaea. Further 

unraveling of this system explains that gut-dwelling ciliates such as N. ovalis do not 

produce methane on their own, but instead harbor methanogenic endosymbionts—

archaea of the genus Methanobrevibacter that complete the final steps of the chemical 

breakdown of cellulose1-3. These vertically-transmitted endosymbionts are closely 

related to free-living species, indicating multiple acquisition events2. 

 This nested endosymbiosis maintains the thermodynamic equilibrium of the 

whole community and significantly impacts the fermentative ability of N. ovalis4. 

Methanogens are autotrophs that consume hydrogen as a source of reducing power to 

fix carbon dioxide, while N. ovalis couples ATP generation to hydrogen production in the 

hydrogenosome, an organelle evolutionarily related to the mitochondria5. By decreasing 

the partial pressure of hydrogen outside the hydrogenosomes, the methanogens ensure 

that the hydrogen-producing reactions continue to be thermodynamically favorable. 

Spatial proximity is crucial to the ability of the methanogens to efficiently siphon 

hydrogen from the hydrogenosome, with electron micrographs showing the 

methanogenic endosymbionts tightly associated with the hydrogenosomes’ outer 

surface3 (Fig. 1). 
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Spatial optimization: learning from nature 

 The spatial coupling of complex metabolic reactions is a common theme 

throughout biology, with reactions isolated from one another in different cells, 

compartments, or complexes and subsequently linked through controlled proximity. 

Three-dimensional organization and optimization at many scales can concentrate 

reactants to drive unfavorable reactions6, remove inhibitory products7, or channel 

metabolites from one enzyme to the next8. These strategies have been exploited in 

metabolic engineering to improve pathway function9, and will likely play an important 

role in future attempts to design metabolic pathways for the breakdown and/or 

production of complex organic molecules. 

 The optimization of synthetic metabolic pathways has been described as a zero-

sum game, where channeling flux to an artificial pathway necessarily takes energy away 

from required cellular networks10. Microbial consortia could attenuate these challenges 

through division of labor among a diverse population, driving thermodynamically 

unfavorable reactions by creating concentration gradients between species, as well as 

physically isolating toxic enzymes or intermediates into separate cell types11. 

Furthermore, consortia may be able to more efficiently perform consolidated 

bioprocesses than a single organism, in particular the breakdown of cellulose and 

subsequent production of biofuels12-14. Natural strategies and mechanisms that govern 

the association of microbes in symbiotic assemblages can influence the way that 

synthetic metabolic pathways are designed across multiple species. 
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 Inside cells, metabolic networks function amidst chemical chaos using a number 

of strategies that bring together appropriate cells, enzymes, and substrates in time and 

space. These optimization strategies function at many scales and are responsive to 

external signals, ensuring that the cell does not waste metabolic resources by producing 

unnecessary enzymes, as well as channeling flux through proper metabolic routes. 

Cellular mechanisms that scaffold or otherwise spatially isolate metabolic pathways can 

ensure proper metabolic function in a number of interconnected ways. First, metabolites 

or enzymes that can react promiscuously can be channeled and scaffolded to maintain 

specificity15. Second, channeling16, scaffolding8, or compartmentalization17 can 

concentrate reactants to drive unfavorable reactions, protect enzymes or unstable 

intermediates from harmful cellular conditions or competing reactions, as well as protect 

the rest of the cell from toxic intermediates.  

 Many of these regulatory strategies are modular, whether they are multi-domain 

or multi-polypeptide enzyme complexes18, scaffolded or linked with interchangeable 

protein-protein interaction domains, or whether they function at the level of whole 

organelles or cells. The modularity of natural spatial organization of metabolism enables 

these pathways to be robust as well as evolutionarily flexible19, new reactions and 

pathways can rapidly evolve through the establishment of new symbiotic relationships 

or the recombination of protein domains. 

 In this review, we explore evolved and engineered metabolic optimization 

strategies from the multicellular to the protein scale. We emphasize the modular 

biological components that comprise these strategies, as synthetic biologists seek to 
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repurpose these components for the improvement of novel pathways. Multicellular 

complexes can be modulated with the addition of new species, as well as designed from 

scratch and spatially controlled through microfluidics. Inside cells, targeting of proteins 

to compartments such as the carboxysome, vacuole, or peroxisome can concentrate 

reactions and pathways that need special cellular conditions to function properly and 

may be toxic in the cytoplasmic environment. At the protein scale, the scaffolding of 

multi-domain or multi-enzyme complexes that catalyze complex biosynthetic reactions 

inspires the design of protein or nucleic acid scaffolds that control the proximity of 

enzyme partners, increasing pathway flux. These strategies have been employed in a 

range of applications, from the remediation of toxic pollutants20 to the production of 

biofuels21, enabling unfavorable reactions and significantly boosting production. Given 

the importance of spatial regulation in natural systems, these strategies will likely be 

broadly applicable for synthetic biology and metabolic engineering. 

