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Abstract

The 20th century saw the first revolution of quantum mechanics, setting the rules for

our understanding of light, matter, and their interaction. The 21st century is focused

on using these quantum mechanical laws to develop technologies which allows us to

solve challenging practical problems. One of the directions is the use quantum devices

which promise to surpass the best computers and best known classical algorithms for

solving certain tasks. Crucial to the design of realistic devices and technologies is to

account for the open nature of quantum systems and to cope with their interactions

with the environment. In the first part of this dissertation, we show how to tackle

classical optimization problems of interest in the physical sciences within one of these

quantum computing paradigms, known as quantum annealing (QA). We present the

largest implementation of QA on a biophysical problem (six di↵erent experiments

with up to 81 superconducting quantum bits). Although the cases presented here

can be solved on a classical computer, we present the first implementation of lattice

protein folding on a quantum device under the Miyazawa-Jernigan model. This is

the first step towards studying optimization problems in biophysics and statistical

mechanics using quantum devices.

In the second part of this dissertation, we focus on the problem of excitonic energy

transfer. We provide an intuitive platform for engineering exciton transfer dynamics

and we show that careful consideration of the properties of the environment leads to

opportunities to engineer the transfer of an exciton. Since excitons in nanostructures

are proposed for use in quantum information processing and artificial photosynthetic

designs, our approach paves the way for engineering a wide range of desired exciton dy-

namics. Finally, we develop the theory for a two-dimensional electronic spectroscopic

technique based on fluorescence (2DFS) and challenge previous theoretical results

claiming its equivalence to the two-dimensional photon echo (2DPE) technique which

is based on polarization. Experimental realization of this technique confirms our the-

oretical predictions. The new technique is more sensitive than 2DPE as a tool for

conformational determination of excitonically coupled chromophores and o↵ers the

possibility of applying two-dimensional electronic spectroscopy to single-molecules.
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Chapter 1

Introduction

The 20th century saw the first revolution of quantum mechanics, setting the rules for

our understanding of light, matter, and the interaction between them. The 21st century is

focused on using these quantum mechanical laws to develop technologies which allows us to

solve challenging practical computational problems and to make processes more e�cient,

e.g., light-harvesting in solar cells.

Crucial to the design of realistic devices and technologies is to account for the open

nature of quantum systems and to cope with their interactions with the environment. In this

dissertation, we will present mainly two applications of tunable quantum systems where the

inclusion of the environment is crucial to theoretically predict the behavior of the systems.

Next, we introduce each problem and describe their parts: the quantum systems and their

environments, also referred to as their baths .

Part I. Quantum annealing for lattice protein folding

The first application studied in this dissertation is computational in nature. The idea

of using quantum devices to outperform the best computers and best known classical algo-

rithms for solving certain tasks is at the core of the now well-established field of quantum

computation [142]. The main thesis we develop in the first part of the dissertation is the

possibility of harnessing quantum-mechanical e↵ects (a.k.a quantum computation) to study

biophysical and statistical mechanics problems such as finding the low-energy conformations

of proteins.

There are several models of, or ways of formulating, quantum computation. Example

of the available paradigms include the circuit model [54, 19, 142], the adiabatic model [69],

topological quantum computing [106, 139], one-way quantum computing [154, 155], and

quantum walks [102]. Although equivalent in their computational capabilities, di↵erent

problems are solved more naturally in di↵erent models. For example, of all the quantum-
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computational models, adiabatic quantum computation (AQC) is perhaps the most natu-

rally suited for studying and solving optimization problems [67, 93].

Finding e�cient ways to solve hard optimization problems is one of the most impor-

tant and sought-after research topics given its prevalence in several disciplines, ranging

from the social sciences to the physical and natural sciences. For example, the protein fold-

ing problem [58, 134, 111, 147] consists of finding the lowest free-energy configuration or

equivalently the native structure of a protein given its amino acid sequence. Understanding

how proteins fold and their three-dimensional structure-function relationship is crucial to

the understanding of enzymes and for the treatment of misfolded-protein diseases such as

Alzheimer’s, Huntington’s, and Parkinson’s disease. Due to the high computational cost of

modeling proteins in atomistic detail [26, 175], coarse-grained descriptions of the protein

folding problem, such as those found in lattice models [111, 147, 134, 146], have been very

useful to gain insight about the folding mechanisms.

The first part of this thesis builds upon an instance of AQC known as quantum anneal-

ing (QA), which harnesses quantum-mechanical e↵ects to speed up the solving of classical

optimization problems. In this model, the state of the quantum device performing the

computation remains in its ground state throughout the computation. The Hamiltonian

H(t) of the computer is changed slowly from a simple initial Hamiltonian Hi to a final

Hamiltonian Hf whose ground state encodes the solution to the computational problem.

The adiabatic theorem states that if the variation of the Hamiltonian is su�ciently slow,

the easy-to-prepare ground state of Hi will be transformed continuously into the ground

state of Hf . Escaping from the ground state reduces the performance of the computa-

tion and the maximum rate of change for the interpolation between Hi and Hf is mostly

determined by the energy gap between the ground and first excited states during the evo-

lution [131, 9, 194, 193].

In experimental implementations on quantum devices, the quantum levels used for the

computation (the quantum system) are subject to noise and other uncontrollable degrees of

freedom (the environment) which couple to the quantum system a↵ecting its dynamics and

the expected results from a purely coherent case, i.e., in the absence of an environment. For

example, within the QA paradigm, maintaining the quantum system mostly in its ground

state is ideal. Therefore, environmentally-induced excitations reducing the population of

the ground state to other excited states would reduce the success probability of the compu-

tational process. The same environment might be responsible for returning these excitations

back to the ground state, as part of a natural relaxation processes, therefore enhancing the

robustness of the computation. Regardless of the nature of the interactions, excitations

or relaxations, it is crucial to include them in a theoretical or numerical simulation of the

quantum device dynamics, in order to properly characterize and predict its performance.
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For example, the excellent agreement between theory and experiment presented in the last

chapter of this first part (Chapter 4) would have not being possible without describing the

quantum device within this framework of open quantum systems.

Proving the premise that we can solve optimization problems such as lattice protein

folding in a quantum device running a quantum annealing protocol requires to overcome

several theoretical and experimental challenges presented in detail throughout Chapers 2-4:

from selecting a scalable experimental platform or quantum device capable of performing

the QA algorithms described above, and understanding their limitations, to theoretically

designing the algorithm to solve the problem instances.

The quantum hardware employed consists of an array of 128 coupled superconduct-

ing flux qubits [84, 97]. Physically, the quantum device represents an artificial Ising spin

system with programmable spin-spin couplings and transverse magnetic fields, designed to

solve instances of the following generally hard (technically called NP-hard [18]) classical

optimization problem: given a set of local longitudinal fields {hi} and an interaction matrix

{Jij}, find the assignment s⇤ = s⇤
1

s⇤
2

· · · s⇤N , that minimizes the objective function E(s),

where

E(s) =
X

1iN

hisi +
X

1i<jN

Jijsisj , (1.1)

|hi|  1, |Jij |  1, and si 2 {+1,�1}.
The first theoretical challenge consisting of e�ciently mapping the hard computational

problem of interest (e.g., lattice folding) to a classical spin-glass energy of the form of Eq. 1.1

is solved in Chapter 2. The strategies presented there go beyond the construction of the

energy function for the lattice folding problem and can be used as general building blocks

for constructing other Hamiltonians to solve optimization problems of physical, chemical,

and biophysical interest on a quantum device programmed to run a QA algorithm.

Chapter 3 is a contribution toward better algorithmic strategies one can use to improve

the performance of the QA protocol. In QA, the initial Hamiltonians conventionally have

a uniform superposition as ground state. We diverge from this practice by introducing a

simple form of heuristics: the ability to start the quantum evolution with a state which is

a guess to the solution of the problem. With this goal in mind, we explain the viability of

this approach and the needed modifications to the conventional QA algorithm. Besides the

possibility of introducing educated guesses as initial states, the new strategy allows for the

possibility of restarting a failed adiabatic process from the measured excited state as opposed

to restarting from the full superposition of states as in conventional QA. The outcome of the

measurement can be used as a more refined guess state to restart the adiabatic evolution.

This concatenated restart process is another heuristic that the conventional QA strategy

cannot capture.
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Finally, in chapter 4 we present the largest implementation of QA on a biophysical

problem (six di↵erent experiments of up to 81 superconducting quantum bits). Although

the cases presented here can be solved on a classical computer, we present the first im-

plementation of lattice protein folding on a quantum device under the Miyazawa-Jernigan

model. This is the first step towards studying optimization problems in biophysics and

statistical mechanics using quantum devices.

Excitonic energy transfer and nonlinear fluorescence spectroscopy

Excitonic energy transfer (EET) has been studied in systems as varied as quantum

dot (QD) nanostructures [171, 50], polymer chains [43], and photosynthetic complexes [121,

38]. Many applications of EET would benefit from controlling exciton dynamics. Recent

work has shown that environment-induced decoherence can alter exciton dynamics [166,

158, 151], although controlling the transfer direction has only been achieved using external

potentials [90].

Chapter 5 provides an intuitive platform for engineering exciton transfer dynamics. It

builds upon the idea of engineering exciton transfer by designing appropriate system-bath

interactions [71, 35]. We show that it is possible to design experimentally realizable systems

where the environment can be used to direct the flow of energy. Since excitons in nanostruc-

tures are proposed for use in quantum information processing and artificial photosynthetic

designs, our approach paves the way for engineering a wide range of desired exciton dy-

namics. We carefully describe the validity of the model and use experimentally relevant

material parameters to show counter-intuitive examples of a directed exciton transfer in a

linear chain of quantum dots.

The last chapter of this dissertation, Chaper 6, deviates from the design and tuning

aspects of open quantum systems, and focuses on one of the experimental ways to probe its

properties by two-dimensional electronic spectroscopy. The field of two-dimensional elec-

tronic spectroscopy provides valuable experimental techniques for unveiling the excited-state

dynamics of complex systems. These techniques have recently been used to study excitonic

energy transfer in photosynthetic systems [31, 44] and in general to study relaxation and dis-

sipation processes in mesoscopic systems [138, 1]. Because of its high information content,

2D ES presents previously undescribed possibilities to extract quantum information from

molecular systems and to determine model Hamiltonian parameters [212]. For example,

experiments by Hayes and Engel extracted such information for the Fenna-Matthews-Olsen

light harvesting complex [89]. Recently, it was demonstrated by Brinks et al. that sin-

gle molecule coherences can be prepared using phased optical pulses and detected using

fluorescence [30]. The latter experiments exploit the inherent sensitivity of fluorescence
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and demonstrate the feasibility of controlling molecular quantum processes at the single

molecule level.

We develop the theory for a two-dimensional electronic spectroscopic technique based

on fluorescence (2DFS) and challenged previous theoretical results claiming its equivalence

to the two-dimensional photon echo (2DPE) technique, which is based on polarization.

Experimental realization of this technique confirms our theoretical predictions. The new

technique is more sensitive than 2DPE as a tool for conformational determination of exciton-

ically coupled chromophores and o↵ers a unique possibility towards two-dimensional elec-

tronic spectroscopy on single-molecules. Fluorescence-based strategies to two-dimensional

electronic spectroscopy (2D ES), such as those presented in the current work, could provide

a route to extract high purity quantum information from single molecules. It may also be

a means to study molecular systems in the ultraviolet regime where background noise due

to solvent-induced scattering limits ultrafast experiments.
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protein folding



Chapter 2

Construction of Hamiltonians for adiabatic

quantum computation

Summary

In this chapter we explore the use of a quantum optimization algorithm for obtaining

low-energy conformations of protein models. We discuss mappings between protein models

and optimization variables, which are in turn mapped to a system of coupled quantum

bits. General strategies are given for constructing Hamiltonians to be used to solve opti-

mization problems of physical, chemical, or biological interest via quantum computation

by adiabatic evolution. As an example, we implement the Hamiltonian corresponding to

the hydrophobic- polar model for protein folding. Furthermore, we present an approach

to reduce the resulting Hamiltonian to two-body terms gearing toward an experimental

realization.

2.1 Introduction

Finding the ensemble of low-energy conformations of a peptide given its primary se-

quence is a fundamental problem of computational biology, commonly known as the protein

folding problem [32, 36, 152, 174, 134, 57, 77, 47]. The native fold conformation is usually

assumed to correspond to the global minimum of the protein’s free energy (according to the

so-called thermodynamic hypothesis [61]), although some exceptions have been proposed

[17, 120]. Thus, the protein folding problem can be described as a global optimization prob-

lem. Algorithms for quantum computers have been developed for many applications such as

factoring [177] and the calculation of molecular energies [15]. In this chapter, we investigate

the approach of using an adiabatic quantum computer for folding a highly simplified protein

model.

The HP (H: hydrophobic, P: polar) lattice model [119] is one of the simplest protein
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models implemented. Still its accuracy in predicting some of the folding behaviour of

real proteins has made it a useful benchmark for testing optimization algorithms such

as simulated annealing [183], genetic algorithms [46, 45, 51, 195, 181], and ant colony

optimization [176]. Other heuristic methods such as hydrophobic core threading [16], chain

growth [22, 95], contact interactions [192], and hydrophobic zippers [211] have also been

considered. The HP model has also been useful for a qualitative investigation of the nature

of the folding process and the interactions between proteins. The HP model depicted in

Fig. 2.1 is defined by three assumptions: 1) There are only two kinds of amino acids or

residues, hydrophobic (H) and polar (P); 2) residues are placed on a grid (typically a square

grid for the 2D model and a cubic grid for the 3D model); 3) the only interaction among

amino acids is the favorable contact between two H residues that are not adjacent in the

sequence. The energy of this interaction is defined as -1 in arbitrary units, representing a

hydrophobic e↵ect which tends to fold the protein in a way that aggregates the H residues

in a predominantly hydrophobic core, and leaves the P residues at the surface of the protein.

The search for the native conformation of the protein is represented by a self-avoiding walk

on the grid.

1

24

Figure 2.1: The lattice protein hydrophobic-polar (HP) model, showing the global energy
minimum conformation for a sequence of 24 amino acids, HHPHPPPHHHHPPHHHHPP-
PHPHH (E = �12). Blue (dark grey) beads represent hydrophobic residues (H) and orange
(light grey) beads represent polar residues (P). The model consists of a self-avoiding chain
with favorable (E = �1) energetic interactions among hydrophobic residues in contact.
Contact between nearest neighbors in the primary sequence are unavoidable, and their con-
tribution is not added to the calculated energy. Black dots represent lattice sites. Dotted
lines represent favorable energetic interactions, solid lines represent the self-avoiding chain.

An important property of the model is that the number of possible conformations is

roughly proportional to 2.7N [119], where N is the length of the polypeptide chain. Proofs
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of the NP-completeness of both the 2D and 3D HP models have been given [49, 20]. Due

to this exponential growth, global optimality proofs become impractical when N reaches

approximately 50 residues. For longer sequences, heuristics and stochastic algorithms have

been employed for N up to 136 for the 3D HP model [192].

This chapter is structured as follows. Sec. 2.2 presents the general quantum algorithm

and the terms of the Hamiltonian necessary to obtain the folded structure of the protein,

and describes how to map the problem to arrays of coupled quantum bits [100, 80]. Sec. 2.3

explains the construction of the core component of the algorithm, the Hamiltonian that

encodes the lowest energy conformation of the protein. In Sec. 2.4 we solve in detail the four

amino acid sequence HPPH in a two-dimensional grid. In Sections 2.5 and 2.6 we discuss

the resources necessary to carry out the reduction from a general k-body Hamiltonian to a

two-body Hamiltonian, as a function of the size of the protein.

2.2 An adiabatic quantum algorithm for the HP model

We begin this section by describing the mapping of a sequence of N amino acids into

binary variables, which will in turn be mapped to spin variables in the quantum mechanical

version of the algorithm.

2.2.1 Mapping amino acids onto a lattice

The mapping of the coordinates of a sequence of N amino acids to a given grid of size

N ⇥ N is developed as follows. We assume, without loss of generality, that the number

of amino acids is a power of 2. A binary representation for the labels of the grid requires

log
2

N binary variables to specify the position of an amino acid in each dimension, as

shown in Fig. 2.2. The position of each of N amino acids in a D-dimensional lattice may

thus be encoded by a bit string q composed of exactly DN log
2

N binary variables qi. For

example, for N = 4, D = 2, the length of the bit string q is 16 and therefore the number

of configurations that can be explored is 216. Let q denote a particular configuration of the

protein in the grid, written in the form

q = q
16

q
15| {z }

y
4

q
14

q
13| {z }

x
4

q
12

q
11| {z }

y
3

q
10

q
9| {z }

x
3

q
8

q
7|{z}

y
2

q
6

q
5|{z}

x
2

q
4

q
3|{z}

y
1

q
2

q
1|{z}

x
1

, (2.1)

where xi and yi are the x and y coordinate of the i-th amino acid. Fig. 2.2 shows an example

of the coordinate mapping given a specific sequence of residues or amino acids.



Chapter 2: Construction of Hamiltonians for adiabatic quantum computation 10

2 3

41

2 3

4

1

2 3

00 01 10 11

00

01

10

11

00

01

10

11

00

01

10

11

00 01 10 11

00 01 10 11

(a) (b)

(c)

x

y

Figure 2.2: Grid-labeling conventions for a sequence of 4 amino acids, HPPH. (a) Amino
acids 2 and 3 are fixed in the center of the grid to eliminate translational degeneracy. (b)
One of the possible invalid configurations that might arise in the search and that would
need to be discarded by the optimization algorithm. (c) Lowest-energy conformation for
this example. The dotted line between amino acids 1 and 4 represents the hydrophobic
interaction favored by the HP model. The configurations to optimize assume the form
q = q

16

q
15

q
14

q
13

0110 0101 q
4

q
3

q
2

q
1

, where the set of variables q
16

q
15

q
14

q
13

and q
4

q
3

q
2

q
1

determine the position of amino acids 4 and 1, respectively. For the particular case in (b),
q = 1100 0110 0101 1011.

In the quantum version of the problem, these configurations span a Hilbert space of

dimension 216. The state vectors can be written as

|qi ⌘ |q
16

i |q
15

i · · · |q
2

i |q
1

i . (2.2)

We wish to implement a Hamiltonian which encodes the ground state of the protein on a

spin-1/2 quantum computer [59], or, in particular onto an Ising-like Hamiltonian with a

transverse magnetic field [29] (see Sec. 2.2.2). To do so, we realize the 16-qubit Hilbert

space as a system of 16 spin-1/2 particles, with |qi = 0i mapped to the spin state |�zi = +1i
and |qi = 1i mapped to |�zi = �1i, with these spin states as the computational basis. In

other words, the quantum version of the configuration states is related to spin variables
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through the transformation

q̂i ⌘
1

2
(I � �̂zi ), (2.3)

with I =
�
1 0

0 1

�
and �z =

�
1 0

0 �1

�
, the identity operator and the �z Pauli matrix represented

in the computational basis, respectively.

In Sec. 2.3 we will derive an energy function in terms of the ND log
2

N binary variables

used to describe all of the possible configurations for the N amino acids in a D-dimensional

lattice. This energy function is constructed so that its minimum will yield the lowest-

energy conformations of the protein. Eq. 2.3 provides the rule for the mapping of this

energy function to a quantum Hamiltonian. Each qi in the energy function will be replaced

by an operator q̂i. The operator q̂i is to be understood as a short hand notation for a

quantum operator acting on the i-th qubit of the ND log
2

N multipartite Hilbert space,

HNDlog
2

N ⌦HNDlog
2

N�1

⌦ · · ·⌦Hi ⌦ · · ·⌦H
1

. The explicit form of q̂i is given by I ⌦ I ⌦
· · ·⌦ q̂i⌦ · · ·⌦I. Notice that the operator q̂i as defined in Eq. 2.3 has been placed in the i-th

position, and the identity operator acts on the rest of the Hilbert space. Products of the

form qiqj will be replaced by a quantum operator q̂iq̂j , which is a shorthand notation for the

operators q̂i and q̂j acting on the i-th and the j-th qubits, respectively. As an illustrative

example, consider an energy function dependent on four binary variables,

E(q
1

, q
2

, q
3

, q
4

) = 1� q
1

q
2

+ q
1

q
3

+ q
2

q
3

q
4

,

which will be mapped to a Hamiltonian acting on a four qubit Hilbert space, H
4

⌦ H
3

⌦
H

2

⌦ H
1

. In the instance of this particular energy function the Hamiltonian will assume

the form

Ĥ = I ⌦ I ⌦ I ⌦ I � I ⌦ I ⌦ q̂ ⌦ q̂ + I ⌦ q̂ ⌦ I ⌦ q̂ + q̂ ⌦ q̂ ⌦ q̂ ⌦ I

⌘ I � q̂
1

q̂
2

+ q̂
1

q̂
3

+ q̂
2

q̂
3

q̂
4

. (2.4)

Following this mapping, transformation of any energy function to the quantum Hamil-

tonian is straightforward.

In order to eliminate redundancy due to translational symmetry, we fixed the two

middle amino acids in a central position (see Fig. 2.2). This reduces the number of binary

variables in the bit string from sixteen to eight. The variables corresponding to amino acids

1 and 4: q
4

q
3

q
2

q
1

and q
16

q
15

q
14

q
13

, respectively, become the variables of interest, and the

variables q
8

q
7

q
6

q
5

and q
12

q
11

q
10

q
9

corresponding to amino acids 2 and 3, become constant

throughout the optimization process. In general, the (N/2)th amino acid is assigned to

the (N/2)th grid point in all D dimensions. The (N/2 + 1)th amino acid is fixed to the

(N/2 + 1)th grid point in the x direction and to the (N/2)th grid point in all other D � 1

dimensions. As shown in Fig. 2.2, the final configuration we will try to optimize for the

case of four amino acids takes the form |qi = |q
16

q
15

q
14

q
13

i |0110i |0101i |q
4

q
3

q
2

q
1

i.
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2.2.2 Adiabatic Quantum Computation

The goal of an adiabatic quantum algorithm is to transform an initial state into a

final state which encodes the answer to the problem. A quantum state | (t)i in the 2n-

dimensional Hilbert space for n qubits, evolves in time according to the Schrödinger equation

i~ d

dt
| (t)i = Ĥ(t) | (t)i , (2.5)

where Ĥ(t) is the time-dependent Hamiltonian operator. The design of the algorithm takes

advantage of the quantum adiabatic theorem [131], which is satisfied whenever Ĥ(t) varies

slowly throughout the time of propagation t 2 [0, ⌧ ]. Let | g(t)i be the instantaneous

ground state of Ĥ(t). If we construct Ĥ(t) such that the ground state of Ĥ(0), denoted

as | g(0)i, is easy to prepare, the adiabatic theorem states that the time propagation of

the quantum state will remain very close to | g(t)i for all t 2 [0, ⌧ ]. One way to choose

Ĥ(0) is to construct it in such a way that | g(0)i is a uniform superposition of all possible

configurations of the system, i.e.

| g(0)i =
1p
2n

X

qi2{0,1}

|qni |qn�1

i · · · |q
2

i |q
1

i (2.6)

summing over all 2n vectors of the computational basis. Notice that an initial Hamiltonian

of the form

Ĥ(0) =
nX

i=1

q̂ix =
nX

i=1

1

2
(I � �̂xi ) (2.7)

would have as a non-degenerate ground state the vector | g(0)i defined in Eq. 2.6.

Similarly to the operator q̂ from Eq. 2.3, we define

q̂ix ⌘ 1

2
(I � �̂xi ), (2.8)

with I =
�
1 0

0 1

�
and �x =

�
0 1

1 0

�
, the identity operator and the �x-Pauli matrix represented

in the computational basis, respectively.

For example, for the case of four qubits, n = 4, Ĥ(0) is given by,

Ĥ(0) =
4X

i=1

q̂ix = q̂1x + q̂2x + q̂3x + q̂4x (2.9)

= I ⌦ I ⌦ I ⌦ q̂x + I ⌦ I ⌦ q̂x ⌦ I + I ⌦ q̂x ⌦ I ⌦ I + q̂x ⌦ I ⌦ I ⌦ I. (2.10)

To find the lowest energy conformation of the protein, one defines a Hamiltonian, Ĥprotein,

whose ground state encodes the solution. Adiabatic evolution begins with Ĥ(0) and | g(0)i,
and ends in Ĥprotein = Ĥ(⌧). If the adiabatic evolution is slow enough, the state obtained
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at time t = ⌧ is | g(⌧)i, the ground state of Ĥ(⌧) = Ĥprotein. The details about the

construction of Ĥprotein will be provided in Sec. 2.3. A possible adiabatic evolution path

can be constructed by the linear sweep of a parameter t 2 [0, ⌧ ],

Ĥ(t) = (1� t/⌧)Ĥ(0) + (t/⌧)Ĥprotein. (2.11)

Even though Eq. 2.11 connects Ĥ(0) and Ĥprotein, determining the optimum value of ⌧ is

an important and non-trivial problem in itself. In principle, the adiabatic theorem states

that over su�cient adiabatic time ⌧ , the state | (⌧)i will converge to the solution to the

problem | g(⌧)i. The magnitude of ⌧ dictates the ultimate usefulness of the quantum

algorithm proposed in this work. Farhi et al. [69, 67] showed promising numerical results

for random instances of the Exact Cover computational problem.

Notice that the parameter ⌧ determines the rate at which Ĥ(t) varies. Following the

notation from Farhi et al [69], consider Ĥ(t) = H̃(t/⌧) = H̃(s), with instantaneous values

of H̃(s) defined by

H̃(s) |l; si = El(s) |l; si (2.12)

with

E
0

(s)  E
1

(s)  · · ·  EN�1

(s) (2.13)

where N is the dimension of the Hilbert space. According to the adiabatic theorem, if the

gap between the two lowest levels, E
1

(s)�E
0

(s), is greater than zero for all 0  s  1, and

taking

⌧ � "

g2min

(2.14)

with the minimum gap, g2min, defined by

gmin = min
0s1

(E
1

(s)� E
0

(s)), (2.15)

and " given by

" = max
0s1

|
*
l = 1; s

�����
dH̃

ds
|l = 0; s

+
|, (2.16)

then we can make

| hl = 0; s = 1 | (⌧)i | (2.17)

arbitrarily close to 1. In other words, the existence of a nonzero gap guarantees that | (t)i
remains very close to the ground state of Ĥ(t) for all 0  t  ⌧ , if ⌧ is su�ciently large.

In the following sections, we derive the expression for an energy function which is

mapped to Ĥprotein using the procedure explained in Sec 2.2.1. The final expression for

Ĥprotein corresponds to an array of coupled qubits. We use H to denote both the Hamilto-

nians and the energy functions given that the mapping is straightforward as explained at

the end of Sec. 2.2.1.
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2.3 Construction of the lattice protein Hamiltonian for adi-

abatic quantum computation

Our goal in this section is to find an algebraic expression for an energy function in

which the ground state represents the lowest energy conformation of a protein. Ideally, this

energy function should contain the least possible number of terms. In order to optimize

the computational resources, we desire terms with low locality, defined as the number of

products of qi’s that appear in a certain term (e.g., a term of the form h = q
1

q
3

q
4

q
6

is

4-local).

2.3.1 Small computer science digression

Encoding positions of the amino acids in the grid in terms of Boolean variables makes it

very convenient to use tools from computer science and basic Boolean algebra [165]. In this

section, we will review these tools before using them to contruct arbitrary Hamiltonians

that encode the spectrum of statistical mechanical models. We begin with some simple

relations that are useful in the derivation of the Hamiltonian terms.

Consider two Boolean variables x and y. Expressions for the operations and, or, not

can be written algebraically as:

f
and

(x, y) = xy and operation (x ^ y)

f
or

(x, y) = x+ y � xy or operation (x _ y)

f
not

(x) = 1� x not operation (¬x)

An additional useful Boolean operator for the construction of Hamiltonian terms is xnor.

The output of the xnor function is 0 unless all its arguments have the same value. The

two-input version xnor operation is also known as logical equality, here denoted as EQ,

f
eq

(x, y) = 1� x� y + 2xy xnor operation(x eq y)

The xnor operator can be used to construct a very useful term for statistical mechan-

ics Hamiltonians, an on-site repulsion penalty (described in Sec. 2.3.2 and illustrated in

Fig. 2.3).

2.3.2 Hamiltonian terms for protein folding: the HP model

Most of the configurations represented by the bit strings q of Eq. 2.1 are invalid protein

states. We seek a Hamiltonian that energetically favors valid configurations of the HP

model by eliminating configurations in which more than one amino acid occupy the same
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Figure 2.3: Illustrative example of one of the uses of the xnor Boolean function in our
scheme for the construction of Hamiltonians. Consider two particles 1 and 2 that are
restricted to occupy either position 0 or 1 in the dimension shown, and let x

1

and x
2

encode the position particle 1 and particle 2 respectively. The Boolean function fEQ can
be interpreted as an onsite repulsion Hamiltonian which penalizes configurations where
x
1

= x
2

. The possible configurations are encoded in the bit string x = x
1

x
2

.

grid point, and discarding configurations that violate the primary sequence of amino acids.

This Hamiltonian can be written as

Hprotein = Honsite +Hpsc +Hpairwise, (2.18)

where Honsite is an onsite repulsion term for amino acids occupying the same grid point,

Hpsc is a primary sequence constraint term, and Hpairwise is a pairwise interaction term that

represents favorable hydrophobic interactions between adjacent hydrophobic amino acids.

Each protein configuration can be described by a string of ND log
2

N bits, where D is

the number of dimensions and N is the number of amino acids. Without loss of generality,

N is here contrained to be a power of two. Below, we describe each term in Eq. 2.18.

Onsite term, Honsite

The first term in Eq. 2.18, Honsite, prevents two or more amino acids from occupying

the same grid point. For a given protein, at least one position variable must di↵er between

each pair of amino acids for Honsite to evaluate to zero. As an illustrative example, a

simple one-dimensional two-site Hamiltonian is shown in Fig. 2.3 using the xnor operation

described in Sec. 2.3.1.

The general term for D dimensions and N amino acids is

Honsite(N,D) = �
0

N�1X

i=1

NX

j=i+1

H ij
onsite(N,D) (2.19)
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with

H ij
onsite(N,D) =

DY

k=1

log

2

NY

r=1

⇣
1� qf(i,k)+r � qf(j,k)+r

+2 qf(i,k)+r qf(j,k)+r

⌘
(2.20)

and

f(i, k) = D(i� 1) log
2

N + (k � 1) log
2

N. (2.21)

The terms enclosed by the parentheses in Eq. 2.20 are xnor functions. The double product

of these terms tests that all of these conditions are considered simultaneously by using and

relations. If all the binary variables describing the coordinates of the i-th and j-th amino

acids are equal, then the series of products of xnor functions is evaluated to +1. In this

case, the energy penalty �
0

with �
0

> 0 is enforced. There will be no energy penalty,

however, if even one of the binary variables for the i-th and j-th amino acids is di↵erent.

The function f(i, k) is a pointer to the bit substring describing the coordinates of a

particular amino acid. The index i points to the i-th amino acid and the index k points

to the first bit variable of the k-th spatial coordinate. Here, k = 1 corresponds to the x

coordinate, k = 2 to the y coordinate, and k = 3 to the z coordinate. For example, consider

the case with N = 4 and D = 2. If we are interested in referring to the first binary variable

describing the y coordinate (k = 2), for the third amino acid (i = 3), a direct substitution in

Eq. 2.21 would yield f(3, 2) = 10, which is indeed the variable we are interested in according

to the convention established in Eq. 2.1.

Primary structure constraint, Hpsc

The term Hpsc in Eq. 2.18 evaluates to zero when two amino acids P and Q that are

consecutive sequence-wise must be nearest neighbors on the lattice. Nearest-neighbors are

defined as those points with a rectilinear (L
1

) distance of dPQ = 1 between them. We define

a distance function that gives the base 10 distance squared between any two amino acids P

and Q on the lattice,

d2PQ(N,D) =
DX

k=1

⇣log2 NX

r=1

2r�1(qf(P,k)+r � qf(Q,k)+r)
⌘
2

(2.22)

with f(i, k) defined as in Eq. 2.21.

A simple way of defining Hpsc is

H 0
psc(N,D) = �

1

N�1X

m=1

(1� d2m,m+1

)2 (2.23)
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Or, preferably,

Hpsc(N,D) = �
1

h
�(N � 1) +

N�1X

m=1

d2m,m+1

i
. (2.24)

Unlike Eq. 2.23, the improved Hamiltonian in Eq. 2.24 is always 2-local regardless of the

number of amino acids or the dimensionality of the problem, since d2PQ(N,D) is always

2-local.

