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Abstract
The understanding of molecular effects in nanoscale environments is becoming increasingly

relevant for various emerging fields. These include spectroscopy for molecular identification

as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has

been increasingly useful to address these phenomena to yield an understanding of these

effects.

In the first part of this dissertation, we study the chemical effect of surface-enhanced

Raman scattering (SERS). We use quantum chemistry simulations to study the metal–

molecule interactions present in these systems. We find that the excitations that provide

a chemical enhancement contain a mixed contribution from the metal and the molecule.

Moreover, using atomistic studies we propose an additional source of enhancement, where a

transition metal dopant surface could provide an additional enhancement. We also develop

methods to study the electrostatic effects of molecules in metallic environments. We study

the importance of image-charge effects, as well as field-bias to molecules interacting with

perfect conductors. The atomistic modeling and the electrostatic approximation enable us

to study the effects of the metal interacting with the molecule in a complementary fashion,

which provides a better understanding of the complex effects present in SERS.

In the second part of this dissertation, we present the Harvard Clean Energy Project,

a high-throughput approach for a large-scale computational screening and design of organic

photovoltaic materials. We create molecular libraries to search for candidates structures and

use quantum chemistry, machine learning and cheminformatics methods to characterize

these systems and find structure-property relations. The scale of this study requires an

equally large computational resource. We rely on distributed volunteer computing to obtain

these properties.

In the third part of this dissertation we present our work related to the acceleration of

electronic structure methods using graphics processing units. This hardware represents a

change of paradigm with respect to the typical CPU device architectures. We accelerate the

resolution-of-the-identity Møller-Plesset second-order perturbation theory algorithm using

graphics cards. We also provide detailed tools to address memory and single-precision issues

that these cards often present.
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Chapter 1

Introduction

One of the main areas of the rapidly emerging field of nanotechnology is the devel-

opment of plasmonic materials [43, 89, 323]. When interacting with visible light, these

materials yield a plasmon resonance; a longitudinal excitation of the free electrons. This

effect gives way to an enhancement of the local electric field. The enhancement can be

exploited to identify analytes attached to these substrates, as is done in surface-enhanced

Raman scattering (SERS), whether they are molecules or more complex systems [359, 580].

The study of these systems is multiscale in nature. Some of the plasmon properties can

be understood through classical electrodynamics, while others, such as the dynamical effects

of the molecule, explicitly need to be described through quantum mechanics. Quantum

theory has been applied to chemical phenomena since its initial developments [131]. Indeed,

trying to reduce the complexity of the equations to study larger systems has been one of

the main objectives of electronic structure quantum chemistry [222, 405].

An additional difficulty arises when one considers that molecules interact with sur-

rounding media. Solving the Schrödinger equation for so many degrees of freedom be-

comes not only unfeasible but undesirable, since it is likely that only few of these will

contribute significantly to the understanding of the system. Moreover, system-environment

interactions present phenomena of relaxation and dephasing, which are not easy to cal-

culate [79, 518, 602]. Though many of these approximations have been phenomenological

in nature, atomistic approaches have been proposed and tested to consider the environ-

ment degrees of freedom classically, as in quantum-mechanical and molecular mechanical

models (QM/MM) [148, 476], or in other cases, considering the environment as a contin-

uum [265, 532, 565].

At the molecular level, quantum chemistry methods must yield an accurate represen-

tation of the electronic structure and its properties. To this effect, post-Hatree-Fock (HF)

methods and density-functional theory (DFT) based methodologies have been developed to

increase the accuracy of the calculations [214, 222]. As these theories are able to obtain
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more accurate results, the scaling factor begins to scale to higher polynomial order.

The advent of more powerful supercomputers has partially enabled a workaround to cal-

culating molecules of greater size. These architectures are oftentimes difficult to access and

have come at a much larger, and somewhat prohibitive cost. Recent work has been focused

on taking advantage of heterogeneous and intrinsically parallel hardware architectures such

as graphics processing units (GPUs) and field-programmable gate arrays [84, 179, 411]. In

contrast to supercomputers, GPUs have the advantage that the development of this hard-

ware is driven by videogame users desiring better graphics. The economies of scale have

also helped that price of these devices remain low. Although these tools were not initially

intended for scientific computing, they have provided the ability to parallelize simple, but

cost-intensive calculations such as linear algebra operations, prevalent in quantum chem-

istry.

The development of heterogeneous architectures has increased the performance of cal-

culations for large systems across all fields. Meanwhile, the concept of distributed com-

puting [66, 108, 185] has allowed for an exponential growth in available computer time

for scientific computing. Under this framework, volunteers donate their spare computer

time for scientific applications. Distributed computing has grown to allow vastly different

scientific areas to perform computational research.

One area where distributed computing can be exploited is in the field of high-throughput

screening of chemical compounds. The field of drug discovery has been increasingly depen-

dent on designing leads as an initial step in the search of new drug candidates [141, 256].

In recent years, materials discovery research has become increasingly important [242, 506],

and the impact on the search for new ceramics, batteries and energy-materials will begin to

resonate as in silico predictions begin to be translated into successes at the workbench [491].

These projects are data-intensive by nature and have been enabled by the exponential in-

crease of computational resources, whether they come principally from supercomputers or

available heterogeneous architectures.

The development of organic-based solar cell materials [74, 217] becomes a prime appli-

cation where high-throughput screening and data-intensive techniques can be exploited. It

is widely known that solar energy could account for world’s energy needs [303]. The diffi-

culty is that harnessing the sun’s resources is by no means a simple undertaking. Silicon-

and other inorganic-based solar cells have proven successful, and while prices are decreas-

ing, they are still too costly for extensive use [152]. Recently, conjugated polymers mixed

with fullerene-based molecules have shown promise to provide low-cost mass-production of

photovoltaics [509]. Therefore, with the appropriate analytical and computational tools,

the search for solar cell materials can become a high-throughput discovery endeavor for

molecules with ideal characteristics.
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Despite the wide scope of the work presented in this dissertation, there is an intrinsic

connection between developing quantum chemistry algorithms, and applying these tools:

whether they involve multiscale phenomena, or the high-throughput screening of molecules.

This work is divided into three parts to account for the different developments. In Part

I, we develop the multi-scale approaches to understand the chemical effects in SERS. In

Part II, we present the Harvard Clean Energy Project (CEP), which is the high-throughput

approach to finding organic-photovoltaic (OPV) materials. In Part III, we explain the

methods used to accelerate quantum chemistry algorithms using graphics processing units.

In Part IV, we summarize our conclusions and detail future directions.

Part I: Chemical effects in surface-enhanced Raman scattering

The Raman process refers to the inelastic dispersion present as a laser scatters from a

substance. Specifically, when a monochromatic radiation source of frequency ωI , such as a

laser pulse, is incident on a system, some scattering of radiation occurs. When the scattered

radiation is studied, besides the frequency ωI (known as Rayleigh scattering), there will be

pairs of frequencies ωI ± ωS . The latter corresponds to the inelastic dispersion process

known as Raman scattering [315, 583].

The Raman lines have their origin in an exchange of energy between photons and the

molecular system. Therefore, ~ωS corresponds to energies in the range of rotational, vibra-

tional and electronic levels. The vibrational regime roughly corresponds to the frequency

range of 400–4000 cm−1. This reflects that incoming energy is being transferred to the vi-

brational modes of the molecule. Molecular spectra at this shifted frequency (known as the

Stokes-shifted frequencies) have been effective to elucidate and identify diverse molecules,

just as is the case for vibrational spectroscopy. As Raman scattering is intrinsically a

second order process, its cross-section is orders of magnitude smaller compared to other

spectroscopies at the same incident frequency such as fluorescence. This has led to limited

applications beyond the research laboratory.

The discovery of the surface-enhancement of the Raman signal took place over 35

years ago [150, 244]. SERS is considered to be an ideal analytical technique since it reveals

information about the molecule’s vibrational modes and its intensity under ideal conditions

can identify single-molecules [270, 376]. Its instrumentation is relatively simple compared

to other techniques such as high-performance liquid chromatography and is potentially

portable. Despite its promise, SERS has not yet been able to become a turnkey analytical

tool, as we will explain below.

SERS sensors could be useful to monitor water pollution in the form of pesticides,

fertilizers and metal ions [15, 423]. As we expect population to increase to 9 billion by



Chapter 1: Introduction 4

2050, and developing countries continue their growth, pesticide use is expected to have

a two-fold increase by 2050. This will come hand-in-hand with increases in the use of

fertilizers to grow crops [528]. An excess in these two families of chemicals will certainly

reduce the ecosystems’ capacity to deliver goods and services if their use does not grow

sustainably. Although there are available analytical techniques to probe for substances in

the part-per-billion regime, these are often expensive or rely on heavy equipment. SERS,

whether at the purification plant or on the field could be an ideal tool for monitoring these

pollutants.

One of the main reasons SERS has not become widely available is due to the irreg-

ularities in the enhancement factor. This is brought about by the difficulty in obtaining

reliable substrates, along with the lack of control of adsorption of molecules in the sub-

strates. Current development in nanofabrication have given SERS the potential to have

substrates that relay a homogeneous response. However, the diversity of molecules that

can interact with metal substrates makes having a uniformly strong signal for all systems

difficult. Controlling this effect proves to be a great challenge at the experimental scale,

due to the (sub-)nanometer size of these phenomena. It is the role of quantum chemistry

to aid in the understanding of how the molecular vibrational, electronic states and bind-

ing are affected in the metal environment [43, 336], and to bring forth new ideas for the

development of SERS.

In the case of SERS, the enhanced electric field, provided by the plasmon excitation of

the nanoparticles, is the main contributor to the enhancement of the Raman signal. The

electric field in SERS is proportional to the product of the incoming electric field, E0, the

enhancement factor at the incident frequency, g (ω), the enhancement factor at the Stokes-

shifted frequency, g′ (ω′), and an appropriate combination of the components of the Raman

tensor, αR [362],

ESERS ∝ αRg (ω) g′
(
ω′
)
E0. (1.1)

In turn, the SERS intensity is the square of the field:

ISERS ∝ |αR|2|g (ω) g′
(
ω′
)
|2I0. (1.2)

The enhancement factors, g (ω) and g′ (ω′), have been understood by classical electro-

dynamics and account for about 5–6 orders of magnitude of the enhancement [246, 455].

Through nanostructured methods, it is even possible to tune the substrate to an appropri-

ate incident and Stokes-shifted frequency [104, 106]. Since Raman scattering is a quantum

effect [223, 297, 315], one either needs to account for the quantum effects of an extended

system coupled with a molecular (i.e., localized) system, or consider a multi-scale model

where the metal can be appropriately simulated as an environment. In Chapters 4–5 we

consider an electrostatic approximation of the environment, where the metal is considered
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Figure 1.1: The plasmonic excitation causes a collective oscillation of electrons in the metal
nanoparticle. In turn, this induces a strong near-field at the molecule’s position. The right
hand side depicts the approach used to simulate the chemical effects in SERS. We assume
the chemical effect is localized around the molecular absorption site of the chemical bond
between metal atoms and the analyte molecule.

as a perfect conductor. We are able to study image-charge effects that are present when a

molecule (or any set of particles) interacts with metal surfaces.

The term given by the components of the Raman tensor, αR, is dependent upon the

Kramers-Heisenberg-Dirac polarizability tensor and the normal mode components [12, 297].

The Raman tensor is also modified by the presence of the metal. It is known to contribute

around 1–3 orders of magnitude to the Raman enhancement, so it cannot be altogether

ignored. In this case, the environment surrounding the molecule, including parts of the

metal atom becomes increasingly important. In Chapters 2–3 we consider the study of

chemical effects of SERS by doing an atomistic modeling of metal molecule interactions.

Chapters 2–3: Atomistic modeling of metal–molecule interactions

Since SERS essentially relies on substrate-analyte interaction, the chemical enhance-

ment must also be considered when studying this phenomenon, though it has often been

overlooked [360]. After all, although the chemical effect is dwarfed by the electromagnetic

one, there can be fluctuations in the order of 100–1000 with respect to different molecules.

This is by no means a small quantity if one desires to control the enhancement to provide

for reliable instrumentation across different analytes.

The SERS system is represented in Fig. 1.1. A surface plasmon excitation takes place

when light interacts with a substrate composed of a coinage metal, e.g., gold or silver. This
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resonance causes an increase in the local electric field due to the longitudinal excitation of

the electrons. Molecules attached to the surface of these nanostructures will respond to the

enhanced field. The chemical effect, on the other hand, takes place in the vicinity of the

analyte [455]. It is related to the formation of chemical bonds between the molecule and

the surface metal atoms [246, 248, 358, 398, 399, 456]. We therefore restrict our simulations

to the metal atoms to those around the molecule, to study this enhancement contribution.

Although this approximation does not allow us to study the electromagnetic effect (metal

clusters cannot sustain plasmons), it allows us to grasp chemical effects present in the

metal–molecule interactions [11, 246, 616].

In Chapter 2, we study the chemical bonding effects in the Raman response of ben-

zenethiol bound to silver clusters. We choose benzenethiol since it readily binds to sil-

ver to form a thiolate-Ag bond. We use the time-dependent density functional formalism

(TDDFT) [432, 453] to explore both the change in the Raman response, and the electronic

excitations of the mixed molecule-cluster system.

We use a set of Agn clusters of different sizes ranging from n=6–11 to explore the

relationship between the binding effects and the time-dependent properties. We find that the

binding geometry of benzenethiolate is important, as there are several differences between

on-top and a bridging motif. More importantly, benzenethiol does not present electronic

transitions in the range of visible excitation energies between 1.6–3.0 eV (400–750 nm) used

for Raman analysis. When this molecule is attached to a cluster, electronic excitations

appear in this spectral region. The change of electronic structure leads to changes in the

polarizability, and therefore we can expect also a modification to the Raman tensor.

For each of these systems, it is possible to generate a Raman excitation profile (REP),

where we sweep the incident frequency through a certain region and follow the Raman signal

of specific Raman modes [127, 614]. By exploring over the 1.6–3.0 eV region, one is able

to observe an additional enhancement of the order of 100. Although the Raman scattering

calculations took place in the non-resonant regime, we are able to observe, through transition

density calculations, that this enhancement comes from resonant transitions of the mixed

metal–molecule states.

This work motivated the study of the potential of surface-enhanced coherent anti-Stokes

Raman scattering in clusters [404], and also the development of a simplified sum-over-

states approach for predicting resonance Raman spectra [433]. Moreover, a collaboration

between theory and experiment showed the effective separation between the electromag-

netic and chemical contributions of SERS when using a highly nanostructured plasmonic

substrate [455].

Chapter 2 provided us with an understanding of the chemical enhancement using a

molecule that is chemisorbed to the metal by exploring the cluster space, and different
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Figure 1.2: Image depicting different roughened surfaces and the binding of two molecules
(benzenethiol on silver, upper left and BPE on nickel, lower right). The other surfaces are
platinum (upper right) and gold (lower left), which show favorable interactions with other
analytes.

incident frequencies. More importantly, it showed that mixed metal–molecule excitations

are the main contributors to the enhancement. However, there will be a host of molecules

that will not bind favorably to silver or gold, but would to another transition metal, as is

the case for pyridine on platinum.

In Chapter 3 we pose the question if a mixed-metal surface can provide an additional

enhancement to SERS. We venture to ask if adding a nanometer thick layer of a transition

metal on top of the plasmonic substrate can provide an additional enhancement. This

would effectively mean that the chemical contribution would be compensating from the loss

of electromagnetic enhancement due to the thickness of the dopant transition metal. If this

is the case, then one can propose creating SERS-based sensors using different transition

metals. Molecules would bind to the metals which have the highest binding energy, and due

to an increased chemical enhancement, signal could be homogeneous across a large part of

the molecular space. The representation of such sensor is shown in Fig. 1.2.

The concept of adding a secondary metal on top of the SERS-active substrate is not

new [570, 625]. For instance, SERS has been used to monitor reactivity of H2 on Pt surfaces.

In this case, a platinum layer is added on top of the plasmon-active substrate. Van Duyne

and Haushalter proposed the term “SERS borrowing” [547], to obtain a Raman signal of

molecular species adsorbed on non-SERS active materials [523]. What we posit is in fact

the opposite effect, where an additional source, in the form of dopant metal can provide

an additional chemical enhancement. Therefore, we propose and coin the term of a SERS

lending effect.

There have also been efforts to expand SERS effects beyond plasmonic effects. For in-

stance, Tian et al., took advantage of advances in instrumentation, such as charged-coupled

devices to obtain a surface enhancement of the Raman signal from transition metals that
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do not exhibit a plasmon excitation in the visible range, e.g., Pt [1, 524, 525]. More re-

cently non-metallic nanostructures from silicon and germanium have also shown to provide

an enhancement [562, 563]. The enhancement from these structures can be explained us-

ing a photoinduced charge-transfer model, which provides evidence that there can be an

enhancement despite not having plasmon-based substrates.

In Chapter 3 we present experimental evidence, as well as quantum chemistry insights

using metal clusters that point towards the existence of a lending effect under favorable con-

ditions. These considerations include favorable molecule-dopant metal interactions. Since

it is difficult to fully characterize the mixed-metal substrate experimentally, we can only

point at the analytical enhancement (i.e., per-concentration instead of per-molecule en-

hancement).

The theoretical evidence takes a role in this research to “fill the gaps” in our under-

standing of this nanoscale phenomenon [469]. In this case, we reduce the metal environment

to study localized effects in molecules by looking at just the part which directly interacts

with the molecule. We show it can provide the right intuition to understand phenom-

ena, such as the chemical effect in SERS. This approach also helps us to demonstrate the

feasibility of enhanced monitoring tools by using different SERS substrates.

Chapters 4–5: Chemistry in electrostatic environments

In Chapters 2–3, we used metal clusters to improve our understanding of the chemical

enhancement of SERS. Since this effect takes place only in the vicinity of the molecule, we

could approximate the nanostructure as a cluster of metal atoms. However, when studying

field effects of the nanoparticle on the molecule, it is important to consider the environ-

ment differently to account for effects that may take place farther away from the molecule.

These interactions have overarching implications in the fields of electronics, detection, and

catalysis [187, 259, 294].

As in the case of molecules in solution, or interacting with complex structures (e.g.,

proteins), there needs to be a proper accounting for the degrees of freedom that affect the

relevant subsystem since solving for all of them is neither feasible nor desirable. The formal-

ism to separate system and environment in quantum chemistry dates back to Löwdin [317].

As mentioned above, QM/MM and continuum methods have been used to study different

systems, with a specific emphasis to biomolecules or solvation reactions.

Metal environments are decidedly different from the situations mentioned above. More-

over, there is considerable interest to study electron transfer and electronic excitations of

molecules interacting with nanoparticles or surfaces [305, 360, 440]. The traditional ap-

proach to studying these systems classically solves Maxwell’s equations, with the most

recent implementation being either the discrete dipole approximation [428, 594] or the finite-
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Figure 1.3: The two CheESE schemes presented in this work: A. Full Poisson-
Schrödinger approach, as detailed in Chapter 4. The final step details the calculation
of the free energy, as we are able to obtain the induced charges on the metal plates; B.
Laplace-corrected approach, as detailed in Chapter 5. One can obtain the surface charge
potential V σ by recognizing that the charge of the surfaces inside the plates is zero, thus
turning the problem into a Laplace approach. In turn, this potential is added to the KS
system of equations.

difference time-domain method (FDTD) [514, 598]. McMahon et al., employ a non-local

approximation to consider nonlocal effects at nanometer-sized lengthscales [339, 340].

To fully consider quantum effects, one needs to partition the space and attempt a

multiscale separation of the relevant degrees of freedom. In this vein, there have been

FDTD/QM implementations [97] as well approximations of considering a metal dielectric

function [116, 117]. The latter is an extension of the PCM model [531, 532]. In these

models, solvation is described by a single bulk component, characterized by a dielectric or

screened conductor, rather than explicit solvent molecules. Specifically, the metal–molecule

interaction is derived from the mutual polarization of the neutral metallic surface and the

electron density of the molecule.

We developed two different strategies to account for the electrostatic effects (including a

strong applied static field) that a metallic surface exerts upon a molecule. These approaches

are based on the metallic surface acting as a boundary condition. Therefore, there is a clear

separation between system and environment. We termed this scheme as CheESE (chemistry

in electrostatic environments).

The change of boundary conditions in the boundary region, rb, leads us to couple the
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Poisson equation:

∇2V (r) = −4πρ(r), (1.3)

with the given boundary condition: V (rb), with the potential V , and the Schrödinger

equation. The Schrödinger equation naturally enables us to obtain the density, which in

turn can lead us to obtain a better representation of the potential, by iteratively solving

the Poisson-Schrödinger scheme (i.e., applying the new density to Eq. 1.3), as shown in

Fig. 1.3A. This scheme can be coded in a straightforward fashion representing space in a

finite difference (FD) approach [435, 503], and couple it with existing FD quantum chemistry

codes, such as octopus [93]. Chapter 4 contains more details of the development of this

methodology.

In this approach, we assume that constant potential generators are attached to power

supplies. As such, the system is open and we must include the work done by the environment

as a free energy F . The finite-difference real-space approach enables us to obtain the

contribution of the induced charges on the gates (Qm), when we have an applied voltage

(Vm) in this region. The finite difference approach enables the calculation of Qm, given

by the normal derivative of the total electrostatic potential at each of the surfaces. This

is effectively the last step of Fig. 1.3A and is a major difference of the two approaches, as

shown in Table 1.1.

The Laplace-corrected CheESE scheme developed in Chapter 5 stems from recognizing

that the potential has two components, as shown in Fig. 1.3B: V σ, the potential due to

the surface charge; and V ρ, the potential of the system (i. e., electrons and nuclei). At the

boundary, the total potential at the plates must be a constant. Then V σ can be defined as

a solution of Laplace’s equation inside the cavity:

∇2V σ(r) = 0 ∀r ∈ cavity, (1.4)

where the cavity indicates the space within the metal plates. V σ, under the Dirichlet

boundary conditions, is in turn determined by the sum of the fixed potential at the plates

(i. e., the bias), and the inverse of the system potential V ρ. This entails that V σ can be

directly determined without knowledge of ρ. As shown in Fig. 1.3B, this correction can be

added to the modified Kohn-Sham (or Hartree-Fock) operator.

Chapter 5 makes an in-depth analysis of the parameters involved in V , and specifically

V σ, including the effect of the bias potential on the plates, but also image-charge effects

on molecules that present charges, dipoles or induced quadrupoles: benzene anion, glycine

and neutral benzene, respectively. On the other hand, Chapter 4 covers the effect of anion

stabilization under electrostatic environments. Namely, the image charge effect causes an

excess electron in benzene to be more stable than its neutral counterpart.
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Type Real Space Basis set

Calculation type Full Poisson equation Correction to free-space
Space representation Finite difference Finite element
Solver type Poisson solver Laplace solver
Grid in molecular region Fine grid required Modest grid required
Induced charges Calculated Not calculated

Table 1.1: Comparison between the basis-set based Laplace correction of CheESE and the
real-space based Poisson-equation Cheese approach.

The Laplace-corrected scheme was implemented as a standalone library using a wave-

function based approach, and can in principle be integrated to other quantum chemistry

codes. Table 1.1 refers to a comparison of both methods. There are striking differences

between both approaches. While one relies on a real-space approach, the other represents

space in terms of basis sets. Moreover, the real space approach relies on finite-differences

to solve the Poisson equation, while the basis set one uses a finite-element Laplace solver,

which enables the grid around the molecular region to be more modest. On the other hand,

the finite-difference approach allows the induced charges to be calculated in a facile manner.

Our work has been so far focused on simulating two metallic plates and having a

molecule between them. However, the Poisson or Laplace-corrected solvers are more pow-

erful tools as they can provide the potential for any geometry with just the appropriate

boundary conditions as input. Therefore, the development of methods for arbitrary struc-

tures should aid in the understanding of roughened surfaces, such as those used in SERS.

The understanding of dynamic effects of molecules physisorbed to surfaces is also es-

sential in the field of plasmonics, whether it is to enhance the electric field [323] or to

understand excitonic effects [32]. The next step could include adding a complex metal di-

electric function, as developed by Corni et al. [116, 117]. However, one must consider more

higher-order effects, such as the interaction of charge between the surface and the substrate.

Therefore, a more intricate jellium-like model for the surface would need to implemented

for the metallic environment [289].

Several important components of the chemical effects in surface-enhanced Raman scat-

tering are described either using atomistic approximations of the metal, as well as boundary-

condition based approaches. It is possible to readily study localized dynamic effects of

metal–molecule interactions with the atomistic models, at a loss of bulk-like effects. Mean-

while, the image-charge models allow the potential of studying effects at a larger length

scale.
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Part II: The Harvard Clean Energy Project

At the moment, human energy use amounts to 550 EJ per year. The current sources

that satisfy this demand are mainly based on fossil fuels. Oil is responsible for one third of

the yearly energy demand. However, it is becoming scarcer and more expensive to extract.