 

Microbial assemblages 

  Like the nested symbiosis of methanogenic archaea inside N. ovalis in the 

cockroach gut, the close association of hydrogen producing protozoa and methanogens 

occurs in the gut of many other cellulose-digesting animal species, either 

episymbiotically in the cow rumen22 or endosymbiotically in the termite hindgut23. This 

association allows for the complex metabolic breakdown pathways to be split between 

several members of the community while maintaining the spatial arrangement required 

for the efficient transfer of metabolic intermediates. Hydrogen transfer between different 



!

 230 

 

8 

organisms also occurs in other anaerobic environments where complex molecules are 

broken down by microbial consortia, such as putrefying sludge9. 

 

The inner life of sludge 

 Anaerobic wastewater sludge is home to highly structured microbial aggregates, 

sometimes millimeters across, that organize the metabolic reactions necessary for the 

complete breakdown of organic matter. These granules are arranged in three basic 

layers9,24, each made up of multiple species, many of which remain uncharacterized and 

uncultured25. The aggregate is surrounded by an outer layer of acidogenic bacteria that 

break down biomass into organic acids. These acids are further broken down by the 

next layer of acetogenic, hydrogen-producing bacteria. In the center, multiple strains of 

methanogenic archaea including species of the genus Methanosaeta, 

Methanobacterium, Methanospirillum, and Methanosarcina26 consume the hydrogen 

and carbon dioxide produced by the outer layers to generate methane9 (Fig. 2A). The 

coupling of these metabolic reactions in granules ensures the efficient transfer of 

intermediates between the different cell types, improving the efficiency of biomass 

breakdown. In the case of propionate27 or butyrate28 degradation, the rapid consumption 

of hydrogen by the methanogenic core is required to drive the otherwise 

thermodynamically unfavorable reactions9. 

 Intercellular spatial organization can also protect sensitive cells and enzymes 

from the external environment as well as help protect a cell from itself. Photosynthetic 

microorganisms have evolved a range of spatial organization schemes to isolate 
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metabolic enzymes that are inhibited29 or damaged30 by oxygen, a natural byproduct of 

photosystem II. In diazotrophic organisms, nitrogen fixation is performed by enzymes 

that are highly sensitive to atmospheric oxygen, and a number of strategies isolate the 

nitrogenase temporally or spatially30. In filamentous cyanobacteria such as Anabaena or 

Nostoc species, oxygen-sensitive nitrogenase is expressed only in terminally 

differentiated heterocyst cells that do not express photosystem II and are gas tight. 

These “multicellular” cyanobacteria exchange nutrients between the photosynthetic 

vegetative cells that can fix carbon and adjacent heterocysts that fix nitrogen, requiring 

a highly regulated system for patterning which cells differentiate to ensure proper 

distribution of nutrients along the filament31 (Fig. 2B). 

 Nitrogen fixation by prokaryotes is crucial to the planetwide ecosystem, and is the 

basis for a variety of spatially organized symbioses. In addition to Anabaena, similar 

nitrogen-fixing filamentous bacteria are found in complex, highly structured endo- or 

episymbiotic relationships with plants, fungi, and even other bacteria such as Hoeflea 

anabaenae sp. nov., which can be found in epiphytic symbiosis attached to Anabaena 

heterocysts32.  

 Given the power of ordered microbial communities, replicating these complex 

phenotypes has become a research priority. Tools to measure the spatially ordered 

metabolic interactions between different species in aggregates and biofilms33, and 

engineer cell-cell communication34 and programmed cell death35, as well as advanced 

techniques such as microfluidics that allow for precise control over cell behavior have 

the potential to enable microbial “tissue engineering”36, where microbial communities 
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are designed and spatially organized to produce or break down complex metabolites. 

Such multicellular microbial designs can be used not only to improve the transfer of 

pathway intermediates in metabolic reactions split across different species, but also to 

protect sensitive cells from harmful conditions. For example, oxygen-consuming 

microbes are frequently found in the outer layers of anaerobic aggregates, protecting 

the interior obligate anaerobes from oxygen damage36. Similarly, the outer layer of 

sludge granules can harbor microbes that degrade dangerous toxins, augmenting the 

overall fitness of the sludge while protecting the interior community from the toxins. 

 This protective strategy is exemplified by sludge granules tasked with degrading 

pentachlorophenol (PCP), a pesticide and disinfectant that is a common pollutant, 

contaminating soil and water. PCP inhibits the growth of most bacteria, but some 

species, like Desulfitobacterium frappieri PCP-1, can degrade the toxin. Supplementing 

anaerobic sludge reactors with D. frappieri PCP-1 protects the other species and allows 

for the efficient breakdown of PCP, with the exogenous bacteria colonizing the outside 

of the sludge granules37. Such methods are more difficult in the soil, where the presence 

of heavy metal co-pollutants such as mercury can harm PCP-degrading strains and 

inhibit bioremediation efforts. Here, a structured multi-species arrangement can thrive 

where individual strains cannot. Ralstonia metallidurans can efficiently reduce mercury 

and Sphingobium chlorophenolicum can degrade PCP, but in the presence of both 

mercury and PCP these strains are unable to survive alone or even in well-mixed co-

culture. Biomimetic sludge granules, assembled via microfluidic laminar flow deposition, 
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demonstrated that wrapping S. chlorophenolicum in a layer of R. metallidurans allows 

for the efficient remediation of both mercury and PCP20 (Fig. 2B). 