First, notice that for valid configurations, all (N � 1) terms in the sum will equal

one, and Hpsc(N,D) evaluates to zero. If any of the d2m,m+1

terms is zero, meaning that

two amino acids occupy the same location, then Honsite will be drastically raised by the

energy penalty �
0

. This can be achieved by setting �
0

> �
1

, and �
1

= N . After excluding

configurations in which any d2m,m+1

are zero, only configurations with values of d2m,m+1

> 1

are left. In these instances, Hpsc(N,D) > 0 and �
1

will play the role of an energy penalty

since �
1

> 0. Choosing �
1

= N and �
0

= N + 1 > �
1

constrains unwanted or penalized

configurations to eigenstates of Hprotein with energies greater than zero, while plausible

configurations of the protein correspond to energies less than or equal to zero. Note that

the minimum energy of the HP model, in the case of all hydrophobic sequences with the

maximum number of favorable contacts, is always greater than �N . This is satisfied in

general for N amino acids in either two or three dimensions.

Pairwise hydrophobic interaction term, Hpairwise

The HP model favors hydrophobic interactions by lowering the energy by 1 whenever

non-nearest neighboring hydrophobic amino acids are a rectilinear distance of 1 away.

This kind of interaction is represented by the following general expression:

Hpairwise(N,D) = �
NX

i=1

NX

j=1

GijH
ij
pairwise (2.25)

Here G is an N ⇥ N symmetric matrix with entries Gij equal to +1 when amino acids i

and j are hydrophobic and non-nearest neighbors, and 0 otherwise. Note that Gij is set to

zero for amino acids that are neighbors in the protein sequence. Notice also that alternate

definitions of Gij could allow us to define lattice protein models that are more complex than

the HP model. One of these models is the more realistic Miyazawa-Jernigan model [122]

which includes interactions between 20 types of amino acids.

The form of H ij
pairwise depends on the spatial dimensionality of the problem. In two

dimensions, we have

H ij
pairwise = H ij,2D

pairwise(N) = xij,2D
+

(N) + xij,2D� (N) + yij,2D
+

(N) + yij,2D� (N) (2.26)
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and in three dimensions,

H ij
pairwise = H ij,3D

pairwise(N) = xij,3D
+

(N) + xij,3D� (N) + yij,3D
+

(N) + yij,3D� (N)

+zij,3D
+

(N) + zij,3D� (N) (2.27)

The terms on the right hand side of Eq. 2.27 are independent; each one serves to query

whether the j-th amino acid is located, with respect with the i-th amino acid, to the right,

left, above, below, in front, or behind as represented by xij,3D
+

, xij,3D� , yij,3D
+

, yij,3D� , zij,3D
+

,

and zij,3D� terms, respectively. If the j-th amino acid is located at a distance of exactly

one in any direction, H ij
pairwise is set to +1; otherwise it is set to zero. There is a subtle

but important condition embedded in these terms: they all vanish if the rightmost binary

variable describing the i-th residue’s coordinate of interest (say x for xij,3D
+

and xij,3D� or

y for yij,3D
+

and yij,3D� or z for zij,3D
+

and zij,3D� ) does not end in 0, i.e., the coordinate has

to correspond to an even number. This is why we intentionally double count each pair of

amino acids in Eq. 2.25 by allowing both indexes i and j iterate from 1 to N . No special

treatment is provided for the case where i = j, since the diagonal terms of Gij are all zero

due to the lack of amino acid self interaction. Finally, because we want the interaction to

be attractive rather than repulsive, we use the minus sign in Eq. 2.25.

The case of N amino acids in a two dimensional grid for N = 2M and M � 3:

The terms listed below correspond to the pairwise interaction Hamiltonian terms described

above. The expressions below were constructed for M � 3. The four amino acid case

(M = 2) is much simpler and will be discussed in Sec. 2.4. The expression for xij,2D
+

(N) is

xij,2D
+

(N) = (1� qf(i,1)+1

)qf(j,1)+1

log

2

NY

s=2

(1� qf(j,1)+s � qf(i,1)+s + 2 qf(j,1)+s qf(i,1)+s)

log

2

NY

r=1

(1� qf(i,2)+r � qf(j,2)+r + 2qf(i,2)+rqf(j,2)+r) (2.28)

The first two factors of xij,2D
+

(N) (Eq. 2.28) treat the rightmost binary digit of the x

position of the i-th and j-th amino acid. The first factor guarantees that the i-th residue

is in an even position on the x-axis. For an interaction to be considered, the position of

the j-th residue on the x-axis must be odd, as required by the second factor qf(j,1)+1

. The

remaining factors of xij,2D
+

are xnor functions that ensure that the rest of the binary digits

that encode the x position are equal for the i-th and j-th amino acids. Finally, all the digits

encoding the y position have to be equal, so that the i-th and j-th amino acids are nearest

neighbors displaced only in the x-directionforcing the two residues to be in the same row. If

all these conditions are satisfied, xij,2D
+

evaluates to +1; otherwise it evaluates to 0. These



Chapter 2: Construction of Hamiltonians for adiabatic quantum computation 19

conditions rely on the fact that adding 1 to an even number only changes the rightmost

binary digit from 0 to 1.

The construction of yij,2D
+

follows the same procedure as that of xij,2D
+

, namely,

yij,2D
+

(N) = (1� qf(i,2)+1

)qf(j,2)+1

log

2

NY

s=2

(1� qf(j,2)+s � qf(i,2)+s + 2 qf(j,2)+s qf(i,2)+s)

log

2

NY

r=1

(1� qf(i,1)+r � qf(j,1)+r + 2qf(i,1)+rqf(j,1)+r) (2.29)

The construction of xij,2D� ,

xij,2D� (N) = (1� qf(i,1)+1

)qf(j,1)+1

h
1�

log

2

NY

k=1

(1� qf(i,1)+k)
i
(qf(j,1)+2

+ qf(i,1)+2

� 2 qf(j,1)+2

qf(i,1)+2

)

log

2

NY

r=3

h
1� (qf(j,1)+r +

r�1Y

u=2

qf(j,1)+u � 2
rY

u=2

qf(j,1)+u)

� qf(i,1)+r + 2qf(i,1)+r(qf(j,1)+r +
r�1Y

u=2

qf(j,1)+u � 2
rY

u=2

qf(j,1)+u)
i

log

2

NY

s=1

(1� qf(i,2)+s � qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s) (2.30)

involves several considerations. As in the expression for xij,2D
+

, the first factor (1�qf(i,1)+1

)

tests if the i-th amino acid is in an even position along the x-axis. Here, we are interested in

querying whether the j-th amino acid is directly to the left of the i-th, and apply a di↵erent

procedure than that of Eq. 2.28. We add 00 · · · 01 to the x coordinate of the j-th residue,

thus moving “right” by one unit, and use the xnor function to check if the result matches

the x coordinate of the i-th amino acid. The problem is not as trivial as the case of xij,2D
+

.

Setting i at an even coordinate value along the axis of interest forces j to be in an odd

coordinate. However, adding 00 · · · 01 to an odd binary number in general will change more

digits than just the last digit due to carry bits. We used the circuit presented in Fig. 2.4

and the Boolean algebra introduced in Sec. 2.3.1 to obtain the general expression for the

addition of 00 · · · 01 to an n-bit number. If we take x = xnxn�1

· · ·x
2

x
1

and y = 00 · · · 01,
then the result z = zn+1

znzn�1

· · · z
2

z
1

for the addition z = x+ y is the recursive algebraic
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expression,

z
1

= 0

z
2

= 1� x
2

zk = xk +
k�1Y

u=2

xu � 2
kY

u=2

xu for 3  k  n

zn+1

=
nY

u=2

xu

Figure 2.4: Half-adder and full-adder components for the addition circuit implemented in
the pairwise interaction Hamiltonian. We show the implementation of these two components
for the addition of two 4-bit numbers yielding z = z

5

z
4

z
3

z
2

z
1

. The addition of n-bit numbers
can be generalized trivially.

As in the case of xij,2D
+

, we impose conditions that guarantee that the y coordinate is

the same for both amino acids (that they are in the same row).
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A special case arises when the j-th amino acid is at the rightmost position in the grid,

with an x coordinate value of 11 · · · 11. When 00 · · · 01 is added to this coordinate, zn+1

evaluates to 1 and the n bits z
1

to zn evaluate to 0. Since only the first n bits are used

to compare coordinates, this z would be an undesirable match with an i-th amino acid

positioned at x = 00 · · · 00. Notice that a value of x = 00 · · · 00 positions the i-th amino

acid positioned at the minimal/leftmost position in the grid, for which xij,2D� should not

even be considered. The factor [1�
Q

log

2

N
k=1

(1� qf(i,1)+k)] in Eq. 2.30 sets the term xij,2D� to

0 if the x coordinate of the i-th amino acid is 00 · · · 00, taking care of both of these concerns.

The construction of yij,2D� follows the same procedure as that of xij,2D� , namely,

yij,2D� (N) = (1� qf(i,2)+1

)qf(j,2)+1

h
1�

log

2

NY

k=1

(1� qf(i,2)+k)
i
(qf(j,2)+2

+ qf(i,2)+2

� 2 qf(j,2)+2

qf(i,2)+2

)

log

2

NY

r=3

h
1� (qf(j,2)+r +

r�1Y

u=2

qf(j,2)+u � 2
rY

u=2

qf(j,2)+u)

� qf(i,2)+r + 2qf(i,2)+r(qf(j,2)+r +
r�1Y

u=2

qf(j,2)+u � 2
rY

u=2

qf(j,2)+u)
i

log

2

NY

s=1

(1� qf(i,1)+s � qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s) (2.31)

The three-dimensional extension of these equations is presented in the Appendix.

2.3.3 Maximum locality and scaling of the number of terms in Hprotein

In this section, we estimate the number of terms included in the total Hamiltonian

Hprotein and present procedures required to reduce the locality of the terms to 2-local.

These estimates assess the size of a quantum device necessary for eventual experimental

realizations of the algorithm. The reduction of the locality of the terms involves ancillary

qubits.

Each amino acid requires D log
2

N qubits to specify its position in the lattice. Since

our algorithm fixes the position of two amino acids, the number of qubits needed to encode

the coordinates of the (N � 2) remaining amino acids is (N � 2)D log
2

N . From the ex-

pressions given for Honsite, Hpsc and Hpairwise, one can deduce that the maximum locality

is determined by 2D log
2

N — the number of qubits corresponding to two amino acids. As

described in Sec. 2.3.2, the Hpsc term is always 2-local in nature regardless of the number

of amino acids. For scaling arguments, it is crucial to point out that all possible 1-local and

2-local terms, that account for (N � 2)D log
2

N and
�
(N�2)D log

2

N
2

�
total terms, repectively,

appear in the expansion, but that not all possible 3-local or higher locality terms will be

present. For example, the terms qiqjqk, where the indexes i, j and k are associated with



Chapter 2: Construction of Hamiltonians for adiabatic quantum computation 22

Table 2.1: Scaling for number of quits as a function of problem size. The number of k-local
terms obtained in the final expression for Hprotein as a function of the number of amino
acids N , N = 2M , and dimensions (D) of the lattice..

locality Number of terms, Tk

k = 0 1

k = 1 (N � 2)D log
2

N

2  k  D log
2

N
�
N�2

2

�Pk�1

i=1

�D log

2

N
i

��D log

2

N
k�i

�
+ (N � 2)

�D log

2

N
k

�

D log
2

N < k  2D log
2

N
�
N�2

2

�PD log

2

N
i=k�D log

2

N

�D log

2

N
i

��D log

2

N
k�i

�

Total number of terms
P

2Dlog
2

N
k=0

Tk ⇠ N2D+2

three di↵erent amino acids, are not part of the expansion, since every term should only

involve products of qubits describing two amino acids, regardless of its locality. Table 2.1

summarizes the number of k-local terms required to construct the protein Hamiltonian,

Hprotein = Honsite+Hpsc+Hpairwise. The alternative count from the combinatorial expres-

sions of Table 2.1 scales as N6 for D = 2 and as N8 for D = 3. Table 2.1 provides the exact

term count.

2.4 Case study: HPPH

With the goal of designing an experiment for adiabatic quantum computers with small

numbers of qubits, we concentrate on the simplest possible instance of the HP-model – a

four amino acid loop that contains a favorable interaction and therefore “folds”.

In Sec. 2.4.1 we present the protein Hamiltonian, followed by the partitioning of the N -

local Hamiltonian terms to 2-local. Finally, we present numerical simulations which confirm

the local minimum through the use of the proposed algorithm.

2.4.1 Hamiltonian terms for the case of four amino acids in 2D

The onsite Hamiltonian for this example takes the form

Onsite term, Honsite

Honsite(N = 4, D = 2) = �
0

(H12

onsite +H13

onsite +H14

onsite +H24

onsite +H34

onsite) (2.32)
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with

H ij
onsite(N = 4, D = 2) =

2Y

k=1

2Y

r=1

⇣
1� qf(i,k)+r � qf(j,k)+r + 2 qf(i,k)+r qf(j,k)+r

⌘
(2.33)

and

f(i, k) = 4(i� 1) + 2(k � 1). (2.34)

Note thatH23

onsite does not appear in Eq. 2.32 since, as described in Sec. 2.2.1, the two central

amino acids are fixed in position and guaranteed not to occupy overlapping gridpoints that

would contribute an energy penalty to the onsite term a priori . On the other hand, other

terms involving amino acids 2 and 3 cannot be discarded, since these amino acids will a↵ect

their other neighbors through Hpsc and they can participate in hydrophobic interactions

through Hpairwise.

Primary structure constraint term, Hpsc

The pairwise term

d2PQ(N = 4, D = 2) =
2X

k=1

⇣ 2X

r=1

2r�1(qf(P,k)+r � qf(Q,k)+r)
⌘
2

(2.35)

with

Hpsc(N = 4, D = 2) = �
1

�
�3 + d2

12

+ d2
23

+ d2
34

�
= �

1

�
�2 + d2

12

+ d2
34

�
(2.36)

takes advantage of the fact that d2
23

= 1 by construction.

Pairwise term, Hpairwise

Finally, a pairwise interaction term is required to impose an energy stabilization for

non-nearest neighbor hydrophobic amino acids that occupy adjacent sites in the lattice.

For the sequence HPPH,

G =

0

BBBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CCCCA
(2.37)

and therefore,

H2D
pairwise(N = 4, D = 2) = �(H14,2D

pairwise +H41,2D
pairwise). (2.38)

For this particular case of interest

H ij,2D
pairwise(N = 4) = xij,2D

+

(N = 4) + xij,2D� (N = 4) +

yij,2D
+

(N = 4) + yij,2D� (N = 4). (2.39)
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The explicit forms of these functions are:

xij,2D
+

(N = 4) = (1� qf(i,1)+1

)qf(j,1)+1

(1� qf(j,1)+2

� qf(i,1)+2

+ 2 qf(j,1)+2

qf(i,1)+2

)
2Y

s=1

(1� qf(i,2)+s � qf(j,2)+s + 2qf(i,2)+sqf(j,2)+s), (2.40)

yij,2D
+

(N = 4) = (1� qf(i,2)+1

)qf(j,2)+1

(1� qf(j,2)+2

� qf(i,2)+2

+ 2 qf(j,2)+2

qf(i,2)+s)
2Y

s=1

(1� qf(i,1)+s � qf(j,1)+s + 2qf(i,1)+sqf(j,1)+s), (2.41)

xij,2D� (N = 4) = (1� qf(i,1)+1

)qf(j,1)+1

qf(i,1)+2

(qf(j,1)+2

+ qf(i,1)+2

� 2qf(j,1)+2

qf(i,1)+2

)
2Y

s=1

(1� qf(i,2)+s � qf(j,2)+s + 2 qf(i,2)+sqf(j,2)+s), (2.42)

yij,2D� (N = 4) = (1� qf(i,2)+1

)qf(j,2)+1

qf(i,2)+2

(qf(j,2)+2

+ qf(i,2)+2

� 2 qf(j,2)+2

qf(i,2)+2

)
2Y

s=1

(1� qf(i,1)+s � qf(j,1)+s + 2 qf(i,1)+sqf(j,1)+s). (2.43)

After expanding all of the terms in Honsite, Hpsc and Hpairwise, we fix amino acids 2 and 3 as

described in Sec. 2.2.1, substituting the variables q
12

q
11

q
10

q
9

q
8

q
7

q
6

q
5

by the constant val-

ues 0110 0101 as shown in Fig. 2.2. The final expression for Hprotein now depends on the 8

binary variables encoding the coordinates of amino acids 1 and 4, q
4

q
3

q
2

q
1

and q
16

q
15

q
14

q
13

,

respectively. For convenience in notation, we relabel the coordinates of amino acid 4 from

q
16

q
15

q
14

q
13

to q
8

q
7

q
6

q
5

. After these substitutions, the final expression for the energy func-

tion Hprotein will be dependent on products involving the variables q
1

through q
8

. Following

the mapping explained at the end of Sec. 2.2.1, the quantum expression for Ĥprotein is a

28 ⇥ 28 matrix. This Hamiltonian matrix defines the final Hamiltonian Ĥ(t = ⌧) of the

adiabatic evolution. The initial Hamiltonian representing the transverse field whose ground

state is a linear superposition of all 28 states in the computational basis can be written as

Ĥ
0

⌘ Ĥ(t = 0) =
8X

i=1

q̂ix =
8X

i=1

1

2
(I � �̂xi ) (2.44)

with

| g(t = 0)i = 1p
28

X

qi2{0,1}

|q
8

q
7

q
6

q
5

q
4

q
3

q
2

q
1

i (2.45)

Finally, we can construct a time dependent Hamiltonian as shown in Eq. 2.11,

Ĥ(t) = (1� t/⌧)Ĥ
0

+ (t/⌧)Ĥprotein (2.46)
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This time dependent Hamiltonian is also a 28 ⇥ 28 matrix as well. The instantaneous

spectrum can be obtained by diagonalizing at every t/⌧ without need to specify ⌧ . Since ⌧

is the running time, we are interested in 0  t/⌧  1. The spectrum of the corresponding

Ĥ(t) for this four amino acid peptide HPPH is given in Fig. 2.5.

Figure 2.5: Spectrum of the instantaneous energy eigenvalues for the 8-local time dependent
Hamiltonian used in the algorithm for the peptide HPPH (left). The plot to the right
examines the lowest 15 states of the 256 states from the left.

Snapshots of the instantaneous ground state are shown in Fig. 2.6. Even though these

snapshots do not correspond to explicit propagation of the Schrödinger equation, they indi-

cate that the final Hprotein is correct and that it provides the correct answer if a su�ciently

long time ⌧ is allowed. Notice that at t/⌧ = 0, the amplitude for all 256 states is equal,

indicating a uniform superposition of all states; at t/⌧ = 1, the readout corresponds to the

two degenerate solutions of HPPH.

2.5 Converting an N-local Hamiltonian to a 2-local Hamil-

tonian

Motivated by the possibility of an experimental implementation, we explain how to

reduce the locality of a Hamiltonian from k-local to 2-local while conserving its low-lying

spectrum. We use Boolean reduction techniques [27, 23] for Hamiltonians contructed from

energy functions with structure similar to Hprotein, where all of terms are sums of tensor

products of �iz operators. By reducing the locality of the interactions, we introduce new

ancilla qubits to represent higher order interactions with sums of at most 2-local terms.

Here, we present an illutrative example with a relative simple energy function but the

methodology can be immediately extended to higher locality energy functions such as the
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Table 2.2: Truth table for the energy functionHtoy(q) = 1+q
1

�q
2

+q
3

+q
4

�q
1

q
2

q
3

+q
1

q
2

q
3

q
4

.

q
4

q
3

q
2

q
1

H(q
1

, q
2

, q
3

, q
4

)

0 0 1 0 0

0 0 0 0 1

0 0 1 1 1

0 1 1 0 1

0 1 1 1 1

1 0 1 0 1

0 0 0 1 2

0 1 0 0 2

1 0 0 0 2

1 0 1 1 2

1 1 1 0 2

0 1 0 1 3

1 0 0 1 3

1 1 0 0 3

1 1 1 1 3

1 1 0 1 4

one resulting in Hprotein.

Consider a 4-local energy function of the form

Htoy(q) = 1 + q
1

� q
2

+ q
3

+ q
4

� q
1

q
2

q
3

+ q
1

q
2

q
3

q
4

. (2.47)

As shown in Table 2.2, this energy function has a unique minimum energy given by q =

q
4

q
3

q
2

q
1

= 0010. The energy associated with this configuration is 0 in arbitrary units and

all other possible values of the binary variables q
1

, q
2

, q
3

and q
4

have energies ranging from

0 to 4.

The goal is to obtain an energy function H 0 that preserves these energies along with

their associated bit strings, but defines H 0 using only 1-local and 2-local terms. That is,

the goal is to obtain a substitution for Htoy with the following form,

H 0(q̃
1

, · · · , q̃M ) = c
0

+
MX

i=1

ciq̃i +
M�1X

i=1

MX

j=i+1

dij q̃iq̃j . (2.48)

In Eq. 2.48 the new set of binary variables q̃ includes the original variables qi as well as

ancillary variables required to reduce locality. The extra ancillary bits raise the total number
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Table 2.3: Truth table for the function H^(qi, qj , q̃n) = �(3q̃n + qiqj � 2qiq̃n � 2qj q̃n) used
for the locality reduction procedure described in Sec. 2.5.

q̃n qi qj H^(qi, qj , q̃n)

0 0 0 0

0 0 1 0

0 1 0 0

1 1 1 0

1 0 0 3�

1 0 1 �

1 1 0 �

0 1 1 �

of variables to M .

Since the information contained within the problem and the solution we are seeking

both rely on the original set of q variables (in the case of protein folding, for example, the

string q encodes the positions of the amino acids in the lattice), we must be able to identify

values corresponding to the original q, regardless of the substitutions made to convert a

k-local function to a 2-local. The new energy function H 0 needs to have the energy values

of the original function in its energy spectrum. In addition, the values of the bit string q̃ for

these energies must match the same values of q in the original function. For the particular

example of Eq. 2.47, consider the substitutions, q
1

q
2

! q̃
5

and q
3

q
4

! q̃
6

. These two

subtitutions introduce two new independent binary variables, q̃
5

and q̃
6

and regardless of

the values of q
1

, q
2

, q
3

and q
4

, they can take any value in {0, 1}. Since we want to preserve

both the physical meaning of the original energy function, as well as its energy spectrum,

we need to perform an action on the cases where the conditions q̃
5

= q
1

^q
2

and q̃
6

= q
3

^q
4

are not satisfied and lack any meaning in the context of the original energy function. One

way to address this problem while keeping the original spectrum intact is to add a penalty

function which enforces the conditions q̃
5

= q
1

^ q
2

and q̃
6

= q
3

^ q
4

. For every substitution

of the form qiqj ! q̃n, consider a function of the form [23]

H^(qi, qj , q̃n) = �(3q̃n + qiqj � 2qiq̃n � 2qj q̃n). (2.49)

As shown in Table 2.3, for � > 0, the function H^(qi, qj , q̃n) is greater than zero whenever

q̃n 6= qi ^ qj and it evaluates to zero whenever q̃n = qi ^ qj .

A two-local expression of the form presented in Eq. 2.48 can be obtained by adding

one H^(qi, qj , q̃n) function for each substitution q
1

q
2

! q̃
5

and q
3

q
4

! q̃
6

and by making
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the additional trivial substitutions q
1

! q̃
1

, q
2

! q̃
2

, q
3

! q̃
3

, and q
4

! q̃
4

, to conveniently

change in notation to the set of binary variables q̃ . For the case of the energy function of

Eq. 2.47, the locality reduced version is

Htoy,reduced(q̃) = 1 + q̃
1

� q̃
2

+ q̃
3

+ q̃
4

� q̃
5

q̃
3

+ q̃
5

q̃
6

+H^(q1, q2, q̃5) +H^(q3, q4, q̃6)

= 1 + q̃
1

� q̃
2

+ q̃
3

+ q̃
4

� q̃
5

q̃
3

+ q̃
5

q̃
6

+ �(3q̃
5

+ q̃
1

q̃
2

� 2q̃
1

q̃
5

� 2q̃
2

q̃
5

)

+ �(3q̃
6

+ q̃
3

q̃
4

� 2q̃
3

q̃
6

� 2q̃
4

q̃
6

). (2.50)

Recall that the additional functions H^(q̃1, q̃2, q̃5) and H^(q̃3, q̃4, q̃6) increase the energy of

Htoy,reduced by at least � whenever the conditions q̃
5

= q̃
1

^ q̃
2

and q̃
6

= q̃
3

^ q
4

are not

satisfied. Table 2.4 shows the one-to-one mapping between the energies of non-penalized

configurations of Htoy,reduced(q̃) and configurations presented in Table 2.2 associated with

Htoy(q). Even though there is a unique configuration {q̃
6

= q̃
3

^ q̃
4

, q̃
5

= q̃
1

^ q̃
2

, q̃
4

, q̃
3

, q̃
2

, q̃
1

}
associated with every {q

1

, q
2

, q
3

, q
4

} with the same energy, it does not necessarily hold that

the lowest 24 out of the 26 energies of Htoy,reduced consist of the 24 energies of Htoy. For

example, if we pick a small penalty � in Table 2.4, say 0  �  4, then some of the states

penalized by either H^(q̃1, q̃2, q̃5) or H^(q̃3, q̃4, q̃6) can still have an energy within the energy

values of Htoy. To avoid this situation, we can choose � > max(Htoy) which will be su�cient

to remove the energies of the penalized states from the region corresponding to energies of

Htoy, therefore conserving the low-lying spectra of the original Htoy. Using the mapping

explained at the end of Sec. 2.2.1, the quantum version of the 4-local energy function from

Eq. 2.47 is:

Ĥtoy = I + ˆ̃q
1

� ˆ̃q
2

+ ˆ̃q
3

+ ˆ̃q
4

� ˆ̃q
1

ˆ̃q
2

ˆ̃q
3

+ ˆ̃q
1

ˆ̃q
2

ˆ̃q
3

ˆ̃q
4

. (2.51)

The quantum version of the 2-local reduced form presented in Eq. 2.50 is,

Ĥtoy,reduced = I + ˆ̃q
1

� ˆ̃q
2

+ ˆ̃q
3

+ ˆ̃q
4

� ˆ̃q
5

ˆ̃q
3

+ ˆ̃q
5

ˆ̃q
6

+ �(3ˆ̃q
5

+ ˆ̃q
1

ˆ̃q
2

� 2ˆ̃q
1

ˆ̃q
5

� 2ˆ̃q
2

ˆ̃q
5

)

+ �(3ˆ̃q
6

+ ˆ̃q
3

ˆ̃q
4

� 2ˆ̃q
3

ˆ̃q
6

� 2ˆ̃q
4

ˆ̃q
6

) (2.52)

Notice that Ĥtoy acts on a 24 dimensional Hilbert space, span{|q̃
4

i⌦ |q̃
3

i⌦ |q̃
2

i⌦ |q̃
1

i}, while
Ĥtoy,reduced acts on a 26 dimensional Hilbert space, span{|q̃

6

i⌦ |q̃
5

i⌦ |q̃
4

i⌦ |q̃
3

i⌦ |q̃
2

i⌦ |q̃
1

i}.
Due to the conservation of the spectrum and bit strings described above (as reflected

in Tables 2.2 and 2.4), the solution obtained from an adiabatic quantum algorithm using

either Ĥtoy or Ĥtoy,reduced as Ĥfinal,

Ĥ(t) = (1� t/⌧)Ĥ(0) + (t/⌧)Ĥfinal (2.53)

should be the same.

In the case of the 2-local Hamiltonian Ĥtoy,reduced, the solution to the optimization

problem is obtained using an adiabatic algorithm after reading the qubits associated to
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q̃
4

, q̃
3

, q̃
2

, q̃
1

at t = ⌧ from the space span{|q̃
6

i⌦ |q̃
5

i⌦ |q̃
4

i⌦ |q̃
3

i⌦ |q̃
2

i⌦ |q̃
1

i} at t = ⌧ . Notice

that the ancillary qubits in the six qubit version do not carry any physical information, as

expected, since all of the valuable information was stored in the qubits coming from the

original expression before the reduction. The cost of reducing the locality of a Hamiltonian

to another which contains at most two-body interactions is the increase in the number of

resources due to the additional ancillary bits.

Figure 2.7 shows the the eigenenergies of Eq. 2.53 vs. t/⌧ , where Ĥfinal is replaced by

Ĥtoy (see Figure 2.7(a)), and by Ĥtoy,reduced with � = 5, (see Fig. 2.7(b)). As expected from

Table 2.2 and 2.4, Fig. 2.7 illustrates the preservation of the subsystem corresponding to

the variables q̃
1

, q̃
2

, q̃
3

and q̃
4

in the ground state of both the original and reduced-locality

Hamiltonian. Degeneracy and overlap of lines in the spectra in Fig. 2.7 make it di�cult to

graphically convey that both spectra in Fig. 2.7 indeed have 16 states for 0  eigenenergies

 4. In Fig. 2.7(b) we plotted the first 19 eigenstates out of the 26 eigenstates corresponding

to Ĥtoy,reduced. At t/⌧ = 1, states with energy greater than 4 correspond to states which

violate the and condition introduced by the reduction process. Notice that there are two

eigenstates with eigenvalue 5 in agreement with the table presented in Appendix ?? after

substituting � = 5, and one state which corresponds to the one of the four-degenerate

manifold with E = 6.

Figure 2.7: Spectrum comparison of the instantaneous energy eigenvalues for the 4-local
toy Hamiltonian Ĥtoy (left) and its corresponding 2-local version Ĥtoy,reduced(right). (left)

Full spectrum of the 24 instantaneous eigenvalues for Ĥtoy(q̃,q̃2, q̃3, q̃4). (right) First 19
instantaneous eigenvalues for the 2-local version of Ĥtoy, denoted as Ĥtoy,reduced in text.
The value used for � is 5. The first 24 levels, 0  eigenvalues  4, are associated to the
original levels from Ĥtoy. The three remaining states with eigenvalues greater than 4 are
penalized states which violate the conditions q̃n = q̃i ^ q̃j (see Table 2.4 for details)
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Table 2.4: Truth table for the energy function Htoy,reduced(q̃) = 1+ q̃
1

� q̃
2

+ q̃
3

+ q̃
4

� q̃
5

q̃
3

+
q̃
5

q̃
6

+ �(3q̃
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1
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) + �(3q̃
6
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q̃
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� 2q̃
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q̃
6

� 2q̃
4

q̃
6

). The top of the table
shows the 16 nonpenalized states that satisfy q̃

5

= q̃
1

^ q̃
2

and q̃
6

= q̃
3

^ q̃
4

. These 16 states
map one to one to the states in Table 2.2. A sample of the remaning 48 penalized states
are shown in the second part of this table. The ellipses represent omitted rows.

q̃
6

q̃
5

q̃
4

q̃
3

q̃
2

q̃
1

H 0(q̃
1

, q̃
2

, q̃
3

, q̃
4

, q̃
5

, q̃
6

)

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 1 0 0 1 1 1

0 0 0 1 1 0 1

0 0 0 1 1 1 1

0 0 1 0 1 0 1

0 0 0 0 0 1 2

0 0 0 1 0 0 2

0 0 1 0 0 0 2

0 1 1 0 1 1 2

1 0 1 1 1 0 2

0 0 0 1 0 1 3

0 0 1 0 0 1 3

1 0 1 1 0 0 3

1 1 1 1 1 1 3

1 0 1 1 0 1 4

0 1 0 0 1 0 �

0 1 0 1 1 0 �

0 0 0 0 1 1 1 + �

0 1 1 0 1 0 1 + �

0 1 1 0 1 0 1 + �

1 0 0 1 1 0 1 + �

1 0 1 0 1 0 1 + �

0 0 0 1 1 1 2 + �
...

...
...

...
...

...
...

1 1 0 0 1 0 1 + 4 �

1 1 0 1 0 0 2 + 4 �

1 1 0 0 0 1 3 + 4 �

1 1 1 0 0 0 3 + 4 �

1 1 0 0 0 0 2 + 6 �
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2.6 Resources needed for a 2-local Hamiltonian expression

in protein folding

For any k-local energy function, e.g., h = q
1

q
2

· · · qk, the reduction can be carried out

iteratively, adding the penalty function H^(qi, qj , q̃n) for every substitution of the form

qiqj ! q̃n. For a k-local term, (k�2) substitutions are required for the reduction to 2-local,

and therefore require (k � 2) ancillary bits.