Coal, on the other hand, is readily available and present in countries with large energy

consumption such as the United States and China. If fossil-based fuels are continued to be

used at the current rate, we will continue to head towards the worst-case scenario paths of

climate change as presented by the Intergovernmental Panel for Climate Change [493].

It then becomes increasingly important to start searching for prominent sources of

non-carbon emitting sources. Saudi Arabia, the world’s leading exporter of oil, recently

launched an initiative to cover 50% of its energy demand using both nuclear and solar power.

Regardless of the climate consequences to greenhouse gases, approximately 1 billion people

still live without electricity. This part of the population often resides in remote regions

where access to the grid is difficult [236]. The sun’s input exceeds the global consumption

by 4 orders of magnitude and it is a well known fact that an hour’s irradiance exceeds

mankind’s yearly energy needs [357]. When conditions are favorable, local methods of

power generation like solar power are ideal, as they can effectively bypass the connection

to the grid and can in principle provide all the necessary energy.

Solar cells harness the sun’s energy by converting the incident photons into energy.

Currently, the most prevalent solar cells are made up of crystalline silicon. Its mechanism

has been widely known [370], as well as its efficiency limits [482]. Despite these findings,

the cost of generating electricity with solar cells is still not competitive with other sources

of electricity. Even if there was a short-term adoption of this technology, crystalline silicon

solar cells tend to be heavy and thick, which hinder its overall access for building-integrated

architectures, either for rural or urban environments. Nonetheless, widespread adoption of

solar panels and economies of scale are consistently driving prices of silicon solar cells

down [169].

To reduce material costs, as well as to enhance the solar cell’s use in non-traditional

locations (e.g., beyond rooftops and solar harvesting plants), thin-film inorganic solar cells

have been termed as the second generation of solar cells [509]. Similarly, the field has

gone beyond studying inorganic materials and has also developed hybrid inorganic-organic

photovoltaics such as dye-sensitized solar cells [397] and organic photovoltaic materials,

which we will detail below [218]. The main goal becomes reaching a higher efficiency cost

ratio, and not necessarily going after a higher efficiency than crystalline silicon, at 25% [615].
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Figure 1.4: Organic photovoltaic device architecture layout and material energetic parame-
ters. The bulk heterojunction is a mixture between the donor (red) and the acceptor (blue),
and is capped by the electrodes at both ends.

Materials for organic photovoltaics

Organic photovoltaic solar cells have lately represented a new set of possibilities for

solar cell materials. Although their discovery dates from the mid 1980’s [516], it is not until

the past decade that there have been considerable improvements [98, 218, 478, 521]. The

development of these materials has gone from using single crystals as the active substance

(akin to crystalline silicon), to crystalline bilayers of donors and acceptors to the bulk-

heterojunction (BHJ) model. The latter seems to be the most successful thus far, though

several problems in fabrication and scaling still remain. Yet another problem for OPV

materials is the solar cell lifetime. As these materials are plastic-based, they degrade much

faster than Si or other crystalline systems. Laboratory studies have reported a record

lifetime of 7 years [419], and we expect lower yields at real-life conditions. Though, there

is hope that as efficiency increases (the current record is 9.2% [478]), and production costs
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of these solar cells decrease, lifetime issues will also become less relevant [35].

For organic-based solar cells, the cathode and anode are composed of indium tin oxide

(ITO) with a layer of the PEDOT:PSS conductive polymer and aluminum, respectively.

The device architecture of the bulk heterojunction solar cells is represented in Fig. 1.4. The

bulk heterojunction lies between the electrodes and is a mixture of an acceptor material,

typically a fullerene-based molecule, and a donor material, either a small molecule or a

polymer.

Acceptor materials are characterized by having a high electron affinity and also good

electron-transport properties. They require appropriate electronic levels to couple efficiently

with the donor material. Other properties that are also necessary include having good

solvation properties in the heterojunction medium, and potentially having good optical

absorption properties. Finding a better acceptor is a field of active research [213, 298,

443, 451]. However, the most successful acceptor molecules have been fullerene-based ones,

specifically PCBM 1 [230]. Although this molecule has a weak absorption, and its LUMO

level is not ideal, there has as of yet not been more suitable acceptor materials as PCBM

presents good affinity and electron transport properties. Therefore, it has often been the

case that the search for improved BHJ materials has been in the realm of donors, with

PCBM as acceptor.

Donor materials are characterized for having good hole-transport properties. It is also

essential for them to have a favorable optical absorption as most of the excitons are generated

in the donor phase. Since the advent of BHJ, donor materials have typically been conjugated

polymers [600], principally due to favorable electronic properties and packing interactions.

These have yielded the highest-recorded efficiencies for BHJs [96, 478]. However, donor

materials can also be small molecules [556, 575]. The latter have the advantage of having

higher processing control, and thus the possibility of a higher efficiency at the commercial

scale. However, polymer-based BHJ still have a higher efficiency with respect to small-

molecule counterparts.

In Chapter 7 we detail the photophysics of OPVs. The BHJ architecture is essential

for the organic photovoltaic mechanism to take place. Briefly, the process beings with light

absorption, principally at the donor phase, as mentioned above. This creates an exciton,

which must diffuse to the donor-acceptor interface. At this point, if the exciton has not

recombined, exciton dissociation takes place and there is charge carrier (i.e., hole and

electron) migration to the electrodes, which translates into an electric current. One of the

main bottlenecks in OPVs is the exciton diffusion. As the diffusion length is typically in

the order of tens of nanometers, the donor-acceptor interface must be located well inside

11-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61
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this threshold. In the case of bulk heterojunctions, the donor and acceptor mix to create

connected domains in the order of tens of nanometers, thus permitting charge-transfer [109].

Power conversion efficiency

As the relevant parameters for the development of BHJ OPVs are essentially known [74,

78, 225], the search for materials with these features becomes one of the essential parts of the

problem. The power conversion efficiency (PCE) is given by the product of the maximum

current density and voltage over the incoming power (typically set at 100 W m−2). In order

to cast the power characteristics into material properties, we represent PCE as:

%PCE =
FF · Jsc ·Voc

Pin
× 100 (1.5)

In the formula above, Voc represents the open-circuit voltage; Jsc is the short-circuit

current density; and FF is the fill-factor. Jsc and Voc can be obtained under device illumi-

nation measurements. In turn, the fill factor is the ratio of the maximum voltage-current

over the product of Jsc and Voc. The FF is a parameter that measures the capacity of the

device to obtain the most power available.

The short-circuit current density is the photocurrent generated by a solar cell under

illumination at short circuit. It is related to the incident spectrum and the cell’s external

quantum efficiency, EQE. The latter represents the probability that an incident photon of

wavelength λ will deliver one electron to the external circuit at a given wavelength. The

Jsc can be represented as:

Jsc = qA−1
cell

∫ λmax

λ=0
Nphot (λ) EQE (λ) dλ, (1.6)

where q is charge of the electron; Acell represents the area of the cell; and Nphot (λ) is the

incident number of photons (i.e., the photon flux) at a given wavelength [370, 477]. The

integral is bound by the largest absorbed wavelength. In the case of BHJ, this is normally the

bandgap of the donor material, a property that can be estimated using quantum chemistry

methods.

The EQE is related to the internal quantum efficiency, the capacity of every absorbed

photon in the material to generate carriers, and the optical transmittance (related to the

ITO/glass spectrum) [477]. Recent work on device architectures has enabled IQE of 100%

at certain frequencies [403]. Exciton diffusion is typically responsible for small internal

quantum efficiencies.

In order to obtain the Nphot spectrum in Eq. 1.6, one needs to specify its position with

respect to that of the air mass (AM): the path length through the atmosphere relative to

the zenith [196]. At sea-level and measuring directly above, the spectrum is named AM
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1. The measurement standard was given by a tilt angle representing 37 degrees, which is

equivalent to the average latitude of the continental United States. This is equal to a path

length of 1.5 with respect to sea level and its spectrum is thus labeled AM 1.5 [180].

The Voc is a function of the electrical and chemical potential gradients present in the

cell [192]. In BHJ devices holes and electrons are formed within the donor and acceptor

phases. This leads for the Voc to be related to the energetics of the donor-acceptor inter-

face [118]. In fact, it has been found that Voc is related to the highest occupied molecular

orbital (HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the

acceptor [73]:

Voc ∼
1

q

∣∣EDHOMO − EALUMO

∣∣ . (1.7)

In the case of silicon-based solar cells, Voc is mainly determined by the electrode work func-

tions. This is due to the holes and electrons being generated in the same semiconducting

phase, and thus require a classical built-in potential to generate charge carrier separa-

tion [118]. The difference in potential between the electrodes is typically smaller than in

BHJ materials. However, the Jsc in Si-based solar cells is larger than in organic photovoltaic

solar cells.

The Scharber model: A simple tool for predicting organic photovoltaic efficiency

The Scharber model relies on frontier orbital energetics to determine PCE [467], and

thus depends only on time-independent properties. Although this model entails working

with several approximations, it is a useful starting point to start assessing orbital-dependent

properties and its relationship to the material’s performance. The model includes a linear

relationship between the difference of the donor’s HOMO and the acceptor’s LUMO. They

use the Voc in Eq. 1.7 and approximate it as:

Voc =
1

q

∣∣EDHOMO − EALUMO

∣∣− 0.3. (1.8)

The offset value, 0.3 V, in Eq. 1.8 is an empirical factor. Scharber, et al., attribute

these losses to photocurrent effects present in bulk-heterojunctions. In practical terms, it

is a loss to the overall efficiency of the system. The Jsc relies on approximating the EQE

as: EQE (λ) = 0.65, for all λ; and, λmax as the wavelength related to the gap between the

donor’s HOMO and LUMO: ∆ED
g . The LUMO of the acceptor also plays a role in this

calculation, since we must consider the exciton dissociation process. We consider that there

needs to be an energy gap of 0.3 eV between the LUMO of the donor and the LUMO of the

acceptor, as shown in Fig. 1.4. This gap is necessary because we need to provide the energy
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necessary for exciton dissociation. Therefore, Eq. 1.6 becomes an integral of the incoming

solar spectrum (e.g., AM 1.5), given the associated donor bandgap wavelength, λDg :

Jsc = qA−1
cellEQE

∫ λDg

λ=0
Nphot (λ) dλ.

Lastly, the fill factor is also approximated to FF = 0.65, and so we are able to calculate

the efficiency of the material (Eq. 1.5). Since PCBM is the lead acceptor, it is typical to

perform a search of the donor, given the acceptor’s parameters. After accounting for all

the losses of the material under this model (due to Voc, FF, EQE and exciton dissociation),

we find that it has a maximum efficiency of 11.1% and its ideal bandgap is 1.4 eV. Since

PCBM’s LUMO is -4.3 eV, then the ideal donor LUMO is -4.6 eV and its HOMO is -6.0

eV. Therefore, it is possible to search for donors by using the orbital values given by the

ground-state DFT calculations.

In Chapter 6, we provide an overview of the Harvard Clean Energy Project, a high-

throughput approach for a large-scale computational screening and design of OPV materi-

als. These include efforts in several directions including cheminformatics, machine learning,

quantum chemistry, while keeping a tight integration with experimental researchers. In

Chapter 7, we present our initial efforts in cheminformatics and machine learning for mate-

rials discovery. These include developments of inference methods as well as the generation

of molecular libraries to find new OPV materials.

Chapter 6: Large-scale computational screening and design of organic pho-

tovolatic materials

The development of materials is a time-intensive process, where synthesis and char-

acterization may have a turnaround time in the order of months or years. Moreover, the

molecular space is limited as researchers often work with systems that belong to the same

family of molecules [63, 620]. Theory has been able to aid in the understanding of the

parameters for organic optoelectronic materials [177, 355, 458, 459], and has also been suc-

cessful in predicting new materials for organic electronics [491]. However, as in the case

of synthetic characterization, theoretical studies has thus far been limited to a small set of

candidates.

Proof-of-principle studies have given a positive indication that it is feasible to go from

an in silico prediction of materials to translate them to the workbench [491]. Therefore,

it is possible that expanding the search across the relevant molecular space could yield

molecules that exceed the current record efficiency for solar cell materials. Relationships

between materials parameters such as Voc and orbital values enable for the initial rank and

characterization of potential candidates [467]. A successful initial screening of these materi-



Chapter 1: Introduction 18

als requires the following components: i) an appropriate molecular space; ii) analytical and

statistical tools to discriminate and predict successful candidates; iii) and a cyberinfrastruc-

ture to withstand a large scale project. We begin by introducing our infrastructure efforts,

and continue detailing the quantum chemistry tools we use for our large-scale screening

approaches. In the next section, we overview the details of the molecular space, along with

the statistical tools we utilize.

Knyder’s Law [557] predicts disk space doubling roughly every year. This law shows

no signs of slowing down as storage densities are still far from its fundamental limits [282].

This has brought forth a paradigm prevalent in many scientific, as well as technological

areas of “Big Data”, or data-driven projects [10]. These are defined by the size of the

data itself as being part of the problem [316]. Examples of these projects abound and

vary from the culturomics project [347], which aims to digitize all books ever printed, to

the dynameomics efforts to collect a comprehensive database on protein dynamics [545].

The CEP aims to screen millions molecules for finding organic photovoltaic materials, thus

making this project a data-driven one.

The infrastructure needed for this kind of approach is based on the fact that this project

relies heavily on available computer time, but this has moved away from the large super-

computer centers, and into the households and offices around the world. The SETI@Home2

project revolutionized this idea and started the paradigm of distributed computing. Nowa-

days, the Berkeley Open Infrastructure for Network Computing (BOINC) is the software

that enables countless others scientific projects [20, 66]. The CEP partnered with World

Community Grid [108], which is a philanthropic arm of IBM and hosts around 500,000 vol-

unteers for various projects. As of March 2012, the CEP has used over 8,000 computer years

for this endeavor and has done 10,000,000 calculations on different molecular configurations.

We are currently obtaining properties for 30-40,000 molecules per day.

As an initial screening, we perform a set of HF and DFT calculations [271, 405] using

various different functionals, and basis-set configurations. We develop these in detail on

Chapter 6. We use a customized version of Q-Chem 3.2 [480] and users around the world

run the calculations in a fully automated fashion during their idle time. Although DFT and

HF methods are a time-independent approximation to the Schrödinger equation, this is a

starting point to probe for necessary conditions for successful OPV materials. Needless to

say, the properties addressed in the initial pruning will not be sufficient considerations for

predicting a new material.

As we mentioned above, the Scharber model relies on time-independent quantities as

an initial approximation for power conversion efficiencies. As such, this is our first step

2Search for Extraterrestrial Intelligence @ Home, http://setiathome.ssl.berkeley.edu/
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in the screening process. There is a myriad of information that can be extracted both for

theoretical and experimental use. For example, instead of doing a search of a donor, with

respect to PCBM, one can undertake a coupled donor-acceptor approach. Similarly, to go

beyond 11% efficiency in the Scharber model, one would need to consider more complicated

architectures such as tandem solar cells, where two (or more) donors absorb at different

frequencies. It will be useful to perform a complementary search of donors to find systems

with higher efficiency [17].

Chapter 6 also details the theoretical methods needed to go beyond the initial screening.

More accurate methods are needed to account for the vibrational effects on these molecules.

This is specifically important to address electron-phonon coupling [460], which may lead to

dissipation of energy; charge transport via the calculation of cations and anions [371]; and

excited states to address the absorption spectra of the candidates [459, 489].

So far we have addressed the cyberinfrastructure of the CEP, along with some of the

analytical tools we use in this project. Chapter 7 details our initial advances on the field of

cheminformatics. We explore the modelling of an appropriate space, as well as the machine

learning tools we have been using and developing for this materials discovery endeavor.

Chapter 7: Accelerated computational discovery of organic photovoltaic

materials by means of cheminformatics

High-throughput approaches for discovery of new molecules has mainly been concen-

trated in the realm of drug discovery [40, 41, 193]. For the last 40 years, this field has also

developed machine learning approaches to find new drug-like molecules [193, 338]. Research

in drug discovery led to the creation of cheminformatics (chemical informatics), which allows

for the “transformation of data information and information into knowledge” [82]. More

specifically, it is a field that combines machine learning and statistics in a chemistry-oriented

context [295].

Machine learning involves creating algorithms so a computer can take in knowledge

from empirical data (such as a dataset) and be able to make decisions based on the data.

Supervised learning algorithms involve training a set of target values, using a set of features

(or independent variables) [434]. When the outputs are real values, this setting is known

as a regression; while if the targets are a logistic function (e.g. to discriminate between

photoactive and inactive materials), then the setting is known as a classification. One

of the main objectives of these algorithms is to find an underlying structure between the

features and targets [62, 321].

The drug discovery community has extensively used the linear regression model. In

linear regression, one tries to fit an output using a set of features (or inputs) and parameters
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(or weights):

f (x) = x>w, y = f (x) + ε, (1.9)

where x is the input vector, w is a vector of weights, f is the function value, y is the target

value, and ε is the deviation from a perfect fit [434]. The objective becomes minimizing the

error in Eq. 1.9, by tuning the weights vector and using an error metric, such as the sum-of-

squares error function [62]. One of the goals of the drug-discovery community is to exploit

structure-activity relationships (QSAR), though these can also be obtained with non-linear

regressions and other machine learning methods. However, the ease of interpretation and

implementation of linear methods enhanced their stature in this community. As it is perhaps

clear, what it has of simplicity, it lacks in flexibility as it is not always the case that there is

a linear relationship between inputs and output. The field, however, has been progressing

towards using more complex non-linear regression methods [387, 434, 519].

Non-linear regression methods can be expanded to include quadratic terms between the

different features, or even higher-order polynomials. However, one notices the quadratic

features grow as n2/2, while we expect that cubic and higher terms scale even higher.

Therefore, machine learning has focused on methods that have attempted to circumvent

these issues by using complex adaptive basis functions or adapting parametric forms of these

basis functions [62]. These methods have strongly relied on Bayesian statistics. As these

methods grow in complexity, their prediction models might improve, but the underlying

interpretation may be easily lost.

Our initial machine learning approach consists on using a linear regression models to

find better donor materials, as detailed in Sec. 7. We collected target values from reported

data. Secondly, we turned our attention to which features we could choose for these materi-

als. In this case, we utilized properties that could be calculated in a facile matter. These are

called descriptors (which we will use interchangeably with features) and these correspond

to both structural properties, such as connectivity, elemental analysis and simple electronic

structure properties, such as those based on extended Hückel theory [95, 237]. These prop-

erties are easy to calculate and provide both an initial indication of structure-property re-

lationships, as well as an effective testing ground for developing machine-learning methods.

Turning quantum chemistry-based data into descriptors will be one of the most important

steps in order to provide more accurate inference tools for predicting new molecules.

There are some properties that are heavily dependent upon fabrication, such as the

fill-factor. Therefore, we exclude this property from our analysis, where our regression with

highest confidence will then be the product of Voc and Jsc. We provide a summary of our

scheme in Fig. 1.5. We start with a set of OPV donor materials with known parameters.

These are our target values we used to train with the cheminformatics features developed



Chapter 1: Introduction 21

Figure 1.5: Machine learning approach to donor organic photovoltaics materials discovery.
OPV donor materials, with known parameters are used as target values to train a regression
model. We virtually generate a molecular library, which we apply our model to find new
candidate molecules.

above. With a virtually generated library (vide infra), we can apply our trained regression

model to find new candidate molecules.

The last component in our cheminformatics approach is related to generating a library

of potential candidate molecules. The chemical space is extremely vast. For instance, it has

been estimated that there are far more than 1060 organic-like molecules [65]. Although the

donor molecule space is likely not as large, since donors require certain electronic properties,

typically provided by conjugation, we can expect that the whole space cannot be computed.

Generating a database of lead molecules should be related to the available screening capa-

bility of the project, but it should be bound by the interest in the available space, as well

as the potential use of the non-successful leads. In our initial approach, we generate a

combinatorial library starting with building blocks provided with experimental input from

the group of Zhenan Bao at Stanford University to ensure synthetic feasibility [356].

There is not always a need to explore the largest computational space available. As

molecules grow larger, the combinatorial possibilities grow exponentially, and there may

not be available computer time. Furthermore, as successful candidates are found in the

molecular space, it may be more useful to concentrate on specific areas. O’Boyle et al.,

have studied a library of donor OPV materials using a stochastic method (i. e., genetic

algorithm) to create combinations of the building block materials [386] and test them using

semi-empirical quantum-mechanics methods.
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Our approach initially explores around 3.5 million molecules [394, 391]. We have found

that around 0.3% of these candidates are above the 10% mark using the Scharber model,

as shown in Sec. 6. This sparsity indicates that it is indeed difficult to find successful can-

didates. Similarly, the median lied at around the 6% efficiency, which means that chemical

intuition might not necessarily lead to high efficiency yields, but instead must rely in these

high-throughput methods. On the other hand, our machine learning approach, shown in

Sec. 7 has enabled us to perform a ranking of molecules, which in our future analysis will

be coupled to appropriate statistical validation schemes [2, 122], along with more complex

descriptors and learning algorithms such as Gaussian processes [387, 434], and classification

schemes [375].

Part III: Accelerating quantum chemistry algorithms using

graphics processing units

One of the main interests for electronic structure theory is to find approximate solutions

to the non-relativistic time-independent Schrödinger equation:

Ĥ (r,R) Ψ (r,R) = EΨ (r,R) (1.10)

where ψ (r, r) represents the wavefunction for the Hamiltonian, Ĥ, which depends on both

the nuclei and electron position vectors r and R, respectively [513]. For a system with

M nuclei and N electrons, Eq. 1.10 involves solving an eigenvalue equation in 3M + 3N

independent variables, i.e., the coordinates of all the particles. It is well known that this is

impossible to solve exactly [496]. Approximate solutions are therefore necessary.

The first approximation consists in considering that since electrons are much lighter

than nuclei, they move faster. Therefore, one can consider the electrons acting in the

field of fixed nuclei. We can then separate the components of Ψ into a product of an

electronic wavefunction ψ (r; R), which depends explicitly on the position of the electrons

and parametrically on the nuclear coordinates; and a nuclear wavefunction χ (R): Ψ (r,R) =

ψ (r; R)χ (R). This is the ansatz proposed by Born and Oppenheimer [69] and it allows

Eq. 1.10 to be decomposed into an equation for the electronic wave function and another

for the nuclei, which describes vibrations, rotations and translations of the nuclei. We will

concentrate on the electronic wave function [496].

Ĥelψel (r; R) = Eel (R)ψel (r; R) , (1.11)

where now the energy also depends parametrically on the nuclear coordinates; and the
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electronic Hamiltonian is given by:

Ĥel = −1
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rij
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Effectively, we have reduced the Schrödinger equation on a 3N dimensional problem,

for each nuclear configuration. For most molecular systems, it is still not possible to find

an analytical solution to Eq. 1.11. Since the development of the Schrödinger equation, the

electronic structure community has focused on a hierarchy of methods to solve Eq. 1.11

approximately. This has led to systematic improvements to yield properties of increasing

accuracy. The starting point in the hierarchy is the Hartree-Fock (HF) method, which

describes the electron-electron interactions (i.e., the second term in Eq. 1.12) within a

mean-field approach [388].

The Hartree-Fock method relies on the expansion of a wave-function in a Slater de-

terminant, an antisymmetrized product of one-particle spin orbitals: ψ (r1, r2, . . . , rN ) =

|φ1φ2φ3 . . . φN 〉. Broadly speaking, and we provide more details of this derivation on Sec. 10,

we calculate the expectation value of Eq. 1.11 and obtain the Hartree-Fock energy. Mini-

mizing the expectation value in terms of expanding φi (r) into fixed basis leads to solving

a pseudo-eigenvalue problem. This is coupled with constructing the density matrix out of

the optimized coefficients and self-consistently using these values for a better expression of

the HF energy. The eigenvalue problem is typically solved by diagonalization, which scales

cubically with system size: O
(
M3
)
, though for small molecules, the scaling is typically

O
(
M4
)
.

The HF method is able to recover up to 99% of the exact energy. The neglected

energy is known as correlation energy and can be systematically recovered using post-HF

methods. These methods increase in accuracy at a higher scaling price. These include

coupled-cluster methods, which modifies the single-determinant ansatz, as well as multi-

determinant approaches [222, 513]. For completeness, we mention that DFT approaches

scale similarly to HF as it is also a self-consistent field [271, 405]. DFT offers a good

compromise between accuracy and computational cost, but to date does not yet provide a

systematic way of improving upon the result, as post-HF methods do.