Spatial structuring and aggregation of single-celled microbial species into 

multicellular assemblages can evolve quickly in directed evolution conditions. Cell 

aggregates reminiscent of those present in wastewater sludge were evolved in a co-

culture of Geobacter metallireducens and Geobacter sulfurreducens grown on ethanol 

and fumarate. G. metallireducens is capable of consuming ethanol via Fe(III) reduction, 

but cannot use fumarate as an electron acceptor. Likewise, G. sulfurreducens uses 

fumarate as an electron acceptor but does not metabolize ethanol. After several 

months, cell aggregates appeared in the culture, significantly improving the time needed 

to consume the ethanol in the media38 (Fig. 2C). These “great balls of evolution” 

facilitated the transfer of acetate and hydrogen from G. metallireducens consumption of 

ethanol to G. sulfurreducens, which could in turn reduce fumarate. Interestingly, these 

aggregates also formed when the hydrogenase genes in G. metallireducens were 

deleted, indicating that direct electron exchange could occur between the cell clusters in 

the aggregate. Microbial multicellularity takes many forms in nature39 and can evolve in 

laboratory timescales. 

 

Designing stable co-cultures 

 Such spatially controlled evolution and engineering of microbial consortia 

represents an alternative approach to synthetic biology, where the arrangement of 

different microbial species enables the design of a new biological function without 
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genetic engineering20. Minimal genetic alteration is required to set up a system of cross-

feeding microorganisms, a first step for ecosystem-level design. Engineered co-culture 

based on auxotrophy was shown to lead to stable cooperation in Saccharomyces 

cerevisiae, with one strain auxotrophic for lysine but overproducing adenine and its 

partner auxotrophic for adenine but overproducing lysine40. Systems-level simulations of 

microbial cross-feeding in Escherichia coli identified significant metabolic synergy 

between auxotrophic strains without the need for additional engineering41. Based on 

these simulations, 46 conditional lethal E. coli auxotrophs were experimentally tested for 

their ability to grow in pairs. Of the 1035 pairs tested, 17% showed significant 

cooperative growth in minimal media, in agreement with the computational results. 

These experimentally validated cross-feeding pairs may form the basis for new 

engineered microbial consortia. Furthermore, this work demonstrated that network-scale 

metabolic modeling approaches commonly used for the design of monocultured species 

are also useful for the a priori design of stable co-cultures41. 

 Synthetic cross-feeding can be useful for designing microbial consortia, as well 

as improving our understanding of microbial cooperation dynamics11, but spatial 

engineering is often crucial for mixtures of organisms that do not normally coexist in 

nature to prevent one organism from dominating the culture. The importance of spatial 

control was demonstrated for an artificial “reciprocal syntrophy” designed between 

Nitrogen-fixing Azotobacter vinelandii, β-lactamase expressing Bacillus licheniformis, 

and cellulose-degrading Paenibacillus curdlanolyticus. These three strains can 

theoretically work together to grow in nitrogen-poor media containing penicillin and 
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carboxymethyl-cellulose as the only carbon source, but the community is unstable under 

well-mixed conditions. The cells could only grow cooperatively when they were 

physically isolated from one another in a microfluidic device that allowed for exchange 

of liquid media without the cells coming into direct contact42. Mathematical models of the 

ecological dynamics of such cooperating or competing43 strains show that well-mixed 

populations are often less stable and less diverse than spatially ordered communities. 

 

Designing complex consortia 

 The cell- and population-level modularity of microbial communities makes them 

dynamic and adaptable in the face of environmental change, and has great potential for 

synthetic biology applications in biosensing, bioremediation, chemical production, as 

well as future applications in health and medicine. As discussed previously, many 

complex microbial communities are found in animal digestive tracts; the human gut itself 

is home to hundreds of microbial species44. The successful application of fecal 

transplantation to patients recovering from Clostridium difficile infections suggests that 

engineering the species composition of the human microbiome is a valuable therapeutic 

strategy45.  

 The value of microbial consortia in synthetic biology13 and metabolic 

engineering46 has been explored in many contexts. At the same time, study of microbial 

communities through metagenomics47 has made significant a1dvances in our 

understanding of microbial ecology in the soil48 and the human body49, among many 

others. These DNA sequence-based approaches will undoubtedly improve our ability to 
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engineer microbial consortia, but rarely provide insight into the small-scale spatial 

organization that can have a large impact on the metabolic function of the community. In 

synthetic biology, microfluidics approaches can demonstrate the principles of spatial 

organization and community dynamics but they lack the versatility and robustness of 

natural microbial consortia. Approaches that take advantage of the natural abilities of 

microbes to form assemblages, editing the community by addition of specific species37 

or evolving new behaviors38 are currently best able to generate engineered systems. As 

our understanding of community dynamics and our ability to engineer cell-cell 

communication50 and self-assembling cell scaffolds51 improves we foresee the design of 

ordered multispecies communities with broad applications in biological engineering. 