In the particular case of the protein Hamiltonian the reduction procedure needs to

be repeated (N � 2)(ND � D log
2

N � 1) times, as described below. All the terms in the

HP Hamiltonian include among at most interactions two amino acids, which results in

a maximum locality of 2D log
2

N . In the following discussion, the cluster notation [k][l]

specifies the contributions of a particular (k + l)�local term into k variable coming from

an amino acid with index i and l variables from an amino acid with index j. Since all

the terms are of this form, to obtain a 2-local Hamiltonian, all products corresponding to

each [k] and [l] of each cluster have to be converted to 1-local terms. We reduce terms

for variables describing each amino acid in turn, for a total of D log
2

N variables. All

possible combinations of two variables from the D log
2

N variables for an amino acid are

substituted. The number of ancillary bits required for this substitution is
�
D log

2

N
2

�
. These

substitutions convert all terms of the form [3][0] and [2][1] to 2-local. To convert terms of

the form [4][0] or [3][1] to 2-local we need to consider
�
D log

2

N
3

�
terms originally containing

three variables from one amino acid. After employing an additional ancillary bit per term

and applying the previous reduction step, all these terms collapse to 1-local with respect

to the i-th amino acid, i.e., these terms will assume the form [1][l]. Iterating over the

D log
2

N variables for a specific amino acid in order of increasing locality will give us the

number of substitutions or ancilla bits needed per amino acid in order to reduce a particular

cluster [k] to [1] or 1-local. The total number of substitutions per amino acid corresponds to
PD log

2

N
k=2

�D log

2

N
k

�
= ND �D log

2

N � 1. To carry out the procedure for all (N � 2) amino

acids the number of ancilla qubits required is (N � 2)(ND � D log
2

N � 1). The number

of qubits needed to represent a 2-local Hamiltonian version of the protein Hamiltonian is

given by adding the number of ancillary qubits to the number of original (N � 2)D log
2

N

quantum bits,

# of total qubits for a 2-local expression = (N � 2)(ND �D log
2

N � 1) + (N � 2)D log
2

N

= (N � 2)(ND � 1) (2.54)

Eq. 2.54 provides a closed formula for the number of qubits needed to find the lowest

energy conformations for a protein with N amino acids in D dimensions in our encoding.

In particular, for the case of a four amino acid peptide HPPH in two dimensions considered
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in Sec. 2.4 requires 30 qubits.

2.7 Conclusions

We constructed the essential elements of an adiabatic quantum algorithm to find the

lowest energy conformations of a protein in a lattice model. The number of binary variables

needed to represent N amino acids on an N ⇥N lattice is (N � 2)D log
2

N . The maximum

locality of the final Hamiltonian, as determined by the interaction between pairs of amino

acids using the mapping defined here, is 2D log
2

N .

General strategies to construct energy functions to map into other quantum mechanical

Hamiltonians used for adiabatic quantum computing were presented. The strategies used in

the construction of the Hamiltonian for the HP model can be used as general building blocks

for Hamiltonians associated with physical systems where onsite energies and/or pairwise

potentials are present.

We also demonstrated an application of the Boolean scheme for converting a k-local

Hamiltonian into a 2-local Hamiltonian, aiming toward an experimental implementation in

quantum devices. The resulting couplings, although 2-local, do not necessarily represent

couplings among nearest neighbor quantum bits in a two-dimensional geometry. It is how-

ever known that the number of ancillary physical qubits required to embed an arbitrary

N variable problem is upper-bounded by N2/(C � 2), where C is the number of couplers

allowed per physical qubit.

The most important question remaining to be explored in future work is the scaling

of run time ⌧ with respect to the number of amino acids N . Run time ⌧ is dependent on

the particular instance of the problem – in our case, to di↵erent protein sequences. It has

been proposed that proteins have evolved towards a many-dimensional funnel-like potential

energy surface [47]. The sequences that show a funnel-like structure might be easier to

study using adiabatic quantum computation, because the funnel structure may facilitate

annealing of the quantum wave function toward low energy conformations.

2.8 Appendix: Extension of the pairwise interaction to three

dimensions and N amino acids , N = 2M and M � 3

This extension follows the principles presented in Sec. 2.3.2 and extends the terms of

the Hamiltonian to the case of a three-dimensional lattice protein. The pairwise term for
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the three-dimensional case is,

H3D
pairwise(N) = �

NX

i,j=1

GijH
ij,3D
pairwise (2.55)
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Chapter 3

A study of heuristic guesses for adiabatic quantum

computation

Summary

Adiabatic quantum computation (AQC) is a universal model for quantum computa-

tion which seeks to transform the initial ground state of a quantum system into a final

ground state encoding the answer to a computational problem. AQC initial Hamiltonians

conventionally have a uniform superposition as ground state. We diverge from this practice

by introducing a simple form of heuristics: the ability to start the quantum evolution with

a state which is a guess to the solution of the problem. With this goal in mind, we ex-

plain the viability of this approach and the needed modifications to the conventional AQC

(CAQC) algorithm. By performing a numerical study on hard-to-satisfy 6 and 7 bit random

instances of the satisfiability problem (3-SAT), we show how this heuristic approach is pos-

sible and we identify that the performance of the particular algorithm proposed is largely

determined by the Hamming distance of the chosen initial guess state with respect to the

solution. Besides the possibility of introducing educated guesses as initial states, the new

strategy allows for the possibility of restarting a failed adiabatic process from the measured

excited state as opposed to restarting from the full superposition of states as in CAQC.

The outcome of the measurement can be used as a more refined guess state to restart the

adiabatic evolution. This concatenated restart process is another heuristic that the CAQC

strategy cannot capture.

3.1 Introduction

Adiabatic quantum computation (AQC) [69] is a promising paradigm of quantum com-

putation because of its robustness [39, 123], and its intuitive mapping from NP-complete

and NP-hard problems to potentially realizable Hamiltonians [69, 67, 93, 208]. Adiabatic
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quantum computing is attractive because relevant optimization problems such as lattice

models for protein folding can be readily formulated [148].

AQC algorithms involve the specification of a time-dependent Hamiltonian,

Ĥ(t) = ĥi(t) + ĥdriving(t) + ĥf (t), (3.1)

This Hamiltonian has three important functions: (1) The initial Hamiltonian, Ĥi ⌘ Ĥ(0),

encodes a ground state that is easy to prepare and that is used as the initial state for

the quantum evolution. (2) The driving Hamiltonian, ĥdriving(t), is responsible for medi-

ating the transformation of the initial ground state to any of other state. (3) The final

Hamiltonian, Ĥf ⌘ Ĥ(⌧), is problem dependent and its ground state encodes the solution,

| solutioni, to the computational problem. In the ideal case of a process being fully adia-

batic, evolution under Ĥ(t) will keep the quantum state, | (t)i, in the ground state of Ĥ(t)

throughout 0 < t < ⌧ . If this condition is met, the final state at t = ⌧ should coincide

with the ground state of the final Hamiltonian, Ĥf , i.e., | (⌧)i = | solutioni, if the process

is adiabatic. The measurement at t = ⌧ will provide the solution to the computational

problem.

Since the original proposal by Farhi et al [69], a significant amount of progress has

been made towards the design of final Hamiltonians for di↵erent computationally intractable

problems such as NP-complete problems. For example, in this chapter we provide a detailed

description of the construction of final Hamiltonian for the 3-SAT problem. In previous

work, we described the respective construction of the final Hamiltonian for an NP-hard

problem of interest in biology, the protein folding problem, which consists of finding the

minimum energy configuration of a chain of interacting amino acids in a lattice [148]. Several

choices for ĥdriving have been suggested. Farhi et al [69] proposed what we call in this work

the conventional form used for ĥdriving(t): a linear ramp,

ĥdriving(t) = (1� t/⌧)Ĥdriving, (3.2)

In Farhi et al ’s scheme the term ĥi(t) can be defined as Ĥi ⌘ ĥdriving(t = 0) = Ĥdriving,

namely, the term Ĥdriving serves as the initial Hamiltonian Ĥi when its intensity is com-

pletely turned on at t = 0, and drives the quantum evolution until it is completely turned

o↵ at t = ⌧ . The final Hamiltonian is turned on with the functional form ĥf (t) = (t/⌧)Ĥf .

Scheduling the adiabatic evolution with this linear interpolation is not compulsory, thus

di↵erent proposals have been studied such as the use of non-linear time-profile for auxiliary

Hamiltonians [65] and optimal geodesic paths [161].

The question of whether AQC, or in general quantum computers, can be used for

e�ciently solving NP-complete problems is a di�cult open question. Lessons that have
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been learned [68] include that a poor choice of the initial Hamiltonian such as the one-

dimensional projector as selected in Refs. [164] and [216], will lead ine�cient AQC algo-

rithms. Therefore, it is important to consider di↵erent strategies which might allow an

escape from bottlenecks or trap states which might limit the use of AQC [8].

When attempting to tackle combinatorial and optimization problems with classical

computers, a common approach to cope with intractability and NP-complete problems

[72, 178], is to employ heuristic algorithms as an alternative to exhaustive search which

scales exponentially with system size. In quantum computation, Hogg [92, 94] introduced

heuristic techniques in quantum algorithms. He showed that using information about the

structure of the problem as a heuristic guide can be used to enhance the performance of

quantum search compared to the scheme proposed by Grover [76]. Hogg’s proposal was

suggested for the gate model for quantum computation, but to our knowledge, there are

no studies of heuristics in AQC. The purpose of this chapter is to examine the following

questions: How can we incorporate heuristics in AQC? Is there any advantage by doing so?

What are the modifications to CAQC proposal from an algorithmic and experimental point

of view?

Initial state selection. The simplest form of heuristics we could think of is to start

the quantum evolution from a quantum state which is a guess to the solution, but this

possibility is not available in any of the proposals for AQC. Physical intuition as well as

constraints within the problem can be used to make an educated guess. To illustrate our

idea, let’s use a lattice model for protein folding [148] as an example. For this model,

an educated guess for the initial state would be to choose a bit string which encodes an

initial position for the amino acids in the spatial lattice such that no two amino acids are

on top of each other, and that they are connected according to the sequence defining the

protein to be folded. Conversely, CAQC would begin the computation with a quantum

superposition of all possible states of the computational basis. This choice of initial state

contains absurd configurations like all amino acids on top of each other, or assignments

referring to configurations of amino acids which are fully disconnected or not properly linked

according to the protein sequence. We conjecture here that the presence of these “non-

sensical” states might act as trap states, making a smooth transition towards the desired

final ground state more di�cult and therefore increasing the time required for an adiabatic

evolution. In other fields of computer science, physics and chemistry, one might also use

classical methods or a mean field approach to find approximate solutions to be employed

as educated guesses. For example, in the context of quantum simulation, a Hartree-Fock

solution may be used as the initial state for an adiabatic preparation of an exact molecular

wave function [15, 202, 201, 200].
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In quantum mechanics, preparing a desired state is not a trivial task [110, 4] and

it is not always possible to deterministically prepare a state from a superposition state

by measurement. For NP-complete classical problems, like the 3-satisfiability problem (3-

SAT) [72, 178] studied here, the simplest guess for the initial state is that of choosing one

of the possible assignments from the solution space. We present a strategy which allows

to design experimentally-realizable initial Hamiltonians whose ground state corresponds to

the desired guess as the initial quantum state. This is essential for studying the importance

of choosing a guess state instead of having full superposition of states as in CAQC [69]. In

an algorithm like the one proposed here, both the initial guess and the final solution will be

states of the computational basis. Therefore, the overlap between them is zero, unless one

has guessed the right solution or the guess is included in the subspace of solutions, which

is very unlikely. Regardless of this counterintuitive choice, h guess | solution i = 0, we show

that using this kind of heuristics can be of advantage. Even in the case of choosing the

initial state by random guessing there is potential for outperforming CAQC.

Restarting the evolution. Notice that the method described here not only allows to

begin the evolution from a guess state, but also allows for the possibility of restarting

a failed AQC calculation from the measured state. This state can be used as a refined

guess to restart the adiabatic evolution. An adiabatic processes is an idealized concept

because real experiments have to be run in finite time and therefore there will always be

probability of measuring a non-desired excited state which does not encode the solution

to the computational task. The possibility of restarting the quantum evolution using the

measured state as a guess is a feature which is not available in any of the AQC proposals

to date, to our knowledge.

The incorporation of heuristics in AQC essentially involves two modifications to CAQC.

We address both changes; the first modification involves the design of initial Hamiltonians

for arbitrary guess states. The second modifications involves the change of the time profile

of the driving Hamiltonian from the linear ramp to a non-linear time dependence with a

“sombrero-like” time profile (see Fig. 3.1). Note that this second change is not the main

point of the chapter since non-linear paths had been proposed before [65]. Also, it is not our

purpose to explore what is the optimal selection for the driving term. It must be emphasized

that the “sombrero-like” time profile is an essential feature needed if one is interested in the

kind of heuristics we describe here, but this is not the case in the conventional way of doing

AQC where it was used for auxiliary Hamiltonian terms [65]. Because of this distinctive

feature and with the purpose of di↵erentiating our heuristic strategy proposed with CAQC,

we will refer to our method as Sombrero Adiabatic Quantum Computation (SAQC). The

name should be associated with the algorithmic strategy (selection of initial guess, design
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of initial Hamiltonian and sombrero-like profile for the driving Hamiltonian) which aims to

incorporate heuristics in AQC, not only to the use of non-linear paths in AQC.

The chapter is divided as follows: in Section 3.2, we review the CAQC approach.

Section 3.3 introduces the basic elements of the new implementation, SAQC. Finally, in

Section 3.4, we present numerical calculations comparing the performance of both the

CAQC and the SAQC algorithms based on the minimum gap, gmin, of their respective

time-dependent Hamiltonians driving their corresponding time evolutions.

3.2 Conventional adiabatic quantum computation (CAQC)

The goal of AQC algorithms is that of transforming an initial ground state | (0)i into
a final ground state | (⌧)i, which encodes the answer to the problem. This is achieved by

evolving the corresponding physical system according to the Schrödinger equation with a

time-dependent Hamiltonian Ĥ(t). The AQC algorithm relies on the quantum adiabatic

theorem [131, 127, 194, 203, 215, 9, 125, 7, 96, 52, 37], which states that if the quantum

evolution is initialized with the ground state of the initial Hamiltonian, the time propagation

of this quantum state will remain very close to the instantaneous ground state | g(t)i for

all t 2 [0, ⌧ ], whenever Ĥ(t) varies slowly throughout the propagation time t 2 [0, ⌧ ]. This

holds under the assumption that the ground state manifold does not cross the energy levels

which lead to excited states of the final Hamiltonian. Here, we denote by ground state

manifold the first m curves associated with the lowest eigenvalue of the time-dependent

Hamiltonian for t 2 [0, ⌧ ], where m is the degeneracy of the final Hamiltonian ground state.

An example of m = 2, is shown in Fig. 5 of Ref. [148].

Conventionally the adiabatic evolution path is the linear sweep of s 2 [0, 1], where

s = t/⌧ :

H(s) = (1� s)Htransverse + sHf . (3.3)

Ĥtransverse (see Eq. 3.9 below) is usually chosen such that its ground state is a uniform

superposition of all possible 2n computational basis vectors, for the case of an n�qubit

system. Here, we choose the spin states {|qi = 0i , |q = 1i}, which are the eigenvectors of �̂zi
with eigenvalues +1 and -1, respectively, as the basis vectors. Then the initial ground state

is | g(0)i = 1p
2

n

P
qi2{0,1} |qni |qn�1

i · · · |q
2

i |q
1

i. Such an initial ground state is usually

assumed to be easy to prepare, for example, by imposing a global transverse field. Since

each state encodes a possible solution, this initial state assigns equal probability to all

possible solutions to the computational problem.
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3.3 Sombrero adiabatic quantum computation (SAQC)

For SAQC, the time-dependent Hamiltonian can be written as:

Ĥsombrero = (1� s)Ĥi + hat(s)Ĥdriving + sĤf . (3.4)

We want the non-degenerate ground state of the initial Hamiltonian Ĥi to encode a

guess to the solution, and the driving term, Ĥdriving, to couple the states in the computa-

tional basis. The function hat(s) is zero at the beginning and end of the adiabatic path;

therefore Ĥdriving acts only in the range s 2 (0, 1) in a “sombrero-like” time dependence

(see Fig. 3.1), which allows Ĥi (Ĥf ) to be fully turned on at the beginning (end) of the

computation.

Figure 3.1: The main idea behind Sombrero Adiabatic Quantum Computation (SAQC) is
to introduce heuristics in AQC, and having the possibility of restarting a failed AQC run
from the measured excited state. In order to prepare an arbitrary state from any of the 2N

possible basis states from the computational basis of the N qubit system, we propose an
initial Hamiltonian, Ĥi (see Eq. 3.5), in such a way that the desired initial guess state is the
non-degenerate ground state of the designed initial Hamiltonian. The initial Hamiltonian is
diagonal in the computational basis, and so is the final Hamiltonian for the case of classical
problems such as the NP-complete problems, e.g., random 3-SAT. Since both, the initial
and final Hamiltonians are diagonal, connecting them via a linear ramp as is usually done
in CAQC (see left panel) will not lead the quantum evolution towards finding the ground
state of the final Hamiltonian. To maintain the initial Hamiltonian uniquely and fully
turned on at the beginning, t = 0, and the final Hamiltonian uniquely and fully turned
on at the end of the computation, t = ⌧ , we introduce a driving Hamiltonian whose time
profile intensity has a “sombrero-like” shape (see right panel) is such a way that it only acts
during 0 < t < ⌧ . Two examples of functions with this functional form are presented, where
hat

1

(s) = sin2(⇡s) and hat
2

(s) = s(1 � s). A desired feature of our algorithmic strategy
is the possibility of introducing heuristics, and not that of introducing non-linear paths.
The latter has been proposed previous publications [65, 13, 179], but here is employed as a
consequence of the algorithmic strategy.
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3.3.1 Design of the initial Hamiltonian for the guess state

As preparing an arbitrary initial non-degenerate ground state for adiabatic evolution is

not a trivial task, we focus on easy to prepare initial guesses that consist of one of the states

in the computational basis. The strategy proposed builds initial Hamiltonians such that

the initial guess corresponds to the non-degenerate ground state of the initial Hamiltonian,

as it is required by AQC. Additionally, this ground state would be non-degenerate.

Let us denote the states of the computational basis of an N qubit system as

|qN i |qN�1

i · · · |q
1

i ⌘ |qN · · · q
1

i ,

where qn 2 {0, 1}. The proposed initial Hamiltonian, whose ground state corresponds to

an arbitrary initial guess state of the form |xN · · ·x
1

i, can be written as

Ĥi =
NX

n=1

⇣
xnÎ + q̂n(1� 2xn)

⌘
=

NX

n=1

ĥxn , (3.5)

where each xn is a boolean variable, xn 2 {0, 1}, while q̂ ⌘ 1

2

(Î � �̂z) is a quantum

operator acting on the n-th qubit of the multipartite Hilbert space HN ⌦HN�1

⌦ · · ·⌦Hn⌦
· · ·⌦H

1

. The operator q̂n is given by

q̂n = ÎN ⌦ ÎN�1

⌦ · · ·⌦ (q̂)n ⌦ · · ·⌦ Î
1

, (3.6)

where q̂ is placed in the nth position and the identity operators act on the rest of the Hilbert

space.

The states constituting the computational basis, |0i and |1i, are eigenvectors of �̂z

with eigenvalues +1 and �1, and therefore they are also eigenstates of the operator q̂ with

eigenvalues 0 and 1 respectively. The logic behind the initial Hamiltonian in Eq. 3.5 then

is clear: if xn = 0, then ĥxn=0

= q̂n but in the case of xn = 1, then ĥxn=1

= Î � q̂n.

As an example, suppose one has a four qubit system, and one wishes to initialize the

adiabatic computation with the state |x
4

= 1, x
3

= 0, x
2

= 1, x
1

= 0i ⌘ |1010i which one

may choose either randomly or as an educated guess to the solution. According to Eq. 3.5,

the initial Hamiltonian for the |1010i guess state should be constructed as

Ĥi = ĥx
4

+ ĥx
3

+ ĥx
2

+ ĥx
1

= (Î � q̂
4

) + q̂
3

+ (Î � q̂
2

) + q̂
1

, (3.7)

and, clearly

Ĥi |1010i =
⇣
(Î � q̂

4

) + q̂
3

+ (Î � q̂
2

) + q̂
1

⌘
|1010i = 0 |1010i . (3.8)

In general, the 2N states of the computational basis are all eigenstates of Ĥi, and it

can be easily verified that the spectrum of Ĥi are energies contained in {0, · · · , N}. As
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required, the ground state is also nondegenerate. The other states will have an eigenenergy

which equals their Hamming distance to the ground state of the initial Hamiltonian.

3.3.2 Driving Hamiltonian

The encoding of an educated or a random guess into Ĥi (Eq. 3.5) makes both Ĥi

and Ĥf (Eq. 3.4) diagonal in the computational basis. Therefore, connecting Ĥi and Ĥf

with a linear ramp (as in Eq. 3.3), namely, omitting the operator Ĥdriving in the quantum

evolution, would yield zero probability of obtaining the state that encodes the unknown

solution to the problem starting from the initial guess state. To avoid such a situation,

Ĥdriving must introduce non-diagonal terms in Ĥsombrero (see Eq. 3.4) that allows the initial

state to transform from any arbitrary guess into the solution.

In order to make a fair comparison between CAQC and SAQC (see Eq. 3.3 and Eq. 3.4),

we set

Ĥdriving = Ĥtransverse = �
NX

n=1

q̂xn, (3.9)

in Eq. 3.4, where q̂xn stands for the quantum operator q̂x acting on the nth qubit of the

multipartite Hilbert space HN ⌦HN�1

⌦ · · ·⌦Hn ⌦ · · ·⌦H
1

. The operator q̂xn is given by

ÎN ⌦ ÎN�1

⌦ · · · ⌦ (q̂x)n ⌦ · · · ⌦ Î
1

, where the operator q̂x ⌘ 1

2

(Î � �̂x) has been placed in

the nth position, and the Îi’s are identity operators. From a physical point of view, the

Hamiltonians Ĥdriving and Ĥtransverse can be related to a transverse magnetic field. The

intensity of these Hamiltonians is tuned by varying the � parameter. If we set � to be

the same for both adiabatic algorithms, all the dependence of the transverse field intensity

lies on functions (1 � s) in Eq. 3.3 and hat(s) in Eq. 3.4. A reasonable requirement for

a fair comparison between CAQC and SAQC is that they both provide the same average

intensity of the transverse magnetic field in s 2 [0, 1]. A choice of hat(s) with the same

average
R
1

0

hat(s)ds =
R
1

0

(1� s)ds = 1/2, is hat(s) = 3s(1� s).

Even though nonlinear evolutions have been proposed in previous articles [65, 13, 179],

our hat(s) function can be as simple or as complicated as desired, as long as hat(0) =

hat(1) = 0 is fulfilled. There is plenty of room to optimize the performance by choosing

a more convenient hat(s) for the adiabatic evolution, we emphasize that the additional

advantage of SAQC is the possibility of choosing an initial guess. In the next section

we present some results obtained based on one of the simple nonlinear function hat(s) =

3s(1�s) and discuss the performance of both CAQC and SAQC for random 3-SAT instances.



Chapter 3: A study of heuristic guesses for adiabatic quantum computation 44

3.4 Hamiltonians for 3-SAT, numerical calculations and dis-

cussion

In order to provide a proof of concept for SAQC and to test the potential usefulness

of both random and educated guesses in adiabatic evolution, we performed a numerical

study on hard-to-satisfy 6- and 7-variable instances of the 3-SAT problem and compared

our results with the CAQC approach. Let us now provide a succinct introduction to the

3-SAT problem as well as to briefly discuss its relevance in the fields of theoretical and

applied computer science.

3.4.1 Construction of final Hamiltonians for satisfiability problems and

design of numerical calculations

The K-SAT Problem. Let A = {e
1

, e
2

, . . . , en, ē1, ē2, . . . , ēn} be a set of Boolean

variables E = {ei} and their negations Ē = {ēi}. Let us now construct a logical proposition

P , defined as P =
V

i[(
Wk

j=1

aj)] =
V

iCi, where aj 2 A, i.e. P is a conjunction of clauses Ci

over the set A, where each clause consists of the disjunction of k literals. Proposition P is a

K-SAT instance and the solution of the K-SAT problem, for instance P , consists of finding

a set of values for those binary variables upon which P has been built (i.e. a bitstring),

so that replacement of such binary variables for their corresponding binary values makes

P = 1, namely, proposition P is satisfied. 3-SAT is a particular case of K-SAT for K=3.

For example, let us examine the following instance of the 3-SAT problem. Let E =

{x
1

, x
2

, x
3

, x
4

, x
5

, x
6

} be a set of binary variables, and therefore the set of literals is A = E[
Ē = {x

1

, x
2

, . . . , x
6

, x̄
1

, x̄
2

, . . . , x̄
6

}. Consider a 3-SAT instance specified by the proposition,

P = (x̄
1

_ x̄
4

_ x̄
5

) ^ (x̄
2

_ x̄
3

_ x̄
4

) ^ (x
1

_ x
2

_ x̄
5

) ^ (x
3

_ x
4

_ x
5

)^
(x

4

_ x
5

_ x̄
6

) ^ (x̄
1

_ x̄
3

_ x̄
5

) ^ (x
1

_ x̄
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_ x̄
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) ^ (x
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_ x̄
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_ x̄
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)^
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2
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6
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_ x
5

_ x
6
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5
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) ^ (x
4

_ x
5

_ x
6

) ^ (x
1

_ x
2

_ x̄
3

)

As this example suggests, finding solutions of even a modest 3-SAT instance can become

di�cult quite easily (in this case, P has only one solution: x
1

= 1, x
2

= 1, x
3

= 0, x
4

=

1, x
5

= 0, x
6

= 0.)

3-SAT is an NP-complete problem [72, 178], as opposed to 2-SAT which can be e�-

ciently solved using a classical computer. Consequently, studying the properties of 3-SAT is
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an important area of research, not only because a polynomial-time solution to 3-SAT would

imply P = NP, but also because 3-SAT (due to its polynomial equivalence with K-SAT)

may be used to model problems and procedures in theoretical computer science [2] as well

as in several areas of applied computer science and engineering like artificial intelligence

[73, 133].

For the purpose of simplifying our discussion, and without loss of generality, we ran-

domly generated 3-SAT instances with a unique satisfying assignment (USA) and their

number of clauses to number of variables ratio ↵ ⇡ 4.26. This value of ↵ corresponds to the

phase transition region where hard-to-satisfy instances are expected to be found [3, 132]. For

completeness and to avoid any kind of bias in selecting this pool of instances, we selected

2n di↵erent instances for every n variable case studied. More precisely, to exhaustively

study the impact of di↵erent initial guesses with respect to unique solutions in the behavior

of SAQC, we considered all 64 possible initial Hamiltonians Ĥi (using Eq. 3.5) for each

one of the 64 randomly generated 6-variable USA instances. Similarly, we built 128 initial

Hamiltonians for each 7-variable instance, one per possible initial guess (see Fig. 3.2). The

instances were selected in such a way that their solutions had not only a USA, but also that

there was no two instances with the same solution.

The generation of our USA 3-SAT instances took several steps, being the first one using

the SAT instance generator developed by [137]. Unfortunately, as this generator does not

warranty the production of 3-SAT instances with unique solutions, we took all generated 3-

SAT instances and determined, by exhaustive bitstring substitution, whether such instances

were USA or not. We iterated this process until we computed all 6-variable and 7-variable

3-SAT instances we needed.

The number of qubits used in our simulations is smaller than state-of-the-art calcula-

tions for AQC, such as those carried out by quantum Monte Carlo [208, 64]. Here we trade

o↵ carrying out few large calculations on many qubits for carrying out many calculations on

fewer qubits. We wish to answer the question: What is the the impact of the initial guess

in the spectral properties of the time-dependent Hamiltonian? To answer this, we explored

the space of initial guesses in an exhaustive manner for the case of 6-variable and 7-variable

SAT instances. We run a total of 81,920 and 327,680 for 6- and 7- variables respectively

(see Fig. 3.2). As shown in the same figure, we also numerically explored the importance

of the strength of the transverse external field for the performance of the algorithm.

Final Hamiltonians Ĥf are instance-dependent, i.e. the structure of each final Hamil-

tonian depends on the particular structure (conjunction of clauses) of each 3-SAT USA

instance. Our final Hamiltonians Ĥf comply with the property that it must encode, in

its ground state, the solution to the particular 3-SAT USA instance it was designed for

[69, 199]. The design of the final Hamiltonian involves an intermediate step, where a classi-
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cal cost or energy function is constructed for the particular instance of interest. Once this

energy function is expressed in terms of binary variables, it can be easily transformed into a

quantum Hamiltonian by performing the mapping indicated by Eq. 3.6, where each classical

binary variable, qn, is transformed into a quantum operator, q̂n. The energy function, Hf ,

associated with the final Hamiltonian, Ĥf , can be constructed as a sum of other energy

functions, hCi which involve only variables associated with one clause at a time,

Hf =
X

i

hCi (3.10)

Each hCi is designed such that it is equal to 1 if clause Ci is unsatisfied and 0 if the clause is

satisfied. Notice that the functions hCi contribute to the count of unsatisfied clauses which

defines the spectrum of possible values for Hf , with Hf = 0 when all clauses are satisfied.

Formally, suppose A = {x
1

, x
2

, . . . , xn, x̄1, x̄2, . . . , x̄n} is a set of n binary variables and

their corresponding negations, P is a 3-SAT USA instance given by P =
V

iCi, and each

Ci is a disjuction of three elements of A, i.e. Ci = a↵ _ a� _ a� with a↵, a� , a� 2 A and

indices ↵,�, � are natural numbers, not necessarily consecutive. Finally, let B = z
1

z
2

. . . zn

be a set of n bits to be substituted in instance P . Then, hCi is given by

hCi =

8
<

:
0, if substitution of B = z

1

z
2

. . . zn in a↵ _ a� _ a� makes Ci = 1

1, if substitution of B = z
1

z
2

. . . zn in a↵ _ a� _ a� makes Ci = 0.

To construct such a function for any arbitrary clause Ci = a↵ _ a� _ a� , it is useful

to note that the only assignment for which Ci = 0 is when a↵ = 0, a� = 0, and a� = 0.

Therefore, the function hCi by construction, should be 1 when a↵ = 0, a� = 0, and a� = 0,

and 0 otherwise. It can be easily checked that

hCi = (1� a↵)(1� a�)(1� a�), (3.11)

equals 1 when a↵ = 0, a� = 0, and a� = 0 and 0 otherwise. Recall that each a� represents

a literal and therefore it could be representing the negation of a variable. One can always

use the identity x̄i = 1 � xi to eliminate any x̄i, and obtain both hCi and Hf in terms of

the xi.

Consider for example the construction of the energy function hC required for clause

C = x̄↵ _ x̄� _ x̄� , i.e. C is a conjunction of three negated binary variables. In this case,

C is satisfied by all possible 3-bit bitstrings except for 111 and, according to Eq. 3.11, the

energy function assumes the form hCi = (1� x̄↵)(1� x̄�)(1� x̄�) = x↵x�x� .

As a last example consider a clause of the form C = x↵ _ x� _ x� , where C is a

conjunction of three non-negated binary variables taken from set A. It is clear that C will
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be satisfied by all possible 3-bit bitstrings except for 000. According to Eq. 3.11, the energy

function for this clause C is given by hC = (1� x↵)(1� x�)(1� x�) = 1� x↵ � x� � x� +

x↵e� + x�x� + x↵x� � x↵x�x� . From the first equality of the previous equation, one can

easily check that hC = 0 for all possible 3-bit combinations except for hC(000) = 1, as

expected.

Once we have the final expression for the final classical energy function of Eq. 3.10,

the final Hamiltonians Ĥf can be obtained using the mapping of Eq. 3.6, which relates the

classical binary variables with quantum operators. Since we selected only USA instances

for our study, each Ĥf has a non-degenerate ground state encoding the unique solution of

one of our 3-SAT instances with corresponding ground eigenvalue equal to zero. The final

Hamiltonians are the same for both strategies, CAQC and SAQC.

3−SAT instances
6 binary variables

000000

000000 111111

0.5 10.0...

...

...

Total = (64 USA)x (64 guesses) x (20 values of   ) = 81,920 sombrero−AQC settings 

All
guesses

USA
instances

Values 
of  

0.5 10.0...

111111

000000 111111

0.5 10.0...

...

0.5 10.0...

for six binary variables

�

�

Figure 3.2: Scheme for 6 binary variables SAQC calculations. We generated 26 3-SAT
unique satisfying assignment (USA) instances (first branching), each having as its only
solution one of the 26 possible assignments. All 26 instances have a di↵erent state as solution,
i.e. there is no chance for repeated instances. For each instance, we computed minimum-
gap values associated with all possible settings of SAQC (Eq. 3.4) of all possible guesses
(second branching), using 20 di↵erent values of � 2 {0.5, 1.0, . . . , 10.0} (third branching).
The same scheme was applied to 7 binary variable 3-SAT USA instances (not shown) for a
total of (128USA)⇥ (128guesses)⇥ (20values of �) = 327, 680 SAQC settings.