The post-HF method we focus on is perturbation theory. Møller and Plesset (MP) used

Rayleigh-Schrödinger perturbation theory to obtain a second-order solution (MP2), where

the zeroth order eigenvalues are given by the HF approach [354, 388]. The expression for
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computing second-order energy is:

E(2) =
∑
ijab

(ia|jb)2 + 1
2 [(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
, (1.13)

in terms of the eigenfunctions of the Fock operator with eigenvalues ε; where the occupied

molecular orbitals (MO) are labeled by i, j; the virtual molecular orbitals are labeled by

a, b; and the MO integrals,

(ij|ab) =
∑
µνλσ

CµiCνjCλaCσb (µν|λσ) , (1.14)

are obtained by transforming the atomic-orbital (AO) electron repulsion integrals (ERI),

(µν|λσ) =

∫ ∫
ηµ(r1)ην(r1)ηλ(r2)ησ(r2)

|r1 − r2|
dr1dr2, (1.15)

where Cµi represents the matrix elements of MO coefficients describing the expansion of

each MO as a linear combination of AOs. The time-consuming part in this process is

considering that the transformation from AOs to MOs formally scales as O
(
M5
)
. The MO

coefficients in Eq. 1.14 are nonlocal and so most of the elements are significant and cannot

be canceled out to reduce the order [388].

Although the scaling holds in the asymptotic limit, there have been efforts to reduce

the prefactor in MP2 at a very small cost to accuracy. This method is similar to inserting

a resolution-of-the-identity (RI) in the ERI’s [147, 572]. In Eq. 1.15, the 2-center 4-index

ERI becomes highly linearly dependent with increasing atomic orbital basis set, and so it

is possible to expand the products of electrons 1 and 2 in a basis set auxiliary function

P [210]:

ρµν(r) = ηµ(r)ην(r) ≈ ρ̃µν(r) =
∑

Cµν,PP (r),

with a dimension smaller than the original product space. If one minimizes the error in the

Coulomb ERI’s, then it is possible to approximate Eq. 1.15 as only 2 and 3-index quantities:

˜(µν|λσ) =
∑
P,Q

(µν|P )(P |Q)−1(Q|λσ). (1.16)

This method is called resolution-of-the-identity (RI) due to the insertion of:

I =
∑
m

|m)(m| ≈
∑
P,Q

|P )(P |Q)−1(Q|,

but it has also been referred as a density-fitting scheme [577]. We can now obtain the

approximate (ia|jb) integrals, as well as its elements using matrix multiplications for RI-
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MP2:

(̃ia|jb) ≈
∑
Q

Bia,QBjb,Q, (1.17)

Bia,Q =
∑
P

(ia|P ) (P |Q)−1/2 . (1.18)

It is known that the RI approximation reduces the operations at least an order of magnitude

for a triple-zeta basis-set calculation. Also, in RI-MP2 a larger basis set entails a larger

relative speedup [210]. Therefore, RI-MP2 enables both the study of larger systems, and

also a more accurate representation for the same molecule, since it allows for its study using

a larger basis set. Moreover, the fact certain steps in this method are effectively matrix-

matrix multiplications will enable for a facile translation into the single-instruction multiple-

data calculation paradigm, and hence be further accelerated with graphics processing units

(GPUs).

In Chapters 8–10, we develop our work related to the acceleration of RI-MP2 using

GPUs. We detail the approaches needed for an efficient computation of this method. At the

time of our initial implementation, graphics cards lacked double precision (DP) accuracy;

a considerable loss for quantum chemistry methods. Eventually, GPUs started having DP,

albeit slower. Moreover, most cards did not include DP. We therefore developed a mixed

precision approach to be able to obtain reasonable accuracy in RI-MP2. We present these

approaches in Chapters 9–10.

Chapter 8–10: RI-MP2 Acceleration Using GPUs

The development of scientific computing in graphics processing units (GPU) has ex-

ploded in the last five years, especially in the field of molecular modelling [19, 126, 500, 539,

540, 538, 541, 596, 597]. This change in computing paradigm has been enabled by the spe-

cific architecture of GPUs. GPUs were developed to display complex images, especially for

videogames. The most computationally-demanding operation lies in the rasterization and

shading process [500]. These two steps are inherently data-parallel. Typical CPU processors

do not provide a multi-threaded or parallel architecture to meet these needs effectively

According to Flynn’s taxonomy, the single instruction, multiple data paradigm, implies

that one instruction can operate on multiple data. Similarly, stream processing gathers a

‘stream’ of input, and operates on the input stream by using one or more kernels. Each

kernel comprises of one or several operations [198, 251]. Typical GPUs contain multiple

arithmetic units (streaming processors) arranged into groups to form multiprocessors that

share fast access memory and an instruction unit; the grouped processors execute the same

instruction thread simultaneously on different data streams. This is extremely useful for
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visualization where, for instance, a stream of pixels are translated or rotated on a screen.

GPUs are therefore well-suited to high-performance applications with dense levels of data

parallelism.

Several other hardware architectures utilize the stream processing paradigm. These

have had successes in implementing scientific computing tools. However, they have not

always stood the test of time; especially with respect to the wide availability of GPUs.

These include the Clearspeed hardware, with boards similar to those in GPUs [84]; field-

programmable gate arrays [411]; and the MDGRAPE hardware for MD and N-body simu-

lations [510].

Molecular modelling, whether it is for molecular dynamics or, quantum chemistry ap-

plications typically contain fine-grained data parallelism, which has resulted into porting

these algorithms for GPUs. One of the main reasons there has been such an explosion in

general purpose applications for GPU 3 is due to the release programming interfaces that

allow development of algorithms for the GPU using a relatively simple extension of the

standard C language, namely CUDA [385] and OpenCl [367]. These two factors have com-

bined to have production level codes for MD calculations and visualization (NAMD, VMD),

a standalone quantum chemistry implementation (Terachem), and a legacy code that now

enables GPU usage (Q-Chem 4.0), among others.

We implemented an acceleration of the RI-MP2 method, principally by noticing that

Eqs. 1.17–1.18 can be calculated more efficiently using the stream-processing paradigm

with GPUs. The most time consuming step in the RI-MP2 algorithm is Eq. 1.17 due

to the evaluation of the matrices grows as O
(
N2
)
. These hurdles were overcome with

the CUDA development toolkit and its basic linear algebra subprograms implementation,

CUBLAS [383]. As we mentioned, one of the main issues is the CPU-GPU communication.

Therefore, the algorithm included a method to batch the matrices up to the available GPU

memory, since acceleration increases as the size of matrix grows. Lastly, since memory in

the cards is typically smaller than in CPU RAM, we also devised a matrix-cleaver to enable

a full RI-MP2 implementation for GPUs.

Our initial algorithm in Chapter 8 used single precision (SP) cards, as those were the

only available ones at the time. The error of our RI-MP2 implementation with these cards

naturally increased as we tested with larger systems, until eventually the error was beyond

1 kcal mol−1 (i.e., chemical accuracy). This led us to propose methods of mixed precision

in Chapters 9–10. The main problem for using single precision is that when performing a

product between a large and a small number, the 6-7 significant figures are often insufficient

to achieve chemical accuracy. We explored two schemes of partitioning matrix elements so

3General-purpose computing on graphics processing units (GPGPU).
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that they can be calculated using single precision matrix multiplication (SGEMM in BLAS

library) in the GPU.

The first method is deemed bitwise partitioning. Consider splitting a double precision

(DP) floating point number, A = m ∗ 2k,

A ≈ Au +Al (1.19)

where Au and Al are single precision (SP) numbers storing the uppermost nu, and the next

lowest nl, significant bits of m, respectively. Then, if we apply the multiplication of two

scalars A, B using bitwise partitioning, we can approximate the full DP multiplication as

four (or three for expediency) SP multiplications.

AB ≈ AuBu +AuBl +AlBu +AlBl

AB ≈ AuBu +AuBl +Al
(
Bu +Bl

)
(1.20)

We can generalize Eq. 1.20 for matrix multiplication:

AB ≈ AuBu + AuBl + Al(Bu + Bl) (1.21)

where, we can use Eq. 1.19for each element of X ∈ {A,B}.
We implemented an heterogeneous algorithm as our second approach. It involves sep-

arating the matrix multiplication C = AB, by splitting A and B into ‘large’ and ‘small’

components, giving

C =
(
Alarge + Asmall

)(
Blarge + Bsmall

)
= ABlarge + AlargeBsmall + AsmallBsmall, (1.22)

where we have taken the simple approach of introducing a cutoff value, δ, to define the

split. That is if |Xij | > δ, the element is considered ‘large,’ otherwise it is considered

‘small.’ The AsmallBsmall term consists entirely of ‘small’ numbers, and can be run with

reasonable accuracy in single precision on the GPU. The other two terms contain ‘large’

numbers, and need to be run in double precision to achieve greater accuracy. However, since

each of the ‘large’ matrices will often be sparse, these terms each consist of a dense-sparse

multiplication.

We found that the bitwise implementation is less arbitrary as it depends only on the

matrix size N (assuming square matrices), and not on the elements of A or B. Moreover, it

is only 3 times faster than CPU DP matrix multiplication in the best case. In contrast, the

speed of the heterogeneous approach strongly depends on the fraction of ‘large’ elements.

Regarding the accuracy, the effectiveness of these methods ultimately depends on the matrix

structure. As we are interested in accelerating quantum chemistry, the matrices calculated
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in RI-MP2 are of large size N and contain both large and small elements which are separated

by orders of magnitude. Therefore, in the case of these methods, the heterogeneous approach

seemed to be most effective to tackle mixed-precision.

Single and mixed precision approaches have been recently revisited in the context of

the MP2 method, using Cholesky decomposition [555], as well as for an efficient evaluation

of ERI’s in GPUs when using SCF methods [319]. Similarly, the matrix multiplication

approach has also been extended to post-HF methods, such as coupled-cluster [126]; as well

as phenomenological hierarchical equations of motion [279].

Overall, heterogeneous hardware is becoming ubiquitous, both in the PC as in the

supercomputer setting. GPUs are becoming the stream processors of choice for scientific

computing due to their astounding FLOP 4 per price ratio. As mentioned above, the

field of molecular modelling is actively adapting to these changes. Therefore, it should be

possible to apply these techniques for nanomaterials as well, as we do in Chapter 2–5. Since

GPUs are present in PCs around the world, one of the goals of the Clean Energy Project

(see Chapter 6) is to be able to take advantage of these additional resources for finding

organic photovoltaic materials. Indeed, the prospect of using this computational power for

distributed computing is already being exploited for understanding of protein folding using

molecular dynamics methods [156].

4Floating point operation per second
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Chapter 2

On the chemical bonding effects in the Raman

response: Benzenethiol adsorbed on silver clusters

2.1 Introduction

Raman scattering from molecules in proximity to a rough noble-metal surface or near a

metal nanoparticle is strongly enhanced due to the interaction with surface plasmon modes

and to the formation of metal–molecular complexes [360, 399]. This phenomenon, which

allows for the measurement of Raman spectra of extremely low concentrations of molecules

[553] with a single-molecule detection as its ultimate limit [376, 270], is very attractive for

sensor applications. In particular, it could be utilized for detection and identification of

hazardous materials [605, 612] or for probing of biological structures [26], for which Raman

fingerprints provide unique information about molecular composition.

Recent achievements in the design of nanostructured materials demonstrate substan-

tial progress toward resolving the long-standing problem of low reproducibility of SERS

substrates. Arrays of nanoantennas fabricated with electron beam lithography [105] or

nanoimprinting [33] utilize extended control of optically excited surface plasmons to tune

the plasmon resonance frequency and to focus the near field in particular areas. Litho-

graphically engineered [87, 181] or laser-engineered [127] structures allow the observation of

a spatially homogeneous enhancement of the Raman signal by 7 orders of magnitude 1 when

an excitation laser frequency far below intramolecular resonances is employed. However,

there remains a number of open questions which are related to the formation of hot spots

and to the homogeneity of the Raman response throughout a sample. The enormous Raman

cross section reported for fluorescent dyes in hot spots [376] has a substantial contribution

from an intramolecular resonant excitation [130]. On the other hand, many important an-

1There is a controversy in the definition of the enhancement factor discussed recently in
E. C. Le Ru et al. [293].
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alytes do not have electronic excitations in the available range of laser frequencies. For

these systems, a relevant question is whether modification of the local environment of the

molecule can be used to boost the limit of Raman detection sensitivity.

The importance of the so-called chemical enhancement [360, 398, 291] has been debated

since the early years after the discovery of SERS. The contributions of the electromagnetic

coupling and the chemical binding are not clearly separable in the experiments [291], because

the first process is essential for SERS detection. This adds to ambiguity in the interpre-

tation of SERS experiments. Moreover, the electronic coupling effects are sensitive to the

local environment of adsorbed molecules, which makes a systematic analysis of chemical

effects more difficult. General theories of chemical enhancement [417, 6, 314] provide an in-

tuitive picture of the mechanism, but rely on phenomenological parameters. In this context,

first-principles modeling [246] is a useful tool that complements experimental studies and

provides additional information about microscopic properties of a metal surface/adsorbed

molecule interface.

Complete modeling of a molecule chemisorbed on a rough metal surface requires multi-

scale simulations, in which the electronic structure of a molecule and its local environment

are treated by quantum chemical methods while a larger-scale environment is accounted

for by a mean-field approximation. However, to understand the chemical bonding effects in

SERS, it is enough to simulate only the local environment of a molecule. This is consistent

with the “adatom model” [360], which assumes that the atomic-scale roughness features

determine the hot spots on a metal surface. Obviously, such an approach does not account

for the electromagnetic enhancement due to the excitation of surface plasmons in the metal.

An interference between the chemical and the electromagnetic effects is ignored as well. To

get the total enhancement factor one has to use a conventional phenomenological relation

[398] which assumes that both effects enter in multiplicative fashion. In most previous

theoretical studies of SERS, only a few metal atoms were used to model the molecule/surface

interaction. For instance, in Ref. [30]. the authors considered a complex with a single Ag

atom to mimic a chemisorption of phthalimide on a silver surface and obtained a reasonable

agreement with experiments. Recently, Schatz and co-workers reported a resonance Raman

response calculation procedure using phenomenological lifetime parameters for electronic

polarizability derivatives. [247] This procedure has been applied to study SERS of pyridine

adsorbed on silver clusters up to a few tens of atoms [616, 248, 358]. The authors identified

three different mechanisms contributing to SERS: change in static polarizability of the

molecule upon adsorption, resonant enhancement due to charge-transfer transitions, and

electromagnetic enhancement due to coupling with a strong excitation in a metal cluster,

and discussed their role in SERS. In Ref. [358] some examples of different molecules and

pyridine with substituents have been considered. However, no systematic studies of other
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molecular structures have been done yet. Given the differences in the chemical bonding of

pyridine and thiols to metal surfaces, it is important to know how general these findings

are and whether they can be applied to other types of metal–molecular coupling or to other

molecules.

In this paper, we address effects related to chemical bonding on Raman scattering from

benzenethiol adsorbed on silver clusters Agn, n = 6−11, which is one of the most commonly

used analytes in SERS experiments. We link the enhancement of Raman response to the

modification of the molecular electronic structure due to adsorption. Excitation energies

and transition moments of the metal–molecular complexes are substantially different from

those of bare metal clusters and of isolated benzenethiol. For off-resonant excitations,

Raman response is enhanced by one order of magnitude. To understand the importance

of the cluster geometry, we modeled a pool of 7 different metal–molecular complexes. We

identify the effects that contribute to the off-resonant Raman enhancement, such as the

molecular orientational effect, the effect of the local symmetry of the adsorbate, and the

effect of the proximity of the vibrational mode to a binding site. Stochastic modulation

of these effects by thermal motion is related to “blinking” events observed in recent SERS

experiments on 4-aminobenzenethiol [157, 564]. We compare the computed vibrational

frequency shifts and relative Raman scattering cross sections of the the metal–molecular

complexes to experimental SERS data for benzenethiol adsorbed on silver surfaces [60, 91,

7, 337].

Our theoretical approach to compute Raman scattering cross section is based on ana-

lytical derivatives of frequency-dependent polarizabilities [432]. The frequency dependence

of polarizability derivatives includes resonance enhancement effects in an approximate fash-

ion, which allows us to describe both off-resonance and resonance enhancement effects on an

equal footing and to study resonance excitation profiles of Raman scattering cross sections.

However, this approach does not take into account the finite lifetime of the excited states.

As a result, the Raman scattering cross sections computed within our approach diverge in

the strictly resonant case.

We demonstrate that formation of mixed metal–molecular electronic states results in a

resonance structure in the Raman excitation profiles (REPs) for molecular vibrations within

the excitation range 1.6− 3.0 eV, which is far below the purely intramolecular transitions.

Our lower-bound estimates of the Raman signal enhancement due to chemical bonding is of

the order of 102 − 103 in the absence of intramolecular resonances. The chemical bonding

effect thus provides additional flexibility in controlling the enhancement of Raman scattering

from chemisorbed species.

The paper is organized as follows: in Sec. 2.2 we describe the details of our compu-

tational procedure. In Secs. 2.3.1–2.3.4 the computed results are presented and different
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mechanisms contributing to the Raman enhancement are discussed. In particular, we show

that the orientation of the benzene ring has a substantial effect on the Raman scattering

cross section. We also identify metal–molecular states responsible for the resonant enhance-

ment of the Raman response of the computed complexes. In Sec. 2.3.5 the computed Raman

spectra are compared to available experimental data. The conclusions are formulated in

Sec. 2.4.

2.2 Computational details

Density functional calculations were performed using the quantum chemistry package

Turbomole, version 5.10 [9, 537]. Triple-ζ valence-polarization basis sets (def2-TZVP [571])

were used for the main group elements while for silver atoms we employed split-valence basis

sets with polarization (def2-SV(P) [465]) and effective core potentials (ECP) comprising the

28 core electrons and accounting for scalar relativistic effects [24]. Preliminary calculations

showed that expanding the molecular basis set up to quadruple-ζ quality [571] does not

significantly alter the results.

Our choice of the computed exchange-correlation functional was guided by the balance

between the accuracy of the computed Raman scattering cross sections and an accurate

description of electronic and geometric parameters of Agn clusters. We chose the hybrid

functional of Perdew, Burke, and Ernzerhof (PBE0) [414] which provides good accuracy

for frequency-dependent polarizabilities and Raman scattering cross sections [544, 543].

While many computational studies of metal clusters have been traditionally performed

with gradient-corrected exchange-correlation functionals [209, 38], hybrid functionals were

found to yield good structural parameters and band gaps in extended systems [328].

The charge-transfer error of approximate exchange-correlation functionals is a signif-

icant challenge in TDDFT calculations, although several recent works have proposed ap-

proaches to address this problem [324, 408, 588, 415]. The charge-transfer error results in

an overestimation of electronic polarizabilities and an underestimation of electronic excita-

tion energies, however these effects are ameliorated by inclusion of a fraction of non-local

Hartree-Fock exchange in hybrid functionals such as PBE0 [543, 408], which we use in this

chapter.

Ground state structure optimizations of silver clusters Agn with n = 6–11 were per-

formed using the PBE0 functional. Force-constant calculations were used to confirm that

the optimized structures correspond to local minima of the electronic potential energy sur-

face [123]. Many energetically close-lying structure minima are known to exist in small Agn

clusters [209, 232, 233]. We concentrated on structures suitable to represent atomic-scale

roughness features, especially those with pyramidal or bipyramidal shape. For instance,
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for the Ag6 cluster the pyramidal C5v isomer, which might be considered as a more real-

istic model for atomic-scale roughness, rather than the lowest-energy planar structure of

D3h symmetry [209, 232] was used. For each optimized cluster structure, the 200 lowest

electronic excitations were computed using TDDFT in the frequency-based linear response

regime [92, 44, 161]. The obtained line spectra were broadened using an empirical Gaussian

broadening parameter of 0.05 eV.

Oxidative attachment of the benzenethiol molecule [37, 241] was modeled by plac-

ing the benzenethiol radical (PhS) at different atomic binding sites and fully reoptimizing

the structures of the PhS-Agn complexes. Raman spectra of benzenethiol and PhS-Agn

complexes were obtained from analytical derivatives of frequency-dependent polarizabili-

ties [432]. This approach is based on the polarizability Lagrangian and allows for efficient

computation of Raman spectra of medium-sized and large molecules. Raman spectra of

benzenethiol and PhS-Agn complexes were computed for a low-energy excitation of 0.62 eV

(2000 nm) to investigate the off-resonance Raman scattering enhancement. Raman excita-

tion profiles of benzenethiol and PhS-Agn were computed for the range of 1.6–3.0 eV for

the four strongest vibrational modes of the benzenethiolate group. No scaling of vibrational

frequencies was applied. The Raman spectra were simulated by Lorentzian broadening of

the line spectra using an empirical linewidth of 5 cm−1. A scattering angle of 90 degrees

and perpendicular polarization of both incident and scattered radiation was assumed unless

specified otherwise.

2.3 Results and discussion

2.3.1 Silver clusters and metal–molecular complexes

The computed structures of the clusters Agn, n = 6 − 11, are in agreement with

results of previous works [209]. The clusters with an even number of atoms n were found

to be closed-shell singlets while the odd-numbered clusters are spin doublets. The relative

energies of the structures are dependent on the particular choice of the exchange-correlation

functional. Among the simulated structures, several metal clusters were selected based on

their similarity in geometry. In particular, the geometries derived from the bipyramidal

structure of Ag7 were chosen.

The benzenethiol molecule binds to the Ag metal surface via the thiolate bond. To

construct the metal–molecular complexes the central atom of the bipyramid has been chosen

as a binding site. The final optimized geometries of PhS-Agn, n = 6 − 11, are shown in

Fig. 2.1. In most configurations the sulfur atom migrates to the middle of an Ag-Ag

bond forming a bridging motif. This is consistent with previous theoretical studies of

benzenethiol chemisorbed on Au surfaces [369]. For a better understanding of properties of
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Figure 2.1: Optimized geometries of PhS-Agn, n = 6 − 11 complexes that were utilized in
the study. For n = 7 two isomers with different types of binding for the molecule were
considered.

the PhS-Agn complexes the simplest structure—benzenethiol bound to a single Ag atom—

has been simulated. Addition of benzenethiol to the C5v-symmetric Ag6 cluster leads to a

rearrangement of the metal atoms to form a C2v-symmetric cluster structure, see Fig. 2.1.

However, we find that the C2v structure of Ag6 does not correspond to a local minimum

for the PBE0 functional. Starting with approximately similar initial conditions, two stable

isomers of the PhS-Ag7 complex with an on-top and a bridging binding motif have been

obtained, respectively. The energy difference between these two structures is approximately

3 kcal/mol, with the lower configuration corresponding to the complex with the bridging

motif.

The structural characteristics of the PhS-Agn, n = 1, 6 − 11, complexes are given in

Table 2.1. They include the lengths of the Ag-S and the S-C bonds, the angle C-S-Ag

(for the bridging motif the calculated angle is between the S-C bond and a shortest line

connecting the sulfur atom with the nearest Ag-Ag bond), and the distance between the

carbon atom adjacent to the S-C bond and the closest silver atom. The latter parameter

characterizes the shortest non-bonding distance between the benzene ring and the Agn

cluster. The binding energies between benzenethiol and silver clusters were estimated as

Eb(PhS-Agn) = E(Agn) + E(PhSH)− E(PhS-Agn)− 1

2
E(H2), (2.1)

neglecting the basis set superposition errors. 2 The variation of the Ag-S and C-S bond

lengths for the complexes with the same type of binding is less than 4 %. The angle between

the C-S and Ag-S bonds is consistent with the experimental data obtained for benzenethiol

2The basis set superposition error of a pyridine molecule attached to an Ag20 to be ca.
0.7 kcal/mol [616].
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Complex Binding Ag-S C-S ∠ C-S-Ag C2-Ag Eb
PhS-Ag1 on-top 2.339 1.769 102.830 3.975 12.34
PhS-Ag6 on-top 2.389 1.756 101.470 2.454 7.56
PhS-Ag7 (I) on-top 2.421 1.757 96.606 2.669 17.71
PhS-Ag7 (II) bridge 2.521/2.589 1.768 103.673 2.629 20.67
PhS-Ag8 bridge 2.573/2.587 1.767 109.449 2.600 3.31
PhS-Ag9 bridge 2.429/2.458 1.774 109.682 3.646 25.06
PhS-Ag10 bridge 2.480/2.495 1.769 108.946 3.684 15.37
PhS-Ag11 bridge 2.544/2.546 1.768 105.044 2.523 23.32

Table 2.1: The computed structural properties of PhS-Agn, n = 1, 6− 11, complexes. The
lengths of the Ag-S and the C-S bonds, and the shortest distance between the aromatic
ring and the cluster, C2-Ag, are given in å. The C2 denotes a carbon atom adjacent to the
C-S bond. The angle C-S-Ag is given in degrees and the binding energy of a molecule and
a cluster is calculated according to Eq. 2.1 in kcal/mol.

adsorbed on Au (111) [578]. There are no obvious correlations of the structure parameters

with the size of the Agn clusters. The binding energies vary substantially for the complexes.