 

Organelles and Microcompartments 

 Compartmentation within cells offers many of the advantages of microbial 

assemblages—metabolic reactions can be isolated within a compartment, and 

concentration gradients can be exploited between compartments. Eukaryotic evolution 

is marked by the transition from an endosymbiotic microbial assemblage to the fully 

integrated organelles in modern cells52,53. Likewise, the vertically transmitted archaea 

that reside within N. ovalis can be thought of as “second-generation” organelles: they 

are formerly free-living archaea attached to hydrogenosomes, which are formerly free-

living bacteria. The continuing evolution of intercellular compartmentation is a 

compelling inspiration for biological design. 
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Eukaryotic organelles  

 Intracellular spatial organization of cellular functions by membrane bound 

organelles is one of the defining features of eukaryotic cells. In addition to the 

aforementioned hydrogenosome, other organelles such as peroxisomes, vacuoles, 

mitochondria, and chloroplasts isolate specialized metabolic reactions from the cytosol. 

The properties of these organelles can be modified or mimicked to improve engineered 

pathways. 

 Methylotrophic yeasts are capable of utilizing methanol as a sole carbon source, 

which is an impressive metabolic feat considering that hydrogen peroxide and 

formaldehyde are necessary intermediates for methanol metabolism. Yeasts such as 

Pichia pastoris, Hansenula polymorpha, and others are capable of consuming methanol 

via morphological adaptation of their peroxisomes, membrane-bound organelles that 

perform a variety of metabolic tasks54,55. When these yeasts are grown on methanol, 

peroxisome biogenesis is upregulated such that peroxisomes become the dominant 

structural feature of the cell56,57 (Fig. 3A). 

 Several enzymes within the peroxisome produce and destroy toxic intermediates 

during methanol metabolism. Alcohol oxidase (AOX) catalyzes the conversion of 

methanol to formaldehyde, releasing hydrogen peroxide. Dihydroxyacetone synthase 

takes a five-carbon sugar, xylulose-5-phosphate, and reacts it with one-carbon 

formaldehyde to produce the three-carbon compounds dihydroxyacetone and 

glyceraldehyde-3-phosphate. Catalase enzymes convert the toxic hydrogen peroxide 

into water and oxygen. The action of these three enzymes together must occur in the 
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peroxisome and mis-targeting any of them prevents growth on methanol54. AOX is 

vastly more abundant than other peroxisome enzymes when methanol is present. AOX 

can be tightly packed to form paracrystalline structures which fill nearly the entire 

peroxisome. Catalase and dihydroxyacetone synthase are believed to be trapped within 

the AOX superstructure58. This structural arrangement may serve to limit buildup of 

formaldehyde and hydrogen peroxide while maintaining high pathway flux. 

 

Organelle engineering 

 Targeting of proteins to the peroxisome can be achieved by addition of a number 

of short targeting sequences59 for the isolation of any desired metabolic pathway. In a 

similar synthetic approach, N-terminal targeting sequences were used to place methyl 

halide production pathways in the S. cerevisiae vacuole, where the majority of S-

adenosyl methionine (SAM), a required cofactor, is sequestered60. Although this 

intervention resulted in a less than 25% increase in methyl halide production rates, the 

addition of methionine to the media along with vacuole targeting increased methyl halide 

production rates by over 400%. Methionine induces the overproduction of SAM in 

yeast61, allowing SAM to accumulate in the vacuole for methyl halide synthesis60. As 

with AOX production in peroxisomes, this work underscores the context dependence of 

organellar metabolic activity; the biogenesis and metabolic activity of organelles are 

highly regulated. 

 Another emerging strategy for organelle generation is induced endosymbiosis. 

Mitochondria, hydrogenosomes, and chloroplasts all appear to have evolved from 
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ancient free-living prokaryotes (α-proteobacteria for mitochondria and hydrogenosomes, 

cyanobacteria for chloroplasts) that became endosymbionts within eukaryotic cells52,53. 

In an attempt to recapitulate the function of chloroplasts in non-photosynthetic cell 

types, researchers introduced the cyanobacterium Synechococcus elongatus PCC 7942 

into the cytoplasm of zebrafish embryos, Chinese Hamster Ovary (CHO) cells, and 

human macrophages62. This was achieved via manual injection, invasin-mediated cell 

invasion, and phagocytosis, respectively. Intriguingly, the cyanobacteria were well-

tolerated by the cells in each case—E. coli cells in contrast kill zebrafish embryos post-

injection—indicating that cyanobacteria may be engineered to provide useful products to 

a host cell endosymbiotically. An important next step will be to determine how to 

appropriately construct mutual metabolic exchanges between a synthetic endosymbiont 

and the host cell, such that selection pressures favor maintaining endosymbiosis. Since 

endosymbiotic metabolic exchanges are similar to cooperative metabolic exchanges 

between co-cultures, modeling approaches developed for co-culture design may also 

facilitate the design of endosymbioses41. 