The numerical results on the dependence of the minimum-gap value, gmin, as a function

of � are shown in Fig. 3.3. Curves were computed by taking the median of all bit strings

that fulfilled the criteria specified in the legend boxes; namely either to produce i unsatisfied

clauses (UC=i) when substituting the initial guess bit string in its corresponding instance,



Chapter 3: A study of heuristic guesses for adiabatic quantum computation 48

Figure 3.3: Summary of the 327,680 calculations for 7 variable 3-SAT instances of minimum-
gap median values as a function of the transverse field intensity within groups sorted by (a)
number of bit flips, BF, representing the Hamming distance between the initial guess and the
solution and (b) number of unsatisfied clauses (UC). Plots include the CAQC (see Eq. 3.3)
results for the same 128 di↵erent unique-satisfying assignment 3-SAT instances randomly
generated for the case of 7 variables. Values in parentheses correspond to numbers of data
points which contributed to the value of the median plotted in each curve. Results for 6
variable instances (not shown) are similar to the ones shown for 7 variable instances.

or to be j bit flips away from the solution (BF=j). BF represents the well known Hamming

distance between the solution and the initial guess state. We focused on UC and BF because,

in principle, the notion of closeness of an initial guess to the actual solution may be defined

with either parameter. Data corresponding to a fixed value of � is a statistical representation

(median) of typical gmin values that would be expected for hard 3-SAT instances if the guess

state belonged to a definite number of UCs or BFs under an experimental setup using SAQC.

Such curves are compared with the minimum gap expected for CAQC.

3.4.2 E↵ects of the variation in the transverse field intensity on the min-

imum energy gap

The dependence of gmin values as a function of the transverse field intensity � leaves

open some important questions regarding the e�ciency of adiabatic quantum algorithms,

whether CAQC or SAQC. For example, what is the optimum value of � which minimizes

the running time of an adiabatic algorithm? How transferable is this optimum � value

among computational problems? Although we do not intend to do a thorough study of this

question in this chapter, we would like to give some insight into this question and provide

a qualitative discussion of what kind of results might be expected.

Following closely the notation from Farhi et al [69], consider H(t) = H̃(t/⌧) = H̃(s),



Chapter 3: A study of heuristic guesses for adiabatic quantum computation 49

with instantaneous values of H̃(s) defined by

H̃(s) |El(s)i = El(s) |El(s)i (3.12)

with

E
0

(s)  E
1

(s)  · · ·  E
2

N�1

(s) (3.13)

where 2N is the dimension of the Hilbert space, and N the number of qubits or equivalently

the number of binary variables in the SAT instance. According to the adiabatic theorem, if

the gap between the two lowest levels, E
1

(s)�E
0

(s), is greater than zero for all 0  s  1,

and taking,

⌧ � E
g2min

(3.14)

with the minimum gap, gmin, defined by,

gmin = min
0s1

(E
1

(s)� E
0

(s)), (3.15)

and E given by,

E = max
0s1

|
*
E

1

(s)

�����
dH̃

ds
|E

0

(s)

+
|, (3.16)

then we can make the normed overlap

| hE
0

(s = 1) | (⌧)i | (3.17)

arbitrarily close to 1. In other words, the existence of a nonzero gap guarantees that | (t)i
remains very close to the ground state of H(t) for all 0  t  ⌧ , if ⌧ is su�ciently large.

Even though we are aware of the new and more stringent conditions for adiabaticity

[127, 194, 203, 215, 9, 125, 7, 96, 52, 37] and that Eq. 3.14 is just one of the inequalities

to guarantee adiabatic evolution (though there is still lack of a su�cient and necessary

condition according to Ref. [60]), we will base our discussion on Eq. 3.14 to illustrate that

there is nothing anomalous in employing the additional Hamiltonian term in the full time-

dependent Hamiltonian for SAQC. As well as in CAQC, the algorithmic complexity relies

again in avoiding an exponentially narrowing of gmin. Along the way we find an important

observation about the scaling of the running time as a function of the parameter �.

Let us first determine an upper bound for ESAQC in Eq. 3.14. Consider the Hamiltonian

in Eq. 3.4 with hat(s) = 3s(1� s) since this was the functional form used for our numerical

calculations. We already discussed, at the end of Sec. 3.3.1, that the spectrum of Hi

is contained in {0, 1, · · · , N} and, similarly, it can be easily shown that the spectrum of

Ĥdriving (see Eq. 3.9) is contained in {0, 1, · · · , �N}. On the other hand, the spectrum

of the final Hamiltonian, Ĥf , is instance dependent, and its construction guarantees that
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the maximum eigenvalue would be M which denotes the total number of clauses. This

eigenvalue M would only appear in case we had an assignment which violates all of the

clauses. Using these spectra upper bounds, we can establish an upper bound for ESAQC in

Eq. 3.14, i.e,

ESAQC = max
0s1

��
*
E

1

(s)

�����
dH̃

ds
|E

0

(s)

+
��

= max
0s1

��
D
E

1

(s)
���Ĥf � Ĥi + 3�Ĥdriving � 6�sĤdriving|E0

(s)
E��

 max
���
D
E

1

(s)
���Ĥf |E0

(s)
E��+

��
D
E

1

(s)
���Ĥi|E0

(s)
E��

+ 3
���
D
E

1

(s)
���Ĥdriving|E0

(s)
E��+ 6

���
D
E

1

(s)
���Ĥdriving|E0

(s)
E���

 M +N + 3|�|N + 6|�|N = N(↵+ 1 + 9|�|) (3.18)

Where we have used the triangle and Schwartz inequality and also the fact that M = ↵N ,

with ↵ close to 4.26 in this particular study. We can see that in the worst case scenario,

ESAQC scales linearly with the number of variables N , and linearly with the intensity of

the magnetic field, ESAQC = O(|�|N). A similar analysis gives also that ECAQC = O(|�|N),

and therefore, we showed that for SAQC, not surprisingly, the algorithmic complexity also

relies on the scaling of gmin.

An interesting observation arise by analyzing the linear scaling of E with � and using

the numerical results for the dependence of the typical minimum gap values as a function

of �. There seem to be at least two distinguishable regimes for the dependence of gmin on

� for both CAQC and SAQC (Fig. 3.3). For relatively small values of � 2 [0.5, 1.5], gmin

scales approximately linearly with � and therefore g2min ⇠ �2. Since the running time is

given by Eq. 3.14, and E ⇠ �, the running time ⌧ decays inversely proportional to � within

this linear regime. However, for large values of �, in the ‘stationary’ regime where gmin

is almost constant, increasing field intensity through � would make both algorithms less

e�cient as running time ⌧ would increase roughly linearly with �.

Both CAQC and SAQC would benefit from an increase in the transverse field for small

values of �, but notice that gmin values for SAQC are more sensitive to �, and soon become

better on average than those for CAQC (Fig. 3.3). According to the previous discussion

about running time as a function of �, it would be ideal to choose � near the end of the linear

regime; in our calculations, � somewhere in the interval (1,2). Further studies concerning

the optimum value of � as a function of the number of binary variables are needed, but we

chose � = 1.5 for our analysis on the performance in SAQC and CAQC described in the

following section.
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3.4.3 Performance comparison between SAQC and CAQC

The data sorted with respect to BFs and UCs shows an increase of the minimum gap,

gmin, as the Hamming distance from the initial guess to the solution decreases; the trend

for UC is less apparent (see Fig. 3.3). Computing the number of UCs produced by a given

initial guess can be done in polynomial time on a classical computer. Unfortunately there

is no way to determine a priori how many bit flips the guess is from the solution, as that

requires knowledge of the solution itself. Additionally, Fig. 3.4(a) shows that the SAQC

implementation, using Ĥdriving as defined in Eq. 3.9, does not necessarily favor states with

low values of UC, but rather gives a homogenously distributed success probability between

25-45%, for � = 1.5. This is in accordance to the observation that solving 3-SAT hard

instances is not necessarily guided by minimizing the number of UCs [101]. Given the

above scenario, we analyzed the likelihood of better performance by choosing initial guesses

at random.

In the following discussion, we use the term significantly better initial guess to mean

an initial condition that leads a SAQC algorithm to be at least twice as fast as CAQC, i.e.

running times for CAQC, ⌧CAQC , and SAQC, ⌧SAQC , are such that ⌧CAQC � 2 ⌧SAQC or,

equivalently, gSAQC
min �

p
2 gCAQC

min , assuming ECAQC = ESAQC .

For � = 1.5, choosing an initial state at random yields a probability greater than 50%

of having gSAQC
min � gCAQC

min (squares) as shown in Fig. 3.4(b). Moreover, the probability

of significantly better performance, i.e. ⌧CAQC � 2 ⌧SAQC is ⇡ 35% (triangles). With the

intention of predicting the performance of the SAQC protocol in the limit of large n, the

third curve (circles) was produced using the following rationale: for USA instances, the

number of bit configurations with a given value of BF = m follows a binomial distribution�
n
m

�
. In the limit of large n, the likelihood of choosing a state in the central region of

the binomial distribution is the highest. This observation led us to concentrate on the

performance of the most populated instance subsets, those that correspond to BF = 3, 4 for

7 variables. Here, the probability of significantly better performance is close to 40%.

Finally, we propose an algorithm based on SAQC. An initial guess is chosen either at

random or by applying expert-domain knowledge and then encoded into the initial ground

state of Ĥi (Eq. 3.5). An adiabatic passage based on SAQC is then performed either in serial

or in parallel, depending on the availability of quantum hardware resources (see Fig. 3.5.).

As an example of the potential usefulness of our algorithm, recall from Fig. 3.4 that the

probability of significantly better performance using SAQC is 39% for � = 1.5.

One way to employ the probabilities we obtained from our numerical simulations in a

more concrete scenario is: suppose one is assigned the task of using an adiabatic quantum

computer and assume one uses Eq. 3.14 or any of the more stringent conditions for adia-

baticity [127, 194, 203, 215, 9, 125, 7, 96, 52, 37] to estimate for how long one may need to
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Figure 3.4: (a) P (gSAQC
min �

p
2gCAQC

min |UC = n) is the conditional probability of choosing
a state with UC= n and a SAQC minimum-gap large enough so that the performance of
the SAQC is significantly better (at least twice faster) than the CAQC. The results were
obtained for � = 1.5. Panel (a) shows that there is no correlation between the number
of violated clauses and the gmin of the SAQC algorithm, for the hard-to-satisfy instances
randomly chosen for this numerical study. Panel (b) shows the probability of choosing
an initial state at random and satisfying the condition specified in the legend, for di↵erent
values of the transverse field intensity, 0.5  �  10. The conditional probability P (gSAQC

min �p
2gCAQC

min |BF = 3, 4) (triangles) aims to predict the performance of the SAQC algorithm
in the case of large number n of qubits. In this limit, an initial state chosen at random will
have with high probability a Hamming distance BF ⇠ n/2, given that they are binomially
distributed, i.e., the number of n bit strings with BF = m is equal to

�
n
m

�

run an algorithm under the CAQC paradigm. Moreover, suppose that this estimated run-

ning time required to remain in the ground state with a high success probability is ⌧CAQC =

2 days. Using the numerical results presented in this chapter, one can opt for performing

the same task using SAQC as follows: suppose we have absolutely no information about the

problem as it was in the case of this numerical study with random 3-SAT USA instances.

Instead of running the CAQC algorithm for 2 days, pick a guess state at random from all

the possible assignments and then use it as initial state for SAQC and run the algorithm

with ⌧SAQC = 1 day. According to Fig. 3.4, the probability of having picked a state whose

performance is as good as CAQC is 39%, for � = 1.5. If after measurement at the end of

the first day the result is not a solution, we still can pick another state at random and let

it run for one more day. By now the probability of having picked a state with the same

performance as the CAQC in the two trials equals 63%. Note that in this simple probability

calculations we are not taking into account the fact that even in the case where the state

selected for the first run was not one of the ‘ideal’ ones (states corresponding to the 39 %

of guesses for the results presented in Fig. 3.4), we still have a very good chance that the
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‘non-ideal’ state still delivers a right answer after the first measurement. This probabability

will depend of course on how close is the chosen state from the set of ‘ideal’ ones.

Consequently, the execution of two SAQC algorithms in serial would take at most

as much time as the execution of only one CAQC algorithm. By allowing us to choose

two guesses to run in the same time as one case in CAQC, the probability of choosing a

significantly better initial guess in these two SAQC executions increases from 39% to 63%.

Furthermore, even when no significantly better initial guess is chosen and the process is not

guaranteed to be fully adiabatic, there is still some probability that we measure the correct

solution at the end of both executions.

3.5 Conclusions

In summary, we propose an algorithmic strategy which incorporates heuristics in adia-

batic quantum computation. In particular, we study one of the most basic heuristic strate-

gies consisting of initializing the computation with a desired initial state chosen by physical

intuition, an educated guess, classical preprocessing of the problem, and/or by randomly

choosing one of the possible assignments. This method allows to bridge powerful classical

techniques such as heuristic optimization routines and/or mean-field calculations to ob-

tain approximated solutions of the problem and use them as initial guess states for SAQC.

The strategy presented allows for a parallel and/or a concatenated scheme. The parallel

setup might be helpful if several adiabatic quantum platforms are available in which several

guesses can be run simultaneously, one guess to run in each one of the adiabatic processing

units. The idea of the concatenated scheme is to restart a failed adiabatic evolution with

the measured excited state. Assuming a near-adiabatic trajectory, the measured excited

state can be taken as a refined guess from which the quantum evolution is restarted. Notice

this is not possible in the conventional approach which would restart the evolution from

the full superposition, attributing equal probability to all the states, therefore “erasing”

the information gained in the previous near-adiabatic evolution. Neither of the two fea-

tures proposed above are possible in any of the di↵erent adiabatic quantum computation

proposals to date. In addition, all the modifications proposed related to di↵erent adiabatic

paths, auxiliary perturbations [66] can also be explored in the context of SAQC, which is

also suitable to study quantum problems [103, 28, 144, 5, 136].

The numerical study performed in this chapter is a proof-of-principle to explore the

importance and consequences of starting the adiabatic evolution with a guess state and

to illustrate that incorporating this kind of heuristics in AQC is possible and might be

advantageous. Our numerical simulations show that starting the adiabatic evolution with

a guess state which has a zero-overlap with the solution, h�guess |�solution i = 0, is not a
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big concern. On the contrary, even when there is no hope to make an educated guess and

selection of the initial state at random is the only available alternative, we obtain that

approximately 40% of states might allow running the quantum algorithm at least twice as

fast when compared to CAQC. This possibility of running the algorithm for shorter times

but with several trials brings also additional advantages of getting the right answer in any

intermediate measure. Moreover, these shorter runs would be less a↵ected by decoherence

e↵ects.

Even though the procedure used for the performance comparison, CAQC vs. SAQC, is

“reasonable” since it is based on the widely-used minimum gap criteria and its connection

with the algorithm run-time (see Eq. 3.14), we are aware of the limitations of this analysis

[127, 194, 203, 215, 9, 125, 7, 96, 52, 37]. We want to stress that the present numerical

results are only encouraging indicators that heuristics in AQC might be a valuable algorith-

mic strategy for AQC, given the strong dependence of the value of the minimum gap as a

function of the initial guess chosen. It is not our purpose to claim superiority of SAQC but

to introduce the approach and the motivation behind it. For a more rigorous comparison of

both schemes, CAQC and SAQC, we suggest numerical experiments which are not meant to

be exhaustive but preferably involving larger size instances, and to explore di↵erent prob-

lems other than random 3-SAT. For example, we are interested in performing these studies

for relevant instances of our recently developed AQC proposal for protein folding [148] and

for adiabatic preparation of molecular ground states [15] where we expect the mean-field

(Hartree-Fock) solution to be a better guess than a full superposition. Numerical propaga-

tion of the time-dependent Schrödinger equation, instead of inspection of the minimum gap

after the Hamiltonian diagonalization, for these cases will provide a realistic simulation of

the quantum computation.

Open questions to be explored further is the connections between SAQC, quantum

phase transitions [172, 118], entanglement [145] and the e↵ect of local minima [8]. The

performance of the adiabatic algorithm in the limit of large n is still an open question

[64, 209] which needs to be explored in the context of SAQC. It is not obvious that the

same observations and conclusions/observations mentioned above for CAQC will hold for

SAQC as well. For example, we think that SAQC might be a strategy to avoid the local

minima traps described in Ref. [8]. From the study of the spectral properties of the random

3-SAT instances studied, we found that some initial states have a considerably larger gap

and while others show a considerably smaller gap when compared with CAQC. Since the

initial state in CAQC is a full superposition of all the possible states or solutions, including

the ones with a large gap and others with small gap, we conjecture here that having a full

superposition will not necessarily be the best choice, given that the presence of the states

with small gaps could slow down the quantum evolution. An analysis beyond the gap criteria
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would be needed to test this conjecture. Solving the time-dependent Schrödinger equation

for the entire evolution is the most straightforward, yet numerically-challenging approach.

In SAQC, the probability of obtaining these trap states can be avoided and even in the

case of a failed evolution, the concatenated scheme may help to restart using a better guess.

In contrast, in CAQC, the full superposition including states with considerably small gap

might result in a bottleneck for the dynamics towards a successful computation. Further

studies need to be done to verify this is indeed the case.



Chapter 4

Finding low-energy conformations of lattice

protein models by quantum-annealing

Summary

Lattice protein folding models are a cornerstone of computational biophysics [196]. Al-

though these models are a coarse grained representation, they provide useful insight into

the energy landscape of natural proteins [146, 58, 134, 147, 111, 173]. Finding low-energy

three-dimensional structures is an intractable problem [20, 48, 87] even in the simplest

model, the Hydrophobic-Polar (HP) model. Exhaustive search of all possible global min-

ima is limited to sequences in the tens of aminoacids [210]. Description of protein-like

properties are more accurately described by generalized models, such as the one proposed

by Miyazawa and Jernigan [135] (MJ), which explicitly take into account the unique inter-

actions among all 20 amino acids. There is theoretical [6, 70, 99, 67, 167] and experimen-

tal [32] evidence of the advantage of solving classical optimization problems using quantum

annealing [70, 99, 168, 53] over its classical analogue (simulated annealing [105]). In this

chapter, we present a benchmark implementation of quantum annealing for a biophysical

problem (six di↵erent experiments up to 81 superconducting quantum bits). Although the

cases presented here can be solved in a classical computer, we present the first implemen-

tation of lattice protein folding on a quantum device under the Miyazawa-Jernigan model.

This paves the way towards studying optimization problems in biophysics and statistical

mechanics using quantum devices.

4.1 Introduction

The search for more e�cient optimization algorithms is an important endeavor with

prevalence on many disciplines ranging from the social sciences to the physical and natural

sciences. Belonging to the latter, the protein folding problem [58, 134, 111, 147] consists
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of finding the lowest free-energy configuration or, equivalently, the native structure of a

protein given its amino acid sequence. Knowing how proteins fold elucidate their three-

dimensional structure-function relationship which is crucial to the understanding of enzymes

and for the treatment of misfolded-protein diseases such as Alzheimer’s, Huntington’s, and

Parkinson’s disease. Due to the high computational cost of modeling proteins in atomistic

detail [26, 175], coarse-grained descriptions of the protein folding problem, such as those

found in lattice models [111, 147, 134, 146], provide valuable insight about the folding

mechanisms.

Harnessing quantum-mechanical e↵ects to speed up the solving of classical optimiza-

tion problems is at the heart of quantum annealing algorithms (QA) [70, 99, 168, 53]. In

QA, quantum mechanical tunneling allows for more e�cient exploration of di�cult poten-

tial energy landscapes such as that of classical spin-glass problems. In our implementation

of lattice folding, quantum fluctuations (tunneling) occurs between states representing dif-

ferent model protein conformations or folds.

The theoretical challenge is to e�ciently map the hard computational problem of in-

terest (e.g., lattice folding) to a classical spin-glass Hamiltonian: such mapping requiring a

polynomial number of quantum bits (qubits) with the size of the problem (protein length)

is described elsewhere [148]. Here we present a new mapping which, due to its exponential

scaling with problem size, is not intended for large instances. The proposed mapping em-

ploys very few qubits for small problem instances, making it ideal for this first experimental

demonstration and implementation on current quantum devices [97]. A combination of the

existing polynomial mapping [148] and more advanced quantum devices would allow for

the simulation of much larger instances of lattice folding and other related optimization

problems.

Solving arbitrary problem instances requires a programmable quantum device to im-

plement the corresponding classical Hamiltonian. We employ quantum annealing on the

programmable device to obtain low-energy conformations of the protein model. We empha-

size that nothing quantum mechanical is implied about the protein or its folding process;

rather quantum fluctuations are a tool we use to solve the optimization problem.

The QA protocol performed here is also known as adiabatic quantum computation

(AQC) [69, 67]. Of all the quantum-computational models, AQC is perhaps the most nat-

urally suited for studying and solving optimization problems [67, 93]. For the experiments

presented here, the small finite temperature of the superconducting device is enough to

make the process less coherent than the original formulation of AQC, where the theoretical

limit of zero temperature and quasi-adiabaticity are usually assumed [69, 67]. As we show

in the discussion, numerical simulations including these unavoidable environmental e↵ects

accurately reproduce our experimental results.
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Experimental implementations of QA or AQC are limited either by the number of

qubits available in state-of-the-art quantum devices or by the programmability required to

fulfill the problem specification. For example, the first realization of AQC was performed

on a three-qubit NMR quantum device [182] and newer NMR implementations involve four

qubit experiments [206]. Other experimental realizations of spin systems have been based

on measuring bulk magnetization properties of the systems in which there is no control over

the individual spins and the couplings among them [32, 204]. Quantum architectures using

superconducting qubits [197, 207, 124, 91, 55, 141, 56, 100] o↵er promising device scala-

bility while maintaining the ability to control individual qubits and the strength of their

interaction couplings. During the preparation of this manuscript, an 84-qubit experimental

determination of Ramsey numbers with quantum annealing was performed [24], underscor-

ing the programmable capabilities of the device for problems with over 80 qubits. In this

chapter, we present a quantum annealing experimental implementation of lattice protein

models with general (Miyazawa-Jernigan [135]) interactions among the amino acids. Even

though the cases presented here still can be solved on a classical computer by exact enumer-

ation (the six-amino acid problem has only 40 possible configurations), it is remarkable that

the device anneals to the ground state of a search space of 281 possible computational out-

comes. This study provides a proof-of-principle that optimization of biophysical problems

such as protein folding can be studied using quantum mechanical devices.

4.2 Mapping of the lattice folding problem to the quantum

hardware

The quantum hardware employed consists of 16 units of a recently characterized eight-

qubit unit cell [84, 97]. Post-fabrication characterization determined that only 115 qubits

out of the 128 qubit array can be reliably used for computation (see Fig. 4.1). The array

of coupled superconducting flux qubits is, e↵ectively, an artificial Ising spin system with

programmable spin-spin couplings and transverse magnetic fields. It is designed to solve

instances of the following (NP-hard [18]) classical optimization problem: Given a set of local

longitudinal fields {hi} and an interaction matrix {Jij}, find the assignment s⇤ = s⇤
1

s⇤
2

· · · s⇤N ,

that minimizes the objective function E(s), where,

E(s) =
X

1iN

hisi +
X

1i<jN

Jijsisj , (4.1)

|hi|  1, |Jij |  1, and si 2 {+1,�1}.
Finding the optimal s⇤ is equivalent to finding the ground state of the corresponding
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Figure 4.1: The array of superconducting quantum bits is arranged in 4⇥ 4 unit cells that
consist of 8 quantum bits each. Within a unit cell, each of the 4 qubits in the left-hand
partition (LHP) connects to all 4 qubits in the right-hand partition (RHP), and vice versa.
A qubit in the LHP (RHP) also connects to the corresponding qubit in the LHP (RHP) of
the units cells above and below (to the left and right of) it. (a) Qubits are labeled from 0
to 127 and edges between qubits represent couplers with programmable coupling strengths.
Grey qubits indicate the 115 usable qubits, while vacancies indicate qubits under calibration
which were not used. The larger experiments (Experiments 1,2, and 4) were performed on
this chip, while the three remaining smaller experiments were run on other chips with the
same architecture. (b) Embedding and qubit connectivity for Experiment 4, coloring the
81 qubits used in the experiment. Nodes with the same color represent the same logical
qubit from the original 19-qubit Ising-like Hamiltonian resulting from the energy function
associated with Experiment 4 (see Appendix 2 and Table 4.1). This embedding aims to
fulfill the arbitrary connectivity of the Ising expression and allows for the coupling of qubits
that are not directly coupled in hardware.
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Ising classical Hamiltonian,

Hp =
NX

1iN

hi�
z
i +

NX

1i<jN

Jij�
z
i �

z
j (4.2)

where �zi are Pauli matrices acting on the ith spin.

Experimentally, the time-dependent quantum Hamiltonian implemented in the superconducting-

qubit array is given by,

H(⌧) = A(⌧)Hb +B(⌧)Hp, ⌧ = t/trun, (4.3)

with Hb = �
P

i �
x
i responsible for quantum tunneling among the localized classical states,

which correspond to the eigenstates of Hp (the computational basis). The time-dependent

functions A(⌧) and B(⌧) are such that A(0) � B(0) and A(1) ⌧ B(1); in Fig. 4.2(b),

we plot these functions as implemented in the experiment. trun denotes the time elapsed

between the preparation of the initial state and the measurement.

QA exploits the adiabatic theorem of quantum mechanics, which states that a quantum

system initialized in the ground state of a time-dependent Hamiltonian remains in the

instantaneous ground state, as long as it is driven su�ciently slowly. Since the ground

state of Hp encodes the solution to the optimization problem, the idea behind QA is to

adiabatically prepare this ground state by initializing the quantum system in the easy-to-

prepare ground state of Hb, which corresponds to a superposition of all 2N states of the

computational basis. The system is driven slowly to the problem Hamiltonian, H(⌧ = 1) ⇡
Hp. Deviations from the ground-state are expected due to deviations from adiabaticity, as

well as thermal noise and imperfections in the implementation of the Hamiltonian.

The first challenge of the experimental implementation is to map the computational

problem of interest into the binary quadratic expression (Eq. 4.2), which we outline next.

In lattice folding, the sequence of amino acids defining the protein is viewed as a sequence

of beads (amino acids) connected by strings (peptide bonds). This bead chain occupies

points on a two- or three-dimensional lattice. A valid configuration is a self-avoiding walk

on the lattice and its energy is calculated from the sum of interaction energies between

nearest non-bonded neighbors on the lattice. By the thermodynamic hypothesis of protein

folding [61], the global minimum of the free-energy function is conjectured to be the native

functional conformation of the protein.

The hydrophobic-polar (HP) model is one of the simplest possible models for lattice

folding [119]. In this model, the amino acids are classified into two groups, hydrophobic

(H) and polar (P). To describe real protein energy landscapes a more elaborate description

needs to be considered, such as the Mijazawa-Jernigan (MJ) model [135] which assigns the

interaction energies for pairwise interactions among all twenty amino acids. The formulation
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Figure 4.2: (a) Step-by-step construction of the binary representation of lattice protein. Two
qubits per bond are needed and the bond directions are denoted as “00” (downwards), “01”
(rightwards), “10” (leftwards), and “11” (upwards). The example shows one of the possible
folds of an arbitrary six-amino-acid sequence. Any possible N -amino-acid fold can be rep-
resented by a string of variables 010q

1

q
2

q
3

· · · q`�1

q` with ` = 2N � 5. (b)Time-dependence
of the A(⌧) and B(⌧) functions, where ⌧ = t/trun with trun = 148µs, (c) time-dependent
spectrum obtained through numerical diagonalization, and (d) Bloch-Redfield simulations
showing the time-dependent population in the first eight instantaneous eigenstates of the
experimentally implemented 8-qubit Hamiltonian (Eq. 4.3) with Hp from Eq. 4.25. In panel
(c), for each instantaneous eigenenergy curve we have subtracted the energy of the ground
state, e↵ectively plotting the gap of the seven-lowest-excited states with respect to the
ground state (represented by the baseline at zero-energy). As a reference, we show the
energy with the device temperature, which is comparable to the minimum gap between the
ground and first excited state. In panel (d), populations are ordered in energy from top
(ground state) to bottom. Although ⌧ = t/trun runs from 0 to 1, we show the region where
most of the population changes occur. As expected, this is in the proximity of the minimum
gap between the ground and first excited state around ⌧ ⇠ 0.4 [see panel(c)].

we used is general enough to take into account arbitrary interaction matrices for lattice

models in two and three dimensions [149]. In particular, we solved a MJ model in 2D, the

six amino-acid sequence of Proline-Serine-Valine-Lysine-Methionine-Alanine (PSVKMA in

the one-letter amino-acid sequence notation). We solved the problem under two di↵erent

experimental schemes (see Schemes 2 and 3 in Fig. 4.3), each requiring a di↵erent number of
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resources. Solving the problem in one proposed experimental realization (Scheme 1) requires

more resources than the number of qubits available (115 qubits) in the device. Scheme 2 and

3 are examples of the divide-and-conquer strategy, in which one partitions the problem in

smaller instances and combines the independent set of results, thereby obtaining the same

solution for the untractable problem. In the Appendix 1, we complement these four MJ

related experiments with two small tetrapeptide instances (e↵ectively HP model instances)

for a total of six di↵erent problem Hamiltonians. We used the largest of these two instances

(an 8 qubit experiment) for direct theoretical simulation of the annealing dynamics of the

device. The results from our experiment and the theoretical model, which does not use any

adjustable parameters (all are extracted experimentally from the device), are in excellent

agreement (see panel (b), Fig. 4.5 in Sec. 4.5).

To represent each of the possible N -amino-acid configurations (folds) in the lattice, we

encode the direction of each successive bond between amino acids; thus, for every N -bead

sequence we need to specify N � 1 turns corresponding to the number of bonds. For the

case of a two dimensional lattice, a bond can take any of four possible directions; therefore,

two bits per bond are required to uniquely determine a direction. More specifically, if a

bond points upwards, we write “11”. If it points downwards, leftwards or rightwards, we

write “00”, “10”, or “01” respectively. Fixing the direction of the first bond reduces the

description of any N -bead fold to ` = 2(N � 2) binary variables, without loss of generality.

As shown in Fig. 4.2(a), in the absence of external constraints other than those imposed by

the primary amino acid sequence (see Appendix 1for an example with external constraints),

we can fix the third binary variable to “0”, forcing the third amino acid to go either straight

or downward and reducing the number of needed variables to ` = 2N � 5. This constraint

reduces the solution space by removing conformations which are degenerate due to rotational

symmetry. Thus, a particular fold is uniquely defined by,

q = 01|{z}
turn1

0q
1|{z}

turn2

q
2

q
3|{z}

turn3

· · · q
2N�6

q
2N�5| {z }

turn(N�1)

(4.4)

An example of this encoding for a six-amino-acid sequence is represented in Fig. 4.2(a).

Using this mapping to translate between the amino acid chain in the lattice and the

2(N � 1) string of bits, we constructed the energy function E(q) in which q denotes the

remaining 2N � 5 binary variables. Additionally, we penalized folds which exhibit two

amino acids on top of each other, to favor self-avoiding walk configurations. The energy

penalty chosen for each problem was su�cient to push the energy of invalid folds outside of

the energy range of valid configurations (those with E  0). Finally, we took into account

the interaction energy among the di↵erent amino acids. A detailed construction of our

energy function for the general case of N amino acids with arbitrary interactions is given

elsewhere [149].
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The experiment consists of the following steps: a) construction of the energy function

to be minimized in terms of the turn encoding; b) reduction of the energy expression to a

two-body Hamiltonian; and finally, c) embedding in the device. These last two steps need

additional resources as explained below. We will focus on the simplest example (Experiment

3, Fig. 4.3) to show the procedure in detail. The embeddings for the other five experiments

are provided in the Appendix 2. The energy function for Experiment 3, containing the

contributions due to on-site penalties for overlapping amino acids, and pairwise interactions

between amino acids is,

E(q) ⌘ Ecubic
exp3 = �1� 4q

3

+ 9q
1

q
3

+ 9q
2

q
3

� 16q
1

q
2

q
3

(4.5)

where q
1

0 (q
2

q
3

) encodes the orientation of the fourth (fifth) bond (see Fig. 4.3). From

Eq. 4.5 one can verify by substitution that the eight possible three-bit-variable assignments

provide the desired energy landscape: the six conformations with E  0 shown in blue in

Fig. 4.3.

Eq. 4.5 describes the energy landscape of configurations but it is not quite ready for

the device. Experimentally, we can specify up to two-body spin interactions, �zi �
z
j , and

therefore, we need to convert this cubic energy function (Eq. 4.5) into a quadratic form

resembling Eq. 4.1 (see Appendix 2). The resulting expression is

Hunembedded

p = (7�z
1

+ 9�z
2

+ 8�z
3

� 20�z
4

+ 9�z
1

�z
3

+ 9�z
2

�z
3

� 16�z
1

�z
4

� 18�z
2

�z
4

� 18�z
3

�z
4

)/4
(4.6)

where the original binary variables and spin operators are related by qi ! (1 � �zi )/2.