PhS-Agn complexes with odd n form closed-shell electronic configurations and have larger

binding energies.

Two types of benzene ring orientation are distinguishable. In the complexes PhS-

Agn, n = 6, 7, 8, 11 the benzene ring oriented towards the metal cluster, allowing several

non-bonding C-Ag interactions. In the complexes PhS-Agn, n = 9, 10 the benzene ring

is directed outward and the distance between the ring and the Agn cluster is about 40 %

longer than in the previous type.

In the following sections, we provide a detailed analysis of the computed optical and

Raman spectra of PhS-Agn complexes using representative examples of the aforementioned

binding structures and molecule orientations. The spectra of the other complexes are pro-

vided in Section 2.5.

2.3.2 Electronic excitation spectra.

The electronic excitations of neat benzenethiol are in the ultraviolet spectral range.

The computed energies of the two lowest a′ transitions, 4.87 eV and 5.37 eV, are in good

agreement with the measured values of 4.42 eV and 5.25 eV for benzenethiol in a solution,

respectively [474]. The simulated absorption spectra of bare silver clusters are consistent

with the experimental data from Ref. [209]. In the energy range of 3–5 eV, the clusters

of higher symmetry, such as Ag7 (D5h) and Ag10 (D2d), have few strong transitions with

oscillator strengths higher than 1. The low-frequency parts of the absorption spectra overlap
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Figure 2.2: Electronic excitation spectra of Ag7 cluster and two isomers of the PhS-Ag7 com-
plex with different types of binding on-top and bridge. The insets show the low-frequency
parts of the spectra in logarithmic scale for the range 1.0− 3.0 eV.

with the visible range and some extend down to 0.5 eV. They consist of weak transitions

with oscillator strengths in the range 10−1− 10−4. As an example, the electronic excitation

spectra of the Ag7 cluster and two isomeric complexes PhS-Ag7 (I) and (II) are shown

in Fig. 2.2. The spectra of the complexes differ substantially from the spectra of the

corresponding silver clusters. In contrast to silver-pyridine complexes [248], the strong

electronic transitions are quenched in most of the studied PhS-Agn structures. In the cases

where these excitations are still identifiable, we observe a red-shift of the order of 0.1−0.2 eV,

see Fig. 2.2, except for the PhS-Ag10 complex where the transition is blue-shifted by about

0.1 eV.

2.3.3 Off-resonance Raman spectra

Off-resonance Raman spectra of benzenethiol and of PhS-Agn, n = 6− 11, complexes

were simulated using an excitation energy of 0.62 eV (2000 nm), which is below the low-

est electronic transition in these systems. Three different quantities have been computed:
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Figure 2.3: The computed Raman spectra of isolated benzenethiol (PhSH) and four different
complexes PhS-Ag7 (I) and (II), PhS-Ag9, and PhS-Ag10 for the excitation energy 0.62 eV
(2000 nm), which is below all electronic transitions in the complexes.

Raman cross sections for characteristic molecular vibrational modes; the total scattering

cross section of the complex, and the integrated cross section with a low-frequency cutoff at

200 cm−1. The latter quantity excludes almost all vibrational modes of the metal cluster.

Most important for SERS applications are molecular vibrational modes about 1000 cm−1.

Enhancement of the scattering cross sections of these modes is used to characterize the

surface enhancement. However, the integrated cross sections are introduced to analyze the

modulations of the Raman response rather than for estimation of the enhancement factor.

The computed Raman spectra are given in Fig. 2.3.

The computed Raman spectrum of isolated benzenethiol is in reasonable agreement

with the experimental off-resonant spectrum of neat benzenethiol recorded for a 785 nm

excitation [60]. The dominant vibrational modes in the Raman spectrum of benzenethiol

are totally symmetric and belong to the a′ irreducible representation of the Cs point group.

The computed vibrational band at ω1 = 1019 cm−1 is assigned to the ring breathing mode,

and the band at ω2 = 1059 cm−1 corresponds to a ring deformation mode. The C-S

stretching mode is computed at ω3 = 1136 cm−1 while the computed Raman band at
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Complex αiso Egap σ4 × 10−33 σtot w

PhSH 85.8 5.96 1.39 3.34 · 10−32 64.0
PhS-Ag1 130.7 3.35 16.50 1.53 · 10−30 10.2
PhS-Ag6 351.7 1.53 1.63 2.16 · 10−30 2.8
PhS-Ag7 (I) 365.2 2.80 1.35 1.04 · 10−30 2.7
PhS-Ag7 (II) 374.9 2.54 0.64 1.23 · 10−30 4.8
PhS-Ag8 425.6 1.34 0.48 1.67 · 10−30 4.3
PhS-Ag9 478.2 2.09 7.98 1.35 · 10−29 0.6
PhS-Ag10 529.3 1.22 14.43 2.28 · 10−29 0.6
PhS-Ag11 568.8 1.95 1.00 1.81 · 10−30 4.0

Table 2.2: Isotropic polarizabilities αiso (a.u.), HOMO-LUMO gaps (eV), Raman cross
sections for the ω4 = 1583 cm−1 vibrational mode σ4 (cm2), integrated Raman scattering
cross sections σtot (cm2), and fractions w (%) of Raman scattering cross section from modes
with frequencies larger than 200 cm−1 for benzenethiol (PhSH) and PhS-Agn complexes.
The excitation wavelength is 2000 nm.

ω4 = 1656 cm−1 is associated with a totally symmetric ring stretching mode. Our results

are consistent with previous assignments [188]. The computed vibrational frequencies of

benzenethiol are blue-shifted by 10–50 cm−1 with respect to experimental data due to

incomplete basis sets and neglect of anharmonicity. The totally symmetric modes assigned

above correspond to the experimentally measured vibrational frequencies ωexp
1 = 1004 cm−1,

ωexp
2 = 1027 cm−1, ωexp

3 = 1094 cm−1, and ωexp
4 = 1583 cm−1, respectively, for neat

benzenethiol [60]. Comparison of computed Raman intensities of isolated benzenethiol to

experimental data is provided in Section 2.5.

Binding of benzenethiol to Agn clusters leads to an overall increase of off-resonant

Raman scattering cross sections and to a significant redistribution of band intensities in the

Raman spectrum. This effect is known as the static enhancement mechanism of SERS [360].

This effect has been attributed to the decrease of the energy gap between the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)

and the ensuing enhancement of the electronic polarizability and its derivatives [358]. The

Raman cross section of the molecular vibrational modes ω1−4 in the computed metal–

molecular complexes can be up to 10 times larger than that in isolated benzenethiol. This

value is comparable to the results of Ref. [616] for pyridine. However, we observe a strong

dependence of the enhancement factor on the geometry of a metal cluster and the orientation

of the molecule. For example, the Raman signal from the modes ω1−4 in PhS-Ag7 (I and

II) complexes is almost unenhanced compared to PhSH, see Fig. 2.3. Also, Raman signals

from different molecular modes have different enhancement factors. To characterize the

off-resonant enhancement of Raman scattering, the cross sections of the ω4 vibrational
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mode have been used. Table 2.2 shows the computed off-resonant electronic polarizabilities,

HOMO-LUMO gaps, Raman cross sections corresponding to the ω4 vibrational mode, and

integrated Raman scattering cross sections of benzenethiol and PhS-Agn complexes for the

excitation energy of 0.62 eV (2000 nm). The integrated cross sections are computed by

summation of Raman scattering cross sections over all vibrational modes of the complex,

including the vibrations of the metal cluster. The electronic polarizabilities are to a good

approximation additive and thus increase linearly with the number of Ag atoms. The

integrated Raman scattering cross sections of PhS-Agn complexes are larger than that of

benzenethiol by 2–3 orders of magnitude but do not increase monotonically with the cluster

size n. Molecular vibrational modes contribute only a small fraction (less than 5 % with the

exception of PhS-Ag, see Table 2.2) to the integrated Raman scattering cross section while

the largest part of the scattered radiation arises from vibrations within the metal cluster.

Orientation effect. We find a significant dependence on the orientation of the benzene

ring: the largest integrated Raman scattering cross sections are computed for the complexes

PhS-Agn, n = 9, 10, in which the benzene ring points outward from the cluster surface,

see Fig. 2.1. In contrast, in the PhS-Agn, n = 6 − 8, 11 complexes the aromatic ring is

oriented towards the metal cluster and non-binding C-Ag interactions reduce the integrated

Raman scattering cross sections by about one order of magnitude. This orientation effect

appears to be the major influence in the off-resonance Raman spectra of PhS-Agn complexes,

while the effect of increasing electronic polarizability and the characteristic alternation of

HOMO-LUMO gaps in between even- and odd-numbered metal clusters Agn seem to be

less important. The non-binding interactions of the benzene ring with the Agn cluster in

the PhS-Agn, n = 6− 8, 11 complexes result in an efficient quenching of Raman scattering

from metal cluster modes, increasing the relative weight of molecular vibrations.

Symmetry effect. The relative intensities of vibrational modes in Raman spectra

of PhS-Agn complexes might be explained based on their symmetry and proximity to the

Agn cluster. Comparison of the Raman spectra of the isomers PhS-Ag7 (I) and PhS-Ag7

(II) exemplifies the effect of the local symmetry of the benzene ring on the off-resonant

enhancement. The PhS-Ag7 (I) isomer is, similar to the isolated benzenethiol molecule,

Cs-symmetric while the local symmetry of the benzene ring in the PhS-Ag7 (II) isomer

is perturbed by unsymmetric bonding to the cluster. The symmetry of the benzene ring

affects the aromatic C-C stretching bands in the region of 1620–1660 cm−1. Only the totally

symmetric aromatic C-C stretching vibration (ω4 = 1656 cm−1 in benzenethiol, denoted as

8a in Wilson’s notation [582]) is observed in the Raman spectra of PhSH and PhS-Ag7 (I)

while the corresponding non-totally symmetric vibration at lower frequency (1641 cm−1 in

benzenethiol, 8b in Wilson’s notation) is at least one order of magnitude weaker and not

observed in the experiment. The lower symmetry of the PhS-Ag7 (II) manifests itself in
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the redistribution of Raman scattering cross sections among the aromatic C-C stretching

modes such that the lower-frequency 8b mode gains intensity. As a consequence, a doublet

of vibrational bands is formed in the aromatic C-C stretching region. In the PhS-Agn,

n = 9, 10, complexes, the interaction between the benzene ring and the Agn cluster is weak

and local Cs symmetry of the benzene ring is essentially unperturbed. This results in only

one observable aromatic C-C stretching band in the Raman spectra of these complexes.

Proximity effect. The proximity effect on the Raman scattering cross section may

be observed in the region between 1000–1150 cm−1, including ring deformation modes at

ω1 = 1019 cm−1 and ω2 = 1059 cm−1 and the C-S stretching mode at ω3 = 1136 cm−1

in benzenethiol, respectively. In both PhS-Ag7 (I) and PhS-Ag7 (II) clusters, the ring

breathing mode at 1011–1015 cm−1 and the ring deformation mode at 1050–1055 cm−1 are

strongly enhanced by the interaction with the Agn clusters. With benzene rings further

away from the Agn clusters in PhS-Agn, n = 9, 10, enhancement of ring deformation modes

is diminished in these clusters, while the C-S stretching mode is more pronounced.

All three effects governing off-resonant surface enhancement of Raman response of

PhS-Agn complexes, namely the relative orientation of the benzene ring with respect to

the cluster, the local symmetry of the benzene ring, and the proximity of the particular

vibrational mode to the binding site, are interrelated. Their modulation by thermal large-

amplitude motion of the aromatic ring may serve as a simple and plausible explanation for

the “blinking” events observed in SERS experiments on 4-aminobenzenethiol attached to

Au bowtie nanoantennas [157] or to molecular junctions [564].

2.3.4 Raman excitation profiles

Raman excitation profiles of four strong totally symmetric benzenethiol vibrational

modes, ω1 = 1019 cm−1, ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1, were

calculated for the excitation energy range 1.6 − 3.0 eV (413 − 775 nm). These modes are

dominant in experimental SERS spectra of benzenethiol [60, 91]. 3

In Figs. 2.4 and 2.5 we provide REPs and electronic excitation spectra of four different

complexes PhS-Ag7 (I), PhS-Ag7 (II), PhS-Ag9, and PhS-Ag10 in logarithmic scale. For

comparison we also show REP of isolated benzenethiol averaged over all four modes. The

simulated scattering cross sections for the vibrational modes ω1−4 in isolated benzenethiol

differ by no more than a factor of two, therefore an averaged value of REP of benzenethiol

(dashed line) is used to simplify the plots. The slope of the REP of benzenethiol is close to

4 and stems from the ω4 dependence of Raman scattering cross sections [315]. The effect

3It should be noticed that the vibrational modes of neat benzenethiol are assigned incor-
rectly in Table I of the reference. For the correct assignement see Ref. [188].
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Figure 2.4: The Raman excitation profiles (REPs) together with the electronic excitation
spectra for (a) the PhS-Ag7 (I) and (b) the PhS-Ag7 (II) complexes. The vibrational modes
are ω1 = 1019 cm−1, ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1. The dashed
tilted line in the REPs plots corresponds to the response of isolated benzenethiol averaged
over all four modes.

of intramolecular resonances is small in the studied range of excitation energies.

The isomers PhS-Ag7 (I) and (II) in Fig. 2.4 represent two distinct bonding patterns

(on-top and bridge), whereas the structure of the silver cluster remains essentially the same.

The electronic excitation spectra of the complexes are quite dissimilar, which reflects the

sensitivity of the electronic states to the binding pattern. For example, the lowest electronic

excitation of the PhS-Ag7 (II) complex is 0.2 eV lower in energy than that of the PhS-Ag7

(I) complex. All transitions within the excitation range 1.6−3.0 eV are weak with oscillator

strengths 10−1 − 10−4.

Cluster-molecule resonant effect. The REPs illustrate the frequency dependence

of SERS and allow for identification of two different contributions to chemical Raman en-

hancement. These are the baseline shifts of the REPs of the complexes compared to that of

isolated benzenethiol and the additional modulation by resonance-type features. The base-

line shift is attributed to the off-resonant enhancement discussed in the previous section

while the resonances arise from electronic transitions between metal–molecular states. This

is consistent with the conventional picture of chemical enhancement [246]. The off-resonant

enhancement factor for both isomers of the PhS-Ag7 complex is of the order of 1 and can

be explained by the orientational effect discussed in the previous section.

The relative enhancement for different modes depends on the excitation energy. For
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Figure 2.5: The Raman excitation profiles together with the electronic excitation spectra
for (a) the PhS-Ag9 complex and (b) the PhS-Ag10 complex. The vibrational modes are
ω1 = 1019 cm−1, ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1. The dashed tilted
line in the REPs plots corresponds to the response of isolated benzenethiol averaged over
all four modes. Γ = 0.1 eV is a phenomenological parameter characterizing homogeneous
linewidth of electronic states.

example, the ω1 vibrational mode has the largest enhancement for the PhS-Ag7 (I) com-

plex in the energy range below the first electronic transition, whereas the ω3 becomes the

strongest Raman mode above it. This observation is in accord with the empirical Tsuboi

rule [227]: the lowest electronic excitation in the complex PhS-Ag7 (I) involves the Ag-S

bond and has a larger impact on the C-S stretching mode (ω3).

The structures of the PhS-Ag9 and PhS-Ag10 complexes differ only by a single Ag

atom, which is located approximately 4.8 Å from the binding sites. The PhS-Ag9 complex

has a closed-shell electronic structure and shows a smaller number of electronic transitions

as compared to the PhS-Ag10. Both structures show 10–100 fold enhancements of Raman

signals outside of resonant regions. Enhancement factors of different vibrational modes

differ by about one order of magnitude. This can be seen by comparing the Raman cross

sections of the complexes to that of isolated benzenethiol for the excitation energy 1.6 eV,

Fig. 2.5.

Most of electronic excitations shown in Figs. 2.4 and 2.5 r esult in resonance-type

divergences of the REP. However, Raman enhancement in pre-resonant regions cannot be

characterized by the oscillator strengths of the respective electronic transitions only. For

instance, in the PhS-Ag10 complex the electronic transition at 2.17 eV has an oscillator



Chapter 2: On the chemical bonding effects in the Raman response: Benzenethiol adsorbed
on silver clusters 44

Figure 2.6: The transition electron densities for (a) the 2.17 eV electronic excitation and (b)
the 1.84 eV electronic excitation in the PhS-Ag10 complex. The former transition results
in the strong resonant features in the REP, whereas the latter one has much weaker effect.
The light grey (orange) color corresponds to the transition density of −0.002 a.u., the dark
grey (blue) corresponds to the transition density of 0.002 a.u.

strength 0.04, which is smaller than that of the 1.84 eV transition (oscillator strength 0.05).

Nevertheless, the former excitation induces a large peak in the REP, see Fig. 2.5 (b), while

the latter has a much smaller effect. These two excitations differ by the degree to which

Ag-S bonds are affected by the electronic excitations, as can be seen in Fig. 2.6. The 2.17 eV

electronic excitation is localized around the bonding sites and does not involve all atoms in

the Agn cluster, whereas the 1.84 eV electronic excitation is delocalized. This observation

lends support to the underlying assumption of this chapter that the effects of chemical

bonding on surface enhancement can be modeled to a significant extent using finite-size

metal clusters.

The occurrence of strong resonant Raman peaks is a common feature of all considered

PhS-Agn complexes. The strong peak in the REP of the PhS-Ag7 (I) complex is centered

around the 2.54 eV electronic excitation, and in the REP of PhS-Ag9 a similar feature can

be associated with the region 2.8− 3.0 eV.

Our approach does not include finite-lifetime effects and is thus not applicable in a

strictly resonant case. The enhancement of a Raman signal at resonances scales inversely

proportional to the fourth power of the homogeneous linewidth Γ of the involved electronic

states [314]. Since Γ enters as a phenomenological parameter, estimates of the corresponding

enhancement factors are inherently imprecise. To obtain lower-bound estimates of resonant

enhancement factors we consider the Raman scattering cross section at frequencies Ωi ± Γ,

where Ωi stand for electronic excitation frequencies. For Γ we use a pragmatic value 0.1 eV,

which is consistent with Ref. [616]. The estimated enhancement of Raman signal near

the 2.17 eV electronic transition in the PhS-Ag10 complex is of the order of 103 and varies

about 10 times for different vibrational modes. Similar estimates are also obtained for other
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structures.

Usually, in SERS literature the enhancement below intramolecular excitations is as-

sociated with charge-transfer excitations that have very small oscillator strengths. For

example, in Ref. [616] electronic transitions at energies comparable to those considered here

were found in a pyridine-Ag20 complex, with enhancements that were also about 103. The

excitations were referred to as charge-transfer states. In our system, all electronic transi-

tions in the excitation range 1.6− 3.0 eV have a mixed metal–molecular character and can

be associated with a partial charge transfer between the cluster and the molecule. However,

most of them have only a small contribution to the resonance Raman enhancement. Thus,

besides narrow singularities, the computed cross sections are relatively smooth functions

of the excitation energy. For example, the 1.9 eV excitation in PhS-Ag7 (I) complex, see

Fig. 2.4, gives almost no enhancement of the Raman signal if we take into account the fi-

nite linewidth of the transition. The important excitations, such as the excitation shown in

Fig. 2.6 (a)., are local to the binding site and are characterized by the change of the electron

density around the binding sites only. It is important to notice that the difference in the

static dipole between a ground and an excited state of the complexes for such transitions

is rather small. For example, the change in the static dipole moment for the excitation of

the PhS-Ag10 complex depicted in Fig. 2.6 (a) is 3.7 Debye.

2.3.5 Discussion

Many important features of experimental SERS results for benzenethiol [60, 91, 7, 337]

are reflected in the computed Raman spectra of the PhS-Agn complexes. The molecular vi-

brational frequencies of the complexes are shifted compared to that of isolated benzenethiol.

The frequency shifts of intense a′ modes of the complexes PhS-Ag7 (I) and (II), PhS-Ag9,

and PhS-Ag10 are compared to experimental SERS data in Table 2.3. The values and the

signs of the computed shifts are in good agreement with the results of measurements. The

magnitudes of the frequency shifts depend on the degree to which the C-S bond is involved

in the given vibration. For instance, the C-S stretching mode ωexp
3 = 1094 cm−1 shows

the largest shift on average, which is an additional manifestation of the proximity effect

discussed in Sec. 2.3.3.

Comparisons of the computed Raman cross sections of the PhS-Agn complexes to

experimental SERS data should take into account that the chemisorbed molecules are no

longer freely rotating. This has the effect that the orientational averaging of the Raman

tensor depends on the shape of the metal substrate and the relative orientation of the

adsorbed molecules. As a model, we consider benzenethiol molecules adsorbed on a spherical

nanoparticle. The computed PhS-Agn structures are oriented such that in the complexes

with on-top binding, n = 6, 7(I), the Ag-S bond is orthogonal to the particle surface, and
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Mode ω1 ω2 ω3 ω4 ω5 ω6 ω7

Freq. PhSH 1004 1027 1094 1583 414 701 918
PhS-Ag7 (I) -7 -9 -31 -33 1 4 -8
PhS-Ag7 (II) -4 -5 -24 -17 3 6 -12
PhS-Ag9 -1 -2 -18 -8 6 -4 -5
PhS-Ag10 -1 -3 -18 -9 5 -4 -11
Ref. [60] -1 0 -18 -7 8 -6 -
Ref. [91] 0 1 -17 -9 6 -3 -
Ref. [7] -1 -2 -21 -11 5 -8 -

Table 2.3: Frequency shifts of benzenethiol Raman-active vibrational modes due to binding
to the metal. The values of the vibrational frequencies are taken for neat benzenethiol from
Ref. [60]. The shifts for the computed complexes, calculated as ∆ωn = ωn(PhS-Agk) −
ωn(PhSH), are compared with the shifts of Raman lines, ∆ωn = ωn(SERS) − ωn(PhSH),
from the experimental studies, Refs. [60, 91, 7]. The frequencies are given in cm−1.

in the complexes with the bridge binding motif, n = 7(II), 8− 11 the plane formed by the

two Ag-S bonds is orthogonal to the particle surface. The Raman intensity of a vibrational

mode with frequency ωn is [119]

I(ωn, ωex) ∝ (ωex − ωn)4|g(ωex)|2|g(ωex − ωn)|2f(αn(ωex)) , (2.2)

where ωex is the excitation frequency, and the electromagnetic enhancement factor is

g(ω) =
εp(ω)− εenv

εp(ω) + 2εenv
. (2.3)

εp stands here for the dielectric constant of the metal particle and includes the plasmon

resonance, and εenv is the dielectric constant of the environment, which is considered as not

strongly frequency-dependent. αn(ωex) denotes the Raman tensor of the mode n, and the

orientational averaging function is given by

f(α) = 4(α2
11 + α2

22 + 16α2
33) + α11α22 + 4α11α33 + 4α22α33 + 7(α2

12 + 4α2
13 + 4α2

23) . (2.4)

The orientational averaging used here [119] is different from the isotropic averaging that

has been utilized in the previous sections. Particularly convenient for comparison with

experiment are relative Raman scattering cross sections which are defined as

I(ωn, ωex)

I(ωref , ωex)
=

g2(ωex − ωn)

g2(ωex − ωref)
·

(ωex − ωn)4f(αn)

(ωex − ωref)4f(αref)
, (2.5)

where ωref is a frequency of the reference vibrational mode. The first multiplier on the right-

hand side of Eq. 2.5 represents the relative electromagnetic enhancement of the Raman
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Mode ω1 ω3 ω4 ω5 ω6 ω7

Freq. PhSH 1004 1094 1583 414 701 918
PhS-Ag7 (I) 1.2 1.4 2.7 0.4 0.5 1.0
PhS-Ag7 (II) 1.2 1.4 0.5 0.1 0.2 1.6
PhS-Ag9 0.6 3.4 2.8 0.7 0.2 0.0
PhS-Ag10 0.6 5.1 4.5 1.1 0.3 0.0
Ref. [60] 1.3 1.4 0.6 0.6 0.3 -
Ref. [91] 1.4 1.3 1.3 1.0 0.4 -
Ref. [7] 1.1 1.0 3.5 2.7 0.4 -

Table 2.4: Relative intensities of Raman lines, defined as I(ωn)/I(ω2), ω2 = 1027 cm−1,
are given for the PhS-Agn, n = 7, 9, 10 complexes and for the experimental SERS spectra
from Refs. [60, 91, 7]. The relative intensities for the complexes are computed using Eq. 2.5
assuming that electromagnetic enhancement is frequency independent, g(ω) = const. The
mode ω7 = 918 cm−1 is not observable in the SERS experiments. The excitation wavelength
is 785 nm. The vibrational frequencies of neat benzenethiol [60] are given in cm−1.

scattering due to plasmon excitations in the metal particle. The chemical bonding of a

molecule to a surface modifies the Raman tensor α and contributes to the second multiplier

of Eq. 2.5.