 

Prokaryotic microcompartments 

 Compartmentation was once thought to be a hallmark of eukaryotic systems, but 

the discovery of bacterial microcompartments (BMCs) has demonstrated that spatial 

organization matters at the micron scale. BMCs are typically proteinaceous shells of 

defined geometric shapes that resemble viral capsids, although structural studies have 

shown that the characteristic BMC fold is unrelated to known viral protein structures6. 
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Interestingly, BMCs have been identified in a wide range of roles, from carbon fixation to 

the metabolism of toxic compounds6 (Fig. 3B). 

 The carboxysome is a particularly well-studied BMC involved in carbon fixation. 

Carboxysomes house rubisco, the key Calvin cycle enzyme that fixes gaseous carbon 

dioxide to ribulose-1,5-biphosphate to form 3-phosphoglycerate. All known rubisco 

enzymes suffer from an inability to distinguish between carbon dioxide and oxygen; both 

cyanobacteria and higher plants address this by expressing large amounts of rubisco 

and by spatially sequestering it from the oxygenic photosynthetic machinery6,63. As with 

AOX expression in the peroxisome, concentration of rubisco in the carboxysome offers 

sufficient protection to allow both photosynthesis and carbon fixation to coexist in cells 

that are essentially the same size as E. coli. As with Anabaena heterocyst formation 

(Fig. 2B), the spacing of carboxysomes within cyanobacterial cells is highly structured to 

ensure even distribution of carbon fixation machinery upon cell division63 (Fig. 3B). 

 The carboxysome appears to be more than a passive protein container. The two 

enzymes in carboxysomes, rubisco and carbonic anhydrase, are differentially localized. 

Rubisco is packed tightly into the carboxysome interior64, while carbonic anhydrase, 

which converts aqueous bicarbonate to gaseous carbon dioxide, is bound to the interior 

of the protein shell65. Establishing a concentration differential of bicarbonate across the 

shell boundary appears to be essential, as expressing carbonic anhydrase in the cytosol 

disrupts carbon fixation by carboxysomes66. How cells constrain enzyme function to 

within intact BMC when proteins must be translated in the cytosol remains unknown. 
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 There is mounting evidence that BMCs regulate the transport of metabolites 

across the BMC shell. Particularly intriguing are pore proteins such as CsoS1D. 

CsoS1D trimers appear to be able to adopt two conformations, one with an open central 

pore and another in which the pore is shut67. CsoS1D is important to carboxysome 

structure, and improves the function of heterologously expressed carboxysomes17. 

Other BMCs, such as 1,2-propanediol utilization (PDU) metabolosomes, may be 

capable of transporting large molecules such as cobalamin (vitamin B12) in and out of 

intact BMCs68,79. Recent efforts have successfully targeted proteins to BMCs in 

Salmonella70 as well as expressed functional PDU and carboxysome BMCs in E. 

coli17,71.  

Custom heterologous microcompartments with targeted enzyme pathways could 

perform a wide range of tasks, enabling reactions that would be otherwise unfavorable 

inside a bacterial cell. Current knowledge of protein targeting and BMC biogenesis has 

only just scratched the surface of the potential toolset these compartments will provide 

for metabolic engineering. Given the diverse BMC capabilities that have already been 

discovered, further study of BMC structures, pore complexes, and targeting sequences 

is likely to allow BMCs to be repurposed for new metabolic pathways in industrial 

strains. 

 

Enzymes and scaffolds 

 The same principles that organize the spatial optimization of metabolic pathways 

across microbial communities and inside cellular compartments apply to the scale of 
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metabolic enzymes. Prokaryotic cells were once thought of as simple bags of enzymes, 

with random diffusion controlling the motion and position of enzymes and reactants in 

the cytoplasm, but researchers have since observed spatial regulation in even the 

simplest cells. By isolating pathways in this way, metabolic intermediates are more likely 

to go from one enzyme to the next in the pathway without being diverted to other 

reactions, boosting the flux through the reaction, as well as protecting unstable 

intermediates from degradation or protecting the cell in from the buildup of any toxic 

intermediates. 

 

The cellulosome 

 For synthetic biologists, the structural intricacy of cellulose is both an inspiration 

for designing new biomaterials and a technical barrier for producing cellulosic biofuels. 

Cellulose in plants is produced by a 36-enzyme “rosette” that deposits 36 

polysaccharide chains that entwine to form a cellulose elementary fibril72. These fibrils 

are woven along with hemicellulose, lignin, pectin, and other associated proteins to form 

a dense crystalline matrix that is notoriously difficult to break down73. 

 As a consequence, spatial organization plays an important role in cellulose 

breakdown not only at the cellular scale in the arrangements of protozoa and archaea, 

but also at the protein scale in the organization of the enzymes involved in the digestion 

of the cellulose polymers. One of only a handful of enzymatic systems capable of 

breaking down cellulose, the cellulosome is a megadalton-scale extracellular complex 

on the surface of anaerobic bacteria such as Clostridium thermocellum. Central to this 
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complex is a non-catalytic scaffold protein that is decorated with modular scaffoldin 

domains and a carbohydrate binding domain. Cellulosome enzymes possess dockerin 

domains, which bind to the scaffoldin domains on the primary scaffold. The scaffold 

performs two key functions: it co-localizes cellulases, hemicellulases, and other 

enzymes, and it also directly attaches the bacterial cell to the plant cell wall. In this 

manner, the cellulosome is sandwiched between the plant matter and the host cell, 

giving the host preferential access to the degradation products74,75 (Fig. 4A). 