Experimental measurements of �zi yield si = +1 (si = �1) corresponding to qi = 0 (qi = 1).

Since qi = (1� si)/2, measurement of s
1

, s
2

, and s
3

allows us to reconstruct the bit string

q
1

0q
2

q
3

which encodes the desired fold.

One ancilla variable was added during the transformation of the three-variable cubic

Hamiltonian into this quadratic four-variable expression. The meaning of the original vari-

ables s
1

, s
2

, and s
3

remains the same, allowing for the reconstruction of the folds. The

energy of this four-variable expression will not change as long as the measurements of �z
1

through �z
4

result in values for q
1

q
2

q
3

q
4

satisfying q
4

= q
2

^ q
3

. This transformation ensures

an energy penalty whenever this condition is violated.

The architecture of the chip lacks su�cient connectivity between the superconducting

rings for a one-to-one assignment of variables to qubits (see Fig. 4.4). To satisfy the con-

nectivity requirements of the four-variable energy function, the couplings of one of the most

connected variables, q
4

, were fulfilled by duplicating this variable inside the device such

that q
4

! q
4

and q
4

0 . In the form of Eq. 4.2 the final expression representing the energy
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Figure 4.3: (a) Representation of the six-amino acid sequence, Proline-Serine-Valine-Lysine-
Methionine-Alanine with its respective one-letter sequence notation, PSVKMA. We use
the pairwise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table
3 of Ref. [135]. (b) Divide and conquer approach showing three di↵erent schemes which
independently solve the six-amino acid sequence PSVKMA on a two-dimensional lattice. We
solved the problem under Scheme2 and 3 (Experiments 1 through 4). (c) Energy landscape
for the valid conformations of the PSVKMA sequence. Results of the experimentally-
measured probability outcomes are given as color-coded percentages according to each of
the experimental realizations described in panel (b). Percentages for states with energy
greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for Experiments 1 through 4,
respectively.

function of Experiment 3 is given by,

Hp = (7�z
2

�z
1

+ 9�z
2

+ 8�z
3

+ 9�z
1

�z
3

+ 9�z
2

�z
4

0 � 2�z
4

0 � 16�z
1

�z
4

0

� 18�z
2

�z
4

0 � 18�z
4

00 � 18�z
3

�z
4

00 � 36�z
4

00�z
4

00)/36
(4.7)

This expression satisfies all requirements for the problem Hamiltonian (Eq. 4.3), the

completion of which allows for the measurement of the energetic minimum conformation
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Figure 4.4: Graph representations of (a) the four-qubit unembedded energy function
(Eq. 4.6) and (b) the five-qubit expression (Eq. 4.7) as was embedded into the quantum
hardware. In graphs (a) and (b), each node denotes a qubit and the color and extent of
its glow denotes the sign and strength of its corresponding longitudinal field, hi. The edges
represent the interaction couplings, Jij , where color indicates sign and thickness indicates
magnitude. Since we want the two qubits representing q

4

(q
4

and q
4

0) to end up with the
same value, we apply the maximum ferromagnetic coupling (J = �1) between them, which
adds a penalty whenever this equality is violated. These maximum couplings are indicated
in the figure by heavy lines. For the case of Experiment 3, the reconstruction of the binary
bit stings representing the folds in Fig. 4.3, from the five-quibt experimental measurements
can be recovered by qexp3 = 010010q

1

0q
2

q
3

|q
4

q
4

0 , with qi = 0 (qi = 1) whenever si = 1
(si = �1).

of this small peptide instance. The embedding of Eq. 4.7 into the hardware is shown in

Fig. 4.4, where we label the five qubits used, q
1

, q
2

, q
3

, q
4

, and q
4

0 . Since we want the two

qubits representing q
4

to end up with the same value, we apply the maximum ferromagnetic

coupling (J = �1) between them, which adds a penalty whenever this equality is violated

(last term in Eq. 4.7). These maximum couplings are indicated in Fig. 4.4 by heavy lines.

The thinner lines show the remaining couplings used to realize the quadratic terms in Eq. 4.7,

color coded according to the sign of the interaction and its thickness representing their

strength. Note that every quadratic term in Eq. 4.7 has a corresponding coupler. Hereafter,

we will denote the outcome of the five-qubit measurements as qexpo = 010010q
1

0q
2

q
3

|q
4

q
4

0 ,

with qi = 0 (qi = 1) whenever si = 1 (si = �1). Notice that only the bits preceding the

divider character | contain physical information. These are the ones shown under each of

the protein fold drawings associated with Experiment 3 (see Fig. 4.3).
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4.3 Results and discussion

Similar embedding procedures to the one previously described were used for the larger

experiments. For example, in Experiment 1, only 5 qubits define solutions of the compu-

tational problem. We needed 5 auxiliary qubits to transform the expression with 5-body

interactions into an expression with only 2-body interactions. Embedding of this final

expression required an additional of 18 qubits to satisfy the hardware connectivity require-

ments, for a total of 28 qubits. Table 4.1 in Appendix 2 summarizes the number of qubits

required in each step through to the final experimental realizations.

Even though the quantum device follows a quantum annealing protocol, the odds of

measuring the ground state are not necessarily high. For example, in the 81 qubit ex-

periment, only 13 out of 10,000 measurements yielded the desired solution. We attribute

these low-percentages to the analog nature of the device and to precision limitations in the

real values of the local fields and couplings among the qubits in the experimental setup.

When compared to other problem implementations, physical problems such as lattice fold-

ing lack the structure of the Ramsey number problem [24]. In the lattice folding problem

implemented here, the parameters defining the problem instances are arbitrary and do not

fall into certain integral distinct values as in the case of the Ramsey number experiment,

making precision issues more pronounced in our implementation.

To gain insights into the dynamics and evolution of the quantum system, we numer-

ically simulated the superconducting array with a Bloch-Redfield model of the 8-qubit

experiment (see Appendix 4) which takes into account thermal fluctuations in the states

due to the finite temperature (20mK) of the quantum device. For this 8-qubit experiment,

the simulation predicted a ground state probability of 80.7 %, in excellent agreement with

the experimentally observed value (80.3%). It is important to note that no adjustable pa-

rameters were used in our simulations to fit the data and all the parameters correspond

to values measured directly from the quantum device. More details about the numerical

simulations can be found in the Appendix 4.

As seen in Fig. 4.2(c), the temperature of the device is comparable with the minimum

gap of the eight-qubit Hamiltonian. Therefore, we expect stronger excitation/relaxation

near the gap closing, ⌧ ⇡ 0.6, due to exchange of energy with the environment, when

compared to the other regimes of the annealing schedule where the gap is much larger than

kBT . In the absence of environment (a fully coherent process), our simulations indicate

that that the success probability would be 100%, within numerical error. Fig. 4.2(d) shows

that for the simulations at 20mK, the probability in the ground state goes down to ⇠
55%, but the same fluctuations make the system relax back to the ground state, yielding

tan 80.27% success probability. This is due to the advantageous natural tendency of the
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system to approach a thermal equilibrium which favors the ground state after crossing the

minimum energy gap. As previously discussed in similar numerical simulations of quantum

annealing algorithms [11], strong coupling to the bath and non-Markovianity would require

going beyond the Bloch-Redfield model [10], but the agreement between experimental and

simulated results support the validity of the quantum mechanical model used to describe

the device. Previously reported temperature dependence predictions for the tunneling rate

on the same qubits [97] and excellent agreement with the same level of theory used here

reinforce the validity of our simulations for this 8-qubit instances.

4.4 Conclusion

We present the first quantum-mechanical implementation of lattice protein models

using a programmable quantum device. We were able to encode and to solve the global

minima solution for a small tetrapeptide and hexapeptide chain under several experimental

schemes involving 5 and 8 qubits for the four-amino-acid sequence (Hydrophobic-Polar

model) and 5, 27, 28, and 81 qubits experiments for the six amino-acid sequence under

the Miyazawa-Jernigan model for general pairwise interactions. For the experiment with 8

qubits, we simulated the dynamics of the quantum device with a Redfield equation with no

adjustable parameters, obtaining excellent agreement with experiment. Since the quantum

annealing algorithm not only finds the ground state but also the low-lying excited states,

it provides information about the relevant minimum energy compact structures of protein

sequences [34] and it is useful to evaluate designability and stability such as that found in

natural protein sequences, where the global minimum of free energy is well separated in

energy from other misfolded states [14]. The approach employed here can be extended to

treat other problems in biophysics and statistical mechanics such as molecular recognition,

protein design, and sequence alignment [88].

4.5 Appendix 1. Transformation of the energy function of

the lattice-folding model into the experimentally realiz-

able spin-glass Hamiltonian

The energy function for the lattice model can be obtained as a sum of di↵erent contri-

butions,

Ep(q) = Eonsite(q) + Epw(q) + Eext(q) (4.8)

where Eonsite(q) penalizes configurations with overlaps among any two amino acids, Epw(q)

accounts for nearest-neighbor pairwise-interaction energies among non-bonded amino acids,
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and Eext(q) refers to any external potentials other than the ones coming from interactions

among the amino acids defining the protein. For amino acid sequences in vacuo, only Eonsite

and Epw are needed. The construction of these three-types of energy functions, in 2D and

in 3D, for an arbitrary number of amino acids and interactions among them is explained in

detail in Ref. [149]. Hereforth, we will only focus on the case of energy functions in 2D.

4.5.1 Case of the six-amino acid sequence PSVKMA (Experiments 1-4)

As explained in Sec. 4.2, the description of all possible 2D N -amino-acid fold in vacuo

can be described by a bit string of length 2(N � 1), with the first three bits held constant

leaving ` = 2N � 5 binary variables as the computational variables of the problem,

q = 01|{z}
turn1

0q
1|{z}

turn2

q
2

q
3|{z}

turn3

· · · q
2N�6

q
2N�5| {z }

turn(N�1)

. (4.9)

For the case of N = 6 (sequence PSVKMA), the problem is completely specified by the bit

string

q
6AA = 01|{z}

turn1

0q
1|{z}

turn2

q
2

q
3|{z}

turn3

q
4

q
5|{z}

turn4

q
6

q
7|{z}

turn5

. (4.10)

By using the construction in Ref. [149], the 7-bit energy function describing the se-

quence PSVKMA (Scheme 1 in Fig. 4.3) is given by,
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As shown in Fig. 4.3, expressions for each of the di↵erent experiments in Schemes

2 and 3 can be sequentially obtained by fixing the value of some of the variables in

EPSVKMA(q6AA).

The energy function for Experiment 1 is obtained by evaluating EPSVKMA(q6AA)

with q
1

= 1 (third amino-acid moves to the right) and q
2

= 0 (fourth amino-acid moves

either down or right, exploiting upper/lower half-plane symmetry). After relabeling the

five remaining variables so that their labels go from 1-5 instead of 3-7, i.e., q
6AA =

010q
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q
2

q
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q
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q
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q
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q
7

q
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, the resulting expression describing

the energy landscape for Experiment 1 is given by

Eexp1

PSVKMA(qexp1) = �3q
2

+ 7q
1

q
2

+ 18q
2

q
3

� 15q
1

q
2

q
3

� 4q
1

q
4

� 2q
2

q
4

+ 15q
1

q
2

q
4

+ 7q
3

q
4

+ 4q
1

q
3

q
4

� 7q
2

q
3

q
4

� 24q
1

q
2

q
3

q
4

+ 7q
2

q
5

+ 4q
1

q
2

q
5

� 18q
2

q
3

q
5

+ 7q
4

q
5

+ 4q
1

q
4

q
5

� 7q
2

q
4

q
5

� 24q
1

q
2

q
4

q
5

� 18q
3

q
4

q
5

+ 20q
2

q
3

q
4

q
5

+ 29q
1

q
2

q
3

q
4

q
5

(4.12)

The energy function for Experiment 4 is obtained by evaluating EPSVKMA(q6AA)

with q
1

= 0 (third amino-acid moves down). After renaming the six remaining variables

so that their labels span 1-6 instead of 2-7, i.e., q
6AA = 010q

1

q
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q
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q
4

q
5

q
6

q
7

q
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=0����!
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q
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q
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q
6

, the resulting expression describing the energy landscape for Experiment

4 is given by
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The energy function for Experiment 2 is obtained by evaluating Eexp4

PSVKMA(qexp4) with

q
1

= 0 (fourth amino-acid moves either down or right). After renaming the five remaining

variables so that their labels span 1-5 instead of 2-6, i.e., qexp4 = 0100q
1

q
2

q
3

q
4

q
5

q
6

q
1

=0����!
relabel
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q
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q
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q
4

q
5

, the resulting expression describing the energy landscape for Ex-

periment 2 is given by
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Finally, the energy function for Experiment 3 is obtained by evaluating Eexp4

PSVKMA(qexp4)

with q
1

= 1, q
2

= 0(fourth amino-acid moves left) and q
4

= 0 (fifth amino-acid moves either

down or left), exploiting the constrains imposed by the three fixed amino-acids (P,S, and V).

After renaming the three remaining variables so that their labels are q
1

, q
2

and q
3

instead

of q
3

, q
5

, and q
7

, i.e., qexp4 = 0100q
1

q
2

q
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q
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q
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q
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q
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relabel
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, the

resulting expression describing the energy landscape for Experiment 3 is given by

Eexp3
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(4.15)

4.5.2 Case of the four-amino acid sequence HPPH (Experiment 5)

Besides the six-amino acid sequence considered above, we also constructed the energy

function for the simplest of all sequences within lattice protein models, the HPPH four-

amino acid sequence within the HP model. For N = 4, we can specify any of its folds

by the bit string qexp5 = 010q
1

q
2

q
3

. The three-bit energy function describing the energy

landscape of Experiment 5 (see Fig. 4.5) is given by,

EHPPH(qexp5) = �q
2

+ 2q
1

q
2

+ 2q
2

q
3

� 3q
1

q
2

q
3

(4.16)

4.5.3 Case of the four-amino acid sequence HPPH under external con-

straints (Experiment 6)

A more realistic in vivo picture involves the presence of chaperone proteins assisting the

folding dynamics towards the global minima. Chaperones, molecular docking, and molecular

recognition are examples of problems which can be studied by adding external potentials,

Eext(q), beyond the intrinsic interactions defined by the amino-acid chain, Eonsite(q) and

Epw(q) (see Eq. 4.8). The first consequence of adding an external potential Eext(q) (as

the chaperone-like environment surrounding the small four-amino-acid sequence HPPH,

illustrated in Fig. 4.5 by the pink-shaded area near the peptide) is that we can no longer

exploit the symmetry of the solution space for upper and lower half plane conformations.

Therefore, we cannot set the first variable of the turn associated with the third amino-acid

to zero. Under external potentials, we specify arbitrary folds of the four-amino acid problem

by qexp6 = 01q
1

q
2

q
3

q
4

, where q
1

q
2

(q
3

q
4

) encodes the orientation of the second (third) bond.

The external potential penalizes conformations in which either the third or fourth

amino acid go into the chaperone region is:

Echap(qexp6) = �dext(1� q
1

)(1� q
2

) + �rext(1� q
1

)q
2

+ �drext(1� q
1

)(1� q
2

)(1� q
3

)q
4

+ �rdext(1� q
1

)q
2

(1� q
3

)(1� q
4

)

(4.17)
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Figure 4.5: Energy landscape for the four amino-acid sequence HPPH, (a) in vacuo (Ex-
periment 5), and (b) under the presence of a chaperone-like environment (Experiment 6)
represented by the red-shaded region. In panel (a) [panel (b)], percentages indicate the
experimentally measured probabilities of each state collected over 10,000 [28,672] runs of
the quantum annealing algorithm described in Sec. 4.7.3. In the case of Experiment 6,
numerical results from the Bloch-Redfield model discussed in Sec 4.8 are included in paren-
thesis. Although the variables involved in Experiment 5 (Experiment 6) are described by
qexp5 = 010q

1

q
2

q
3

|q
4

q
4

0 (qexp6 = 01q
1

q
2

q
3

q
4

|q
5

q
6

q
2

0q
4

0), under each fold we write only the
physically-relevant variables which define the conformation. Since we show some experi-
mental outcomes also for states with E > 0, then it is natural to find states which violate
either the and condition or the ferromagnetic condition; for these cases we explicitly write
the auxilliary variables which went into the quantum hardware. For example, in Experiment
5 [panel (a)], the state qexp5 = 010101|11 violates the and condition since q

4

6= q
2

q
3

. In
the case of the state qexp5 = 010010|01 the ferromagnetic condition for q

4

is violated since
q
4

6= q
4

0 . Each overlap of the amino acids with the chaperone raises energy by four units,
whereas overlaps (red crossings) among amino acids in the chain raise energy by two units.

The penalty �dext raises energy only when the third amino-acid moves down (q
1

= 0, q
2

= 0),

�rext raises energy only when the third amino-acid moves right (q
1

= 0, q
2

= 1), �drext raises

energy only when the third amino-acid moves down and the fourth-amino acid moves right

(q
1

= 0, q
2

= 0, q
3

= 0, q
4

= 1), and the last penalty, �rdext, raises energy only when the third

amino-acid moves down and the fourth-amino acid moves right (q
1

= 0, q
2

= 1, q
3

= 0, q
4

=

0). Each overlap of the amino acids with the chaperone increases energy by four units, i.e.,

�dext = �rext = �drext = �rdext = 4.

When the third amino acid is also allowed to move upwards, the energy function for
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the HPPH chain in vacuo is given by,
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After adding Eq. 4.17 and Eq. 4.18, the resulting energy function for the HPPH peptide in

the presence of the “chaperone” environment illustrated in Fig. 4.5, is given by,

EHPPH,chap(qexp6) = 4� 3q
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(4.19)

4.6 Appendix 2. Embbedding of problem instances into the

quantum hardware

4.6.1 Reduction of high-order terms to a 2-body Ising-like Hamiltonian

Although the above energy expressions (Eqs. 4.11-4.19) describe the desired energy

landscape, they are not suitable for experimental implementation. We need to reduce the

degree of the high-order terms (cubic, cuartic, etc) to a quadratic expression (up to 2-

body interactions). These high-order terms indicate many-body interactions which are not

experimentally feasible within the current quantum device. To achieve this without altering

the low-energy spectra (E  0) where the target minima is supposed to be found, we use

the technique described in Ref. [148, 149]. In Sec. 4.2, we presented the simplest case where

only one reduction was required (expression for Experiment 3, Eq. 4.15). In the following

we will focus on the next most complex case (Experiment 6, Eq. 4.19) which can be easily

generalized to obtain any of the 2-body energy expressions for the larger experiments.

We introduce two ancilla binary variables, q
5

and q
6

, and substitute Eq. 4.19 with

products of the form q
1

q
2

into q
5

and q
3

q
4

into q
6

. This substitution transforms the en-

ergy expression (Eq. 4.19) into a quadratic expression, e.g, the highest-order term which is

quadratic, q
1

q
2

q
3

q
4

, is replaced by q
5

q
6

which becomes quadratic, as desired. Under these

substitutions, whenever we have six-variable assignments, qexp6 = 01q
1

q
2

q
3

q
4

|q
5

q
6

, such

that q
6

= q
1

^ q
2

= q
1

q
2

and q
6

= q
3

^ q
4

= q
3

q
4

, we have the same energy spectrum as

the one for the original quartic, four-variable expression. Since these two ancilla are new

variables whose values are independent of the four original variables, we need to penalize

six-variable assignments whenever q
5

6= q
1

q
2

and q
6

6= q
3

q
4

. For every “collapse” of the

form qiqj ! rk, we add the penalty E^(qi, qj , rk; �ij) = �ij(3rk+qiqj�2qirk�2qj�ij), where

�ij is a positive number representing a penalty chosen (for more details see Ref. [149]) such

that assignments violating this and condition correspond to free-energies E > 0, outside

the relevant search region (E  0). The function E^(qi, qj , rk; �ij) = 0 only if rk = qiqj and
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E^(qi, qj , rk; �ij) > 0 if rk 6= qiqj . The six-variable expression resulting from the insertion

of the new ancilla variables plus the penalty function becomes,

E2body
HPPH,chap(q) = EHPPH,chap(q1, q2, q3, q4; q1q2 ! q

5

, q
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(4.20)

where according to the criteria in Ref. [149], we have chosen �
12

= 6, and �
34

= 4.

To rewrite this quadratic form in terms of the spin variables {si}, we apply the trans-

formation qi ⌘ 1

2

(1� si) to each of the binary variables,
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(4.21)

After substracting the constant (independent term), we can fulfill the requirement that

|hi|  1 and |Jij |  1 by scaling all coe�cients of Eq. 4.21 down by the maximum absolute

value of all coe�cients. The renormalized quadratic expression is given by,
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4

13
(Eising

HPPH,chap � 10)

= (13s
1

+ 3s
2

+ 7s
3

+ s
4

� 8s
5

� 8s
6

+ 6s
1

s
2

+ s
1

s
3

� 2s
2

s
3

� 2s
1

s
4

� 8s
2

s
4

+ 4s
3

s
4

� 12s
1

s
5

� 12s
2

s
5

+ 5s
4

s
5

+ 5s
2

s
6

� 8s
3

s
6

� 8s
4

s
6

� s
5

s
6

)/13

(4.22)

The final Ising spin-glass Hamiltonian (before embedding into the quantum device) can be

obtained by the substitution si ! �zi .
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(4.23)

4.6.2 Embedding into the quantum hardware

Eq. 4.23 does not fulfill the chip-connectivity requirements (see Fig. 4.6) for the primal

graph representing Eq. 4.23. This limitation is fixed at the cost of adding two new qubits
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serving as replicas of the two qubits which are linked by more than four connections. To

enforce that the replicas of the i-th qubit (�zi0) produce the same outcome as the original

i-th qubit, we couple �zi and �zi0 with a strong ferromagnetic coupling, such that whenever

the outcomes of the two variables are di↵erent they get penalized by a chosen penalty

factor �i > 0. The function which performs this penalization for each replica i-th qubit

is HFM ({�zi }; �i) = �i(1 � �zi �
z
i0). Notice that HFM ({�zi }; �i) = 0, if si = si0 = ±1, but

HFM ({�zi }; �i) = 2�i, if si 6= si0 . For this study, a value of �
2

= �
4

= 1 su�ces to leave

assignments which violate this condition outside the region of interest with E  0.

The redistribution of the connections among the original and primed qubits is given in

the right panel of Fig. 4.6. The modified function taking into account the added ferromag-

netic couplings is,
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Again, we subtract the independent constant terms from the insertion of theHFM functions.

The final expression, which is implementable in the quantum device is,
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(4.25)

The embeddings for Experiments 3 and 4 are shown in Fig. 4.4 and Fig. 4.1, respectively.

The embeddings corresponding to Experiment 5 and 6 are represented in Fig. 4.6, while the

embedding for the medium size problem instances (Experiments 1 and 2) are represented

in Fig. 4.7.
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Table 4.1: Number of qubits needed for each one of the six experiments described in Fig. 4.3
and Fig. 4.5. The most compact version of the energy function corresponds to the second
column. Each one of the steps, reduction of high-order terms in the energy function towards
a 2-body Ising-like Hamiltonian and embedding of this Ising expression to fulfill the physical
connectivity of the qubits in the device, requires more auxiliary qubits. The final column
reports the number of qubits in the experimentally implemented expression of the energy
function.

Number of qubits needed

Experiment # energy function Ising Hamiltonian hardware-embedded expression

1 5 10 28

2 5 10 27

3 3 4 5

4 6 19 81

5 3 4 5

6 4 6 8















































































































 

Figure 4.7: Embedding of Experiments 1 and 2 into the quantum hardware. The 28 qubits
(27 qubits) from Experiment 1 (Experiment 2) have been relabeled to show the qubits which
were strongly ferromagnetically coupled representing the same variable and biased to have
the same experimental outcomes. Both problem instances resulted in ten-qubit spin-glass
Hamiltonians after reducing their energy expressions to the Ising-like 2-body interaction
expression. The additional qubits are part of the embedding procedure used to fulfill the
arbitrary connectivity of the Ising expression, allowing for couplings of qubits that are not
directly coupled in hardware.
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4.7 Appendix 3. Experimental details

4.7.1 The processor chip

All experiments discussed herein were conducted on a sample fabricated in a four

Nb layer superconducting integrated circuit process employing a standard Nb/AlOx/Nb

trilayer, a TiPt resistor layer, and planarized SiO
2

dielectric layers deposited with a plasma-

enhanced chemical vapour deposition process. Design rules included 0.25 µm lines and

spaces for wiring layers and a minimum junction diameter of 0.6 µm. Experiments were

conducted in an Oxford Instruments Triton 400 Cryofree DR at a temperature of 20 mK.

The sample processor chip contains a coupled array of 128 qubits of a design discussed

in Ref. [82]. Each qubit is an rf-SQUID flux qubit with a double-well potential, as depicted

in Fig. 4.8. They are magnetically coupled with sign and magnitude tunable couplers in

a manner described in Ref. [98]. The array is built up of 16 eight-qubit unit cells. For

example, Experiment 6 was conducted using a single unit cell (highlighted in Fig. 4.9a).

The connectivity of qubits within the unit cell is shown schematically in Fig. 4.9b.

Three di↵erent chips available with this same architecture were used to run the di↵erent

problem instances (Experiments 1-6, Fig. 4.3 and 4.5). Experiments 1, 2, and 4 were run in

one chip, while Experiment 3 and 5 used a di↵erent chip. Experiment 6 used the same chip

and unit cell used in Ref. [97]. Since all the chips have the same architecture and design

but di↵erent calibration parameters, we will focus on the chip used to run Experiment 6,

and report all the parameters used to run the numerical simulation reported in Sec. 4.8.

0

1

p

U

Ub

U0
U1

(b)(a)

p

Figure 4.8: (a) Illustration of a single rf-SQUID flux qubit. �
1x is the flux bias applied

to the major (qubit) loop, and �
2x is the flux bias applied to the minor (CJJ) loop. (b)

Cross-section of the double-well potential of an rf-SQUID flux qubit, with 4 localized energy
levels marked. �

1x primarily a↵ects the qubit bias ✏, whereas �
2x a↵ects both the barrier

height �U
0

and ✏.
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4.7.2 Magnetic Environment

The magnetic field in the sample space was controlled with three concentric high per-

meability shields and an innermost superconducting shield. Further active compensation

of residual fields was achieved with compensation coils oriented along three axes, and used

in conjunction with on-chip superconducting quantum interference device (SQUID) magne-

tometers located near each of the four corners of the processor block (Fig. 4.9a). Compen-

sation coils were adjusted to minimise the magnetic field measured at the magnetometers

while the chip was at 4.2 K. The chip was then thermally cycled just above and then back

down through its superconducting transition temperature at this minimal field. We esti-

mate that the chip was cooled through its superconducting transition with a field normal

to the chip surface |B?| < 2.5 nT, and that parallel to its surface |Bk| < 3.6 nT over the

area of active circuitry.

 

 



Figure 4.9: (a) Optical photograph of a portion of a partially fabricated 128 qubit chip.
The block of eight qubits used in this experiment is outlined in red. (b) Artificial spins are
connected in a complete bipartite graph K

4,4, and interact via couplers which are continu-
ously tunable from ferromagnetic to antiferromagnetic interaction. A line between artificial
spins indicates that a coupler is present. The colouring indicates one possible arrangement
of coupler settings. (c) An example of how a linear ferromagnetic Ising spin chain could be
implemented by selectively tuning some couplers to a ferromagnetic setting (J < 0) (green),
and turning o↵ the rest (J = 0).

4.7.3 Experimental method

The experiment discussed in the manuscript is outlined in Table 4.2. The steps in part

I were performed once and would, in general, only be performed once for a new chip. The

calibration step I-1 is performed by measuring the circulating current Ip in each qubit, and

its dependence on the CJJ loop flux bias �
2x. From this information, one can extract the

qubit critical current Ic and inductance L. Details of this procedure are discussed in detail

in section IV.A of Ref. [82]. Given these qubit parameters, the e↵ective inter-qubit coupling

strength attained by the tunable couplers can be determined. This was done by measuring
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the di↵erence in magnetic flux coupled into a qubit B between states | "i and | #i of a

qubit A. This coupled flux was measured as a function of the setting of the tunable coupler

between qubits A and B, in a manner described in detail in Ref. [86].

Table 4.2: Outline of experiment

I. Initialisation

1. Calibration: measure intrinsic device parameters such as junction Ic, qubit in-

ductance, transformer mutual inductances, etc.

2. Homogenisation: use on-chip programmable flux biases to ensure Ip of the dif-

ferent qubits match during annealing.

II. Annealing & read-out

1. Set h, J

2. Anneal (reduce A(⌧) and increase B(⌧))

3. Read state of spins

Once the device parameters for each qubit have been extracted, the e↵ective junction

Ic and inductance L of each qubit are tuned with on-chip tuning structures so as to make

them as similar to each other as possible. The goal of this homogenisation procedure is

to ensure that the circulating currents, Ip, of several qubits remain close to each other

in magnitude while the qubits undergo annealing. This procedure is discussed in detail

in Refs. [85] and [81]. On-chip tuning structures enabling this homogenisation are also

described in Refs. [82] and [98]. Figure 4.10 shows the superimposed plots of the measured

circulating current Ip (left) and tunnel splitting A(⌧) (right) of each of the eight qubits used

in this experiment after homogenisation. Qubit capacitance is extracted by measuring the

spacing of macroscopic resonant tunnelling rate peaks[83]. At any point in �
2x, the standard

deviation of the measured Ip across the 8 qubits is less than 25 nA. The uncertainty in each

measurement of Ip is about 9 nA. The homogenised device parameters are summarised in

Table 4.3.

The steps in II are performed repeatedly. Step II-1 is where the Hamiltonian param-

eters hi and Jij from Eq. 4.25 are programmed. For each such problem specification, steps

II-2 and II-3 were repeated to allow collection of statistics about the relative probabilities

of the possible states. For data presented in this chapter related to Experiment 6, II-1 was

repeated 8 times, after each of which, II-2 and II-3 were repeated 4096 times, for a total of

32,768 repetitions of II-2 and II-3. However, step II-1 non-negligibly heated the chip, so in

order to allow ample time for the chip to cool back to the base temperature, the first 512
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Figure 4.10: (Left) Measured circulating current Ip of each of the eight qubits used in
this experiment after homogenisation (step I-2). (Right) Comparison of measured tunnel
splitting A(⌧) (labelled �q) for the eight qubits used in the experiment, and the A(⌧) fit
to a physical model of the rf-SQUID. Fits of measured tunnel splitting A(⌧) are used in
conjunction with fits to Ip and MRT rate measurements to estimate parameters shown in
Table 4.3.

repetitions after each execution of step II-1 were removed, leaving 8⇥ 3, 584=28, 672 total

repetitions of II-2 and II-3. In the case of Experiments 1-5 the statistics were collected

over 10,000 measurements in each experiment and enough thermalization time was allowed.

Therefore, all data was included in the statistics without the need for removing any of the

initial measurements. The experimental results of the probabilities measured are reported

as percentages in Figs. 4.3 and 4.5.

Annealing was performed by raising the single qubit tunneling barrier. This is accom-

plished by changing �
2x linearly in time, from 0.592 �

0

to 0.652 �
0

, over a period of 148 µs,

as shown in Figure 4.11. Circulating current Ip shown in Figure 4.10 is plotted over exactly

this range of �
2x. This also has the e↵ect of changing parameters A(⌧) and B(⌧) from

Eq. 4.3, as shown in Fig. 4.2(b), and as discussed in Ref. [79]. Control points ↵ and � in

Figure 4.11 correspond to the beginning and ending times of Fig. 4.2(b).

After the qubits have completed annealing, when �
2x has been set to �

0

as shown on

the right in Figure 4.11, states of the spins are read with a hysteretic dc-SQUID readout,

as described in Ref. [21].

4.7.4 Thermometry

In addition to a Ruthenium Oxide thermometer mounted on the dilution refrigerator

mixing chamber, the e↵ective qubit device temperature obtained during the measurements
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Table 4.3: Total Josephson junction critical current, qubit inductance, inductance of loop
2, and junction capacitance extracted from circulating current and tunnel splitting mea-
surements, and Macroscopic Resonant Tunneling (MRT) peak spacing.