The computed relative intensities of several Raman lines for the complexes PhS-Ag7

(I) and (II), PhS-Ag9, and PhS-Ag10 are compared to the experimental data in Table 2.4.

Experimental SERS cross sections depend sensitively on the structure of the surface and the

roughness features of the SERS substrate and are thus strongly influenced by the prepara-

tion technique, as illustrated by the differences between the experimental data in Table 2.4.

Surface enhanced Raman spectra result from the appropriate averaging over the multi-

tude of possible local bonding configurations. An additional important effect is due to

differences in plasmonic resonance structures. Comparison of the experimental data with

finite-size cluster models PhS-Agn shows that indeed many experimental SERS features

may be correlated with the models considered here. For example, all strong Raman lines

observed in Ref. [60] belong to the a′ representation, similar to the spectra of the PhS-

Ag9 and PhS-Ag10 complexes. However, the relative intensities of the ωexp
3 = 1094 cm−1

and ωexp
4 = 1583 cm−1 modes are too high as compared to the experimental data. The

discrepancy stems from overestimation of the computed Raman intensities for isolated ben-

zenethiol and also from a frequency dependence of electromagnetic enhancement, which

is not accounted for in the model. For instance, in Ref. [60] the excitation frequency is

optimized to enhance modes about 1000 cm−1.4 Thus, the electromagnetic enhancement

4 The enhancement factor for a given mode ωn is maximal if ωex−ωpl ≈ ωn/2, where ωpl
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of the ω3 and ω4 modes is weaker as compared to the 1004 cm−1 mode. This trend should

reduce the discrepancy between the experimental data of Ref. [60] and the computed spec-

tra of the PhS-Ag9 and PhS-Ag10 complexes. On the other hand, Refs. [91] and [7] show

some enhancement of the vibrational modes at 470 cm−1 and 960 cm−1, respectively, which

belong to the a′′ representation. A possible explanation is that molecular orientations on

the metal surface have irregularities and also contain binding situations similar to PhS-Ag7

(I) and (II), which show considerable enhancement for a′′ modes. For instance, the relative

intensity of the 960 cm−1 mode in PhS-Ag7 (II) complex is 0.8.

To get an additional verification of our model, relative enhancement factors for the

1094 cm−1 and 1583 cm−1 vibrational modes of the PhS-Ag7 (I) and (II), PhS-Ag9, and

PhS-Ag10 complexes have been compared to the enhancement factors measured in Ref. [337].

A relative enhancement factor is defined for two vibrational modes ωn and ωref with corre-

sponding excitation frequencies ωex and ωex′ as

EF(ωn, ωex)

EF(ωref , ωex′)
=
g4(ωex)

g4(ωex′)

(
f(αn)

fiso(αn)

)
/

(
f(αref)

fiso(αref)

)
, (2.6)

where f(α) is calculated using Eq. 2.4, fiso(α) is a similar expression for an isotropic

case [315], and the excitation frequencies have been chosen to get a maximal enhancement

of corresponding vibrational modes. 5

Near a plasmonic resonance the first multiplier on the right hand side of Eq. 2.6 can

be approximated by the ratio of the extinction coefficients of the plasmonic structure. The

computed relative enhancement factors for the ω3 and ω4 modes of PhS-Agn, n = 9, 10,

complex given in Table 2.5 agree well with the experimental data from Ref. [337].

Resonant structure of Raman cross sections discussed in Sec. 2.3.4 is hardly observable

in experiments of Refs. [60, 91, 7, 337], where Raman scattering is measured for an inhomo-

geneous ensemble of molecules with their local environment. However, it can be observed in

single molecule experiments. For example, the fine structure of single-molecule REPs mea-

sured in Ref. [130] may be interpreted as a result of resonances with mixed metal–molecular

states.

2.4 Conclusions

We have analyzed the Raman response of benzenethiol chemisorbed on small silver

clusters and find overall enhancement of the response of the order of 103 as compared to

isolated benzenethiol. Mixed metal–molecular electronic states are formed due to chemical

is the frequency of a plasmonic resonance [337]. At this condition g(ωex − ωn) = g(ωex).

5See Footnote 4.
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Mode ω1 ω2 ω3 ω4

Freq. SERS 1009 1027 1081 1575
λex 705 703 700 692
g4(ωex)/g4(ωex′) 1.0 1.0 0.9 0.6
PhS-Ag7 (I) 1.0 0.8 1.0 1.4
PhS-Ag7 (II) 1.0 0.6 1.0 0.1
PhS-Ag9 1.0 1.7 5.3 2.9
PhS-Ag10 1.0 1.7 7.8 4.6
Ref. [337] 1 - 10 7

Table 2.5: Relative enhancement factors of molecular vibrational modes computed for
the PhS-Ag7 (I) and (II), PhS-Ag9 and PhS-Ag10 complexes using Eq. 2.6 as com-
pared with the experimental data from Refs. [337]. The reference vibrational mode is
ωexp

1 (SERS) = 1009 cm−1. The corresponding excitation wavelength λex is in nm. To ac-
count for frequency dependence of electromagnetic enhancement the computed values were
multiplied by g4(ωex)/g4(ωex′) estimated from the experiments. The vibrational frequencies
in cm−1 are for benzenethiol on an Ag nanoparticle array from Ref. [337].

bonding. Raman response from the metal–molecular complexes exhibits resonance-type fea-

tures even in the range far below the onset of molecular electronic excitations. We identify

several mechanisms contributing to enhancement of Raman scattering in both off-resonant

and resonant regimes. These include the relative orientation of the benzene ring with respect

to the cluster, the local symmetry of the benzene ring, and the proximity of the particu-

lar vibrational mode to the binding site. Additional enhancement of Raman response by

several orders of magnitude arises from resonant excitations localized around the binding

sites, whereas response from other excitations in this range is significantly weaker. Specific

properties of Raman response are strongly dependent on the local atomic environment of

adsorbate. However, important features in SERS of benzenethiol on silver surfaces such

as vibrational frequency shifts and relative enhancement factors may be explained using

finite-size cluster models. Since the atomic structure of SERS substrates cannot currently

be controlled in experiments the described effects should be averaged over a set of possible

binding patterns. Nevertheless, our results might provide a guidance for optimization of

SERS-active structures and are useful for interpretation of single molecule SERS measure-

ments.
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Figure 2.7: Absorption spectra of the computed Agn clusters, n = 6, 8− 11.

2.5 Appendix

2.5.1 Electronic excitation spectra

The absorption spectra of the simulated Agn clusters and PhS-Agn complexes, n =

6, 8 − 11 are shown in Figs. 2.7 and 2.8. For n = 6, the structure of the silver cluster in

the PhS-Agn complex differs from the one of the bare silver cluster because of the cluster

reconstruction. This is discussed in Sec. 2.3.1 in more detail.

2.5.2 Off-resonance Raman spectra

The relative intensities of the computed Raman lines of isolated benzenethiol as com-

pared to the relative Raman intensities measured for neat benzenethiol [60, 91, 7] are given

in Table 2.6. The intensities are in good agreement except of the ωexp
1 = 1004 cm−1 vi-

brational mode. Changing the exchange functional in DFT simulations results in minor

improvements only.

The Raman spectra of PhS-Agn complexes, n = 1, 6, 8, 11 computed at the excitation

energy 0.62 eV (2000 nm excitation wavelength) are shown in Fig. 2.9. The excitation

energy used is below the lowest electronic transition in the structures. The complex PhS-
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Figure 2.8: Absorption spectra of the computed PhS-Agn complexes, n = 6, 8− 11.

Ag shows a strong enhancement of totally symmetric vibrational modes, while in the other

complexes, the non-bonding interaction between the aromatic ring and the cluster results

in a suppression of the integrated Raman scattering cross section and a redistribution of

intensities between the totally symmetric and non-totally symmetric modes (see Sec. 2.3.2).

2.5.3 Raman excitation profiles

The Raman excitation profiles (REPs) and low-frequency electron excitation spectra

for PhSH and PhS-Agn complexes, n = 1, 6, 8, 11 for the computed vibrational modes,

ω1 = 1019 cm−1, ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1, are shown

in Figs. 2.10-2.12. The range of excitation energies is 1.6 − 3.0 eV. In logarithmic scale

the REPs for isolated PhSH, Fig. 2.10, are almost linear in the excitation energy, which

is consistent with the semiclassical theory of Raman scattering [315]. For the complexes

PhS-Agn, n = 1, 6, 8, 11, Figs. 2.11-2.12, a resonance-type structure of REPs originates in

the electronic excitations to mixed metal–molecular states.

2.5.4 Discussions

The frequency shifts of four totally symmetric vibrational modes ω1 = 1019 cm−1,

ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in PhS-Agn, n = 1, 6 − 11
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Mode ω1 ω3 ω4 ω5 ω6 ω7

Freq. PhSH 1004 1094 1583 414 701 918
PhSHcomp 1.0 1.0 0.9 0.5 0.3 0.4
PhSHexp Ref. [60] 3.0 0.5 0.3 0.7 0.7 0.3
PhSHexp Ref. [91] 4.5 0.4 0.4 0.6 0.7 0.2
PhSHexp Ref. [7] 2.9 0.6 1.0 1.0 0.5 0.4

Table 2.6: The relative intensities of the computed Raman lines for isolated benzenethiol
as compared to the experimental data for neat benzenethiol, Refs. [60, 91, 7]. The relative
intensities are defined with respect to the 1027 cm−1 vibrational mode. The excitation
wavelength is 785 nm. The frequencies are in cm−1.

Complex ∆ω1 ∆ω2 ∆ω3 ∆ω4

PhS-Ag1 -0 -4 -21 -10
PhS-Ag6 -7 -8 -26 -28
PhS-Ag7(I) -7 -9 -31 -33
PhS-Ag7(II) -4 -5 -24 -17
PhS-Ag8 -5 -5 -29 -16
PhS-Ag9 -1 -2 -18 -8
PhS-Ag10 -1 -3 -18 -9
PhS-Ag11 -6 -6 -28 -19

Table 2.7: The relative shifts of four totally symmetric vibrational modes in PhS-Agn, n =
1, 6 − 11, complexes as compared to the unperturbed frequencies in isolated benzenethiol,
∆ωn = ωn(PhS-Agk)− ωn(PhSH). The computed frequencies for isolated benzenethiol are
ω1 = 1019 cm−1, ω2 = 1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1. The values of
the shifts are given in cm−1.

complexes are collected in Table 2.7. On average, the values of the shifts are larger for the

complexes where total Raman scattering is quenched, PhS-Agn, n = 6, 7, 8, 11.
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Figure 2.9: Off-resonance Raman spectra of the computed PhS-Agn complexes, n =
1, 6, 8, 11. The excitation energy is 0.62 eV, which corresponds to 2000 nm wavelength.
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Figure 2.10: Raman excitation profile for the vibrational modes ω1 = 1019 cm−1, ω2 =
1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in isolated benzenethiol.
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Figure 2.11: Raman excitation profile for the vibrational modes ω1 = 1019 cm−1, ω2 =
1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in the PhS-Ag complex.
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Figure 2.12: Raman excitation profile for the vibrational modes ω1 = 1019 cm−1, ω2 =
1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in the PhS-Ag11 complex.
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Figure 2.13: Raman excitation profile for the vibrational modes ω1 = 1019 cm−1, ω2 =
1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in the PhS-Ag6 complex.
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Figure 2.14: Raman excitation profile for the vibrational modes ω1 = 1019 cm−1, ω2 =
1059 cm−1, ω3 = 1136 cm−1, and ω4 = 1656 cm−1 in the PhS-Ag8 complex.



Chapter 3

Can Mixed-Metal Surfaces Provide an Additional

Enhancement to SERS?

3.1 Introduction

Surface-enhanced Raman scattering (SERS) is observed in molecules deposited on

rough or nanostructured metal surfaces [150, 244, 13, 361, 88]. Over the past decade

SERS has developed into a powerful analytical technique [362, 269, 294, 87, 498]. The

enormous enhancement of the ordinarily weak Raman scattering cross sections in SERS

is attributed to two main effects: electromagnetic and chemical enhancement. Electro-

magnetic enhancement is due to the presence of strong electromagnetic fields at the sur-

face of nanoscale metal particles and is responsible for enhancements of Raman scattering

cross sections of 10 or more orders of magnitude [362, 269]. Chemical enhancement is re-

lated to the formation of chemical bonds between the adsorbed molecule and surface metal

atoms [399, 398, 248, 246, 358, 456]. While being much smaller in absolute magnitude than

the electromagnetic effect, chemical enhancement has important implications for SERS as

an analytical tool, and can provide up to 2–3 orders of magnitude of enhancement in addi-

tion to the electromagnetic contribution. Furthermore, it affects Raman-active vibrations

selectively and thus alters the shapes of Raman spectra in addition to providing enhance-

ment [455]. Lastly, the chemical effect is chemically specific and has potential for improved

performance of SERS in analytical applications. The exact origin of the chemical con-

tribution to surface enhancement remains an active area of research in both theory and

experiment [162, 163, 361, 399, 398, 88, 418, 246, 358, 456, 606]. Chemical enhancement

can be modeled as a combination of a static contribution connected to the redistribution

of electron density between the metal and the molecule and a dynamical contribution aris-

ing from resonance enhancement due to surface excited states of mixed metal–molecular

character [456].

Gold and silver are the most commonly used substrate materials for SERS applications.
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Ag has been found to give highest enhancements of Raman cross sections for an excitation

in the visible range, while Au is often used because of simpler processing and resistance

to oxidation. Recently, Wang et al., have created nanostructured silicon and germanium-

based SERS substrates [562, 563]. For these structures, the enhancement is in the order

of 102–104. Its enhancement mechanism relies on a photon-induced charge transfer process

instead of the typical plasmon-based approach. Although this effect is by no means as

intense as with Ag and Au, it provides evidence that these materials can provide a SERS

signal despite the lack of a plasmonic properties.

Several other metals have been explored with regard to surface enhancement [525]. Dif-

ferences in the localized surface-plasmon resonances (LSPR) in scattering and absorption

spectra of these metals relative to the frequencies of the incident and scattered radiation

result in vastly different electromagnetic enhancements [361]. On the other hand, the rich-

ness of chemical reactivity of transition metals opens the prospect of chemically selective

binding and detection.

The idea of using mixed-metal substrates, which combine the SERS activity of a ma-

jority metal (typically a coinage metal) with the chemical properties of a dopant metal

(deposited as an overlayer), was proposed early on [299, 300, 624, 570]. In subsequent ex-

tensive work of Weaver, Tian, et al., fabrication techniques for producing transition- and

mixed-metal substrates were considerably improved and their surface enhancements were

explored in great detail [623, 626, 363, 587, 527, 526, 523]. Their work was motivated

by the concept of SERS borrowing, originally put forward by Van Duyne and Haushal-

ter [547]. SERS borrowing refers to the fact that dopant metals are poor SERS substrates

by themselves. However, when deposited as an overlayer atop effective SERS substrates,

they acquire some surface enhancement “borrowed” from the coinage metal. If only the

electromagnetic enhancement is taken into account, one expects the enhancement factors

for these mixed-metal substrates to be lower than for pure coinage metals. The attenuation

of the surface enhancement has been described in terms of the distance dependence of the

electromagnetic fields and has been broadly explored [172, 623, 255, 566, 585]. The above

picture neglects the effect of the strong coordinative bonds formed between the dopant

metal and specific analytes, e. g., pyridine. Therefore, the objective of this chapter is to

explore, both experimentally and using simulation, the chemical contribution to surface

enhancement in mixed-metal SERS substrates.

We expect that stronger chemical bonding in suitably chosen mixed-metal substrates,

coupled with existing advanced nanofabrication techniques, can help to balance or in ideal

cases even overcome the attenuation of electromagnetic enhancement. In this case, we pro-

pose and coin the term of an additional SERS lending effect, where the transition-metal

overlayer could contribute to the overall surface enhancement due to the strong chemical
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bonding. SERS lending would open an avenue for new analytical applications of SERS.

Well-known and recent results from surface chemistry [452, 381, 187, 494, 466] may serve

as an inspiration for designing new mixed-metal SERS substrates. In particular, transition

metals of the nickel group are known to form strong coordinative bonds with nitrogen-

containing molecules and are promising candidates for their detection with SERS. In con-

trast, gold and silver substrates tend to bind more strongly to thiols. As mentioned above,

mixed-metal substrates using nickel, palladium, and platinum were extensively studied by

Weaver, Tian, et al. in the context of SERS borrowing [623, 626, 363, 587, 527, 526, 523].

Furthermore, molybdenum-covered SERS substrates could possibly be used for improved

chemical bonding to oxygen-containing molecules.

The effect of stronger chemical bonding between the analyte and the metal surface on

the Raman signal is two-fold. A stronger binding affinity results in a higher concentration

of the analyte on the surface, which yields higher analytical enhancements. In addition,

stronger coupling between the electronic structure of metal surface and vibrations of the

molecule leads to an enhancement of the Raman cross section per molecule. These effects

have to be balanced with the damping of the plasmonic resonance due to the presence of the

dopant metal as well as changes in surface morphology in mixed-metal SERS substrates. A

complete investigation of all these effects presents a number of challenges. In this chapter,

we explore the chemical enhancement in mixed-metal clusters using theoretical models to

describe the coupling between the analyte and the metal surface. As was shown in previous

studies, chemical enhancement in SERS depends mainly on the immediate chemical envi-

ronment of the binding site and can be successfully modeled using cluster models [456, 616].

In the following, we present Raman scattering calculations of trans-1,2-bis(4-pyridyl)

ethylene (BPE) on silver-based mixed-metal clusters to theoretically characterize the chem-

ical contribution to surface enhancement. We report experimental measurements of BPE on

Ag substrates with nanometer-thick overlayers of Pd or Pt. Further computational results

predict that similar effects are possible with Au as majority metal and Pd or Pt as dopant

metals. Finally, we study the electronic effects of mixed-metal SERS by analyzing the Ra-

man excitation profile of pyridine (Py) bound to silver in order to explore the dynamical

contribution to the chemical enhancement in mixed-metal SERS substrates.

3.2 Experimental methods

SERS Substrate Fabrication. Experimental Raman spectra are collected from

BPE adsorbed onto a femtosecond laser nanostructured SERS substrate, using the setup

previously reported on Ref. [127]. This type of substrate has been previously shown to

provide SERS enhancement factors of 109, relative to pure analyte [127, 128]. All substrates



Chapter 3: Can Mixed-Metal Surfaces Provide an Additional Enhancement to SERS? 59

were fabricated using a femtosecond laser structuring process on a n-type silicon (100) wafer

(ρ=0.005–0.020 Ω · cm). A pulse train from a regeneratively amplified titanium:sapphire

laser was used to generate 800 nm center wavelength, 100 fs pulses at a repetition rate of 1

kHz. This pulse train was frequency-doubled to a center wavelength of 400 nm using a thin

BiBO3 crystal. The second harmonic pulse width exiting the crystal was less than 200 fs.

These laser pulses were loosely focused with a plano-convex lens to achieve an average

fluence of 10 kJ m−2 at the surface of a silicon wafer fastened to the inside of a 10 mm deep

cuvette filled with deionized water. The cuvette was mounted on a computer-controlled

two-axis translation stage and rastered at an appropriate speed such that each point on the

silicon wafer was subjected to approximately 500 pulses.

To render the surfaces SERS-active, silver was thermally evaporated onto the structured

silicon. Using a quartz crystal microbalance to measure the thickness of a planar continuous

film, substrates were fabricated with 80 nm of deposited silver. All films were thermally

evaporated at a rate of 0.15 nm s−1, with no heating or cooling applied to the substrate

during deposition. A subsequent layer of 1–4 nm of platinum or palladium is added to probe

the mixed-metal effects. The metal-coated substrates were submerged in 10-µM solutions of

BPE made with ethanol for 1 hour and then gently rinsed in ethanol for 1 minute, followed

by drying under a stream of nitrogen.

Raman Spectroscopy. Using a 5 mW, s-polarized HeNe laser, spectra were recorded

through a 10× microscope objective (0.25 NA) and projected onto a thermoelectrically

cooled charged-couple device array using 1200 mm−1 diffraction grating. Individual spectra

were recorded from both single spots (1.6 µm diameter) on the substrate, and from a 500 µm

thick cell of neat BPE for normalization.

Electron Microscopy. Secondary electron microscope images of the substrates were

collected using a field-emission gun scanning electron microscope, utilizing an accelerating

voltage of 5 kV. No additional sample preparation was performed prior to imaging the

substrates.

3.3 Theoretical methods

Computational Details. Density-functional calculations were performed using the

PBE0 functional [414]. Triple-ζ valence basis sets with one set of polarization functions

(def2-TZVP) and split-ζ basis valence sets with polarization (def2-SVP) were used for the

main group and transition metal elements, respectively [571]. Relativistic effective core

potentials (ECP) comprising 28 core electrons for Ag and Pd and 60 core electrons were

employed for Au and Pt, respectively [24]. The PBE0 functional was chosen because it

has proven to be accurate for polarizabilities [4, 544] and Raman intensities [432, 543],
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Figure 3.1: a-b) SEM pictures of a femtosecond laser nanostructured SERS substrate and 2
nm Pt overlayer thermally evaporated on top of the substrate. c) Structure of a Ag6M ·BPE
complex.

although it is known to overestimate vibrational frequencies [346] and electronic excitation

energies [5]. The Turbomole package [537] was used to perform all calculations.

Raman Scattering Calculations. Raman intensities were computed using the static

polarizability limit, except for the Raman intensities calculated for the Raman excitation

profiles [432]. No scaling of vibrational frequencies was applied. The Raman spectra were

simulated by Lorentzian broadening of the line spectra using an empirical linewidth of

5 cm−1. A scattering angle of 90 degrees and perpendicular polarization of both incident

and scattered radiation was employed.

Geometry Optimization. The molecular systems were relaxed using the PBE0

functional. Multiple spin geometries were studied and singlets (doublets in the open-shell

case) were most stable. The molecule-cluster systems presented an imaginary mode, even

after repeated attempts to relax the molecule. This mode was prevalent at the 3–15 cm−1

region. None of the bare clusters or molecules presented imaginary frequencies.

3.4 Results

3.4.1 Enhancement effects of BPE using mixed-metal substrates

We prepared silver-based SERS substrates including a thin overlayer of Pd or Pt.

Details regarding the nanofabrication of these surfaces can be found in the Experimental

Methods Section. Briefly, silicon surfaces were roughened by a femtosecond laser nanostruc-

turing process [127]. An 80 nm thick layer of silver was deposited on the roughened surfaces

by thermal evaporation; subsequently, an overlayer of Pd or Pt of 1–4 nm thickness was

created by the same technique. In Fig. 3.1a-b, we show scanning electron microscope (SEM)

images of the silver substrate with 2 nm Pt coverage. We notice a similar quasi-uniform
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Figure 3.2: Experimental Raman spectrum of BPE and 80 nm Ag substrate using 633
nm wavelength. (left) Calculated Raman spectra of Ag7 ·BPE and Ag18 ·BPE complexes.
(right)

distribution of raised features as shown in the work by Diebold et al. [127]; even in the

presence of an additional transition metal.

Thermal evaporation is a highly directional process that preferentially coats the top

surface of the sample and may leave shadows exposed to Ag. There have been previous

efforts to ensure a pinhole free surface in an electrochemical setting by Weaver et al. [626]

The current setup to identify elemental composition of surface coverage employs the SEM

setup coupled with energy-dispersive X-ray spectrometry. The latter has a micron-sized

resolution, so other ways of determining surface coverage, such as chemical probes [623] are

needed. The consequences of nanoscale pinholes are discussed in the theoretical section as

we explore the local environment of the molecule using mixed-metal clusters.

To elucidate the role of the chemical contribution to surface enhancement in bi-metal

substrates, we calculated the Raman cross sections of BPE bound to small-cluster mod-

els of SERS substrates. We use seven-atom (Ag6M ·BPE) and a larger 18-atom cluster

(Ag14M4 ·BPE) models, see Fig. 3.1c. Chemical enhancement effects appear to be well lo-

calized around the site of the chemical bond between metal atoms and the analyte molecule.