  The remarkable modularity of cellulosomes has led to the construction of 

synthetic cellulosomes. Functional small-scale cellulosomes have been expressed 

heterologously in Clostridium acetobutylicum76, Saccharomyces cerevisiae14,77, and 

Bacillus subtilis78. In addition, novel cellulosomes have been constructed by tagging 

cellulase and xylanase enzymes that are normally not scaffold-bound with dockerin 

domains79. Enzymes can be targeted to specific sites on synthetic cellulosomes by 

using a range of divergent scaffoldin-dockerin pairs80; these constructs may prove 

useful for applications beyond cellulose degradation. 

 

Protein-scale assembly lines 

 Enzyme complexes organize metabolic reactions that produce complex 

metabolites and polymers in similarly modular fashion inside of the cell. Multifunctional 

enzymes made up from several distinct protein domains commonly bring together active 

sites that share reactants, thus limiting the range an intermediate must diffuse before 

the next enzymatic conversion. A small number of enzymes further reduce the distance 
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an intermediate must travel between active sites with substrate tunnels through which 

unstable compounds can travel one dimensionally between domains16. These complex 

enzyme structures are remarkable; for example, carbamoyl phosphate synthase 

channels ammonia from the hydrolysis of glutamine for nearly 100Å through several 

protein domains. Each of these multifunctional, substrate tunneling enzymes are 

structurally distinct, evolving independently16. These bespoke structures are effective at 

solving the diffusion problem for individual reactions and pathways, but the specificity of 

the enzymes makes recombination of the domains and “reprogramming” of new 

multifunctional enzyme chemistry unlikely. 

 On the other hand, polyketide synthases are another class of multifunctional 

enzyme complexes that have enjoyed special attention from bioengineers due to their 

evolutionary flexibility. Polyketides are a large and diverse group of complex natural 

products with many important medicinal functions, including antibiotic and antitumor 

activity18. Like other evolutionarily related iterative chain-lengthening complexes such as 

fatty acid synthase81 or non-ribosomal peptide synthase82, polyketide synthases act as 

an “assembly line,” passing the growing chain from one domain to the next (Fig. 4B). 

“Unnatural” natural products can be produced through the synthetic rearrangement of 

these enzyme domains in the cell83-85.  

 Programming multifunctional enzyme complexes to produce specific compounds 

remains a significant challenge despite decades of effort to understand the function and 

specificity of each enzyme domain. Efficient transfer of the growing acyl chain between 

recombined polyketide synthase domain depends on the substrate specificity within 
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modules15, as well as the sequence of the polypeptide linker between modules86. 

Analysis of protein-protein interactions82 and sequence co-evolution19 provides 

important information to aid the design of novel enzyme complexes.  

 Similar analysis of protein-protein interaction co-evolution has allowed for the 

“rewiring” of bacterial two-component signal transduction87. Indeed, signal transduction 

provides valuable analogies for the spatial organization of metabolism. In particular, 

scaffolding of promiscuous signaling domains ensures the proper interactions and 

function of eukaryotic signaling cascades, and rearrangement of scaffold domain 

interactions can alter pathway function88-90. Linking metabolic enzymes to protein-

protein interaction domains derived from eukaryotic cell signaling can likewise scaffold 

synthetic metabolic pathways, preventing the diffusion of toxic intermediates, improving 

the stoichiometric ratios of enzymes, and significantly boosting pathway flux8,9. 

 

Electron Transfer 

 Physical interaction between metabolic enzymes can boost flux through many 

metabolic pathways, but it is absolutely crucial in the case of electron-transfer reactions, 

where electrons must quantum-mechanically tunnel between electron-binding metal 

clusters at an optimal distance of 14Å91. Nowhere is this more apparent than in the 

membrane bound electron transfer chains of the mitochondria or the chloroplast (Fig. 

5A), as well as the electrogenic pathways of bacteria such as Shewanella or Geobacter. 

Electrogenic bacteria utilize membrane-bound electron transport chains to “breathe” 

extracellular metals, dumping excess reducing power through their membranes and 



!

 246 

 

24 

generating electrical current92. In each of these electron transport systems, linked 

cytochromes, quinones and other iron-sulfur cluster containing oxido-reductases are 

anchored in the membrane; this decreases the diffusional difficulty of finding the proper 

interacting partner to only two dimensions. 

 In cytoplasmic enzymes, recombination of ferredoxin domains creates a currency 

of electron-transferring potential. Multifunctional electron-transfer enzymes can be 

designed through the recombination and fusion of multiple such domains, connecting 

electron transfer enzymes from multiple organisms into large protein fusions that 

function in vitro or in vivo. These include a number of fusions between cytochrome 

P450, an important class of monooxygenase enzymes involved in a large number of 

metabolic reactions93. For example, mammalian cytochrome P450 has been fused to 

yeast94 or bacterial95 reductases. Fusions have also been designed between ferredoxins 

and their partner ferredoxin-oxidoreductases96, including [Fe-Fe]-hydrogenase 

enzymes, which use electrons carried by ferredoxin to reduce protons to hydrogen gas. 