Qubit Ic(µA) L
1

(pH) L
2

(pH) C(fF)

1 3.350 337.9 26 185

2 3.363 339.7 26 190

3 3.340 333.0 26 190

4 3.363 338.5 26 190

5 3.340 334.0 26 195

6 3.352 334.8 26 190

7 3.365 338.8 25 185

8 3.330 332.9 26 190

discussed in the manuscript was determined in two independent ways. The first is based

on analysis of the single-qubit Macroscopic Resonant Tunnelling (MRT) rate, and its de-

pendence on the qubit loop flux bias �
1x. Measurements and analysis of MRT rates for

the devices used in this experiment are discussed in Ref [115]. The second is based on

measurement of the equilibrium P" vs. �
1x attained at fixed barrier height (fixed value of

�
2x). Both of these techniques are discussed in some detail in Ref. [83].

At a fixed barrier height achieved with a fixed value of �
2x, the equilibrium probability

P" approaches the thermal distribution:

P"(t ! 1) =
1

2


1

2
+ tanh

✓
Ip�1x

kBTth

◆�
(4.26)

where Ip is the value of circulating current obtained at that value of �
2x and Tth is the

e↵ective device temperature. Fitting a measurement of P" as a function of �
1x to Eq. 4.26,

combined with a knowledge of Ip, allows us to extract Tth.

Measurement of Tth was performed on two of the devices at each temperature setting.

An average of at least two independent measurements of the device temperature Tth of each

of two qubits is compared against the mixing chamber thermometer temperature reading

(TMXC) in Figure 4.12. Uncertainty in Tth was dominated by the uncertainty in the fit

transition width for each measurement, which was generally found to be larger than the

standard deviation of the separate measurements.

The temperature extracted from MRT transition rate widths (TMRT ) is also plotted

vs. TMXC for temperatures below 40 mK, in Figure 4.12. From these plots it is clear

that the two methods generally agree with each other as well as with the mixing chamber

thermometer to within 3 mK over the temperature range used in the experiment.
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Figure 4.11: The annealing schedule is defined by the applied flux �
2x(t). The qubits

make a transition between being monostable and bistable between control points ↵ =
(10 µs,�0.592 �

0

) and � = (158 µs,�0.652 �
0

).

4.8 Appendix 4. Quantum simulations

To obtain better quantitative understanding of the behaviour of the system, a sim-

ulation was conducted to model this experiment. The agreement between the numerical

simulations can be seen in panel (b) of Fig. 4.5, where both percentages [experiment (the-

ory)] are reported next to each other for each one of the low-energy conformations.

Our simulation strategy is as follows: We first write a Hamiltonian for the super-

conducting circuit based on standard circuit models for capacitances, inductances, and

Josephson junctions. This Hamiltonian is expected to correctly describe the behaviour of

coupled rf-SQUIDs. We then numerically calculate the evolution of the system based on

this Hamiltonian using quantum mechanical equations of motion which take into account

coupling to an environment. Therefore, we predict the quantum evolutions for the same

system Hamiltonian, the same coupling to environment, and the same type of noise spectral

densities. This provides a fair comparison to the experimental data.

4.8.1 rf-SQUID Hamiltonian

A simplified version of the rf-SQUID qubit used in our processor is illustrated in

Fig. 4.8a. (A more complete description of the actual qubits can be found in Ref. [82].)

It has two main superconducting loops and therefore two flux degrees of freedom �
1

and
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Figure 4.12: Plots of Tth (black circles) and TMRT (red triangles) vs. the temperature
measured with the Ruthenium Oxide thermometer mounted on the mixing chamber TMXC .

�
2

, subject to external flux biases �
1x and �

2x, respectively. The Hamiltonian of such an

rf-SQUID is written as

H
SQUID

=
q2
1

2C
1

+
q2
2

2C
2

+ U(�
1

,�
2

) (4.27)

where C
1

and C
2

are parallel and series combinations of the junction capacitances, q
1

and q
2

are the sum and di↵erence of the charges stored in the two Josephson junctions respectively,

and

U(�
1

,�
2

) = (�
1

� �
1x)

2/2L
1

+ (�
2

� �
2x)

2/2L
2

�2EJ cos(⇡�2

/�
0

) cos(2⇡�
1

/�
0

), (4.28)

is a 2-dimensional potential with Li being the inductances of the two loops and �
0

=h/2e,

the flux quantum. We have assumed symmetric Josephson junctions with Josephson ener-

gies EJ= Ic�0

/2⇡, where Ic is the junctions’ critical current. (A small asymmetry can be

tuned away in situ in the physical implementation [82].)

At �
1x ⇡ �

0

/2, the potential can become bistable and therefore form a two-dimensional

double-well potential. If L
2

is small enough so that the deviation of �
2

from �
2x can be

neglected, then the two-dimensional classical potential U(�
1

,�
2

) can be approximated by

a one-dimensional double-well potential, as shown in Fig. 4.8b. However, with our realistic

qubit parameters, �
2

cannot be neglected and therefore is accounted for in all our numerical
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calculations. When �
1x = �

0

/2, the two wells are symmetric with no energy bias between

them. One can tilt the potential by changing �
1x and establish an energy bias, as depicted

in Fig. 4.8b. It is also possible to change the barrier height by changing �
2x.

An array of such qubits can be modelled by summing contributions of Eq. (4.27) from

each device plus terms that describe magnetic coupling of the loops:

HS =
X

i

H(i)
SQUID

+
X

i>j

H(ij)
coupl

(4.29)

Coupling between qubits i and j can be modelled as a mutual inductance Mij between loop

1 of each pair of coupled qubits:

H(ij)
coupl

= (�(i)
1

� �(i)
1x)(�

(j)
1

� �(j)
1x )Mij/L

(i)
1

L(j)
1

(4.30)

As discussed in Section 4.7.3 above, all parameters, i.e., inductances L(i)
↵ , capacitances C(i)

↵ ,

and Josephson critical currents I(i)c , are measured independently for each qubit.

To describe the system accurately we also need to introduce interaction with environ-

ment. Flux noise, which is the dominant noise in flux qubits, couples to the ith qubit as

fluctuations ��(i)
↵x of the external flux �(i)

↵x:

H
int

= �
2X

↵=1

X

i

�(i)
↵ � �(i)

↵x

L(i)
↵

��(i)
↵x (4.31)

The noise is much smaller for the smaller loop �(i)
2x than for the larger loop �(i)

1x due to the

loop size. The flux noise ��(i)
↵x is assumed to be uncorrelated between the qubits, which

agrees with recent experimental observation[117].

Chip calibration and device parameter extraction

Device parameters were extracted for the simulations through a series of independent

measurements of qubit circulating current, tunnel splitting �, and MRT peak spacing. A

discussion of how these measurements are performed is given in Ref. [82]. Parameter values

used in simulations are summarised in Table 4.3.

4.8.2 Quantum Simulation

To simulate the quantum mechanical dynamics of the system, we treat (4.29)-(4.31) as

quantum mechanical Hamiltonians. In that case, the charge q(i)↵ is taken to be an operator,

which is the momentum conjugate to the flux operator �(i)
↵ with commutation relation:

[�(i)
↵ , q(i)↵ ] = i~. Unfortunately, it is impossible to calculate the dynamics of the system

directly on the 2N -dimensional continuous potential quantum mechanically. Instead, we
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use energy discretization as a means to simplify the calculation. The simplest way to

accomplish this is to treat an rf-SQUID as a 2-state system or qubit and replace (4.29)

by a coupled qubit Hamiltonian. One may go further and keep more than two states per

rf-SQUID in the calculation, as we shall discuss below.

We first numerically diagonalise the single rf-SQUID Hamiltonian (4.27) to obtain the

lowest eigenvalues and eigenvectors. We treat the lowest few energy levels as the subspace

relevant for computation. We then write the Hamiltonian in the basis of states that are

localised within the wells. Such states are not true eigenfunctions of the Hamiltonian and,

therefore, are metastable towards tunnelling to the opposite well. Hence, the resulting

Hamiltonian in such a basis will have o↵-diagonal terms between states in the opposite

wells but not between states within each well. The latter is because those states should be

stationary within their own wells; any transition (relaxation) between them is only induced

by the environment.

Let |li denote localised states within the wells. We use even (odd) state numbers, i.e.,

l = 2n (2n+1), with n = 0, 1, 2, ..., to denote states that are localised in the left (right)

well. For the lowest M energy levels (M is taken to be even), the e↵ective M⇥M tunnelling

Hamiltonian is written as

HS =
M�1X

l=0

El|lihl|+
M/2�1X

n,m=0

K
2n,2m+1

(|2nih2m+1|+ |2m+1ih2n|) (4.32)

where El is the energy expectation value for state |li and K
2n,2m+1

is the tunnelling am-

plitude between states |2ni and |2m+1i, which exist in opposite wells. Notice that there is

no matrix element between states on the same well: h2n|HS |2mi = h2n+1|HS |2m+1i = 0,

which means that the states are metastable only towards tunnelling to the other side, or

the states are quasi-eigenstates of the Hamiltonian within their own sides. All parameters

of the tunnelling Hamiltonian, i.e., El and Kll0 are extracted from the original rf-SQUID

Hamiltonian (4.27). For the 2-state qubit model we keep only the lowest two energy levels

of (4.32). The e↵ective qubit Hamiltonian can be written as

Heff = �1

2
(✏�z +��x) (4.33)

where

✏ = E
0

� E
1

, � = �2K
01

, (4.34)

We also go beyond the 2-state model and keep 4 states per rf-SQUID. Those 4 states

can be represented by two coupled qubits, one of which represents the direction of persistent

current or flux, and the other one generating intrawell energy levels. We represent the first
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Figure 4.13: Parameters of the 4-level model for rf-SQUID qubit as a function of time
during annealing.

(logical) qubit by Pauli matrices �↵, and the extra (ancilla) qubit by Pauli matrices ⌧↵.

The e↵ective Hamiltonian for those two coupled qubits can be written as

Heff = �1

2
(✏�z +��x) +

1

2
[!p⌧z + xz�x(1 + ⌧z) + xx�x⌧x]. (4.35)

It is easy to show that (4.35) is equivalent, up to a constant energy, to Hamiltonian (4.32),

with M = 4, if

✏ = E
0

� E
1

= E
2

� E
3

, !p = E
2

� E
0

= E
3

� E
1

, � = �2K
01

, (4.36)

xz = K
23

�K
01

⇡ K
23

, xx = 2K
03

= 2K
12

. (4.37)

As can be seen, the coupling between logical and ancilla qubits are of XX+XZ type. Cou-

pling qubits to each other is accomplished using �z operators which represent the direction

of the induced flux. The ancilla qubits remain uncoupled from each other and from other

qubits. It should be noted that the readout at the end of the evolution can only distinguish

“left” well from “right” well in the double-well potential and cannot distinguish levels within

each well. This is equivalent to reading out logical qubits and not ancilla qubits, but as we

mentioned above, only logical qubits carry information.

To properly treat the environment, we need to write the interaction Hamiltonian (4.31)

in the subspace of the lowest energy levels in terms of Pauli matrices. For quantum sim-

ulations we only consider noise coupling to the larger loop in Fig. 4.8a. Let us consider a

single rf-SQUID and write the interaction Hamiltonian as

H
int

= ��
1

� �
1x

L
1

��
1x (4.38)
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We define the qubit persistent current by

Ip =
1

L
1

|hl|(�
1

� �
1x)|li| . (4.39)

Here, we take Ip to be independent of |li for the low lying states considered, although in

reality there could be a small dependence. The interaction Hamiltonian can then be written

as

H
int

= �1

2
(�z + �⌧x)Q, (4.40)

where

Q = 2Ip��1x, � =
h0|H

int

|2i
2IpL1

=
h1|H

int

|3i
2IpL1

(4.41)

The matrix elements h0|H
int

|2i or h1|H
int

|3i are calculated directly via Eq. 4.38 using the

eigenfunctions of the rf-SQUID Hamiltonian, Eq. 4.27). The values of Ip and � can therefore

be calculated numerically from the original rf-SQUID Hamiltonian. Only Q remains which

should be characterised via its spectral density, which is the subject of Appendix A.

Quantum evolution of the system was calculated using a Markovian master equation

for the density matrix described in Ref. [12]. Since the evolution is very slow (adiabatic)

and temperature is low, only a small number of energy levels are expected to be occupied

during the evolution. We write the density matrix in the instantaneous energy eigenstate

basis and truncate it to the lowest 24 energy levels, which was found to su�ciently describe

the type of evolution studied here. We use both 2-state and 4-state models for rf-SQUIDs,

as described above, in our simulations. The result of the 4-level model simulation is shown

in Fig. 4.5b.

4.8.3 Noise spectral density

The quantum noise operator Q = 2Ip��1x is related to the flux noise as expected (for

simplicity we only consider one rf-SQUID), and is characterised by its correlation function.

Let us define the spectral density

S(!) =

Z 1

�1
dt ei!thQ(t)Q(0)i = 4I2pS�

(!) (4.42)

where

S
�

(!) =

Z 1

�1
dt ei!th��

1x(t)��1x(0)i (4.43)

is the spectral density of the flux noise. No direct measurement of S
�

(!) at all frequencies

is available. We assume the spectral density is a sum of low frequency and high frequency

components: S
�

(!) = SLF (!) + SHF (!). For the low frequency component we use

SLF (!) =
(A2/kBT )~!|!|�↵

1� e�~!/kBT
, (4.44)
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with ↵ ⇡ 1, which at low ! behaves as 1/f noise: ⇠ A2|!|�↵. Parameter A is measured

from low frequency noise measurement [116] and is found to be A ⇡ 3 n�
0

.

The high frequency parts of the spectral density is assumed to be ohmic,

SHF (!) =

 
~2
4I2p0

!
⌘!e�|!|/!c

1� e�~!/kBT
, (4.45)

where !c is the upper cuto↵ frequency, ⌘ is the dimensionless coupling coe�cient, and Ip0

is the value of persistent current at which ⌘ is measured. The coupling coe�cient and

the persistent current are found, using Macroscopic resonant tunnelling experiment (MRT),

to be ⌘ ⇡ 0.4 and Ip0 ⇡ 1 µA. The details of extraction of ⌘ via MRT are presented

elsewhere [115].

This leaves no free parameters for the quantum simulations.



Part II

Excitonic energy transfer and

nonlinear fluorescence spectroscopy



Chapter 5

Engineering directed excitonic energy transfer

Summary

We provide an intuitive platform for engineering exciton transfer dynamics. We show

that careful consideration of the spectral density, which describes the system-bath inter-

action, leads to opportunities to engineer the transfer of an exciton. Since excitons in

nanostructures are proposed for use in quantum information processing and artificial pho-

tosynthetic designs, our approach paves the way for engineering a wide range of desired

exciton dynamics. We carefully describe the validity of the model and use experimen-

tally relevant material parameters to show counter-intuitive examples of a directed exciton

transfer in a linear chain of quantum dots.

5.1 Introduction

The widely-applied Förster theory for energy transfer links experimental results to

estimates of system information, particularly in biological and nanoscale applications [170,

114]. The success of this theory is partly due to the simple expression of the kinetic rate

constants as a product of electronic coupling and a spectral overlap factor which captures

the complexity of the environment. Förster theory describes transport in the incoherent

limit, but a more sophisticated approach, such as Redfield theory, is often required to

describe energy transfer. However, the information essential to understanding the dynamics

is buried within the structure of the equations. In this chapter, we employ a quantum

kinetic rate approach to distill the information contained in equations into a simple, yet

instructive, formula. We use this approach to design directed exciton transfer mediated by

an environment.

Excitonic energy transfer (EET) has been studied in systems as varied as quantum

dot (QD) nanostructures [171, 50], polymer chains [43], and photosynthetic complexes
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[121, 38]. Many applications of EET would benefit from controlling exciton dynamics.

Perfect state transfer, as studied in the quantum computing community, is achievable in

certain engineered systems, but only at particular times during coherent evolution [42]. Re-

cent works have shown that environment-induced decoherence can alter exciton dynamics

[166, 158, 151], although controlling the transfer direction has only been achieved using

external potentials [90]. This chapter builds upon the idea of engineering exciton transfer

by designing appropriate system-bath interactions [71, 35]. We show that it is possible to

design experimentally realizable systems where the environment can be used to direct the

flow of energy.

5.2 Model Hamiltonian for the excitonic energy transfer dy-

namics

The Hamiltonian used in our simulation aims to capture dynamics in a single-exciton

manifold [129] interacting with an environment,

Ĥ = Ĥs + Ĥb + Ĥsb (5.1)

with

Ĥs =
NX

n=1

En |sni hsn|+
X

n 6=m

Jmn |smi hsn| . (5.2)

This representation is in the site basis {|sni} of localized excitations on each of N sites,

(e.g. QDs or chromophores), with excitation energy En for each site and inter-site coupling

Jmn. The environment is described by a phonon bath,

Ĥb =
X

q

~!q(b
†
qbq + 1/2), (5.3)

where b†q (bq) is the creation (destruction) operator for a phonon with wavevector q. The

system-bath interaction is assumed to be linear,

Ĥsb =
NX

n=1

|sni hsn|
X

q

~!q

⇣
gnqb

†
q + (gnq)

⇤bq
⌘
. (5.4)

where gnq describes the site-specific coupling of electronic and vibrational degrees of freedom.

As usual, we ignore the o↵-diagonal terms in the above equation, as they correspond to

inter-site exciton transfer via absorption or emission of a phonon [129].

To describe the excitonic quantum dynamics we use Redfield theory [159, 153, 143],

which is a reduced density matrix approach in the regime of weak system-bath coupling. The
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formalism involves second-order perturbation theory in the system-bath interaction, Ĥsb.

This method assumes the Markov approximation, no initial correlations between system

and bath degrees of freedom, and a thermalized bath. Since the secular approximation is

not used, coherence to population transfers are taken into account, thereby providing a

better physical description than the widely used Bloch equations [129, 143].

The equation of motion for the density operator ⇢̂(t) in the excitonic energy basis

representation, Ĥs |eai = ✏a |eai, is given by [159, 153, 143],

d⇢ab(t)

dt
= �i!ab⇢ab(t) +

X

cd

Rab,cd⇢cd(t), (5.5)

with ⇢ab(t) ⌘ hea| ⇢̂(t) |ebi and !ab = (✏a � ✏b)/~. The first term on the right hand side of

Eq. 5.5 describes the fully coherent dynamics in the absence of Ĥsb and the second term

describes the irreversible dynamics from the interaction with the phonon bath.

Correlations in bath-fluctuations on di↵erent sites [162] are taken into account by using

the relation gnqg
m⇤
q = gmq gn⇤q = g2qe

�Rmn/Rcorr , where Rmn ⌘ |Rmn| is the distance between

the sites and R
corr

is the phonon correlation length [160].

Using this relation for the electron-phonon couplings, the cross-correlation Cmn(!) can

now be written as,

Cmn(!) = e�Rmn/RcorrC(!), (5.6)

where the frequency correlation function C(!) = 2⇡[n(!)+1](J(!)�J(�!)), with n(!) the

Bose-Einstein distribution and the spectral density of the bath J(!) =
P

q|gq|2!2

q�(!�!q),

where �(!) is the Dirac delta function.

For the Hamiltonian specified in Eq. 5.1, the Redfield tensor elements are given by

Rab,cd = �db,ac(!ca) + �⇤
ca,bd(!db)

� �bd
X

e

�ae,ec(!ce)� �ac
X

e

�⇤
be,ed(!de).

(5.7)

where �ij is the Kronecker delta and

�ab,cd(!dc) =
1

2
⇣ab,cdC(!dc) +

i

2⇡
⇣ab,cdP

✓Z 1

�1

C(!)

!dc � !
d!

◆
, (5.8)

⇣ab,cd =
X

n,m

(U�1)anUnb(U
�1)cmUmde

�Rmn/Rcorr , (5.9)

with P denoting the Cauchy principal value of the integral and Una = hsn |ea i the transfor-
mation matrix elements relating the site basis {|sni} and the excitonic basis {|eai}. Since

|eai =
P

n Una |sni, then |Una|2 can be interpreted as the contribution of the n-th site to

the a-th eigenstate of Ĥs.
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Hereafter, we will focus on QDs as our prototypical experimental realization. We

neglect possible inversion asymmetry of the crystal, and therefore the contribution of the

piezoelectric coupling, and focus instead on the deformation potential coupling. As shown

by Calarco et al. [33], the spectral density describing this coupling (in the absence of an

external electric field) is given by

J(!) = ⇥(!)⌘!3e�!2/!2

c , (5.10)

where, ⇥(!) is the Heaviside step function. We use typical values for GaAs QDs for our

numerical simulations [126], giving ⌘ = (De�Dh)
2

4⇡2⇢u5~ = 0.035 ps2 and !c =
p
2u2/l2 = 1.41

ps�1, where De (Dh) is the deformation coupling potential for electron (hole), u the speed

of sound within the quantum dot, ⇢ its mass density and l the ground state localization

length, assumed to be the same for electron and holes. We also assume a correlation length,

R
corr

, of 3 nm. We consider a typical GaAs QD with deformation potentials De = �14.6

eV, Dh = �4.8 eV, mass density of ⇢ = 5.4 g/cm3, speed of sound u = 5000 cm/s, and

radius of l = 5 nm.

Using Eqns. 5.7-5.9, the population transfer rates, kab, between the eigenstates a ! b

is given by,

kab = Rbb,aa = ⇣ab,baC(!ab). (5.11)

This equation is central to our insight into designing excitonic transfer. Though derived for

a di↵erent regime, the form of Eq. 5.11 is similar to the widely used rate equation in Förster

theory (incoherent limit). The latter has been successfully applied in fluorescence resonance

energy transfer (FRET) to design chromophores for biosensing assays [114, 163, 130] and was

recently verified experimentally for semiconductor QDs [104]. We use the simple structure

of Eq. 5.11 to gain microscopic and experimentally relevant insight into engineering directed

and optimized EET. While C(!ab) depends on the overlap of system eigenenergies with the

spectral properties of the phonon bath (e.g., lattice vibrations, solvent, protein environment,

etc.), ⇣ depends on the transformation matrix U in Eq. 5.9, determined by the relative

magnitude of electronic couplings with respect to site energies, site connectivity, and spatial

correlation between sites. The aim is then to maximize (minimize) the product of these two

factors in Eq. 5.11 to favor (suppress) the desired rates.

To illustrate the applicability of Eq. 5.11, we choose two three-site examples to highlight

the importance of the phonon bath interaction to achieve directed EET (Fig. 5.1). Since

multiplying a system Hamiltonian by a scalar does not change the maximum exciton transfer

probability in the coherent limit, the distances and site energies for the two cases are

chosen so that the Hamiltonians are related by a multiplicative factor (3.5Ĥ1
s = Ĥ2

s ). As

a consequence, the ⇣ values are roughly the same for cases 1 and 2 (Table 5.1); slight

di↵erences are introduced by the bath correlation term in Eq. 5.9. In the cases chosen, the
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fully coherent evolution gives a maximum probability of finding an excitation of 5% (1%)

for site 1(2). Therefore, any di↵erence between the two examples is a result of interaction

with the environment.

In contrast to the ⇣ factors, the C(!ab) values for cases 1 and 2 di↵er by at least

one order of magnitude due the position of the transition frequencies with respect to the

spectral density (Table 5.1). Any changes to the system Hamiltonian can a↵ect C(!ab). In

our examples, the scalar factor mentioned above changes the C(!ab) such that the largest

population transfer rate is switched from site 1 to site 2 since !1
31

⇡ !2
32

and C(!1
31

) ⇡ C(!2
32

)

(Fig. 5.1).

From the values of ⇣ and C(!ab), it is clear that case 1 is designed such that an

excitation starting on site 3 will tend to transfer to site 1, but in case 2 the population

will go to site 2, albeit at di↵erent rates. Simulations of the quantum dynamics according

to Redfield theory confirms this result (Fig. 5.2). Over the typical exciton lifetime of 1 ns

in QDs, we not only achieve directed transfer, but also population enhancement compared

to both the maximum site population during fully coherent dynamics and the population

expected at thermal equilibrium.

Moreover, while there are always experimental limitations in tuning parameters, the

structure of Eq. 5.11 is valuable since it partitions the e↵ects due to the system and bath.

Using the calculated rates and/or a visual inspection of C(!) (Fig. 1B), it is easy to

determine the impact of varying a system parameter on exciton transfer. Future work will

address exciton and electron transfer between sites with varying spectral density functions,

as well as the role of aligning dipole moment orientations in engineering EET. We are also

working to identify regimes in which preserved coherences enhance or reduce the e�ciency

of excitonic transfer. Of course, in situations where multiple excitons are present in the

system due to incident light intensity, frequency range, and/or optical spectral density of

Table 5.1: Contributions of the system factor, ⇣ab,ba, and of the overlap between transition
frequency and phonon bath spectral properties, C(!ab), to the calculation of the quantum
kinetic rates kab from energy eigenstate |eai to |ebi. The two cases considered are described
in Fig. 5.1.

Case 1 Case 1

|eai ! |ebi log ⇣ logC log k log ⇣ logC log k

3 ! 1 -1.5 11.6 10.0 -1.5 7.9 6.3

3 ! 2 -2.4 10.7 8.3 -2.4 11.6 9.1

2 ! 1 -4.3 11.4 7.1 -4.3 10.2 5.8
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Figure 5.1: Two cases of a three-site system are considered. A) Scaled schematic of system
spacing and energy levels with details of variable site energies (En) and intersite Förster
coupling strengths (Jmn). For QDs with transition dipole moments aligned perpendicular
to Rmn, Jmn = 100meV/R3

mn, with Rmn in nanometers [140]. B) Frequency correlation
function for a superohmic spectral density. Energy basis transition frequencies for case 1
(2) are indicated by solid (dashed) vertical lines.
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Figure 5.2: A) Site basis population probabilities for an excition starting on site 3 for case
1 (Ai) and case 2 (Aii) demonstrate the change in transfer dynamics obtained by scaling
the Hamiltonian. Dashed lines indicate site populations at thermal equilibrium. B) Energy
basis coherences for case 1 (Bi) and case 2 (Bii) display characteristic oscillations and
damping over the course of 1 ns, a typical recombination time in QD systems.

the quantum dots, the Hamiltonian used to describe the system needs to be expanded

accordingly [108]. To the extent that each exciton couples to the environment through a

spectral density as described in this chapter, some of the intuition developed here should

be transferable to these systems. However, there are a number of interesting complications,

including many-body interactions among the excitons and their components; these e↵ects

are currently under investigation and are beyond the scope of the current communication.

5.3 Conclusion

In summary, we develop a framework for engineering environment-assisted and directed

excitonic transfer in a network of coupled QDs based on a quantum kinetic rate approach.

We emphasize the importance of how characteristic frequencies of a system fit within the

spectral bath structure. Our examples utilize the factored and intuitive form of the popula-

tion transfer rates equation, which separates the contributions from the system (electronic)
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and bath (vibrational) degrees of freedom. This equation is similar in spirit to the rate

equation for FRET, making it convenient to design interesting scenarios for environment-

assisted transfer. Although we focus on QD examples, the principles presented here form

the basis for engineering a wide range of desired EET in a variety of nanostructures or

artificial molecular photosynthetic units.



Chapter 6

Conformation of self-assembled porphyrin dimers

in liposome vesicles by phase-modulation 2D

fluorescence spectroscopy

Summary

By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy,

we studied the conformation-dependent exciton coupling of a porphyrin dimer embedded

in a phospholipid bilayer membrane. Our measurements specify the relative angle and

separation between interacting electronic transition dipole moments and thus provide a

detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spec-

troscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those

obtained using 2D photon-echo spectroscopy. Specifically, we studied magnesium meso

tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-

glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spec-

tra show that although a wide range of dimer conformations can be inferred by either the

linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra

constrain the possible structures to a T-shaped geometry. These experiments establish the

PM-2D FS method as an e↵ective approach to elucidate chromophore dimer conformation.

6.1 Introduction

The ability to determine three-dimensional structures of macromolecules and macro-

molecular complexes plays a central role in the fields of molecular biology and material

science. Methods to extract structural information from experimental observations such as

X-ray crystallography, NMR, and optical spectroscopy are routinely applied to a diverse

array of problems, ranging from investigations of biological structure-function relationships
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to the chemical basis of molecular recognition.

In recent years, two-dimensional optical methods have become well established to re-

veal incisive information about noncrystalline macromolecular systemsinformation that is

not readily obtainable by conventional linear spectroscopic techniques. Two- dimensional

optical spectroscopy probes the nanometer-scale couplings between vibrational or electronic

transition dipole moments of neighboring chemical groups, similar to the way NMR detects

the angstrom-scale couplings between adjacent nuclear spins in molecules [62]. For example,

2D IR spectroscopy probes the couplings between local molecular vibrational modes and has

been used to study the structure and dynamics of mixtures of molecular liquids [113], aque-

ous solutions of proteins [63], and DNA [187]. Similarly, 2D electronic spectroscopy (2D ES)

probes correlations of electronic transitions and has been used to study the mechanisms of

energy transfer in multichromophore complexes. Such experiments have investigated the de-

tails of femtosecond energy transfer in photosynthetic proteinpigment arrays [31, 44, 1, 74],

conjugated polymers [43], and semiconductors [214, 185].

Following the examples established by 2D NMR and 2D IR, 2D ES holds promise as a

general approach for the structural analysis of noncrystalline macromolecular systems, al-

beit for the nanometer length scales over which electronic couplings occur. It is well known

that disubstitution of an organic compound with strongly interacting chromophores can lead

to coupling of the electronic states and splitting of the energy levels [112, 184, 128]. The

arrangement of transition dipoles a↵ects both the splitting and the transition intensities,

which can be detected spectroscopically. Nevertheless, weak electronic couplings relative to

the monomer linewidth often limits conformational analysis by linear spectroscopic meth-

ods alone. Two-dimensional ES has the advantage that spectroscopic signals are spread

out along a second energy axis and can thus provide the information needed to distin-

guish between di↵erent model-dependent interpretations. Several theoretical studies have

examined the 2D ES of molecular dimers [198, 186, 41, 107, 25], and the exciton-coupled

spectra of multichromophore light harvesting complexes have been experimentally resolved

and analyzed [157, 156, 169].

Because of its high information content, 2D ES presents previously undescribed pos-

sibilities to extract quantum information from molecular systems and to determine model

Hamiltonian parameters [212]. For example, experiments by Hayes and Engel extracted

such information for the FennaMatthewsOlsen light harvesting complex [89]. Recently, it

was demonstrated by Brinks et al. that single molecule coherences can be prepared using

phased optical pulses and detected using fluorescence [30]. The latter experiments exploit

the inherent sensitivity of fluorescence and demonstrate the feasibility to control molecular

quantum processes at the single molecule level. Fluorescence-based strategies to 2D ES,

such as presented in the current work, could provide a route to extract high purity quan-
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tum information from single molecules. It may also be a means to study molecular systems

in the ultraviolet regime where background noise due to solvent-induced scattering limits

ultrafast experiments.

Here we demonstrate a phase-modulation approach to 2D ES that sensitively detects

fluorescence to resolve the exciton coupling in dimers of magnesium meso tetraphenyl-

porphyrin (MgTPP), which are embedded in 1,2-distearoyl-sn-glycero-3- phosphocholine

(DSPC) liposomal vesicles. MgTPP is a nonpolar molecule that preferentially enters the

low dielectric amphiphilic regions of the phospholipid bilayer. At intermediate concen-

tration, MgTPP forms dimers as evidenced by changes in the linear and 2D absorption

spectra. Quantitative comparison between our measurements and simulated spectra for a

broad distribution of selected conformations, screened by a global optimization procedure,

shows that the information contained in linear spectra alone is not su�cient to determine a

unique structure. In contrast, the additional information provided by 2D spectra constrains

a narrow distribution of conformations, which are specified by the relative separation and

orientations of the MgTPP macrocycles.

In our approach, called phase-modulation 2D fluorescence spectroscopy (PM-2D FS),

a collinear sequence of four laser pulses is used to excite electronic population [190]. The

ensuing nonlinear signal is detected by sweeping the relative phases of the excitation pulses

at approximately kilohertz frequencies and by using lock-in amplification to monitor the

spontaneous fluorescence. This technique enables phase-selective detection of fluorescence

at su�ciently high frequencies to e↵ectively reduce laboratory 1/f noise. Because the

PM-2D FS observable depends on nonlinear populations that generate fluorescence, a dif-

ferent combination of nonlinear coherence terms must be considered than those of standard

photon-echo 2D ES (referred to hereafter as 2D PE). In 2D PE experiments, the signala

third-order polarization generated from three noncollinear laser pulsesis detected in trans-

mission. The 2D PE signal depends on the superposition of well-known nonlinear absorption

and emission processes, called ground-state bleach (GSB), stimulated emission (SE), and

excited-state absorption (ESA) [138]. Analogous excitation pathways contribute to PM-2D

FS. However, the relative signs and weights of contributing terms depend on the fluorescence

quantum e�ciencies of the excited-state populations. Equivalence between the two methods

occurs only when all excited-state populations fluoresce with 100% e�ciency [188]. Thus,

self-quenching of doubly excited exciton population can give rise to di↵erences between the

spectra obtained from the two methodsdi↵erences that may depend, in themselves, on dimer

conformation. For the conformations realized in the current study, we find that the PM-2D

FS and 2D PE methods produce spectra with characteristic features distinctively di↵erent

from one another.