In Chapter 2 and in previous work, these have been shown to provide realistic models for

chemical enhancement [456, 455].

The experimental Raman spectrum of BPE at 633 nm excitation wavelength on a silver

substrate and the computed Raman spectra for the Ag7 ·BPE and Ag18 ·BPE complexes

are compared in Fig. 3.2. The vibrational frequencies and relative Raman cross sections

are in good agreement between the experimental and the computed spectra. The four most

prominent vibrational modes are clearly identified as the ring-breathing mode of the pyri-

dine rings at 1010 cm−1, the in-plane bending of the pyridine rings at 1200 cm−1, the ring
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Figure 3.3: Experimental and computed SERS spectra of BPE. Experimental Raman scat-
tering cross-sections at 633 nm incident wavelength of BPE on 80 nm Ag substrate, 80 nm
Ag substrate with 1 nm Pd overlayer, and 80 nm Ag substrate with 1 nm Pt overlayer.
(left) Calculated Raman spectra of Ag7 ·BPE, Ag6Pd ·BPE, and Ag6Pt ·BPE, complexes.
(right)

stretching mode at 1610 cm−1 and the ethylene stretching mode at 1640 cm−1 [593, 508].

The differences between these cluster models are comparatively small, with the largest de-

viations found in the relative Raman cross sections for the 1610 and 1640 cm−1 modes. The

computed vibrational frequencies are overestimated by about 4% by the PBE0 functional

used in this chapter, in accord with previous benchmark studies [346].

In Fig. 3.3, we show the experimental Raman spectra of BPE absorbed on the silver

SERS substrate and mixed-metal SERS substrates using 1 nm coverage of Pd or Pt at

633 nm excitation wavelength. We observed a stronger Raman signal for mixed-metal SERS

substrates compared to the silver SERS substrate. Also, Pt coverage of 1 nm thickness is

more effective in enhancing the Raman signal than Pd coverage of the same thickness. At

the same time, the relative Raman signals from different modes and the shapes of measured

Raman spectra remain virtually unchanged. Measurements of Raman cross sections of BPE

on SERS substrates are complicated by the fact that its surface coverage is not exactly

known and might vary depending on the composition of the SERS substrate. Therefore,

we consider analytical enhancement factors (AEF) as defined by LeRu, Etchegoin, and

co-workers and used extensively in SERS research [86, 337, 293],

AEF =
ISERS/cSERS

Iref/cref
, (3.1)

where I is the Raman intensity and c represents the concentration of the analyte. The
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Figure 3.4: Analytical enhancement factors for the integrated signals of the in-plane bend-
ing mode of BPE on mixed-metal SERS substrates as a function of the transition-metal
thickness. The analytical enhancement factors are normalized with respect to the silver
SERS substrates (0 nm thickness). For Pd coverage there is only enhancement at 1.2 nm
thickness, while the Pt signal is close to 1.9 at both 1.4 nm and 2.4 nm coverage.

Ag6M ·BPE Enhancement ∆E (eV) Ag18 ·BPE Enhancement

Ag7 ·BPE 1.00 -0.38 Ag18 ·BPE 1.00
Ag6Pd ·BPE 3.79 -0.92 Ag14Pd4 ·BPE 2.28
Ag6Pt ·BPE 5.08 -1.41 Ag14Pt4 ·BPE 4.25

Table 3.1: Enhancement factors of the in-plane bending mode of Ag6M ·BPE complexes
(relative to Ag7 ·BPE) and Ag14M4 ·BPE complexes (relative to Ag18 ·BPE). Binding en-
ergies ∆E of Ag6M ·BPE complexes according to Eq. 3.2.

significance of the observed analytical enhancement factors is discussed extensively below.

At close to 1 nm thickness, Pd- and Pt-covered substrates show analytical enhance-

ment factors for the 1200 cm−1 mode that are 1.4 and 1.8 times higher than that for the

silver SERS substrate, respectively. At 2 nm thickness, this ratio drops to 0.75 when us-

ing a Pd-covered substrate. The analytical enhancement factor for the 2 nm Pt-covered

substrate is 1.9 times higher than for the silver substrate; indicating that there is a sus-

tained enhancement as the coverage thickness increases. We observe no SERS enhancement

beyond a layer thickness of 3 nm layer of Pd or Pt (not shown). The dependence of the

measured analytical enhancement factors on the thickness of the transition-metal overlayer

is summarized in Fig. 3.4.

The computed Raman spectra of the Ag6M ·BPE complexes (M = Ag, Pd, Pt) are

shown in Fig. 3.3. Increased Raman cross sections are observed in transition-metal com-

plexes, while relative cross sections are preserved, in line with experimental results. For the

in-plane bending mode at 1200 cm−1, we find that replacement of the proximal Ag atom
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Figure 3.5: Calculated Raman spectra of Au7 ·BPE, Au6Pd ·BPE, and Au6Pt ·BPE
complexes.

by a Pd atom leads to an 3.8-fold increase in Raman cross section. For the Ag6Pt ·BPE

complex, the Raman cross section is highest, 5.1 times higher compared to the Ag7 ·BPE

complex. The Raman spectra of the larger complexes of the form, Ag14M4 ·BPE, show a

similar trend and are given in Sec. 3.6. The computed results are summarized in Table 3.1.

Nitrogen-containing heterocycles such as BPE are known to form strong coordinative

bonds to transition metals of the platinum group. This strong bonding can be expected to

have a significant effect on the chemical contribution to surface enhancement. Therefore,

it is instructive to study the binding energies of BPE to the mixed-metal clusters as a

simple measure of the metal–molecular bonding. The binding energies ∆E are computed

as electronic reaction energies (without zero-point correction) of the AgxMy ·BPE complex

formation,

∆E = E(AgxMy ·BPE)− E(AgxMy)− E(BPE) (3.2)

The binding energies are given in Table 3.1 and follow the trend Ag < Pd < Pt. This

observation is in line with complex stability of transition metals [402, 18, 284] and suggests

that the mixing between electronic levels in the molecule and the metal cluster is correlated

to the increase in Raman scattering cross sections. A simple explanation is that stronger

bonding leads to a stronger coupling of vibrational modes in the analyte molecule to the

large polarizability of the metal cluster.

Further, we computed Raman spectra of the Au6M ·BPE complexes (M = Au, Pd, Pt)

and their binding energies according to Eq. 3.2 that are shown in Fig. 3.5 and Fig. 3.2. The

chemical enhancement and the Raman cross sections increase in the sequence Au ¡ Pd ¡ Pt.

The effect of Pd and Pt is, however, smaller than for the Ag6M ·BPE complexes, while the

binding energies are similar for both Ag6M ·BPE and Au6M ·BPE series of complexes. It

is therefore apparent that other electronic-structure considerations need to be taken into

account to fully understand the origin of the mixed-metal effect.

Theory and experiment are complementary in the understanding of the molecule–metal

and mixed-metal interface. In this chapter, we are able to provide analytical enhancement
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Au6M ·BPE Enhancement ∆E (eV)

Au7 ·BPE 1.00 -0.64
Au6Pd ·BPE 1.66 -1.05
Au6Pt ·BPE 2.26 -1.67

Table 3.2: Enhancement factors of the in-plane bending mode of Au6M ·BPE complexes
(relative to Au7 ·BPE). Binding energies ∆E of Au6M ·BPE complexes according to Eq. 3.2.

Ag6M ·Py Enhancement ∆E (eV)

Ag7 ·Py 1.00 -0.38
Ag6Pd ·Py 6.10 -0.90
Ag6Pt ·Py 9.27 -1.37

Table 3.3: Enhancement factors of the in-plane bending mode of Ag6M ·Py complexes
(relative to Ag7 ·Py). Binding energies ∆E of Ag6M ·BPE complexes according to Eq. 3.2.

factors, but the surface coverage of BPE on SERS substrates is unknown and its measure-

ment is far from trivial [158]. Theoretical results predict an increase in Raman cross sections

per molecule when the analyte binds to a Pd or Pt atom, an effect that can be described

by SERS lending. The enhanced Raman cross sections are concomitant with an increase in

binding energy between the analyte and the metallic surface. Higher binding energies will

however also lead to increased surface coverage of the analyte under equilibrium conditions,

potentially yielding higher analytical enhancement factors. Estimating the surface coverage

is therefore necessary in order to interpret the experimental findings.

Surface coverage experiments of pyridine on roughened electrodes of Ag and Pt yield a

coverage of 4.5–6.5×10−10 mol cm−2 and 5.1×10−10 mol cm−2, respectively [205, 206, 607].

These measurements were done for a similar bulk concentration of pyridine, though each was

determined with a different method. In the case of BPE, estimations of the surface coverage

on Ag have relied on a geometric area estimation of 1.16×10−9 mol cm−2 [380, 313, 136],

though we note this is likely an overestimate. Measurements of BPE on Pt have reported to

give a coverage of 4.75×10−10 mol cm−2 [197]. Although the variety of methods shrouds the

comparison, the difference in surface coverage between Pt and Ag is not over a factor of two

greater. Therefore, coverage cannot be the sole factor for the 1.9-fold enhancement we find

experimentally. Along with robust theoretical predictions of increased Raman cross sections

per molecule, we tentatively conclude that a SERS lending effect is present in mixed-metal

substrates considered in this chapter.
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Figure 3.6: Raman excitation profiles (REP) of ring-breathing mode (990 cm−1, a) and
in-plane bending mode (1200 cm−1, b) of pyridine in Ag6Pt ·Py and Au6Pt ·Py complexes.

3.4.2 Theoretical study of pyridine: Raman excitation profile

We proceed by investigating the importance of a dynamical contribution to chemical

enhancement in mixed-metal clusters using complexes Ag6M ·Py as an example. Table 3.3

shows the relative Raman scattering cross sections for the 1230 cm−1 in-plane bending

mode of pyridine as well as binding energies computed according to Eq. 3.2. This vibration

corresponds to the 1200 cm−1 mode in BPE (spectra available in Sec. 3.6). The binding

energies follow the same trends as in the case of BPE and are within 0.04 eV of the values

obtained for Ag6M ·BPE, compare Table 3.1. The Raman cross section of the 1230 cm−1

mode is 6 times higher in Ag6Pd ·Py and 9 times higher in Ag6Pt ·Py compared to the

Ag7 ·Py complex. However, the absolute Raman cross-section for this mode is 20 times

smaller than in complexes containing BPE (shown in Sec. 3.6).

Raman excitation profiles (REPs) are a useful tool in elucidating the dynamical con-

tribution surface enhancement and describe the dependence of Raman cross sections on the

excitation frequency [456]. In Fig. 3.6, we show REPs for the ring-breathing mode (experi-

mental frequency 990 cm−1) and the in-plane bending mode (1200 cm−1) of Ag6Pt ·Py and

Au6Pt ·Py complexes. The silver-platinum complex has its lowest-energy electronic excita-

tion at 607 nm, while the lowest excitation occurs at 616 nm in the gold-platinum complex.

For both vibrational modes, Ag6Pt ·Py exhibits a large increase in Raman cross sections

close to the electronic excitation at 607 nm, showing almost an order of magnitude increase

in Raman cross section for the ring-breathing mode. In contrast, Au6Pt ·Py complex fails

to show a significant increase for both of these modes at its excitation wavelength of 616

nm.

Isosurface plots of transition electron densities for the lowest-energy excitations in

Ag6Pt ·Py and Au6Pt ·Py are displayed in Fig. 3.6. In the case of Ag6Pt ·Py (Fig. 3.7a),
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Figure 3.7: Isosurface plots of computed transition densities of lowest-energy electronic exci-
tations in Ag6Pt ·Py (excitation wavelength 607 nm, a) and Au6Pt ·Py complex (excitation
wavelength 616 nm, b) The red color indicates a transition density of -0.005 a.u., while the
blue corresponds to a transition density of 0.005 a.u.

the transition density lies exactly at the metal–molecule interface. The Au6Pt ·Py complex

(Fig. 3.7b) is characterized by a transition density that is spread out throughout the metal

cluster. These observations provide a simple explanation for the computed REPs of Fig. 3.6.

We note that when an excitation transition density is largely localized at the metal–molecule

interface, the Raman cross sections for excitation energies close to it are strongly enhanced,

as has been reported previously for Agn–SPh complexes [456]. In contrast, excitations in the

metal cluster have a much smaller effect on Raman cross sections. The differences between

Au and Ag as majority metals illustrate that excited state properties are also important to

understand the effects in mixed-metal systems.

3.5 Conclusions

The chemical contribution to surface enhancement in mixed-metal SERS substrates was

investigated by experimental and theoretical techniques. We report an increase by up to

1.9-fold in analytical enhancement factors obtained experimentally for BPE on silver-based

SERS substrates including an overlayer of Pd or Pt of 1–2 nm thickness. The analytical

enhancement factors include the effect of surface coverage of the analyte, the attenuation

of the electromagnetic enhancement by the transition-metal overlayer as well as changes

in the chemical enhancement. The observed increase in analytical enhancement factors

is unlikely to arise solely from a higher surface coverage on Pd- or Pt-containing SERS

substrates. Therefore, we conclude that a SERS lending effect is present in mixed-metal
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Figure 3.8: Experimental and computed spectra for BPE at 633 nm.

SERS substrates due to an increase in chemical enhancement.

These findings are further corroborated by theoretical results on small-cluster models,

which consistently predict up to a 5-fold increase in Raman cross sections for BPE on Pd-

or Pt-containing mixed-metal clusters. The differences in enhancement are understandable

since the theoretical model does not take into account the distance-dependent decrease of

electromagnetic enhancement. It is likely the issue of the attenuation of the electromagnetic

effect can be alleviated [255, 566, 129]. Overall, the enhancement is a combination of

the attenuation and the chemical enhancement effect. As mentioned above, the chemical

enhancement can lead to observable SERS spectra without necessarily having a substrate

with plasmonic properties [562, 563].

SERS lending could open an avenue for new analytical applications for monitoring and

identification. Future work needs to focus on a more in-depth experimental characterization

of the mixed-metal substrate, as well as expanding the use of transition metals for detecting

different analytes. The experimental challenge to overcome in future work is the determina-

tion of surface coverage, which would shed some light on the quantitive relationship between

the borrowing and lending effects in mixed-metal SERS substrates.“

3.6 Appendix

3.6.1 Supplementary Raman Spectra

We plot the comparison between the experimental and theoretical Raman spectrum of

BPE in Fig. 3.8. We show the comparison in Fig. 3.9 between experimental and calculated

spectra of SERS and mixed-metal SERS with clusters of up to 18 metal atoms and BPE

(i.e., Ag14M4 ·BPE, where M={Ag, Pd, Pt}. In the case of pyridine, Fig. 3.10 shows the

Raman spectrum of the three layouts: Ag6M ·Py, where M={Ag, Pd, Pt}.
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Figure 3.9: Calculated and experimental SERS spectra. Top Raman scattering simulations
at 633 nm incident wavelength of BPE bound to Ag14M4 where M is: left Ag; Center
Pd; Right Pt. Bottom Experimental Raman scattering cross-sections at 633 nm incident
wavelength of BPE attached to: Left 80 nm Ag substrate; Center 80 nm Ag substrate
with 1nm Pd layer; Right 80 nm Ag substrate with 1nm Pt layer.
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Figure 3.10: Calculated Raman spectra at 633 nm excitation wavelength for gold-containing
clusters: Ag6M ·Py. M is: Left Ag; Center Pd; and right Pt. There is an overall
enhancement of the Raman spectra, as we modify the substrate from bare Ag to Pd, and
Pt (i. e., from left to right).



Chapter 4

Anion stabilization in electrostatic environments

4.1 Introduction

The stabilization of a transient electron in a molecular system by a complex nanoscale

environment is relevant for the fields of molecular electronics and transport [440, 305, 378,

492, 124] as well as to the understanding of molecular properties on surfaces such as in

surface-enhanced Raman spectroscopy [150, 468, 360, 116, 246, 130, 456, 455]. A major

challenge is that of understanding the interaction between extended metallic systems, such

as surface metal gates or a nanoparticle, and an adsorbed molecule. From a theoretical

standpoint, these two components are characterized by different length scales.

Differing approaches for handling this intrinsically multiscale problem have been taken.

For example, several authors have focused on the molecular system. These efforts in-

clude the PCM [532, 531, 117, 345] and COSMO methodologies [265, 264], where the

metal surfaces or nanoparticles are simulated as cavity surfaces discretized into finite ele-

ments. The PCM technique has provided valuable insight into surface-enhancement pro-

cesses [115, 554, 364, 461]. Recently, we have also modeled nanoscale systems using finite

element and basis set methods [569]. Our approach includes partitioning the Green’s func-

tion into a contribution that is effectively the interaction of the particles in vacuum (obtain-

ing the 1/r potential), and an additional term, which is effectively due to the electrostatic

environment [569]. A parallel formulation has been developed by one of us for quantum

dots [502, 504, 503, 435]. In this case, the system is determined by the finite-difference

discretization of arbitrarily shaped boundaries, where these lie at the edges of a calculation

box. This treatment of gated systems has enabled the study of properties such as Coulomb

blockade energetics [504], quantum-dots self-consistent structures [503] and, more recently,

Förster coupling in nanoparticle excitonic circuits [435].

In this chapter we focus on molecular systems interacting with a nanoscale environment.

As a representative example, we study the benzene anion. It is known that a single benzene
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molecule in the gas phase is unable to bind an excess electron as shown by a negative vertical

electron affinity (VEA) of −1.15 eV [67, 373]. VEA is defined as the energy difference

between the neutral species at its ground-state geometry and the anion species at the

neutral geometry as shown in Eq. 4.1. We use atomic units throughout to represent all

quantities, unless otherwise noted.

VEA =Eneutral (Rneutral)− Eanion (Rneutral) (4.1)

VDE =Eneutral (Ranion)− Eanion (Ranion) (4.2)

Similar to the VEA, the vertical detachment energy (VDE) shown in Eq. 4.2 is defined

as the energy difference between the neutral species at the anion’s ground-state geometry

and the anion at that same geometry. The VEA and VDE represent lower and upper bounds,

respectively, of the electron affinity when the nuclear configuration is not significantly dif-

ferent in the anionic and neutral geometry [486, 445, 280]. Specifically, Mitsui et al. [353]

observed the formation of negatively charged benzene clusters (C6H6)−n . In the gas phase,

the vertical detachment energy (VDE) is between 0.47 and 0.56 eV for n = 53 − 124 with

an estimated value of 0.84 eV when n is extrapolated to infinity.

Why does a cluster of molecules bind an excess electron when a single molecule does

not? One explanation is that the polarizability of the cluster is greater than the single

molecule. An excess electron can therefore more readily induce a dipole in the cluster to

which it can favorably interact. In a similar fashion, the polarizability of a local dielectric

and conducting medium in a nanostructured system can also stabilize anionic states of

molecules.

We study the stability of the benzene anion in the proximity of a conductor. We

approximate the metal surfaces as perfect conductors, which are grounded and can act as

voltage sources. The arbitrariness of the boundaries allow us to explore geometric effects

such as metallic tips. Variations from the parallel-plate setup treated in this paper are

planned for future studies. We propose a simple method to determine the total energy of a

system given an arbitrary electrostatic environment. We show that the benzene anion energy

is lower than the neutral benzene energy in this environment. Subsequently, we describe

the effect of a voltage bias on the system and explore the effects of the environment by

studying the induced charge on the metal plate and the electronic localization function.

4.2 Results

We place the molecule between two charged metallic plates, a geometry reminiscent of

some single-molecule experiments. [440, 305] The total electrostatic energy of the molecule
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can then be given by two terms: the interaction of the charge density, ρ(r), with the

grounded potential φ‖(r), and the interaction of the density with the potential generated

due to the bias voltage at the plates, φB(r). The grounded potential depends on the

system’s charge density: ρ(r) = ρion(r) + ρel(r) and is solved via the Poisson equation:

∇2φ‖(r) = −4πρ(r); having the boundary condition φ‖ (rb) = 0. rb represents the position

of the plates, where the potential is set to zero. We use the dielectric constant of vacuum,

although this can be easily extended to adopting a position-dependent dielectric function.

The bias potential is obtained by solving Laplace’s equation, ∇2φB(r) = 0, given the

voltage bias, φB (rb) = Vb, in each of the gates. We use Laplace’s equation as this potential

is generated by charges outside the system. The expression of the total electrostatic system

energy then becomes, Ees = 1
2

∫
drρ(r)φ‖(r) +

∫
drρ(r)φB(r).

The plate energy also contributes to the total energy, but as we currently consider an

open system, the plate energy essentially becomes the work associated with charging the

metal plates up to a constant bias voltage. We return to discussing the plate energy below.

Given these non-trivial potentials, we can solve for the density in a self-consistent fash-

ion by using the Kohn-Sham [228, 273] approach to density functional theory (DFT), where

one solves a system of equations,
[
−1

2∇
2 + φeff(r)

]
χi(r) = εiχi(r) where χi corresponds to

a Kohn-Sham molecular orbital and εi corresponds to its energy. In addition to the ionic

and electronic potentials contained in φ‖(r), φeff includes the exchange-correlation potential,

φxc(r): φeff = φ‖(r) + φB(r) + φxc(r). Finally, the density is determined by the occupied

Kohn-Sham orbitals: ρel (r) =
∑

i |χi (r)|2.

The internal energy Esys is given by the expression below. The superscripts in the

potential terms represent the boundary condition, and the subscripts represent the source

of the potential:

Esys =
∑
i

εi −
1

2

∫
drρel (r)φ

‖
el(r)+

+
1

2

∫
drρion(r)φ

‖
ion(r) +

∫
drρionφ

B(r)+

+ Exc [ρel]−
∫
drφxc(r) ρel(r)

(4.3)

Here εi are the Kohn-Sham eigenvalues. φel and φion are the electronic and ionic

potentials that act on the electronic and ionic densities: ρel and ρion, respectively. Exc [ρel]

is the exchange-correlation energy. Note that the sum over Kohn-Sham eigenvalues in

Eq. 4.3 implicitly contains the electrostatic interaction of the electrons: 1
2

∫
drρel(r)φ

‖
el(r) +∫

drρel(r)φB
el(r).



Chapter 4: Anion stabilization in electrostatic environments 73

In free-space, the ion potential is given by φ◦ion(r) and the ion-ion interaction,

1

2

∫
drρion(r)φ◦ion(r),

is substituted by the sum of the ith-ion interacting with all other j th-ions:
∑

i

∑
i>j

qiqj
|Ri−Rj | .

In arbitrary electrostatic conditions, besides considering the interaction between the ith-ion

and the potential generated by the j th ion:
∑

i

∑
i>j

∫
drρion,i(r)φ

‖
ion,j(r), the interaction

given by an ion with the metal plates is an important energetic component. [238] This can

be rationalized in physical terms as the interaction of each ion with its mirror images. This

contribution is an attractive one and is fully considered in our calculations (as detailed in

Sec. 4.5) and is included in Eq. 4.3.

Since we assume that the constant potential generators are attached to power supplies

(or ground lines), the system is effectively open, and the work done by the environment

must be included in the total free energy F . The energy of the charges on the m metal

surfaces is given by the plate energy:

Eg =
1

2

∑
m

QmVm , (4.4)

where Qm represents the surface charge and Vm is the applied voltage at the gates. Qm is

obtained as the normal derivative of the total electrostatic potential, φ(r) = φ‖(r) + φB(r),

at each of the surfaces: Qm = −1
4π

∂φ(r)
∂n |r=rb . The standard expression for the work done by

batteries in electrical circuit analysis is

W =−
∑
m

∫
dtIm(t)Vm(t)

=−
∑
m

QmVm , (4.5)

where Vm (t) is the time-dependent applied voltage, and Im (t) is the current to or from the

power supply, for the mth gate respectively. Equation 4.5 results from the assumption that

the voltage is maintained arbitrarily close to the power supply potential throughout any

charge rearrangement processes that induce a flow of current to or from the system.

Taking into account the additional energy terms of Eq. 4.4 and Eq. 4.5, the final

expression for the total free energy of the system becomes

F =Esys +
1

2

∑
m

QmVm −
∑
m

∫
dtVm(t)Im(t)

=Esys −
1

2

∑
m

QmVm . (4.6)

For all results presented in this work, Eq. 4.6 is what we will refer to as the energy of the

system.
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(b)

z

Figure 4.1: Two metallic plates acting on a molecule. Two metal plates measuring 6
nm on each side separated by 2.1 nm (figure not to scale) confine a molecular system
either parallel (a) or perpendicular (b) to the plates. We present the induced charge
(See Fig. 4.4 a,b). In between the plates, we show the highest occupied molecular orbital
(HOMO) of the benzene anion.