Fusing hydrogenases to compatible ferredoxins boosted production of hydrogen through 

a synthetic pathway nearly 5-fold97. In vitro fusion of hydrogenase directly to 

photosystem I has allowed for efficient photobiological hydrogen production98,99(Fig. 

5B). 

 Tethering of electron transfer enzymes to artificial scaffold proteins also boosts 

hydrogen production in vivo from a synthetic electron transfer pathway by up to 3 fold97. 

Self-assembling scaffolds made from RNA strands that fold into one dimensional 

ribbons or two-dimensional sheets can also be designed to tether electron transfer 
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pathways, boosting hydrogen production from a heterologous pathway by nearly 50 

fold100 (Fig. 5C). RNA scaffolds are orthologous systems that can be modified to 

function in many systems, creating a generalizable tool for the spatial organization of 

many metabolic pathways. 

 

Emerging synthetic scaffold approaches 

 To date, synthetic scaffolds based on protein8, RNA100, and DNA101 have been 

demonstrated to improve the performance of metabolic pathways. This variety of 

scaffold types will allow engineers to choose scaffolds with properties that best 

complement their target metabolic pathway. For example, RNA scaffolds have been 

demonstrated to self assemble into many 100 nm scale complexes that dominate the 

interior of the cell100. In contrast, DNA scaffolds permit precise control over the number 

of enzymes bound to the scaffold, based on the number of binding sites in the 

genome101. All scaffolds offer increased control over pathway stoichiometry and enzyme 

proximity. Such methods can be generally applied to a wide range of metabolic 

pathways, but are limited by the in vivo dynamics of large heterologous protein 

complexes, including aggregation. Improvements in the fine-tuning of scaffold 

expression and targeting will improve the function of these useful structures. 

 

Conclusions 

 Spatial optimization of metabolism occurs at many scales that can potentially be 

exploited in synthetic systems. Multicellular complexes separate incompatible chemical 
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reactions, and couple reactions that would be thermodynamically unfavorable in 

isolation. Within cells, compartments such as the carboxysome, vacuole, or peroxisome 

concentrate reactions and pathways that need special cellular conditions to function 

properly and may be toxic to cytoplasmic contents. At the protein scale, the substrate 

channeling of multifunctional enzymes and the scaffolding of multi-domain or multi-

enzyme complexes enhance complex biosynthetic reactions such as fatty acid 

synthesis, polyketide synthesis, and non-ribosomal protein synthesis, as well as difficult 

breakdown reactions such as cellulose degradation.   

 We have presented several early efforts to translate our understanding of spatial 

organization at various scales into engineered biological systems that incorporate these 

principles. To improve upon spatial engineering approaches, we must consider the 

issues that currently complicate biological design at each scale. At the level of cells and 

communities, while over a century of microbiology research has focused on growing 

bacteria in monocultures, the design of stable co-cultures still represents a significant 

challenge. An intermediate approach can be to couple an engineered species with a 

wild-type species that performs a singular task. For example, Actinotalea fermentans is 

a bacterium that ferments cellulose to ethanol and acetate. The methyl halide producing 

yeast discussed previously were found to form a stable co-culture with A. fermentans, 

producing methyl halides from cellulosic feedstocks54.  

 Likewise, inside the cell, approaches that interface natural spatial organization 

mechanisms with engineered functions are best able to take advantage of the benefits 

of three dimensional patterning in metabolic pathways. In eukaryotes, targeting of 
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proteins to organelles60 using well-understood mechanisms59 can help boost the 

function of synthetic metabolic pathways. Synthetic reconstitution of microcompartments 

in prokaryotes17 can improve our understanding of these remarkable structures, taking 

us closer to being able to design custom prokaryotic compartments. Spatial organization 

at the protein scale is better understood, and has seen the most progress in the design 

of recombinant protein docking and scaffolding8,14,84. These approaches have 

significantly expanded the metabolic toolkit into three dimensions and will likely play an 

important role in a range of future pathway designs.  

Innovation in intracellular engineering will require the characterization of many 

new biological parts—such as organelle targeting sequences, transmembrane 

transporters, and BMC pores—parts that have evolved to support natural metabolic 

exchanges. Integrating these new parts into engineered metabolic pathways comes with 

an increased cost to the researcher, in that it increases the combinatorial complexity of 

pathway designs that must be tested. In today’s trial and error phase of synthetic 

biology, this cost is not trivial. However, given the observed benefits of spatial 

organization in evolved systems, spatial approaches are likely to be essential to solving 

the most difficult biological design challenges. 