Chapter 6: Phase-modulation 2D fluorescence spectroscopy 102

6.2 Exciton-Coupled Dimer of Three-Level Molecules

Monomers of MgTPP have two equivalent perpendicular transition dipole moments

contained within the plane of the macrocycle (see Fig. 6.1B, Inset). These define the

directions of degenerate Qx and Qy transitions between the ground and lowest lying excited

electronic states [75, 184, 112, 205]. Both transition moments contribute to the collective

exciton interactions in a molecular complex, as illustrated in Fig. 6.1A. To specify dimer

conformations, we adopt a molecular-frame coordinate system similar to that described in

refs. [184] and [112]. For each monomer, a right-handed coordinate system is taken with

the x and y axes lying parallel to the Qx and Qy transition directions, and the z axis

perpendicular to the porphyrin plane. We adopt the convention that a conformation is

specified by the monomer center-to-center vector R, which is oriented relative to molecule

1 according to polar and azimuthal angles ✓ and �. The relative orientation of molecule 2 is

given by the Euler angles ↵ and �. Because of the degeneracy of the Qx and Qy transitions,

all of the results are independent of the third Euler angle, �, which we set to zero from this

point on [112].

For the Hamiltonian of a dimer of chemically identical three-level molecules in which

system-bath e↵ects are neglected, one defines the tensor product states {|iji} where i, j =

g, x, y respectively label the states on monomer 1 and 2, and {|iji} is the dimer Hilbert

space basis. Notice x (y) is short-hand notation for the excited electronic state associated

with the Qx (Qy) transition on each monomer.

Within this localized basis description, one can write the molecular Hamiltonian for

the dimer

Ĥ = Ĥ(1) + Ĥ(2) + V̂ = Ĥ
0

+ V̂ , (6.1)

where Ĥ(1) (Ĥ(2) is the Hamiltonian associated with monomer 1 (monomer 2). Within the

point-dipole approximation, the electronic coupling term can be expressed as

V̂ =
1

4⇡"R3

µ̂
1

·
✓
1� 3

RR

R2

◆
· µ̂

2

, (6.2)

with R the monomer center-to-center vector, µ̂
1

(µ̂
2

) the dipole operator for monomer 1

(monomer 2), and " the dielectric constant.

We simplify our notation by denoting the nine basis states {|lii}, with |l
1

i = |ggi,
|l
2

i = |xgi, |l
3

i = |ygi, |l
4

i = |gxi, |l
5

i = |gyi, |l
6

i = |xxi, |l
7

i = |xyi, |l
8

i = |yxi,
|l
9

i = |yyi. In this basis, the total Hamiltonian can be written as a nine-by-nine matrix of

the form [112]:
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between our measurements and simulated spectra for a broad
distribution of selected conformations, screened by a global op-
timization procedure, shows that the information contained in
linear spectra alone is not sufficient to determine a unique struc-
ture. In contrast, the additional information provided by 2D
spectra constrains a narrow distribution of conformations, which
are specified by the relative separation and orientations of the
MgTPP macrocycles.

In our approach, called phase-modulation 2D fluorescence
spectroscopy (PM-2D FS), a collinear sequence of four laser
pulses is used to excite electronic population (26). The ensuing
nonlinear signal is detected by sweeping the relative phases of the
excitation pulses at approximately kilohertz frequencies and by
using lock-in amplification to monitor the spontaneous fluores-
cence. This technique enables phase-selective detection of fluor-
escence at sufficiently high frequencies to effectively reduce
laboratory 1∕f noise. Because the PM-2D FS observable depends
on nonlinear populations that generate fluorescence, a different
combination of nonlinear coherence terms must be considered
than those of standard photon-echo 2D ES (referred to hereafter
as 2D PE). In 2D PE experiments, the signal—a third-order
polarization generated from three noncollinear laser pulses—is
detected in transmission. The 2D PE signal depends on the super-
position of well-known nonlinear absorption and emission pro-
cesses, called ground-state bleach (GSB), stimulated emission
(SE), and excited-state absorption (ESA) (27). Analogous excita-
tion pathways contribute to PM-2D FS. However, the relative
signs and weights of contributing terms depend on the fluores-
cence quantum efficiencies of the excited-state populations.
Equivalence between the two methods occurs only when all ex-
cited-state populations fluoresce with 100% efficiency (28). Thus,
self-quenching of doubly excited exciton population can give rise
to differences between the spectra obtained from the two meth-
ods—differences that may depend, in themselves, on dimer con-
formation. For the conformations realized in the current study,
we find that the PM-2D FS and 2D PE methods produce spectra
with characteristic features distinctively different from one
another.

Results and Discussion
Monomers of MgTPP have two equivalent perpendicular transi-
tion dipole moments contained within the plane of the porphyrin
macrocycle (see Fig. 1B, Inset). These define the molecular-frame
directions of degenerate Qx and Qy transitions between ground
jgi and lowest lying excited electronic states, jxi and jyi. The col-
lective state of two monomers is specified by the tensor product
jiji ½i;j ∈ fg;x;yg", where the first index is the state of monomer 1
and the second that of monomer 2. When two MgTPP monomers
are brought close together, their states can couple through reso-
nant dipole–dipole interactions Vkl ½k;l ∈ fjijig" with signs and
magnitudes that depend on the dimer conformation. We adopt
the convention that a conformation is specified by the monomer
center-to-center vector ~R, which is oriented relative to molecule 1
according to polar and azimuthal angles θ and ϕ, and the relative
orientation of molecule 2 is given by the Euler angles α and β (see
Fig. 1A and details provided in SI Text). The effect of the inter-
action is to create an exciton-coupled nine-level system, with
states labeled jXni, comprised of a single ground state (n ¼ 1),
four singly excited states (n ¼ 2–5), and four doubly excited states
(n ¼ 6–9). Transitions between states are mediated by the collec-
tive dipole moment, miu1 þmiu2, which also depends on the
structure of the complex.

In Fig. 1B are shown vertically displaced linear absorption
spectra of MgTPP samples prepared in toluene, and 70∶1 and
7∶1 1,2-distearoyl-sn-glycero-3-phosphocholine ðDSPCÞ∶MgTPP
liposomes. For the 70∶1 sample, the line shape and position of the
lowest energy Qð0;0Þ feature, centered at 606 nm, underwent a
slight redshift relative to the toluene sample at 602 nm. For

the elevated concentration 7∶1 sample, the line shape broadened,
suggesting the presence of a dipole–dipole interaction and exci-
ton splitting between closely associated monomer subunits.

In principle, it is possible to model the linear absorption spec-
trum in terms of the structural parameters ~R, α and β that deter-
mine the couplings Vkl and the collective dipole moments, and
which ultimately determine the energies and intensities of the
ground-state accessible transitions. To test the sensitivity of the
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Fig. 1. (A) Energy level diagram of two chemically identical three-level
molecules, each with degenerate transition dipole moments directed along
the x and y axes of the molecular frames. (Inset) A random configuration of
two MgTPP monomers whose relative conformation is defined by the mole-
cular center-to-center vector ~R and the angles θ, ϕ, α, and β. Electronic inter-
actions result in an exciton-coupled nine-level system, with a single ground
state, four nondegenerate singly excited states, and four doubly excited
states. Multipulse excitation can excite transitions between ground, singly
excited, and doubly excited state manifolds. (B) Absorption spectra of the
MgTPP samples studied in this work. Spectra are vertically displaced for
clarity. The samples correspond to MgTPP in toluene (Bottom), aqueous lipo-
some suspension with 70∶1 DSPC∶MgTPP (Middle), and 7∶1 DSPC∶MgTPP
(Top). The dashed vertical line represents the lowest energy monomer transi-
tion energy used in our calculations. (Insets) Molecular formulas for MgTPP
and lipid DSPC. (C) Overlay of the 7∶1 DSPC∶MgTPP absorbance and the laser
pulse spectrum. The laser spectrum (solid black curve) has been fit to a Gaus-
sian (dashed gray curve) with center frequency 15;501 cm−1 (606 nm), and
FWHM ¼ 327.0 cm−1 (12 nm). The linear absorbance (solid black curve) is
compared to the simulated spectrum (dashed black curve), which is based
on the “T-shaped” conformation (Inset). Also shown are the positions of
the underlying exciton transitions (discussed in text).
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Figure 6.1: (A) Energy level diagram of
two chemically identical three-level molecules,
each with degenerate transition dipole mo-
ments directed along the x and y axes of the
molecular frames. The inset shows a random
configuration of two MgTPP monomers whose
relative conformation is defined by the molec-
ular center-to-center vector R and the angles
✓, �, ↵, and �. Electronic interactions results
in an exciton-coupled nine-level system, with
a single ground state, four non-degenerate
singly-excited states, and four doubly-excited
states. Multi-pulse excitation can excite tran-
sitions between ground, singly-excited, and
doubly-excited state manifolds. (B) Absorp-
tion spectra of the MgTPP samples stud-
ied in this work. Spectra are vertically dis-
placed for clarity. The samples correspond
to MgTPP in toluene (bottom), aqueous li-
posome suspension with 70:1 DSPC:MgTPP
(middle), and 7:1 DSPC:MgTPP (top). The
dashed vertical line represents the lowest en-
ergy monomer transition energy used in our
calculations. The insets show molecular for-
mulas for MgTPP and lipid DSPC. (C) Over-
lay of the 7:1 DSPC:MgTPP absorbance and
the laser pulse spectrum. The laser spec-
trum (solid black curve) has been fit to a
Gaussian (dashed gray curve) with center fre-
quency 15,501 cm�1 (606 nm), and FWHM =
327.0 cm�1 (12 nm). The linear absorbance
(solid black curve) is compared to the simu-
lated spectrum (dashed black curve), which
is based on the T-shaped conformation shown
in the inset. Also shown are the positions of
the underlying exciton transitions (discussed
in text).
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(6.3)

Here we have assumed all the diagonal contributions in the terms associated with Ĥ
0

,

i.e., we have assumed that hli|V̂ |lii = 0 for all li. To set the reference energy scale, we

set ✏(i)g = 0 with Ĥ(i) |gi = ✏(i)g |gi, and therefore Ĥ
0

|ggi = (✏(1)g + ✏(2)g ) |ggi = 0 |ggi. The

value of ✏
1

used in our simulation was 16,500.7 cm�1, which corresponds to the monomer

excitation energy associated with either of the degenerate Qx or Qy transitions for the 70:1

sample (see Fig. 6.1). Then Ĥ
0

|lki = ✏k |lki with ✏k = ✏
1

for any of the states containing

one excitation(k = 2�5) and ✏k = 2✏
1

for the states containing two-excitations (k = 6�9).

Diagonalization of the Hamiltonian is straightforward since it involves only the 4⇥ 4 block

associated with the singly-excited state manifold. Note that the eigenenergies of the singly-

excited state manifold correspond to the exciton transitions underlying the region of interest

in the experimental and simulated linear spectra. The positions of these eigenenergies

depend on the structural parameters of the dimer through the dependence on the couplings:

Vij =
1

4⇡"R3

(µ
1

)ij ·
✓
1� 3

RR

R2

◆
· (µ

2

)ij =
µ2

4⇡"R3

2ij . (6.4)

Here the orientation factor 2ij is related to the directions of the transition dipole

moments and this vector connecting their centers according to 2ij = (µ
1

)ij ·(µ
2

)ij�3[(µ
1

)ij ·
R R][R · (µ

2

)ij ], where R = (sin ✓ cos�, sin ✓ sin�, cos ✓) is the monomer center-to-center

unit vector, and (µ
n
)ij = hli|µ̂n|lji/|µ| is the normalized transition dipole moment operator.

The relationship between the square of the monomer transition dipole moment and its

absorption coe�cient ↵, is given by [78]:

|µ|2 = 3"~c
⇡NA

Z 1

�1
d⌫̄
↵(⌫̄)

⌫̄
. (6.5)

In Eq. 6.5, " in the dielectric constant of the medium, ~ in Planck’s constant divided

by 2⇡, c is the speed of light, and NA is Avogadro’s number. The factor
R1
�1 d⌫̄ ↵(⌫̄)

⌫̄ is the

optical linewidth of the Q(0, 0) transition, measured in wave numbers, and divided by its

peak value. We estimated this number by numerical integration of the lineshape to be 44.3

M�1 cm�1.
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6.3 Comparison between PM-2D FS and 2D Photon Echo

Spectroscopy (2D PE)

The PM-2D FS and 2D PE methods are conceptually similar, yet important distin-

guishing factors can result in their non-equivalence. The 2D PE signal can be interpreted as

the third-order polarization of the sample, which is the source of the detected signal field.

In contrast, PM-2D FS is a technique based on fluorescence-detection (2). The signal may

be considered proportional to the fourth-order excited state population. We thus compare

the signals of the two methods based on interpretation of 2D PE signals using third-order

perturbation theory, and PM-2D FS signals using fourth-order perturbation theory.

We consider the semiclassical light-matter interaction Hamiltonian,

Ĥsc = Ĥ
0

+ Ĥint(t), Ĥint(t) = �µ̂ ·E(t). (6.6)

In PM-2D FS experiments, the electric field for P sequential collinear pulses polarized in

the x̂ direction can be described by E(t) =
PP

j Ej(t)x̂, where

Ej(t) = �jAj(t� tj) cos(!j(t� tj) + �j), (6.7)

with �j the electric field maximum intensity, Aj(t� tj) = e
� 4 ln 2

⌧2
fwhm

(t�tj)
2

the pulse envelope,

and !j is the laser frequency for the j-th pulse. In 2D PE, the pulses are analogously

described by Ej(t) = �jAj(t� tj) cos(!j(t� tj)� kj · r).
Using density matrix formalism, the evolution of the system is described by the Liouville-

von Neumann equation,

i~@⇢̂I(t)
@t

= [ĤI,int(t), ⇢̂I(t)], (6.8)

written in the interaction picture, where ÔI(t) ⌘ ei
ˆH
0

(t�t
0

)Ôe�i ˆH
0

(t�t
0

).

A formal and useful solution to Eq. 6.8 is,

⇢̂I(t) = ⇢̂I(t0) +
1X

n=1

⇢̂(n)I (t), (6.9)

with,

⇢̂(n)I (t) ⌘ (�1)n
✓
i

~

◆n Z t

t
0

d⌧n

Z ⌧n

t
0

d⌧n�1

· · ·
Z ⌧

2

t
0

d⌧
1

[ĤI,int(⌧n), [ĤI,int(⌧n�1

), [

· · · , [ĤI,int(⌧1), ⇢̂I(t0)] · · · ]]]
(6.10)

The expectation value of any observable, hÔ(t)i ⌘ tr{Ô(t)⇢̂(t)} = tr{ÔI(t)⇢̂I(t)} can

be expressed as, hÔI(t)i =
P1

n=0

hÔn
I (t)i, with, hÔn

I (t)i ⌘ tr{ÔI(t)⇢̂
(n)
I (t)}.
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As mentioned above, the 2D PE signal is associated with the third-order polarization

and therefore requires,

P(3)(t) ⌘ hµ̂(3)(t)i ⌘ tr{µ̂I(t)⇢̂
(3)

I (t)} (6.11)

while the PM-2D FS signal is associated with the fourth-order excited state population,

Â(4)(t) = hÂ(t)i ⌘ tr{Â(t)⇢̂(4)I (t)}, (6.12)

with A =
P

⌫ |⌫i h⌫| the projector into all the states {|⌫i} of the excited state manifold.

We focus our discussion to the case of the nine-level model of the exciton-coupled dimer

(see Fig. 6.1). 2D PE signals have been extensively derived and studied for this model [138,

40]. In Fig. 6.2, we show the double-sided Feynman diagrams (DSFD) contributing to

the non-rephasing and rephasing signals, collected in the phase-matching direction KI ⌘
k
1

�k
2

+k
3

and KII ⌘ �k
1

+k
2

+k
3

, respectively. Neglecting dissipation for the moment,

and assuming the rotating wave approximation in the impulsive limit [138], one obtains the

following expressions for each one of the non-rephasing terms,

R⇤
1a /

X

e,e0

[µegµgeµe0gµge0]e1e2e3e4e
�i!eg⌧e�i!e0gt (6.13)

R
2a /

X

e,e0

[µegµge0µe0gµge]e1e2e3e4e
�i!eg⌧e�i!ee0T e�i!egt (6.14)

R⇤
3b /

X

e,e0,f

[µegµge0µfeµe0f ]e1e2e3e4e
�i!eg⌧e�i!ee0T e�i!fe0 t (6.15)

Similarly, the rephasing terms are,

R
4a /

X

e,e0

[µgeµegµge0µge0]e1e2e3e4e
�i!ge⌧e�i!e0gt (6.16)

R
3a /

X

e,e0

[µgeµe0gµegµge0]e1e2e3e4e
�i!ge⌧e�i!e0eT e�i!e0gt (6.17)

R⇤
2b /

X

e,e0,f

[µgeµe0gµfe0µef ]e1e2e3e4e
�i!ge⌧e�i!e0eT e�i!fet (6.18)

Here, e, e0 2 {X
2

, X
3

, X
4

, X
5

} is the singly-excited manifold after diagonalization of the

4 ⇥ 4 block of the Hamiltonian in Eq. 6.3, and f 2 {X
6

, X
7

, X
8

, X
9

} is the doubly-excited

state manifold, and [µabµcdµjkµlm]e1e2e3e4 denotes the three-dimensional orientational

average product [40], h(µab · e1)(µcd · e2)(µjk · e3)(µlm · e4)i, where ei denotes the

polarization of the ith pulse.
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The detailed derivation of these expressions and their relation to the PM-2D FS terms

will be published elsewhere [150]. In Fig. 6.2, we present the corresponding PM-2D FS

non-rephasing and rephasing DSFDs obtained from the fourth-order perturbation expan-

sion (Eq. 6.12). For our current purposes, we provide here the connection to the 2D PE

expressions presented in Eqs. 6.13-6.18. For example, it can be shown that in the case of the

non-rephasing contributions, the following relations between 2D PE and PM-2D FS hold:

R⇤
1a = Q⇤

5a ⌘ GSB
1

, R
2a = Q

2a ⌘ ESE
1

, R⇤
3b = Q⇤

3b ⌘ ESA
1

, and also Q⇤
3b = Q

7b. For the

rephasing signals we have: R
4a = Q

4a ⌘ GSB
2

, R
3a = Q

3a ⌘ ESE
2

, R⇤
2b = Q⇤

2b ⌘ ESA
2

,

and Q⇤
2b = Q⇤

8b.

Although most of the 2D PE and PM-2D FS contributions are equal, there are two key

di↵erences making their signals di↵erent:

1. Since PM-2D FS is a fluorescence detected technique, it is important to consider the

nature of the resulting excited state of the the system after the interaction with the

four ultrafast pulses. As a consequence, even though mathematically Q⇤
3b = Q

7b

(Q⇤
2b = Q⇤

8b), they do not contribute equally, because the terms Q⇤
3b (Q⇤

2b) end up

in the singly-excited manifold {|ei} while Q
7b (Q⇤

8b) end up in the doubly-excited

state |fi. Since the quantum yield of singly- and doubly-excited states are di↵erent,

we need to take into account this fact when simulating the signals. We introduced

a multiplicative factor � in front of the diagrams ending in a doubly-excited popu-

lation (see Q
7b and Q⇤

8b in Fig. 6.2) to capture the relative quantum yield of this

doubly-excited state compared to the singly-excited states. Due to the abundance of

non-radiative relaxation pathways for highly excited states, one expects the relative

quantum yield of the doubly-excited states to be significantly smaller than the singly-

excited states. In a fully ideal coherent case, where two-photons are emitted via the

pathway |fi ! |ei ! |gi, then � = 2. In general, 0  �  2. For the dimer studied

in the current work, the value of � = 0.31 was obtained from the global optimization

that compared simulated and experimental spectra. A visual illustration of these dif-

ferences can be found in Fig. 6.5, where we compare for three di↵erent conformations

PM-2D FS spectra (� = 0.31) to the corresponding 2D PE spectra (� = 2). Table 6.2

shows the sensitivity of the optimization target function to the parameter � around

the optimal value of 0.31.

2. The GSB, SE and ESA terms add up di↵erently for 2D PE and PM-2D FS. This is a

consequence of the third-order versus fourth-order perturbation approach respectively.

This is the main reason for the di↵erent appearances of PM-2D FS versus 2D PE

spectra.
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The non-rephasing and rephasing 2D PE signals are written:

S2DPE
NRP (⌧, T, t) / R⇤

1a +R
2a �R⇤

3b

/ GSB
1

+ ESE
1

� ESA
1

(6.19)

S2DPE
RP (⌧, T, t) / R

4a +R
3a �R⇤

2b

/ GSB
2

+ ESE
2

� ESA
2

(6.20)

Taking account of the di↵erences between the two methods mentioned above, and

making use of Fig. 6.2, the non-rephasing and rephasing PM-2D FS signals are written:

SPM�2DFS
NRP (⌧, T, t) / �(Q⇤

5a +Q
2a +Q⇤

3b � �Q
7b)

/ �[GSB
1

+ ESE
1

+ (1� �)ESA
1

]
(6.21)

SPM�2DFS
RP (⌧, T, t) / �(Q

4a +Q
3a +Q⇤

2b � �Q⇤
8b)

/ �[GSB
2

+ ESE
2

+ (1� �)ESA
2

]
(6.22)

Although the signal expressions corresponding to the two techniques are closely related,

the variable sign contribution of the ESA terms in the PM-2D FS expressions (Eqns. 6.21

and 6.22), in comparison to the well known negative sign ESA contribution in 2D PE

spectroscopy (Eqns. 6.19 and 6.20), can lead to considerably di↵erent appearances of the

2D spectra. The di↵erences in sign assignments of these terms arises from the commutator

expansions of Eq. 6.10.

In the current work, we have considered the case where the population time T = 0 fs. To

account for optical dephasing, inhomogeneous broadening and other dissipative processes,

we multiplied each term given by Eqns. 6.19 - 6.22 by a phenomenological line broadening

function which is assumed to be gaussian in both coherence times, ⌧ and t. That is, the

rephasing signals were multiplied by the factors e�⌧2/�2

RP and e�t2/2

RP . Similarly, we have

used factors that contain the parameters �NRP and NRP to describe the broadening of the

non-rephasing signals. Fourier transformation of these equations to the !⌧ and !t domains

provide the real, imaginary, and absolute value 2D spectra presented in Fig. 6.4, with very

good agreement to experiment. We note that while the intensities and positions of 2D

optical features are well accounted for by the molecular dimer Hamiltonian, the observed

spectral lineshapes deviate markedly from this simple model. The asymmetric lineshapes

could be due to a number of factors, including di↵erences in the system-bath coupling and

population times of the various excited states, as well as the e↵ects of laser pulse overlap.

Understanding the origins of the lineshape asymmetries is important to future studies.
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6.4 Results and discussion

As discussed in Sec. 6.2, the e↵ect of the interaction is to create an exciton-coupled

nine-level system, with states labeled |Xni, comprised of a single ground state (n = 1), four

singly-excited states (n = 2 � 5), and four doubly-excited states (n = 6 � 9). Transitions

between states are mediated by the collective dipole moment, µ
1

+µ
2

, which also depends

on the structure of the complex.

In Fig. 6.1B are shown vertically displaced linear absorption spectra of MgTPP samples

prepared in toluene, and 70:1 and 7:1 1,2-distearoyl-sn-glycero-3- phosphocholine (DSPC):

MgTPP liposomes. For the 70:1 sample, the lineshape and position of the lowest energy

Q(0, 0) feature, centered at 606 nm, underwent a slight red- shift relative to the toluene

sample at 602 nm. For the elevated concentration 7:1 sample, the lineshape broadened,

suggesting the presence of a dipole-dipole interaction and exciton splitting between closely

associated monomer subunits.

In principle, it is possible to model the linear absorption spectrum in terms of the struc-

tural parameters R, ↵, and � that determine the couplings Vkl and the collective dipole

moments, and which ultimately determine the energies and intensities of the ground-state

accessible transitions. To test the sensitivity of the linear absorption spectrum to di↵er-

ent conformational models, we numerically generated approximately 1000 representative

conformations and simulated their linear spectra (details provided in Appendix 6.8). By

comparing experimental and simulated data, we established that a wide distribution of

approximately 100 conformations can reasonably explain the linear absorption spectrum.

Nevertheless, only a very small conformational sub-space could be found to agree with the

experimental 2D spectra, and which is also consistent with the linear spectrum. In Fig. 6.1C

is shown the simulated linear spectrum and the four underlying component transitions of

the optimized “T-shaped” conformation. The linear spectrum corresponding to this con-

formation is composed of two intense spectral features at 16,283 cm�1 and 16,619 cm�1,

one weak feature at 16,718 cm�1, and one e↵ectively dark feature at 16,382 cm�1 (see Ap-

pendix 6.8). The relatively unrestrictive constraint imposed on dimer conformation by the

linear spectrum is a consequence of the many possible arrangements and weights that can

be assigned to the four overlapping Gaussian features with broad spectral width.

The PM-2D FS method uses four collinear laser pulses to resonantly excite electronic

population, which depends on the overlap between the lowest energy electronic transition

[the Q(0, 0) feature] and the laser pulse spectrum (as shown in Fig. 6.1C). We assigned the

nonlinear coherence terms GSB, SE and ESA to time-ordered sequences of laser-induced

transitions that produce population on the manifold of singly-excited states (n = 2�5) and

the manifold of doubly excited states (n = 6� 9). The theoretically derived expressions for
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PM-2D FS were found to di↵er from those of 2D PE (details provided in Sec. 6.3). This

is because ESA pathways that result in population on the doubly-excited states have a

tendency to self-quench by, for example, exciton-exciton annihilation or other non-radiative

relaxation pathways, so that these terms do not fully contribute to the PM-2D FS signal.

In 2D PE experiments, signal contributions to ESA pathways interfere with opposite sign

relative to the GSB and SE pathways, i.e. S2DPE = GSB + SE � ESA. In PM-2D FS

experiments, quenching of doubly-excited state population leads to interference between

GSB, SE and surviving ESA pathways with variable relative sign, i.e. SPM�2DFS = GSB+

SE + (1 � �)ESA, where 0  �  2 is the mean number of fluorescent photons emitted

from doubly-excited states relative to the average number of photons emitted from singly

excited states. In our analysis of PM-2D FS spectra (described below), we treated � as a

fitting parameter to obtain the value that best describes our experimental data. As we show

below, the di↵erence between signal origins of the two methods can result in 2D spectra

with markedly di↵erent appearances, depending on the specific dimer conformation.

In Fig. 6.3 are shown complex-valued experimental PM-2D FS data for the 7:1

lipid:MgTPP sample (top row), the 70:1 lipid:MgTPP (middle row), and the toluene sam-

ple (bottom row). Rephasing and non-rephasing data, shown respectively in panels A and

B, were processed from independently detected signals according to their unique phase-

matching conditions. The two types of spectra provide complementary structural informa-

tion, since each depends on a di↵erent set of nonlinear coherence terms. Both rephasing

and non-rephasing 2D spectra corresponding to the 7:1 liposome sample exhibit well re-

solved peaks and cross-peaks with apparent splitting 340 cm�1. This is in contrast to

the 2D spectra obtained from control measurements on the 70:1 liposome and toluene sam-

ples, which as expected exhibit only the isolated monomer feature due to the absence of

electronic couplings in these samples. The 2D spectra of the 7:1 liposome sample are asym-

metrically shaped, with the most prominent features a high energy diagonal peak and a

coupling peak directly below it. We note that the general appearance of the 7:1 liposome

PM-2D FS spectra is similar to previous model predictions for an exciton-coupled molecular

dimer[198, 186, 41, 107, 109]. We next show that the information contained in these spectra

can be used to identify a small sub-space of dimer conformations.

By extending the procedure to simulate linear spectra (described above), we numer-

ically simulated 2D spectra for a broad distribution of conformations (see Appendix 6.8).

We performed a least-square regression analysis that compared simulated and experimental

spectra to obtain an optimized conformation consistent with both the 2D and the linear

data sets. In our optimization procedure, we treated the fluorescence e�ciency � of doubly-

excited excitons as a parameter to find the value that best represents the experimental data.

In Fig. 6.4, we directly compare our experimental and simulated PM-2D FS spectra for the
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optimized conformation. The values obtained for the parameters of this conformation are

✓ = 117.4�, � = 225.2�, ↵ = 135.2�, � = 137.2�, R = 4.2 Å, and � = 0.31, with associated

trust intervals: -16� < �✓ < 4�, �11� < �� < 11�, �11� < �↵ < 11�, �2� < �� < 2�,

�0.05 Å< �R < 0.05 Å,and �0.1 < �� < 0.1 (details provided in Appendix 6.9). For

both rephasing and non-rephasing spectra, the agreement between experiment and theory is

very good, with an intense diagonal peak and a weaker coupling peak (below the diagonal)

clearly reproduced in the simulation. A notable feature of the experimental 2D spectra is

the asymmetric lineshape. A possible explanation for these asymmetries is the existence

of distinct interactions between the various exciton states and the membrane environment.

The discrepancy between experimental and simulated 2D lineshapes is an indication of a

shortfall in the model Hamiltonian, which could be addressed in future experiments that

focus on system-bath interactions.

In Fig. 6.5, we show the results of our calculations for three representative conforma-

tions. We compare simulated PM-2D FS spectra (with � = 0.31 optimized to the data, left

column), 2D PE spectra (with � = 2, second column), and linear spectra (third column). It

is evident that dimers with di↵erent conformations can produce very similar linear spectra.

However, these same structures can be readily distinguished by the combined behaviors of

both linear and 2D spectra. We note that for both PM-2D FS and 2D PE methods, the 2D

spectrum depends on dimer conformation. However, we found that the qualitative appear-

ance of simulated PM-2D FS spectra appear to vary over a greater range, and to exhibit a

higher sensitivity to structural parameters in comparison to simulated 2D PE spectra.

Our confidence in the conformational assignment we have made is quantified by the

numerical value of the regression analysis target parameter �2

tot = �2

linear + �2

2D = 7.39 +

9.87 = 17.26, which includes contributions from both linear and 2D spectra. By starting

with this conformation and incrementally scanning the structural parameters ✓, �, ↵, and

�, we observed that �2

tot increased, indicating that the favored conformation is a local

minimum when both linear and 2D spectra are included in the analysis (see Table 6.1).

Similarly, we found that the value � = 0.31 corresponds to a local minimum (see Table 6.2).

If only one of the two types of spectra is included, the restrictions placed on the dimer

conformation are significantly relaxed. As shown in Fig. 6.5, conformations that depart

from the optimized structure do not simultaneously produce 2D and linear spectra that

agree well with experiment.

We found that the average conformation for the MgTPP dimer is a T-shaped structure

with mean separation between Mg centers R = 4.2 Å. Close packing considerations alone

would suggest the most stable structure should maximize ⇡�⇡ stacking interactions. How-

ever, entropic contributions to the free energy due to fluctuations of the amphiphilic interior

of the phospholipid bilayer must also be taken into account. It is possible that the average
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Figure 6.4: Comparison between rephasing (A) and non-rephasing (B) experimental (left
columns) and simulated 2D spectra (right columns). Absolute value spectra (top), real part
(middle) and imaginary part (bottom). The simulated spectra are based on the optimized
T-shaped conformation depicted in Fig. 6.5 (top row, fourth column) and discussed in the
text. Color scale and contours are the same as in Fig. 6.3.
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FWHM approximately 327.0 cm�1 (12 nm). Also shown are the positions of the underlying
exciton transitions. Each of the three conformations produce a linear spectrum in agreement
with experiment, while only the first (optimized) conformation produces simulated spectra
that agree with PM-2D FS data (with � = 0.31). 2D PE spectra (with � = 2) are shown
for comparison. Conformations are shown in the fourth column. The squares indicate the
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same as in Fig. 6.3.
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conformation observed is the result of the system undergoing rapid exchange amongst a

broad distribution of energetically equivalent structures. In such a dynamic situation, the

significance of the observed conformation would be unclear. However, at room temperature

the DSPC membrane is in its gel phase [213], and static disorder on molecular scales is

expected to play a prominent role. It is possible that the observed dimer conformation - an

anisotropic structure - is strongly influenced by the shapes and sizes of free volume pockets

that form spontaneously inside the amphiphilic membrane domain. Future PM-2D FS ex-

periments that probe the dependence of dimer conformation on temperature and membrane

composition could address this issue directly.