We study a model system composed of two parallel-infinite plates separated along the z-

axis. The gates are assumed to be connected to power supplies which can be set to arbitrary

voltages. The plates confine a benzene molecule oriented either parallel or perpendicular to

the metallic plates, shown in Fig. 4.1a,b, respectively.

We performed all calculations using octopus [93], a finite-difference real-space DFT

code, which we modified to include the electrostatic boundary conditions. We modeled

the system using the Perdew-Burke-Ernzerhof (PBE) functional [412, 613]. The interaction

between valence electrons and the cores were modeled using Troullier-Martins pseudopo-

tentials [535]. Method details are available on Sec. 4.5.1

We first look at the total energy of benzene with respect to the plate separation, while

keeping the molecule centered and the gates grounded. The results are plotted in Fig. 4.2.

When the interplate distance is 13 Å, the perpendicular orientation is 3.3 eV lower in

energy than the parallel orientation. This implies that the molecule centered between the

plates will tend to rotate toward the perpendicular orientation. This effect results from

the charge induced, by the molecule, in the metal plates and is thus a type of Casimir

effect [350, 379, 90].

The conformational stabilization of benzene with respect to the plates can be under-

stood in the context of image charges. In the perpendicular case, the molecule is closer to

the metal plates, as seen in Fig. 4.1. The image charge solution gives an opposite charge

on the plates to each of the charges present inside the plates. We therefore expect that

proximity to the plate translates as an additional source of energy stabilization. As the

plate separation increases, at 40 Å plate distance, both orientations are within 0.1 eV of
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Figure 4.2: Benzene total energy with respect to plate separation. The total energy of
benzene at parallel and perpendicular orientations with respect to the metal plate distance
separation. The latter orientation is higher in energy at lower plate separations, but as the
plates become farther apart, these energies converge and the orientational effects of energy
disappear.

each other.

Next, we explore a bias sweep by varying the potential on the bottom plate (see Fig. 4.1)

and keeping the top grounded. Neutral benzene presents a parabolic dependence of the

energy with respect to the voltage bias centered around 0.0 V. A positive or negative bias

affects the energy similarly, as shown in Fig. 4.3 where the change of energy takes a parabolic

shape.

The benzene anion experiences stabilization due to the image charges in the metallic

plates of an overall charged system. This leads to a stabilization of the excess electron in

benzene. When the plates are grounded (i. e. no bias), we obtain a total energy that is 0.4

eV lower than the neutral system for both orientations. In this case, the maximum is not

at 0.0 V, but rather is shifted to a potential of approximately -0.3 V for both orientations.

At this potential, the excess electron has some electron density interacting with the bottom

plate. The energy curves are not symmetric due to the excess electron, which causes a

different response with positive and negative biases. It stabilizes under a positive bias

more readily than under a negative one due to the excess negative charge. As the voltage

bias increases (becomes more positive), the slope for the total energy of the anion becomes

steeper than in the case of the negative bias. Finally, for large negative potential, we find

that the neutral system becomes more stable than the anion at a bias of −1.0 eV and

of −1.1 eV for the parallel and perpendicular cases, respectively, as is seen in Fig. 4.3.

We continue by looking at the induced charge on the metal plates due to its energetic

relevance. With the anion oriented parallel to the plates the induced charge shows a round
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Figure 4.3: Benzene anion energy and its neutral counterpart. ,Energy between
the benzene anion and its neutral counterpart when the molecule is oriented
parallel (a) and perpendicular (b) to the plate and an interplate distance of 21
Å. At zero voltage bias, the energy of the anion is less than the neutral molecule. Adding
a negative voltage bias moves the neutral case toward higher stability with respect to the
anion.

shape, while it shows an oval shape when the molecule is oriented perpendicular to the

plates (along the xz-plane) as seen in Fig. 4.4a,b, respectively. The induced charge on

the molecule parallel to the plates is relatively homogeneous across the boundary, while in

the perpendicular case, the induced charge is concentrated in the center and has a more

pronounced response. In both cases it is positive, indicating that the excess electron is

screened by the plates. The induced charge is therefore helpful to identify the areas of

increased electron density along system boundaries.

We plot the highest occupied molecular orbital (HOMO) of the molecule with plates

grounded and at a bias of -0.1 V as shown in Fig. 4.5a,b, respectively. The comparison of

these orbitals suggests an increased polarizability of the excess electron as it diffuses when

applying a bias in the electrostatic environment.

As shown in Fig. 4.5c, the anion HOMO energy at zero bias is −0.20 eV. There is a

change of HOMO energy as we apply the voltage bias; decreasing in energy as the bias

is increased. Changes in HOMO and lowest unoccupied molecular orbital (LUMO) levels

influence charge transport calculations, and studies of these changes are planned as a future

area of exploration.

One can also look at the interaction betwen the molecule and the plates as the system

interacting with its image charges; the latter being responsible for the anion stabilization.

Specifically, the image charges provide a screened potential, different than the 1/r potential

present in vacuum, which allows the excess electron to interact more strongly with the ions.

To further understand the interaction of the electrons and ions of the system, we use the

electron localization function (ELF) developed by Becke and Edgecombe [53]. Description
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Figure 4.4: Induced charge (a.u.) at bottom plate caused by benzene anion at different
orientations. (a) Parallel to the plates. (b) Perpendicular to the plates.

of the ELF can be found in Section 4.5.3.

There are clear differences in the case of the molecule in free-space and under these

electrostatic conditions. In Fig. 4.6 we compare the ELF of the benzene anion between the

metal plates to its free-space form. In order to highlight this, we plot the ELF difference:

∆ELF = ELFP − ELF◦, where the P and ◦ superscripts denote the metallic plates and

free-space, respectively. Two-dimensional (2D) ∆ELF plots (showing the yz plane at x=0)

for different bias potentials are shown in Fig. 4.6. Fig. 4.6b at V=0.0 shows crescent-shaped

regions at z = ±4 Å with a negative difference (blue). A negative value of ∆ELF represents

regions where, in the metallic plates case, the excess electron is able to penetrate closer

to the ions. The difference of the ELF diagrams between benzene anion in free-space and

grounded with the metal plates, shown in Fig. 4.6b, signifies that the excess electron lies

closer to the nuclei in the latter case. Effectively, this causes the excess electron to be more

strongly bound in this environment by 0.4 eV.

As we decrease the voltage bias, we observe the depletion of the excess electron as a

negative voltage bias is added to the bottom plate of the system, as shown in Fig. 4.6b.

In vacuum, this section is completely dominated by the excess electron. As we add a

negative bias, this electron will tend to avoid the bottom-half area. At the same time, we

obtain a negative difference in ELF at positive values of z. As we decrease the bias, the

bottom region becomes depleted of the excess electron. Similarly, the top area acquires

more electron density, but the ∆ELF in this area remains at -0.5; as the excess electron is

already dominating in this region.
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(c)(b)(a)

Figure 4.5: HOMO of the benzene anion. (a) Benzene anion HOMO under no bias under the
electrostatic environment. (b) Benzene anion HOMO with a -0.1 V bias shows an increased
localization of the orbital away from the bias. (c) HOMO eigenvalue at different voltage
bias.

4.3 Discussion

The plate distance separation calculations show the relevance of image charge effects

due to the plates. The energetic contribution due to the metal plates become an essential

contribution to understand orientational effects. For instance, at small interplate distances,

the energy differences are in the range of several eV. We notice that each ion or electron will

also interact with the images of the other charged particles of the system. It can be shown

by geometric arguments that the interaction with the plate(s) is attractive for a system

with any number of charges when the plates are grounded.

In the case of the benzene anion, these image charges cause the excess electron to

stabilize, with respect to its neutral counterpart. When applying a voltage bias, the system’s

total energy becomes part of an energetic interplay between the decrease in energy of the

eigenvalues (particularly the HOMO energy, as seen in Fig. 4.5c), the electrostatic energies,

and the plate energy.

Choi et al. have explored the molecular orbital shift of benzene under a electrostatic

field in the order of 1 VÅ−1 [102, 260]. The bias induced in the metallic plates produces

also an electric field. In order to create such fields in this confined environment, we require

a voltage bias of 21 V. In the case of the benzene anion, less voltage is needed to observe

effects similar to those studied by Choi et al., such as molecular orbital tuning, as shown in

Fig. 4.5c. We observe the effect of a small field ∼ 0.1 VÅ−1 as it causes the excess electron

distribution to move away from the plate with negative voltage.

The work of Mitsui et al. [353] showed the stabilization of an excess charge in benzene

clusters of 53–124 molecules. We observe that a similar effect takes place in an metallic

environment: the VEA becomes positive, and thus an excess charge in benzene is stabilized.
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Figure 4.6: Difference of metallic-environment ELF: ∆ELF = ELFP − ELF◦, where P and
◦ represent the metallic plates and free-space, respectively, at different voltage biases of β
spin polarization contains the excess electron. Panel a represents ∆ELF. The dotted region
represents the area plotted in panel b. We plot the yz-plane at x=0. (b) shows ∆ELF
for four different voltages. In V=0.0, the diagram shows an area (blue) where the excess
electron dominates closer to the molecular region, and edges (red) where the electrons are
more delocalized than the free-space case. As we decrease the bias to more negative bias the
bottom region becomes more red (positive) as the excess electron begins to localize itself
upward, due to the electrostatic repulsion with the plates.

Other conjugated molecules, such as polycyclic aromatic hydrocarbons, have a systemati-

cally decreasing VEA [444] as they increase in number of aromatic cycles.

4.4 Conclusions

The effects presented here by simulating a metallic environment with electrostatic

boundary condition reveal the leading role of the image charge effect for stabilizing ex-

cess charge in molecular systems. This chapter shows a straightforward way of considering

electron confinement in a perfect conductor system.

The use of more geometrically complex boundary conditions will allow us to obtain

an even more realistic environment of the molecule interacting with an extended metallic

system. Furthermore, controlling the molecule in this environment could greatly enhance the

system’s spectroscopic properties such as is the case for surface-enhanced and tip-enhanced

Raman scattering.

The implementation of this algorithm in a versatile and widely-available software pack-
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age such as octopus will allow for studies of time-dependent properties of the molecules

and also will facilitate the simulations of higher-order physics such as many-body effects

with metallic boundary conditions in the near future.

4.5 Appendix

4.5.1 Methods

Algorithm

This section details the solution of the self-consistent Poisson-Schrödinger system of

equations. This method is general for wave-function-based methods or density functional

algorithms. We use the latter and program it in the octopus code.

We solve Poisson’s equation separately for ions and electrons given the metallic bound-

ary conditions: plate geometry, fixed voltage at each plate. Poisson’s equation is solved

using an incomplete LU biconjugate gradient squared Ax=b solver [495, 249]. The solver

tolerance was set differently for obtaining the ionic and electronic potential, since the num-

ber of times the solver is called is different for each case. We obtain Poisson’s equation

using Drichilet boundary conditions at the plates. We use Neumann boundary conditions

on the remaining sides of the simulation box; these are distant from the molecule and we

thus consider the electric field component in each of these directions to have decayed to

zero.

We solve for the nuclear potential one atom at a time, and then solve for the electronic

potential in each Kohn-Sham SCF iteration, as per the octopus algorithm [93].

The ionic potential is determined at the beginning of the calculation. In this chapter,

ion positions are taken as fixed. We explicitly determine the nuclear energy since it does

not have a closed form. Instead, we integrate the product of the ion density and the ion

potential over space, as mentioned in Sec. 4.1.

We find the induced charge density after obtaining a total expression of the electrostatic

potential. Given the potential at the plates, an input parameter, and the potential bordering

these points, then it is possible to find the surface charge by obtaining the normal derivative

of the potential at the surface. We calculate the derivative by the same finite difference

approach we use in computing the potential. The plate energy is then obtained by summing

the product of the induced charge densities at every gate, as shown in Eq. 4.4.

The rest of the energy components (e.g. electronic energy, exchange and correlation

contributions) are obtained using the canonical octopus operations to obtaining these prop-

erties.
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Computational Details

We treated the molecule with octopus [93], a finite-difference real-space code, which we

modified to include the electrostatic boundary conditions. The code including our modifica-

tions is available for download under a free software license. 1 We modeled the system using

the Perdew-Burke-Ernzerhof (PBE) functional [412, 613]. The interaction between valence

electrons and the cores were modeled using Troullier-Martins pseudopotentials [535].

In the plate-separation calculations, the distance was set to 0.10 Å grid spacing to

ensure convergence. The plate distance is varied from a minimum of 13.0 Å (the converged

distance for the free space case) to 50.0 Å. In the bias-dependence calculations, we set out

a wider grid separation of 0.16 Å since we are interested in converging the difference in

energy between the anion and neutral case. In this case, we used a parallelepiped box of

24 Å on the x- and y-axis and 20 Å on the z-axis to ensure that the anion wave-functions

are correctly represented.

In all cases, the metal plates are located 0.5 Å away from the limits of density-containing

box. In the voltage dependence case, we set the two metallic plates to be 21.0 Å apart. In

order to simulate infinite plates along the x and y dimensions, we extend the mesh up to

60. Å.

We performed a set of calculations by setting the voltage at the bottom plate. This

voltage varied from -2.0 V to 1.0 V. The drain voltage (i.e. the top plate) remained always

grounded.

4.5.2 Ion Potential and Ion-ion Energy in Electrostatic Boundary Con-

ditions

As mentioned in Sec. 4.2, in free-space, the ion potential is given by φ◦ion(r) and the

ion-ion interaction,
1

2

∫
drρion(r)φ◦ion(r),

is substituted by the sum of the ith-ion interacting with all other j th-ions:
∑

i

∑
i>j

qiqj
|Ri−Rj | .

In arbitrary electrostatic conditions, besides considering the interaction between the ith-ion

and the potential generated by the j th ion:
∑

i

∑
i>j

∫
drρion,i(r)φ

‖
ion,j(r), the interaction

given by a single charged particle with the metal plates (i. e. its image charges) is an

important energetic component [238].

In order to obtain a general solution of the interaction of each ith-ion with the plates,

we notice that the ith-ion potential we calculate, φ
‖
ion,i(r), can be partitioned into two

1http://www.tddft.org/programs/octopus/
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contributions: φ
‖
ion,i(r) = φ◦ion,i(r) + φim

ion,i(r), where φ◦ion,i(r) in the potential of the ion in

free-space and φim
ion,i(r) is a potential given by the image charges due to the metallic plates.

If we calculate the contribution of the ion with the metal plates, as shown in the LHS

of Eq. 4.7 below,∫
drρion,i(r)φ

‖
ion,i(r) =

∫
drρion,i(r)φ◦ion,i(r) +

∫
drρion,i(r)φim

ion,i(r), (4.7)

we notice that the energy contribution due to the interaction of the ion with its own po-

tential, i. e. the first term in the RHS, is a spurious self-interaction. We can remove this

term by separately calculating φ◦ion,i(r) and subtracting the interaction with its own po-

tential:
∫
drρion,i(r)φ

‖
ion,i(r)−

∫
drρion,i(r)φ◦ion,i(r). The difference yields the energy due to

the interaction of the ith-ion with its image charge: the last term on the RHS of Eq. 4.7.

This self-interaction correction is analogous to the one utilized in Ewald summation meth-

ods [330].

The energetic contribution of φ
‖
ion,i(r) (after removing the self-interaction) is an attrac-

tive one. This can be rationalized in physical terms as the attraction of each ion with its

mirror images. We find a similar interplay taking place in the case of the electrons, where the

self-interaction is removed to a lesser or greater extent by the exchange-correlation poten-

tial; the interaction of the plates with the electron density should also provide a stabilizing

effect to the overall system.

4.5.3 Electron Localization Function

To better understand the behavior of the excess electron of the molecule between two

metal plates, we will examine the changes in the electronic distribution and localization with

respect to the applied voltage. One useful tool for this study is the electron localization

function (ELF), developed by Becke and Edgecombe [53]. More properties are derived and

explained in Appendix A ELF is defined as

ELF(r) =
1

1 +
(
Dτ (r)
D0
τ (r)

)2 , (4.8)

where

Dτ (r) =
τ∑
i=1

(∇χi(r))2 − 1

4

|∇ρτ (r)|2

ρτ (r)
(4.9)

D0
τ (r) =

3

5

(
6π2
)2/3

ρ5/3
τ . (4.10)

Dτ is related to the exchange hole curvature: Cτ (r) = Dτ (r)/2ρτ (r) which quantifies the

vanishing of the pair distribution for pairs of electrons of spin τ at a small inter-particle
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separation [135]. Here, ρτ is the density restricted to spin τ . The pair distribution vanishes

quadratically up to leading order, since the distribution reaches a minimum at zero interpar-

ticle distance. The curvature is then related to the number of other parallel spin electrons

within a small radius. Alternatively, Eq. 4.9 is derived from the Taylor expansion of the

conditional pair probability (on a shell of radius s about r) [53]: P ττcond (r, s) ≈ 1
3Dτ (r)s2.

If the probability of finding an electron of the same spin close to another is small, then the

quantity Dτ , is smaller, due to the hole being wider.

The ELF is designed to have a range from 0 to 1. Equation 4.8 shows that ELF is

defined to be inversely proportional to the curvature of the exchange hole, Dτ . Also, D0
τ

represents the uniform electron gas with spin density equal to the local value and serves as

a normalization factor.

The ELF is unity in regions of perfect localization (where Dτ vanishes), while it is one-

half when Dτ approaches the value of the uniform electron gas (D0
τ ). Becke and Edgecombe

note that for multielectron systems in regions dominated by a single, localized, τ -electron

orbital, the value of Dτ vanishes, and therefore the value of ELF approaches unity [53].

This result will become useful in the analysis of the benzene anion.

There is a wide variety of ELF studies in the literature, including studies on ben-

zene [463, 464, 322, 165, 421, 16]. Specifically, there is work related to properties and use

of ELF for radical anions, a relevant topic for this chapter. Savin et al. described early the

shape of ELF in negative ions, such as the H− moiety in the LiH molecule [463]. There

has also been comparative work of ELF between neutral and radical anions of carbonyl and

imine compounds [154], as well as the use of ELF to analyze bonding of (NO)2, and its

radical anion and dianion [164].

4.5.4 ELF Analysis

As described in Sec. 1, the electron localization function is an illustrative tool for

anionic systems. In Fig. 4.7, we represent the ELF for the α-spin system (Fig. 4.7b) and

β-spin polarization(Fig. 4.7c), in free-space. The α spin polarization does not contain the

excess electron, but it gives a revealing description of the σ- and π-electrons in benzene.

The α-spin system does not significantly change by the addition of metallic plates, including

a voltage bias (shown in Fig. 4.8).

We proceed by further analyzing the overall properties of ELF applied to benzene. We

describe the ELF of neutral benzene to compare and contrast with its anion counterpart

in Fig. 4.7. With the molecule parallel to the plates, we rotate the xy-plane so that, at

x = 0 and z = 0, the y-axis goes through the center of four atoms (two hydrogens and two

carbons). The y-coordinates of these atoms (in Å) are: yH = −2.49, yC = −1.40, yC = 1.40,

and yH = 2.49. In Fig. 4.7b, as we approach y = −4 (always along z = 0) from the left, the
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Figure 4.7: ELF for the two spin-polarizations of benzene anion. (a) shows a 3D
representation of α-spin polarization with an isosurface values of ELF= 0.6. The dotted
region represents the area we present the following 2D plots. Diagrams (b) and (c) show
ELF of α-spin and β-spin polarization for benzene anion in free-space, respectively. The
excess electron is part of the β-spin electrons. The number of α-spin electrons is the same as
neutral benzene, and therefore its ELF has the same shape as neutral benzene. The β-spin
electron system contain the excess electron. Close to the center of the plots, the properties
of (b) and (c) are analogous. It is in the outer regions, where the excess electron dominates,
that the ELF value differ.

ELF increases to show the location of a C-H σ-bond. We notice that the ELF then falls to

a local minimum near y = −1.4, corresponding to the location of one carbon atom.

Close to this value we also observe an increase in ELF above and below the z = 0 line.

We attribute this to the localization due to the π-electrons of benzene.

The α-spin polarization presented a clear view of the σ- and π-electrons. The β-spin

polarization contains the excess electron. This gives the ELF very particular properties, as

described below. We plot the ELF in Fig. 4.7c (at x=0).

At y = −5, z = 0 we find an ELF = 0.5 contour. It is identifiable because to the left

of y = −5, the ELF increases rapidly to a value of one; while to the right of this point, the

ELF decays to zero. This ELF = 0.5 contour (the ELF value for the homogeneous electron

gas) is roughly circular. Inside the contour the area resembles the α-spin polarization case,

and hence also describes the σ- and π-electrons.

We are interested in the region outside the contour at y = ±5. Becke and Edge-

combe [53], consider the case of a single-electron system or a system dominated by a single,

localized, σ-electron orbital. This is effectively the case in the region beyond y, z = ±5,

where the excess electron dominates.

A positive voltage sweep (not shown) presents an ELF with similar properties, but

with an inverse response with respect to the voltage bias. A similar situation arises in the

case of the molecule oriented perpendicular to the plates (see Fig. 4.10).
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4.5.5 Complete ELF Diagrams

The 2D-ELF diagrams (at z = 0) for the α-spin polarization for free-space and different

voltage biases of the benzene anion oriented parallel to the plates are shown in Fig. 4.8a

and Fig. 4.8b-f, respectively. As discussed in Sec. II, there is no significant change between

the electron localization of the α electrons in free-space and with the metal plates.

The 2D-ELF diagrams (at x = 0) for the β-spin polarization for free-space and different

voltage biases of the benzene anion oriented parallel to the plates are shown in Fig. 4.9a and

Fig. 4.9b-f, respectively. We utilized this data to obtain ∆ELF, where ∆ELF = ELFP −
ELF◦, and P and ◦ represent the metallic plates and free-space, respectively.

The 2D-ELF diagrams (at x = 0) for the β-spin polarization for free-space and differ-

ent voltage biases of the benzene anion oriented perpendicular to the plates are shown in

Fig. 4.10a and Fig. 4.10b-f, respectively. The description of the ELF inside the ELF=0.5

contour mirrors closely the explanation in Sec. II. For instance, there are six lobes corre-

sponding to the σ-electron located close to the position of the hydrogen atoms. As the bias

decreases, we once again see a depletion of the excess electron in the bottom part of the

plate, as reflected by an ELF value approaching zero in this area.

4.5.6 Geometries

We work with two geometries, each of them related by a 90◦ rotation. The geometry

of benzene parallel to the plates is presented in Table 4.1, while benzene perpendicular to

the plates is shown in Table 4.2.

4.5.7 Energetic Contributions

The total energy in DFT is described below, where we label the terms shown on Ta-

bles S3-S8:

Esys =
∑
i

εi︸ ︷︷ ︸
Eigenvalues

− 1

2

∫
drρel (r)φ

‖
el(r)︸ ︷︷ ︸

Hartree

+

+
1

2

∫
drρion(r)φ

‖
ion(r) +

∫
drρionφ

B(r)︸ ︷︷ ︸
Nuclear

+

−
∫
drφxc(r) ρel(r) + Exc [ρel]−

1

2

∑
m

QmVm︸ ︷︷ ︸
Gate

.

(4.11)

The Hartree term is a correction of the electrostatic interaction of the electron-electron

interaction since the sum over Kohn-Sham eigenvalues contains implicitly the electrostatic
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Figure 4.8: ELF for the α-spin electrons for benzene anion in the electrostatic
environment at different biases with the molecule oriented parallel to the plates.
(a) Free space (b) 0.0 V (c) -0.1 V (d) -0.2 V (e) -0.5 V (f) -1.0 V α-spin polarization
does not contain the excess electron.

interaction of the electrons: 1
2

∫
drρel(r)φ

‖
el(r) +

∫
drρel(r)φB

el(r).

4.5.8 Distance Dependence

We present the energetic contributions in the plate separation simulations shown in

Sec. II and III, specifically in Fig. 2. The contributions when the molecule is parallel to the

plates are shown on Table 4.3, while the energy terms when the molecule is perpendicular

are on Table 4.4.