 Across all scales, biological form is defined by function; many historical 

milestones in biological research have recognized this property in new contexts. We 

have presented examples of spatial contexts that are important or even essential to 

metabolic function. The canonical metabolic network diagram reveals the vast array of 

metabolic conversions that have evolved in biological systems, but hides the spatial 
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contexts that make many of these conversions possible. As synthetic biologists, we 

seek to engineer metabolic networks; by understanding and reengineering natural 

systems we can extend the metabolic network diagram into uncharted territory. 
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Figure Legends 

Figure 1. Nested endosymbiosis in the cockroach hindgut. A.) Electron micrograph of 

the eukaryotic ciliate Nyctotherous ovalis, an important symbiont for cockroach cellulose 

digestion3. N. ovalis produces ATP anaerobically in an organelle termed the 

hydrogenosome, via a process that requires the continual production of hydrogen. 

Hydrogenosomes (H) are surrounded by methanogenic endosymbiotic 

Methanobrevibacter-like archaea (black dots) that consume hydrogen and ensure that 

the ATP producing reactions remain thermodynamically favorable. N, macronucleus; n, 

micronucleus; V, vacuole. (Image courtesy of Johannes Hackstein, Nijmegen, The 

Netherlands).  
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Figure 2. Microbial assemblages can perform coupled metabolic reactions. A.) 

Anaerobic sludge granules are structured aggregates of many species of 

microorganisms that can be millimeters across, and are composed of multiple layers26. 

The granule is surrounded by acidogens that break down complex organic molecules 

into acids. These acids are consumed by acetogens that form a middle, hydrogen 

producing layer. Hydrogen and carbon dioxide produced by these outer layers is 

consumed by the central core methanogens7. B.) Cellular differentiation in nitrogen 

starved Anabaena filaments is highly regulated to ensure proper spacing of oxygen-

sensitive nitrogen-fixing heterocysts and oxygen-producing, photosynthetic carbon-fixing 

vegetative cells30,31. C.) A bilayered microbial fiber assembled with microfluidics is able 

to break down both mercury (Hg) and PCP. Mercury-reducing Ralstonia metallidurans 

surrounds the PCP-degrading species Sphingobium chlorophenolicum, reducing 

mercury and protecting the inner layer, which is free to degrade PCP. Well-mixed 

cultures of these same species are unable to degrade PCP, as S. chlorophenolicum is 

sensitive to mercury20. D.) Aggregates of the closely related species Geobacter 

metallireducens and Geobacter sulfurreducens form when the co-culture must consume 

ethanol using fumarate as an electron donor. Neither species is capable of growth on 

ethanol and fumarate in isolation. Initial co-cultures of these two species did not form 

aggregates and grew poorly on ethanol. Directed evolution yielded aggregating mutants 

with vastly improved growth rates; aggregation facilitates direct electron transfer 

between the two species38. 
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Figure 3. Compartmentalization isolates metabolic pathways in eukaryotic and 

prokaryotic cells. A.) Yeasts that can metabolize methanol isolate methanol breakdown 

to the peroxisome, protecting the cell from the release of formaldehyde and hydrogen 

peroxide, the products of methanol metabolism56. AOX: Alcohol oxidase, DHS: 

Dihydroxyacetone synthase, CAT: catalase B.) The carboxysome is a protein-shelled 

microcompartment that concentrates the carbon fixation machinery in 

cyanobacteria17,63. Carboxysomes are further ordered along the cell axis. This ensures 

equal distribution upon cell division, and may play a role in maintaining optimal carbon 

fixation conditions63. (Images courtesy of David Savage, Berkeley, USA and Bruno 

Afonso, Boston, USA) 

 

Figure 4. Enzyme complexes aid in the breakdown and production of complex 

molecules. A.) The cellulosome is a modular complex for degrading cellulose. 

Carbohydrate binding modules (CBM) attach the cellulosome to cellulose. 

Dockerin/cohesin interactions allow specific pairings of enzymes to the scaffold, and 

also attach the entire complex to the host cell. Designer cellulosomes utilize 

combinations of different cohesin/dockerin pairs, allowing the attachment of multiple 

distinct proteins to the same scaffold79. B.) The erythromycin polyketide synthase (PKS) 

6-deoxyerythronolide B synthase (DEBS) is one of the best studied PKS complexes. It 

is composed of three multifunctional enzymes each made up of multiple repeated 
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modules and subdomains that transfer the growing acyl chain. Recombining the position 

of these domains can yield novel polyketides84. 

 

Figure 5. Electron transfer pathways are optimized through spatial organization. A.) 

Transfer of electrons (dotted line) through the photosynthetic machinery scaffolded in 

the chloroplast thylakoid membrane. Photons excite electrons at PSII and PSI. Water 

splitting in the lumen and NADP+ reduction are spatially separated by the thylakoid 

membrane. PSII: photosystem II, PQ: plastoquinone, cyt: cytochrome, PSI: photosystem 

I, Fd: ferredoxin, FNR: ferredoxin:nadph oxidoreductase. B.) Direct linkage of 

photosystem I with the hydrogenase allows for in vitro transfer of electrons generated 

from sunlight to hydrogen gas98,99 C.) Linking of the hydrogenase enzyme and 

ferredoxin to an RNA scaffold improves electron transfer efficiency and hydrogen 

production by more than 40 fold100. RNA aptamer domains specific for protein tags allow 

precise positioning of enzymes on the scaffold. 
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