6.5 Conclusions

We have shown that PM-2D FS can uniquely determine the conformation of a porphyrin

dimer embedded in a non-crystalline membrane environment at room temperature. The

appearance of the PM-2D FS spectra is generally very di↵erent from that produced by

simulation of the 2D PE method. This e↵ect is due to partial self- quenching of optical

coherence terms that generate population on the manifold of doubly- excited states. In

the current study on MgTPP chromophores in DSPC liposomes, we find that PM-2D FS

spectra are quite sensitive to dimer conformation [157, 156, 169].

The PM-2D FS method might be widely applied to problems of biological and mate-

rial significance. Spectroscopic studies of macromolecular conformation, based on exciton-

coupled labels could be practically employed to extract detailed structural information.

Experiments that combine PM-2D FS with circular dichroism should enable experiments

that distinguish between enantiomers of chiral structures. PM-2D FS opens previously un-

described possibilities to study exciton-coupling under low light conditions, in part due to

its high sensitivity. This feature may facilitate future 2D experiments on single molecules,

or UV-absorbing chromophores.

6.6 Appendix 1. Liposome sample preparation

Samples were prepared according to the procedure described by MacMillan et al. ??.

MgTPP was purchased from Strem Chemicals (Boston), and used without further purifica-

tion. 1.5 mg of MgTPP was dissolved in 20 mL of toluene, transferred to a 50 ml spherical

flask, and the solvent was evaporated. In a separate flask, 12.8 mg of the phospholipid

1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, Sigma Aldrich) was dissolved in 20 mL

of dichloromethane. The contents of the two flasks were combined to create a solution with

7:1 DSPC:MgTPP number ratio. The organic solvent was removed, and 30 ml of nanopure
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water were added to the flask. The sample was alternately heated to 70�C and agitated

by ultrasonication for a period of 15-30 minutes until an aqueous lipid / porphyrin emul-

sion was fully formed. The mixture was pre-filtered twice through glass wool, and then

extruded through a 100-1000 nm pore nylon membrane (Avestin) to create a suspension of

liposome vesicles. A second sample with 70:1 DSPC:MgTPP was prepared using the same

procedure. It was confirmed using fluorescence microscopy that the MgTPP was localized

to the membrane phase. An additional control sample was prepared by dissolving MgTPP

in spectroscopic grade toluene.

6.7 Appendix 2. Phase-Modulation 2D Fluorescence Spec-

troscopy

The phase-modulation 2D fluorescence spectroscopy (PM-2D FS) method was de-

scribed in detail elsewhere [190]. Samples were excited by a sequence of four collinear

optical pulses with adjustable interpulse delays (see Fig. 6.6). The pulse sequence was pro-

duced using a high repetition regenerative amplifier (Coherent, RegA 9050, 250 kHz, pulse

energy approximately 10 µJ), which was pumped by a Ti:sapphire seed oscillator (Coherent,

Mira, 76 MHz, pulse energy approximately 9 nJ, pulse width approximately 35 fs) and a

high power continuous wave ND:YVO4 laser (Coherent Verdi V-18, 532 nm). The amplified

pulses were sent to two identical optical parametric amplifiers (Coherent, OPA 9400), with

output pulse energies approximately 70 nJ. The relative phase of pulses 1 and 2, and pulses

3 and 4 were independently swept at distinct frequencies (5 kHz and 8 kHz, respectively)

using acousto-optic Bragg cells. Electronic references were detected from the pulse pairs

and sent to a waveform mixer to generate sum and di↵erence sideband signals (13 kHz and

3 kHz, respectively). These reference waveforms were used to phase-synchronously detect

the nonlinear fluorescence, which separately determined the nonrephasing and rephasing

signals. The signal phase was calibrated to zero at the origin of the interferograms, i.e.,

when all interpulse delays were set to zero. The measured pulse spectrum at the sample

was Gaussian with FWHM approximately 327 cm�1 (approximately 12 nm, shown in Fig.

1C). Separate dispersion compensation optics were used for each OPA, and the temporal

pulse width determined by autocorrelation was approximately 60 fs for pulses 1 and 2, and

approximately 80 fs for pulses 3 and 4. The sample cuvette was a flow cell (Starna Cells,

583.3/Q/3/Z15, path length 3 mm, 0.1-mL volume), which was fitted to a peristaltic pump

(flow rate approximately 1 mL/min, approximately 6 mL reservoir volume). The excita-

tion beam was focused into the sample using a 5-cm focal length lens. Fluorescence from

the sample was collected using a 3-cm lens, spectrally filtered (620-nm long-pass, Omega

Optical) and detected using an avalanche photo diode (Pacific Silicon Sensor). All mea-
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surements were carried out at room temperature. The signals were measured as the delays

between pulses 1 and 2 and between pulses 3 and 4 were independently scanned. Fourier

transformation of the time-domain interferograms yielded the rephasing and nonrephasing

2D optical spectra.

6.8 Appendix 3. Computational modeling

The search for the porphyrin-dimer conformation consistent with both linear and 2D

experimental data involved a constraint-nonlinear-global optimization with 13 variables.

Optimizations performed separately on the linear and 2D spectra did not provide solutions

consistent with both sets of experimental data. We therefore employed a joint target opti-

mization function, which involved a least-square regression optimization using both sets of

data – i.e., �2

tot = �2

linear + �2

2D, which is described in the next section.

Construction of target function for linear spectra

TheQ(0, 0) transition of the monomer in the lipid bilayer membrane has energy 16,500.7

cm�1 (see 70:1 lipid:MgTPP linear spectra shown in Fig. 6.1B). The Q(0, 0) feature contains

contributions from both degenerate Qx and Qy transitions. Formation of the electronically

coupled dimer results in four new transitions, which arise from the couplings between the

states on each monomer. The energies of the resulting exciton transitions are given by the

eigenvalues obtained from diagonalization of the 4 ⇥ 4 block of the Hamiltonian matrix

(Eq. 6.3). The relative intensities of the exciton transitions are computed from the eigen-

vectors, which determine the transition dipole moments [112]. All of the transitions are

broadened and modeled as Gaussians centered at their respective eigenvalues, with equal

line widths �lin. The value of �lin was treated as an optimization parameter. The trial

function used to reproduce the linear spectra can be written:

triallin(✓,�,↵,�, R, a
0

, ⌘,�lin) = a
0

+ ⌘

 
4X

i=1

ai(✓,�,↵,�, R)e�[⌫̄�⌫̄i(✓,�,↵,�,R)]

2/�2

lin

!
(6.23)

In Eq. 6.23, a
0

accounts for background absorption, ⌘ is a multiplicative factor that uni-

formly adjusts the intensities ai, and ⌫̄i are the eigen-energies of the transitions. All of

the optimization parameters are determined by a least-square regression analysis when

compared to experimental data. We isolated the experimental data inside the region-of-

interest frequency window 16,300 cm�1-16,810 cm�1, which is centered around the uncou-

pled monomer transition energy (✏
1

= 16, 500.7 cm�1). We denote the least-square sum as

targetlin, and the contribution to the total optimization function is defined as �2

lin = 105

targetlin. For example, the value of �2

lin corresponding to the best fit to both linear and
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Figure 6.6: (A) Collinear sequence of optical pulses used in PM-2D FS experiments. The
coherence, population, and measurement periods (⌧ , T , and t) are indicated, as well as
the relative phase of pulses 1 and 2 (�

21

), and pulses 3 and 4 (�
43

). (B) Schematic of
the PM-2D FS apparatus, described in the text and in [190]. The phases of the pulse
electric fields are swept using acouto-optic Bragg cells, which are placed in the arms of two
Mach-Zehnder interferometers (MZI 1 and MZI 2). The excitation pulses are made to be
collinear before entering the sample. Reference waveforms are constructed from the pulse
pairs from each interferometer. The reference signals oscillate at the di↵erence frequencies
of the acousto-optic Bragg cells (5 kHz and 8 kHz for ref 1 and ref 2, respectively). The
reference signals are sent to a waveform mixer to construct sum and di↵erence side band
signals (3 kHz and 13 kHz). These reference side bands are used to phase-synchronously
detect the fluorescence, which isolates the non-rephasing and rephasing population terms,
respectively.
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2D spectra is 7.39. The values of the eigen- energies for the optimized conformation are

⌫̄
1

= 16, 283 cm�1, ⌫̄
2

= 16, 382 cm�1, ⌫̄
3

= 16, 619 cm�1, and ⌫̄
4

= 16, 718 cm�1, with

respective relative intensities a
1

= 0.867, a
2

= 1.94⇥ 10�13, a
3

= 1.00, and a
4

= 0.133.

Construction of the target function for the 2D spectra

The simulations of the 2D spectra involves the five geometrical parameters ✓, �, ↵,

�, and R; the line-broadening parameters �RP , �NRP , RP , and NRP discussed above;

and the doubly-excited state manifold fluorescence e�ciency parameter �. For the least-

square analysis of 2D spectra we used the experimental data ?in the frequency window

!⌧ 2 [3.04 rad fs�1, 3.15 rad fs�1] and !t 2 [3.04 rad fs�1, 3.15 rad fs�1], where the most

intense diagonal peaks and cross-peaks were located. The least-square sum �2

2D includes

the six sets of 2D experimental data, i.e., the real, imaginary and absolute value spectra for

rephasing and non-rephasing signals. For example, the value of �2

2D for the best fit to both

2D linear and 2D spectra is 9.87.

Importance of the combined target function

Finding a single conformation that agrees well with the linear and 2D data proved to be

a restrictive task, suggesting a definitive structural determination. For example, the opti-

mization of either �2

lin or �2

2D by themselves did not result in solutions that were consistent

with the other type of spectra. A single solution was only possible when the combined target

function �2

tot = �2

lin + �2

2D was used. As shown in Fig. 6.5, it was possible to find examples

for which �2

lin was smaller than the value obtained for the optimal conformation. Yet in

these cases the 2D spectra departed significantly from the experimental data. Similarly, the

optimization of only the target function �2

2D could lead to misleading results. In Table 6.1,

we list values for the target function and its linear and 2D components for several values

of the structural angles, which were scanned relative to the optimized conformation. We

note that Table 6.1 contains some negative values for either �2

lin or �2

2D, indicating that a

departure from the �2

tot minimum can yield improved agreement with one type of spectra at

the expense of agreement with the other. The results presented in Table 6.1 suggests that

the sensitivity of the search to structural parameters allows for a quantitative estimate of

dimer conformation.
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2Å

,
an

d
�
=

0.
31

,
an

d
li
n
e-
b
ro
ad

en
in
g
p
ar
am

et
er
s

�
R
P
=

10
8.
1
fs
,
�
N
R
P
=

96
.2

fs
,

R
P
=

98
.1

fs
,
an

d

N
R
P
=

10
2.
9
fs
.

�
✓

�
�

�
↵

�
�

d
eg

�
�
2 li
n

�
�
2 2
D

�
�
2 to
t

�
�
2 li
n

�
�
2 2
D

�
�
2 to
t

�
�
2 li
n

�
�
2 2
D

�
�
2 to
t

�
�
2 li
n

�
�
2 2
D

�
�
2 to
t

-3
0

8.
12

4
5.
44

7
13

.5
7

3.
58

0
0.
80

7
4.
38

8
3.
58

0
0.
80

7
4.
38

8
14

1.
2

-0
.3
53

14
0.
9

-2
5

2.
31

2.
14

4.
45

1.
93

0.
50

2.
42

9
1.
93

4
0.
49

5
2.
42

9
10

1.
2

-0
.3
40

10
0.
9

-2
0

0.
32

7
0.
71

5
1.
04

1
0.
96

5
0.
28

2
1.
24

8
0.
96

5
0.
28

2
1.
24

8
64

.6
8

-0
.3
06

64
.3
8

-1
5

-0
.0
18

0.
15

0
0.
13

2
1.
07

7
0.
14

4
1.
22

1
1.
07

7
0.
14

4
1.
22

1
34

.8
4

-0
.2
55

34
.5
8

-1
0

0.
08

0
-0
.0
57

0.
02

2
0.
60

6
0.
05

9
0.
66

5
0.
60

6
0.
05

9
0.
66

5
14

.0
5

-0
.1
90

13
.8
6

-5
0.
38

1
-0
.1
00

0.
28

5
0.
55

7
0.
01

4
0.
57

1
0.
55

7
0.
01

4
0.
57

1
3.
03

1
-0
.1
07

2.
92

4

0
0

0
0

0
0

0
0

0
0

0
0

0

5
0.
38

2
0.
31

7
0.
69

8
0.
55

7
0.
01

4
0.
57

1
0.
55

7
0.
01

4
0.
57

1
1.
03

4
0.
14

7
1.
18

2

10
1.
33

3
1.
14

5
2.
47

8
0.
60

6
0.
05

9
0.
66

5
0.
60

6
0.
05

9
0.
66

5
3.
22

0
0.
35

9
3.
58

0

15
3.
60

0
3.
17

2
6.
77

2
1.
07

7
0.
14

4
1.
22

1
1.
07

7
0.
14

4
1.
22

1
5.
53

1
0.
68

0
6.
21

0

20
11

.9
1

7.
67

2
19

.5
8

0.
96

5
0.
28

2
1.
24

8
0.
96

5
0.
28

2
1.
24

8
7.
35

2
1.
18

7
8.
54

0

25
27

.2
4

16
.5
5

43
.7
9

1.
93

3
0.
49

5
2.
42

9
1.
93

4
0.
49

5
2.
43

0
7.
87

5
2.
00

7
9.
88

2

30
52

.3
5

32
.6
5

85
.0
0

3.
58

0
0.
80

7
4.
38

8
3.
58

0
0.
80

7
4.
38

8
7.
00

3.
32

5
10

.3
3



Chapter 6: Phase-modulation 2D fluorescence spectroscopy 122

Table 6.2: Linear least-square target function ��2

2D dependence on fluorescence e�ciency
� of the doubly-excited state manifold. Values are given relative to the optimized confor-
mation with ��2

2D = 9.87 and � = 0.31.

� 0 0.2 0.31 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

��2

2D 0.86 0.10 0 0.08 0.81 2.32 4.58 7.52 10.87 13.97 17.25 21.20

6.9 Appendix 4. Error Analysis and Propagation of Uncer-

tainties in PM-2D FS Signals

In this section we calculate trust intervals for the structural parameter values we obtain

for the MgTPP dimers embedded in DSPC liposomes. We discuss here the uncertainties in

our results, which arise from two di↵erent sources: 1) the quality of the optimization search

performed with the KNITRO package, and 2) the uncertainty in the reference experimental

data used to construct the target function �2

tot, from which the values of the structural

parameters are obtained.

To determine the quality of the KNITRO search, e.g., the absence of convergence to

local minima, we performed a fine-resolution parameter scan (see Fig. 6.7) to verify the

extent to which the values obtained by the program indeed correspond to global mini-

mum, i.e., the best from the multi-start search. In Fig. 6.7 we plot the relative deviation

��2

tot/�
2

tot,ref = (�2 � �2

tot,ref )/�
2

tot,ref from the reference value of �2

tot,ref , which can be

interpreted as a relative error when moving away from the optimal conformation. Fig. 6.7

clearly shows that the structure found is the minimum, at least within ±1 degree for the

each of the angles, ± 0.05 Åfor the R distance, and ± 0.01 units in �. The few missing

points in the scans for ↵ and � were removed because these converged to a higher local

minima above the predominant-branch where the majority of points appear to lie. For

all of the scans, one parameter was varied while the remaining parameters that entered

the calculation of the 2D spectra were held constant. The lack of convergence we refer to

here is due to the additional optimization required to relax the parameters needed for the

linear spectra (a
0

, {ai}, ⌘, and �lin in Eq. 6.25). Since the few data points that converged

above the predominant-branch do not suggest an alternative minimum, it was not neces-

sary to converge these points since enough were present to clearly show the behavior upon

approaching the minimum.

The scans in Fig. 6.7 also serve to assess the degree of sensitivity. For example, it is

clear that the scans are more sensitive to the parameters �, R, and ✓, when compared to
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Figure 6.7: Relative deviation of the target function, ��2

tot/�
2

tot, from the optimized ref-
erence value, �2

tot,ref , as a function of structural parameter uncertainties. Cross-sections
of the target function are shown for the uncertainties (A) �✓, (B) ��, (C) �↵ , (D) ��,
(E) �R, and (F) ��, where �x = x � xref , and xref is the value corresponding to the
optimized conformation. The optimized conformation corresponds to a minimum of the
multi-dimensional parameter surface. As indicated by the red shaded rectangles, trust in-
tervals are directly read out from these plots, based on the ⇠ 1% relative error associated
with the experimental data quality. The trust interval regions are expanded and shown as
insets for the parameters �✓, ��, and �R. The resulting intervals are �16� < �✓ < 4�,
�11� < �� < 11�, �11� < �↵ < 11�, �2� < �� < 2�, �0.05 Å< �R < 0.05 Å, and
�0.1 < �� < 0.1.
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other degrees of freedom such as ↵, �, and �. As a consequence, under a certain fixed

relative error, one expects that the uncertainty will be smaller for � and ✓ while slightly

larger for ↵ and �.

Having established that our search routine is almost exact, we next address the er-

ror propagation due to uncertainties in the experimental measurements. In the follow-

ing, we base our discussion on �2

2D, motivated by the assumption that ��2

tot/�
2

tot,ref ⇡
��2

2D/�
2

2D,ref , i.e., that these relative errors are comparable. We thus use our estimate

of ��2

2D/�
2

2D,ref , to read out the trust intervals directly from the scans shown in Fig. 6.7.

This relative error was estimated to be approximately 1%, and it is indicated separately for

each structural parameter by the red-shaded rectangles in Fig. 6.7.

We next explain the assumptions we have made to obtain the 1% estimate using stan-

dard error propagation analysis [189]. The 2D target function is defined according to

�2

2D =
X

!i
⌧ ,!

j
t

(AbsNRP
sim

(!i
⌧ ,!

j
t )�AbsNRP

exp

(!i
⌧ ,!

j
t ))

2 + (ReNRP
sim

(!i
⌧ ,!

j
t )�

ReNRP
exp

(!i
⌧ ,!

j
t ))

2 + (ImNRP
sim

(!i
⌧ ,!

j
t )� ImNRP

exp

(!i
⌧ ,!

j
t ))

2 +

(AbsRP
sim

(!i
⌧ ,!

j
t )�AbsRP

exp

(!i
⌧ ,!

j
t ))

2 + (ReRP
sim

(!i
⌧ ,!

j
t )�

ReRP
exp

(!i
⌧ ,!

j
t ))

2 + (ImRP
sim

(!i
⌧ ,!

j
t )� ImRP

exp

(!i
⌧ ,!

j
t ))

2 (6.24)

In Eq. 6.24, the subscripts “sim” and “exp” indicate simulated and experimental spectra, re-

spectively. The indices “i” and “j” indicate the 2D frequency coordinate. For the error prop-

agation analysis, we include every data point from each of the six Fourier-transformed ex-

perimental signals (AbsNRP
exp

,AbsRP
exp

,ReNRP
exp

,ReRP
exp

, ImNRP
exp

, and ImRP
exp

)

to define a variable with its own uncertainty. For simplicity, we define

AbsNRP
exp

(!i
⌧ ,!

j
t ) ⌘ f ij

1

, ReNRP
exp

(!i
⌧ ,!

j
t ) ⌘ f ij

2

, ImNRP
exp

(!i
⌧ ,!

j
t ) ⌘ f ij

3

,

AbsRP
exp

(!i
⌧ ,!

j
t ) ⌘ f ij

4

, ReRP
exp

(!i
⌧ ,!

j
t ) ⌘ f ij

5

, and ImRP
exp

(!j
t ,!

j
t ) ⌘ !tf

ij
6

.

The sum in Eq. 6.24 is performed over the discrete frequency values inside the interval

!⌧ ,!t 2 (3.04, 3.15) rad/fs. Since there are N = 101 points per frequency axis inside this

interval, the number of terms in the summation contains N2 = 10, 201 variables of the form

f ij
k , for each k. Since we are dealing with k = 1 � 6, he number of independent variables

in the error propagation analysis is 61,206. We define z ⌘ �2

2D({f
ij
k }) = �2

2D({gn}), where
gn ⌘ f ij

k , with n running from 1-61,206, denoting all the possible combinations of i, j, and

k. Under the assumption of independent variables we can estimate the uncertainty of z

by [189]

�z ⇡

vuut
61,206X

n=1

✓
@z

@gn
�gn

◆
2

. (6.25)
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In terms of the gn variables, Eq. 6.24 for �2

2D can be rewritten,

z =
61,206X

n=1

(gsimn � gn)
2 (6.26)

The partial derivative can be calculated according to @z
@gn

= �2(gsimn � gn). Once the

uncertainties �gn are calculated, the error in Eq. 6.25 can be easily calculated.

As previously stated, each of the gn corresponds to a data point from any of the 2D

spectra involved in the calculation of �2

2D. To estimate the uncertainty associated with each

of 2D the 61,206 variables, we divide them into two groups; the first half (n = 1�30, 603) as-

sociated with the absolute value, real and imaginary parts of the rephasing data, and the re-

maining half (n = 30, 604�61, 206) associated with that of the non-rephasing data. To sim-

plify these calculations, we find a single uncertainty value representative for each of the two

types of spectra. We denote these as �g
RP

and �g
NRP

for the rephasing and nonrephasing

data respectively. Calculations of these uncertainties are illustrated in Fig. 6.8. The uncer-

tainty is estimated from four di↵erent experimental runs performed on a ZnTPP monomer

in dimethylformamide solution, which were processed using an identical procedure to the

MgTPP samples studied here. The 2D absolute value rephasing and non-rephasing spectra

of one data run are shown in Figs. 6.8A and 6.8B, respectively. In Figs. 6.8C and 6.8D

are shown overlays of the absolute value rephasing and non-rephasing signals, sRP(NRP)

! ,

for each of the four data runs along the diagonal profile, with !⌧ = !⌧ = !. Figs. 6.8E

and 6.8F show the average signal s̄RP(NRP)

! ⌘ hsRP(NRP)

! i, along a diagonal profile, where

h· · · isets ndicates the average performed over individual data sets. We similarly calculate

the variance at each value of ! according to �2RP (NRP )

(!) = h(sRP(NRP)

! � s̄RP(NRP)

! )2i
sets

,

which are shown in Figs. 6.8G and 6.8H.

The representative uncertainties, �g
RP

and �g
NRP

, are estimated as the frequency av-

erage of the standard deviations along the diagonal profiles, i.e.,�g
RP(NRP)

= h�RP (NRP )

(!)i!.
The average over frequency was done to include most of the significant data, taking approx-

imately twice the full-width at half-maximum from the main peak for both the rephas-

ing and nonrephasing profile – i.e., over the interval ! 2 (3.07, 3.20) rad fs�1. By using

the resulting values for �g
RP

= 0.0086 and �g
NRP

= 0.016 in Eq. 6.25, we find that

�z/zref = ��2

2D/�
2

2D ⇡ ��2

tot/�
2

tot = 0.0096 ⇠ 1%. The value of �2

2D = 9, 87 used for this

Having established that the expected error is ⇠ 1%, we determine the trust intervals directly

from the parameter scan plots shown in Fig. 6.7, as indicated by the red-shaded rectangles.

These intervals correspond to �16o < �✓ < 4o, �11o < �� < 11o, �11o < �↵ < 11o,

�1o < �� < 1o, �0.05Å < �R < 0.05Å, and �0.1 < �� < 0.1, with �x ⌘ x � xref , and

xref taken from the optimized outcomes.

We conclude this section by commenting on the uncertainty of the variable R. In
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Figure 6.8: Experimental data
runs performed on ZnTPP
monomer in dimethylformamide
solution, which were used for
error propagation analysis. In
panels (A) and (B) are shown,
respectively, the 2D absolute value
rephasing and non-rephasing spec-
tra of a single representative data
set. In panels (C) and (D) are
shown overlays of the absolute
value rephasing and non-rephasing
signals for each of the four data
runs along the diagonal profile.
Panels (E) and (F) show the
average of the four data sets
along the diagonal profile. In
panels (G) and (H) are shown the
corresponding variances along the
diagonal profile. By integrating
the standard deviation of the data
over the interval ! 2 (3.07, 3.20)
rad fs�1, we obtain the relative
uncertainties �gRP = 0.0086
and �gNRP = 0.016 (defined in
text). These values are input
to Eq. 6.25 to estimate the rela-
tive target function uncertainty
��2

tot/�
2

tot = 0.0096 ⇡ 1%, which
in turn establishes the trust inter-
vals of the structural parameters
relative to the optimized outcome.
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addition to the uncertainties discussed above, an accurate estimate of �R must also account

for its dependence on the calculated value of the monomer square transition dipole moment

|µ|2. Uncertainty in the estimation of |µ|2 (Eq. 6.5) will appear in the electronic couplings

(Eq. 6.4) as a rescaling of the end-to-end distance R. For example, too small an estimation

of |µ|2 will result in an apparent value of R that is also too small. Although we have

attempted to make our estimate of |µ|2 as accurate as possible, we cannot discount the

possibility that a systematic error is present. We note that the values we have obtained for

the angles ✓, �, ↵, and � constrain the conformation significantly. We therefore propose

that further refinements in the conformation could be achieved through quantum chemical

calculations. For example, semi-empirical calculations on the MgTPP dimer, in which only

the distance R is varied, could be used to obtain its value where the energy minimum occurs.

Given the degree of molecular detail provided by quantum chemical calculations, it should

in principle be possible to capture the e↵ects of steric interactions between bulky phenyl

groups. Such an approach might be useful to further refine the values of the structural

parameters within their trust intervals.



Chapter 7

Future directions

Part I. Quantum annealing for lattice protein folding

In the first part of this dissertation, we showed how to tackle classical optimization prob-

lems of interest to the physical sciences within the quantum computing paradigm known as

quantum annealing (QA). We presented the largest implementation of QA on a biophysical

problem (six di↵erent experiments with up to 81 superconducting quantum bits). Although

the cases presented here can be solved on a classical computer, we presented the first im-

plementation of lattice protein folding on a quantum device under the Miyazawa-Jernigan

model. This is the first step towards studying optimization problems in biophysics and

statistical mechanics using quantum devices.

There are several theoretical and experimental challenges which must be overcome

before QA can compete with or outperform classical algorithms on substantially larger

problem instances. The experimental challenge is clear, requiring new generations of scalable

quantum annealing devices, where the quantum mechanical features responsible for the

potential speed up over classical computers are preserved as the number of qubits increases.

D-Wave, a company which has already released a commercial 128 qubit device, expects to

make significant progress towards this goal by releasing a 512 qubit device before the end

of the 2012.

Current work in progress tries to address some of the theoretical challenges towards

scalability and better performance. For the implementation of any computational problem

in quantum annealing, it is always desirable to use the least number of qubits to represent

the search space which contains the global minima. An example of such improvement is pre-

sented in Chapter 4, where by using the “turn representation” for the di↵erent self-avoiding

walks reduces the number of qubits needed with respect to the “spatial representation”

where the coordinates of each amino acid is specified, as described earlier in Chapter 2. As

discussed in Chapter 4, the construction of the energy function is a completely di↵erent
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problem. In the case for the compact “turn representation”, the construction of the Ising-

like energy function to be optimized seems to scale exponentially with the size of the system,

which is not the case of the construction presented in Chapter 2, where we proved a poly-

nomial scaling with the number of amino acids for the construction of the energy function.

In a paper in preparation, we present a solution to both problems: a polynomial scaling for

the construction of the energy function within the most compact “turn representation”.

Another exciting direction uses new algorithmic strategies which does not involve the

construction of an Ising-like cost energy function. Such heuristic strategies combine ideas

from machine learning and probabilistic computing [180] and would allow for the exploration

of lattice protein folding instances with over a hundred amino acids, competitive with the

best state-of-the-art classical algorithms.

Part II. Excitonic energy transfer and nonlinear fluorescence

spectroscopy

In the second part of this dissertation, we focused on the problem of excitonic energy

transfer. We provided an intuitive platform for engineering exciton transfer dynamics and

we show that careful consideration of the properties of the environment allows for opportuni-

ties to engineer the transfer of an exciton. Since excitons in nanostructures are proposed for

use in quantum information processing and artificial photosynthetic designs, our approach

paves the way for engineering a wide range of desired exciton dynamics.

We also developed the theory for a two-dimensional electronic spectroscopic technique

based on fluorescence (2DFS) and challenge previous theoretical results claiming its equiva-

lence to the two-dimensional photon echo (2DPE) technique which is based on polarization.

Experimental realization of this technique confirmed our theoretical predictions. The new

technique is more sensitive than 2DPE as a tool for conformational determination of ex-

citonically coupled chromophores and o↵ers the possibility of applying two-dimensional

electronic spectroscopy to single-molecules.

Only one year after publishing the theoretical proposal about engineering directed

excitonic energy transfer (see Chapter 5), experimental realization of such quantum dot

arrays were synthesized by the group of Prof. Sargent at the University of Toronto [191].

The femtosecond time resolution of the 2DFS technique would allow for study of the energy

transfer dynamics in these coupled quantum dots, and for the first time provide insights into

the dynamics of excitonic energy transfer in coupled quantum dots as potential candidates

for artificial light-harvesting antennas.

Finally, we have characterized the excited state properties of 6-methylisoxanthoptherin

(6-MI), a fluorescent analog of the natural nucleic acid base guanine. Since the 2DFS tech-
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nique is based on excitonic coupling between excited states, it is important to characterize

the electronic transitions moments of the isolated probe chromophore to model the e↵ects

of macromolecular structure on spectroscopic observables. Interactions between states of

the 6-MI chromophore and those of the local environment perturb the electronic excitation

and relaxation pathways, which is the origin of the probes sensitivity to DNA local macro-

molecular conformation. These local probes will provide insight into biological processes

such as DNA replication.
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[199] M. Žnidaric. Scaling of the running time of the quantum adiabatic algorithm for
propositional satisfiability. Phys. Rev. A., 71, 062305 (2005).

[200] H. Wang, S. Ashhab, and F. Nori. E�cient quantum algorithm for preparing
molecular-system-like states on a quantum computer. Phys. Rev. A, 79, 042335
(2009).

[201] H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Ho↵mann. Quantum algorithm for
obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys., 10,
(2008).

[202] N. J. Ward, I. Kassal, and A. Aspuru-Guzik. Preparation of many-body states for
quantum simulation. J. Chem. Phys., 130, 194105 (2009).

[203] Z. Wei and M. Ying. Quantum adiabatic computation and adiabatic conditions. Phys.
Rev. A., 76, 024304 (2007).

[204] W. Wernsdorfer. Molecular nanomagnets: towards molecular spintronics. Int. J.
Nanotechnol., 7, 497 (2010).

[205] Y. Won, R. A. Friesner, M. R. Johnson, and J. L. Sessler. Exciton interactions in
synthetic porphyrin dimers. Photosynth. Res., 22, 201 (1989). 10.1007/BF00048299.

[206] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du. Quantum factorization of 143
on a dipolar-coupling nmr system. arXiv:1111.3726v1 (2011).

[207] J. Q. You and F. Nori. Superconducting circuits and quantum information. Phys.
Today., 58, 42 (2005).

[208] A. P. Young, S. Knysh, and V. N. Smelyanskiy. Size dependence of the minimum
excitation gap in the quantum adiabatic algorithm. Phys. Rev. Lett., 101, 170503
(2008).

[209] A. P. Young, S. Knysh, and V. N. Smelyanskiy. First-order phase transition in the
quantum adiabatic algorithm. Phys. Rev. Lett., 104, 020502 (2010).

[210] K. Yue and K. A. Dill. Forces of tertiary structural organization in globular proteins.
Proc. Natl. Acad. Sci. USA., 92, 146 (1995).

[211] K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. I. Shaknovich, and K. A. Dill. A
test of lattice protein folding algorithms. Proc. Nat. Acad. Sci. USA, 92, 325 (1995).

[212] J. Yuen-Zhou and A. Aspuru-Guzik. Quantum process tomography of excitonic dimers
from two-dimensional electronic spectroscopy. i. general theory and application to
homodimers. J. Chem. Phys., 134, 134505 (2011).



References 146

[213] M. Zein and R. Winter. E↵ect of temperature, pressure and lipid acyl chain length on
the structure and phase behaviour of phospholipidgramicidin bilayers. Phys. Chem.
Chem. Phys., 2, 4545 (2000).

[214] T. Zhang, I. Kuznetsova, T. Meier, X. Li, R. P. Mirin, P. Thomas, and S. T. Cundi↵.
Polarization-dependent optical 2D fourier transform spectroscopy of semiconductors.
Proc. Natl. Acad. Sci. USA., 104, 14227 (2007).

[215] Y. Zhao. Reexamination of the quantum adiabatic theorem. Phys. Rev. A., 77,
032109 (2008).

[216] M. Znidaric and M. Horvat. Exponential complexity of an adiabatic algorithm for an
NP-complete problem. Phys. Rev. A, 73, 0223295 (2006).