4.5.9 Voltage Bias

We present the energetic contributions in the plate separation simulations shown in

Sec. II and III, specifically in Fig. 3. The terms of the molecule parallel to the plates are

shown in for the neutral, Table 4.5, and the anion, Table 4.6. The contributions for the

molecule perpendicular to the plates are presented in Table 4.7 and Table 4.8, for the neutral

and anion case, respectively.
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Figure 4.9: ELF for the β-spin electrons for benzene anion in the electrostatic
environment at different biases with the molecule oriented parallel to the plates.
(a) Free space; (b) 0.0 V; (c) -0.1 V; (d) -0.2 V; (e) -0.5 V; (f) -1.0 V. β-
spin polarization contains the excess electron. In a, the zone dominated by relatively
homogeneously distributed electrons (black) expands above and below z = 0. In b, the
same region begins to be dominated by a value of ELF = 1 (yellow), which signifies a
stronger dominance of the excess electron in the area. In c-f, as we decrease the bias to
more negative bias, the low localization (black) starts moving further and further towards
negative values of z. Thus, the excess electron is being depleted from this region of space.

Atom x y z

C 1.2101359 0.6986723 0.0000000
C 1.2101359 -0.6986723 0.0000000
C 0.0000000 -1.3973446 0.0000000
C -1.2101359 -0.6986723 0.0000000
C 0.0000000 1.3973446 0.0000000
C -1.2101359 0.6986723 0.0000000
H 2.1556169 1.2445460 0.0000000
H 2.1556169 -1.2445460 0.0000000
H 0.0000000 -2.4890920 0.0000000
H -2.1556169 -1.2445460 0.0000000
H 0.0000000 2.4890920 0.0000000
H -2.1556169 1.2445460 0.0000000

Table 4.1: Benzene parallel to the metal plates
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Figure 4.10: ELF for the β-spin electrons for benzene anion in the electrostatic
environment at different biases with the molecule oriented perpendicular to
the plates. (a) Free space (b) 0.0 V (c) -0.1 V (d) -0.2 V (e) -0.5 V (f) -1.0 V β-spin
polarization contains the excess electron.

Atom x y z

C 0.0000000 1.2101359 0.6986723
C 0.0000000 1.2101359 -0.6986723
C 0.0000000 0.0000000 -1.3973446
C 0.0000000 -1.2101359 -0.6986723
C 0.0000000 0.0000000 1.3973446
C 0.0000000 -1.2101359 0.6986723
H 0.0000000 2.1556169 1.2445460
H 0.0000000 2.1556169 -1.2445460
H 0.0000000 0.0000000 -2.4890920
H 0.0000000 -2.1556169 -1.2445460
H 0.0000000 0.0000000 2.4890920
H 0.0000000 -2.1556169 1.2445460

Table 4.2: Benzene perpendicular to the metal plates



Chapter 4: Anion stabilization in electrostatic environments 89

P
la

te
se

p
a
ra

ti
o
n

E
n

er
gy

(e
V

)
(Å
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Chapter 5

Electronic structure calculations in arbitrary

electrostatic environments

5.1 Introduction

Tremendous progress in the development and implementation of quantum chemistry

methods has enabled ab initio calculations of electronic structure, properties, and even

dynamics, to be performed on large-scale molecular systems containing many thousands

of atoms. Despite these exciting developments in basic theory, fast numerical algorithms,

and novel hardware utilization [552, 538, 540, 393, 567], it is not yet possible to routinely

simulate such large systems using readily-available computer resources. However, emerging

nano-scale simulation challenges involving, for example, large biomolecular aggregates or

nanotechnology devices, are increasing the demand for first-principles methods that can

deliver this performance. On the other hand, many of the problems of interest are inherently

multi-scale and there is often no need to model all parts of the system at the full ab initio

level of theory.

In this chapter we present the theory, implementation, and application of a simple,

electrostatics-based approach for a specific class of multi-scale problems involving molecules

at metallic interfaces of arbitrary shape. These systems are particularly relevant to the sim-

ulation of molecular nano-scale devices [469, 336, 43]. Since molecular dimensions are in

the range of 0.1–1 nm, thus at least two orders of magnitude smaller than typical nanopar-

ticles, we can identify the molecule as the system, while the nanoparticle is considered the

environment. By treating only the system at the atomistic level of theory, we can recover

the most important physics at a significantly reduced computational cost. Our goal is to

provide a framework for describing interactions of molecules with complex nano-scale envi-

ronments. This framework will be useful for studying interface phenomena that determine

the properties and function of nano-scale devices, both in the absence and in the presence

of an external bias. Our particular interest is in modeling surface-enhanced spectroscopies
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[269, 29, 294], especially surface-enhanced Raman scattering (SERS) [269, 294, 498, 88].

The last decade has seen surface-enhanced analytical methods become very useful tools for

molecular detection as well as important probes into surface properties of metallic nanopar-

ticles. Furthermore, the study of molecular properties under an external bias provided

within the proposed framework is naturally connected to electron transport in nanostruc-

tures [409, 259, 420]. Understanding of electron transport on the nano-scale is a crucial pre-

requisite for molecular electronics. Other applications where molecules interact non-trivially

with a metallic surface also include surface-enhanced fluorescence [283] and single-molecule

DNA sequencing [536].

The idea of partitioning a large system into subsystems to aid computation or under-

standing stretches back to the early works of Löwdin [317] and McWeeny [342], where they

introduced a rigorous mathematical framework for separating (localized) degrees of free-

dom in large-scale electronic structure calculations. Recently, there has been considerable

interest in a practical, simplified version of these ideas known as the fragment molecular

orbital (FMO) method [263, 184, 390, 159] which starts with the assumption that there

are localized groups of electrons which interact with the other groups (to first order) only

classically. A cluster expansion is used to correct for the many-body interaction energies

after the fragment wavefunctions have converged. However, all fragments are treated at

the same level of theory, so the method does not reflect the multi-scale nature of many

interesting problems.

In contrast, the most common methods to treat very large chemical systems over the

past two decades have focused on models where there is a natural division into typically

two components, a system and an environment, treated at different levels of approximation.

These models have a strong physical motivation and are often more heuristic in nature.

Typically, these models aim to describe the effects of a complex environment on a localized

chemical process; for example, solvation effects on molecular properties, or the mechanisms

of enzyme activity. In practice, there are essentially two schools of thought: the continuum

models and the discrete models. The former are exemplified by the polarizable continuum

model (PCM) [532, 531] and conductor-like screening model (COSMO) [265, 264]. In these

models, solvation is described by a single bulk component, characterized by a dielectric or

screened conductor, rather than explicit solvent molecules. The discrete approach main-

tains an explicit treatment of the environment, but simplifies the calculation by avoiding

the full treatment of all electronic degrees of freedom. The combined quantum-mechanical

and molecular mechanics (QM/MM) models exemplify this approach [565, 148, 476]. A

fundamental issue with all of these methods, including the FMO, is how to treat the junc-

tions between the components, especially when they cleave chemical bonds. Attempts have

been made to put this on a more mathematical footing, but the pragmatic, more ad hoc
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approaches, remain most popular.

Interactions between molecules and metallic surfaces include both an electromagnetic

(EM) component [468, 360, 499] and contributions from chemical bonding [398, 616, 358,

456]. The traditional approach to these systems has employed classical electrodynamics, in

particular finite-difference time-domain (FDTD) methods [598, 514], which can treat the

strong, inhomogeneous electric fields present in nanostructures. The plasmonic properties

of the metallic material are represented by its dielectric function. The metal–molecule

interaction then amounts to the polarization of the molecule in the near-field of the nanos-

tructure, while the back-polarization of the metal is neglected. Recent developments aim to

integrate molecular electronic structure with an atomistic model of the plasmonic material

[334, 335, 339, 340, 97]. On the other end of the method spectrum, continuum solvation mod-

els have found application to molecular electronic structure on metallic surfaces [116, 117].

Here, the metal–molecule interaction is derived from the mutual polarization of the neutral

metallic surface and the electron density of the molecule.

As we show in detail below, the model proposed in this chapter encompasses both the

strong-field and the zero-field, solvation-like regime as limiting cases and effectively inter-

polates between them. It is based on an electrostatic model, in which the metallic surface

acts as a boundary condition for the electrostatic interactions within the molecule. As a

consequence, we have to restrict our focus to situations where there is a clear system com-

ponent that has minimal overlap with the environment, and for which there is a natural

specification of the electrostatic potential at the system-environment interface. We argue

that this is approximately the case in many nano-electronic devices. Recently, our group

published a parallel paper [392] where we used the same model, implemented inside the

octopus [93] code, to study the stabilization of the benzene anion between two charged

plates. Our intentions in this paper are therefore threefold: first, to describe the theoret-

ical background of the model in more detail; second, to explore a systematic set of test

applications; and third, to meet the technical challenge of implementing the framework as a

simple library that can be used in conjunction with conventional electronic structure codes,

which expand the wavefunction or electron density in a Gaussian-type basis set. Gaussians

give an extremely compact representation of the all-electron density, while allowing for the

efficient analytical evaluation of two-electron Coulomb integrals. In contrast, octopus is a

time-dependent density-functional theory (DFT) code which represents the electron den-

sity on a real-space grid. It computes the Hartree potential using a finite-difference Poisson

solver, but this approach is rather computationally expensive for all-electron calculations.

We therefore propose an algorithm for Hartree-Fock or DFT calculations which computes

only a correction to the Fock or Kohn-Sham matrices, resulting from the interaction with

the environment. The matrix elements for an isolated system are built using a standard
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Gaussian-based code in the usual way, and our library adds on contributions describing the

environmental effects.

The paper is therefore organized as follows: in Sec. 5.2, we characterize our physical

model in detail, and provide a detailed derivation of the working equations for a DFT

implementation, including a discussion of how we obtain the interaction potential and the

associated matrix elements in an efficient manner. In Sec. 5.3, we apply the method to

study environment effects on the electronic structure of molecules both between grounded

metal plates and under external bias. The effects of the external field and of the mutual

polarization are explored for a neutral quadrupolar molecule (benzene), a neutral dipolar

molecule (glycine zwitterion), and a charged molecule (benzene anion). Finally, we end

with our conclusions and outlook for future work in Sec. 5.4.

5.2 Theory and implementation

5.2.1 Background

To establish notation and to summarize connections to previous work, we begin by

describing the electronic structure problem for systems in external electric fields, as well as

in cavities within dielectric or metallic materials. Let us first consider the simple case of a

molecular system subject to a time-independent external electric field,

E = −∇Φ(r) (5.1)

where Φ(r) is the electric scalar potential. In the special case of uniform fields,

Φ(r) = −E · r (5.2)

where the potential origin is chosen to coincide with the coordinate origin. Thus the non-

relativistic molecular electronic Hamiltonian for a system in a time-independent uniform

electric field with Cartesian components Fα can be written as

Ĥe = Ĥ(0)
e −

∑
α

µ̂αFα (5.3)

where Ĥ
(0)
e is the unperturbed electronic Hamiltonian. The dipole moment operator, µ̂, is

defined in the usual way,

µ̂α ≡ −
N∑
i

riα (5.4)
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where the sum is over the N electrons. More generally, for non-uniform fields, the perturbed

Hamiltonian takes the form,

Ĥe = Ĥ(0)
e −

N∑
i

Φ(ri) + C (5.5)

where C is an arbitrary constant depending on the choice of origin of the potential field,

Φ(r). Of course, a change in C does nothing more than shift the zero of energy, and has no

effect on the electronic structure.

Many established quantum chemistry codes allow the treatment of Hamiltonians of one,

or both, of these forms. Such functionality is relevant if one wants to find the electronic

structure of a system embedded in an electrostatic environment, where the scalar potential,

Φ(r), is explicitly known or easily computable. This is the case in the QM/MM and FDTD

approaches, for example. On the other hand, an explicit model of the environment, even

within an electrostatic approximation, may not always be available, or even desirable if

the precise details of the surroundings are unimportant. This is the case for continuum

solvation models such as PCM or COSMO, where the solute system is treated as a finite

cavity (containing a molecule) within a bulk dielectric medium. In the PCM approach, the

perturbing potential is defined implicitly in terms of the electrostatic boundary condition

at the cavity–solvent interface, rather than by explicitly defined bulk ‘solvent’ charges.

More concretely, in the apparent surface charge (ASC) formulation of the PCM [532,

531] a charge distribution, σ(s), is identified at the dielectric interface, s, which is produced

by a discontinuity of the electric field across the boundary,

∂Φin

∂n
= ε

∂Φout

∂n
(5.6)

Here, ε is the dielectric constant of the solvent (the cavity is modelled in vacuo) and n

denotes the outward unit normal from the cavity. According to elementary electrostatics

for homogeneous linear dielectric media, σ(s) is given by

σ(s) =
ε− 1

4πε

[
∂Φsys

∂n
+
∂Φσ

∂n

]
(5.7)

where the total potential inside the cavity has been decomposed into two components: Φσ(r)

is the potential due to the surface charge,

Φσ(r) =

∫
σ(s)

|r− s|
ds (5.8)

and Φsys(r) is the solute potential,

Φsys(r) =

∫
ρsys(r

′)

|r− r′|
dr′ (5.9)
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where ρsys(r) is the total (electronic and nuclear) charge density of the molecular system,

ρsys(r) = ρnuc
sys (r)− ρelec

sys (r) (5.10)

and we have introduced a minus sign for the electron charge. Self-consistent solution of

Eqs. 5.7–5.8 with respect to σ(s) and Φσ(r) for a given Φsys(r) is the central task in the

ASC method. In turn, Φsys(r) may be obtained self-consistently with Φσ(r) from a quantum

mechanical solution of the perturbed Hamiltonian,

Ĥe = Ĥ(0)
e −

N∑
i

Φσ(ri) (5.11)

In this way, the PCM approach models the electrostatic effect of the environment in a simple

way without recourse to detailed atomistic knowledge of the solvent composition.

The technical challenge in the PCM/ASC approach stems from the fact that neither

σ(s) nor Φσ(s) are known a priori, and are only implicitly defined by the condition of self-

consistency in Eqs. 5.7–5.8. The boundary conditions are considerably simplified, however,

when the solvent is modelled as a conductor (i.e. in the limit ε → ∞). In this case, the

total potential at the solute/solvent interface must be a constant; indeed it must be zero if

the solvent extends to infinity. Then Φσ(r) is explicitly defined as a solution of Laplace’s

equation inside the cavity under Dirichlet boundary conditions,

∇2Φσ(r) = 0 ∀r ∈ cavity

Φσ(s) = −Φsys(s) (5.12)

Unlike in the PCM/ASC algorithm, Φσ(r) can now be computed directly without any

knowledge of σ(s). Moreover, a good approximation to the true potential produced by

(large) finite ε can also be obtained by rescaling Φσ(r) by a simple constant, (ε − 1)/ε.

This simplification forms the basis of a well-known approximation to the PCM, known as

COSMO [265]. PCM models have been previously applied to study electronic structure of

molecules at metallic surfaces [116, 117]. In the following, we draw on all of these ideas to

develop our model.

5.2.2 The CheESE Model

In this chapter, we appeal to the above system–environment models with a differ-

ent application focus in mind: namely, the simulation of molecules in electrostatic nano-

environments where there is a natural and simple specification of the boundary conditions.

We refer to our model as CheESE (chemistry in electrostatic environments). An implemen-

tation of the CheESE scheme in a real-space density functional code octopus was presented



Chapter 5: Electronic structure calculations in arbitrary electrostatic environments 101

in a parallel paper [392]. The new code presented here is implemented as a stand-alone

library that can be easily interfaced to quantum chemistry packages employing Gaussian-

type basis sets (see more details below). As in the PCM, we partition our problem into two

components, analogous to solute and solvent, which we call system and environment, respec-

tively. We then propose an effective electronic Hamiltonian for the system which includes

an additional one-electron operator to describe the electrostatic effects of the environment.

Thus our model has 3 key assumptions:

1. We assume that system and environment degrees of freedom are uncoupled beyond

the classical electrostatic interaction.

2. The system charge density is completely enclosed in the system volume, Ωsys; more

precisely, there is an exponentially small overlap with the environment charge density.

3. The physics of the application provides a natural specification of the total electrostatic

potential, Φfixed(s), on the system/environment interface, s, which is known a priori.

Our model therefore differs from the solvation models discussed above in some important

ways, even though they share the common physics of including only electrostatic effects

of the environment. Specifically, we make no explicit appeal to the physical form of the

environment, such as the assumption of a linear dielectric or conductor etc. Instead, we

simply model the environment as a sea of charges that can be rearranged without any self-

energy penalty such as to satisfy the boundary condition, Φfixed(s), which is known from

the outset.

More formally, we can write down an effective Hamiltonian for the system, Ĥeff , as a

sum of two operators: the non-relativistic Hamiltonian of the isolated system, Ĥ(0), and an

environment potential, Φenv(r),

Ĥeff = Ĥ(0) −
N∑
i

Φenv(ri) +

M∑
k

ZkΦenv(Rk) (5.13)

Here, {ri} and {Rk} are the coordinates of the system’s N electrons and M nuclei (with

charges Zk), respectively. Formally, we have

Φenv(r) =

∫
ρenv(r′)

|r− r′|
dr′ (5.14)

in terms of the unknown environment charge density, ρenv(r), but according to assumptions

2 and 3 of the CheESE model it follows that the potential, Φenv(r), inside the system volume

is also a solution of Laplace’s equation,

∇2Φenv(r) = 0 ∀r ∈ Ωsys (5.15)
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under the Dirichlet boundary condition,

Φenv(s) = Φfixed(s)− Φsys(s) (5.16)

Note that Φsys(r) is the total potential due to the system’s electrons and nuclei, as in

Eqs. 5.9–5.10. For a given Φsys(r) and specified Φfixed(r), this boundary condition is known,

and hence Φenv(r) can be determined directly and uniquely without any explicit knowledge

of ρenv(r). Our model implies that changes in ρsys(r) will induce changes in ρenv(r) in order

to maintain the constraint in Eq. 5.16, but physically we are not concerned with how this

is achieved in detail.

Therefore, within the usual Born-Oppenheimer approximation, we define our model in

terms of the ground state solution to the time-independent electronic Schrödinger equation,

Ĥeff
e Ψ({ri}; {Rk}) = E({Rk})Ψ({ri}; {Rk}) (5.17)

where Ĥeff
e is given by

Ĥeff
e =

N∑
i

−1

2
∇2
i +

N∑
i>j

1

|ri − rj |

−
N∑
i

vnuc(ri)−
N∑
i

Φenv(ri) (5.18)

Here, we have used atomic units and vnuc(r) is the external potential due to the system’s

nuclei, defined in the usual way. We stress here that Φenv(r) is itself an implicit function

of the charge density of the system (which is an issue we shall return to). Throughout the

results section, the energies we quote will be approximations to the total system energy

defined by

Esys
tot = 〈Ψ|Ĥeff

e |Ψ〉+

∫
ρnuc

sys (r)Φenv(r)dr + UNN (5.19)

where we have included the interaction of the nuclear charge density, ρnuc
sys (r), with the

environment, in addition to the usual nuclear self-repulsion energy of an isolated system,

UNN =
M∑
k>k′

ZkZk′

|Rk −Rk′ |
(5.20)

Ultimately, one may ask what is physically being lost when we employ this model com-

pared to a full ab initio calculation of the supersystem. The assumption that the system

and environment have negligible overlap, however, makes the electrostatic approximation

less dramatic than otherwise. For example, at the mean-field Hartree-Fock level of theory,
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there are no exchange interactions between non-overlapping subsystems, and the classi-

cal Coulomb interaction between subsystems suffices. In the case of generalized-gradient

approximation density-functional theory, there are neither exchange nor correlation contri-

butions between the system and environment, if non-overlapping. However, higher-order

correlations obtained in wavefunction methods beyond Hartree-Fock exchange, such as dis-

persion, could be significant and our model of course neglects these. Nevertheless, such

contributions can be expected to be much smaller than the dominant electrostatic interac-

tions.

We mention one final issue in passing; namely, that we are neglecting any energy

changes associated with the rearrangement of charge in the environment. In our parallel

paper [392], where we also explore the stability of the benzene anion between two metallic

plates, we estimate the energy required to charge the plates with induced charge. However,

this energy is computed after the system’s electron density has converged and does not

influence the solution of the system Hamiltonian. A consideration of such effects could be

included in further studies.

5.2.3 Interpreting the environment potential

We have found it useful when interpreting our results to conceptually partition the

environment potential into two components,

Φenv(r) = Φimage(r) + Φstatic(r) (5.21)

where the linearity of the Laplace equation allows us to define each component individually,

∇2Φimage(r) = 0 ; Φimage(s) = −Φsys(s) (5.22)

∇2Φstatic(r) = 0 ; Φstatic(s) = Φfixed(s) (5.23)

In this way, we can identify a component, Φstatic(r), which is static in the sense that it repre-

sents an external potential that is completely independent of the molecule and exists solely

to satisfy the fixed boundary condition, Φfixed(r). The remaining component, Φimage(r),

is seen to act like the potential of the induced charge (or image charge) on a grounded

conductor. That is, it reflects the potential of the molecule, and adjusts such that the total

potential, Φsys(s) + Φimage(s), vanishes on the boundary. In fact, Φimage(r) is precisely the

potential one would obtain in the COSMO solvation model summarized above, neglecting

the final scaling by (ε− 1)/ε and assuming the same cavity geometry.

Below, we shall report our test applications with this decomposition in mind. In par-

ticular, we define the energy,

Estatic = Esys
tot [Φimage ≡ 0]− Esys

tot [Φenv ≡ 0] (5.24)
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as the SCF energy difference between the isolated system and the SCF energy when applying

a static field with no image charge effects included (i.e. a regular finite-field calculation).

In turn, we also define,

Eimage = Esys
tot − E

sys
tot [Φimage ≡ 0] (5.25)

as the SCF energy difference between a full CheESE calculation and a simple static field

calculation. Note that Eimage is not the same as
∫
ρsys(r)Φimage(r)dr, as extracted from a

full CheESE calculation, since the image charges will perturb the system’s electronic charge

density away from the static field solution.

5.2.4 Solving the non-linear Schrödinger equation

Having defined our model in terms of an effective Hamiltonian, we now discuss how

to solve the associated Schrödinger equation (Eq. 5.17). In contrast to the usual case

for an isolated system, the equation is now formally non-linear because the environment

potential, Φenv(r), is a function of ρsys(r) due to the constraint in Eq. 5.16. An intuitive way

to proceed, however, is to make a comparison with the well-known Hartree-Fock (HF) or

Kohn-Sham (KS) density-functional theory (DFT) approximations. For isolated systems,

both of these approaches construct an approximate solution to the many-body problem

with the explicit solution of only one-electron equations. One price to be paid for this great

simplification is the sacrifice of linearity for non-linearity. That is, the HF or KS equations

are non-linear and the iterative procedure usually employed to solve them self-consistently

is very familiar.

In exactly the same way, we can consider a self-consistent procedure for the solution

of the Schrödinger equation with the CheESE Hamiltonian. That is, we start by making

an initial guess for the ground state density, ρ
(0)
sys(r), and solve the Laplace equation 5.15–

5.16 for Φ
(0)
env(r), where Φ

(0)
sys(s) on the boundary is computed from ρ

(0)
sys(r). We may then

construct the CheESE many-body Hamiltonian, Ĥeff
e , from Φ

(0)
env(r) in a manner completely

analogous to the construction of the Fock or Kohn-Sham matrix at each iterative cycle.

Next, we can solve the Schrödinger equation with any approximate method we choose to

obtain an improved ground state density and potential. The cycle is repeated with a new

ρ
(k)
sys(r), Φ

(k)
sys(r) and Φ

(k)
env(r) at the k-th iteration, and continued until self-consistency.

Although the above algorithm is general for any electronic structure method, we only

use KS-DFT for our calculations here. Thus at the k-th iteration, we have a density, ρ
(k)
sys(r),

a potential, Φ
(k)
env(r), and the KS equations take the form

f̂φi(r) = εiφi(r) (5.26)
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where the modified KS operator is simply

f̂(r) = f̂ (0)(r)− Φ(k)
env(r) (5.27)

and f̂ (0)(r) is the conventional operator for the isolated system. (Note that we have dropped

any k-iteration suffices on the f̂ operators.) On solving the KS equations, the total energy

of the system is given by

Esys
tot,(k+1) = EDFT

0,(k+1) +

∫
ρ(k+1)

sys (r)Φ(k)
env(r)dr + UNN (5.28)

where EDFT
0,(k+1) is the usual DFT energy functional for the isolated system. When changes in

Esys
tot between two successive k-iterations are less than a specified threshold, we may assume

the supersystem is converged, otherwise another iteration should be performed.

So far, we have assumed that the many-body problem is solved completely at each

k-iteration (within an approximate method) for a given Φ
(k)
env(r). In KS-DFT, however, the

KS equations themselves are solved iteratively in a self-consistent field (SCF) approach,

implying that the above algorithm has two, nested, iterative cycles, differentiated by the

point at which Φenv(r) is updated. This raises the possibility of updating Φenv(r) at each

KS iteration, instead of after the KS solution has converged, thus effectively merging the

two iterative cycles. Aside for issues of numerical stability, at convergence of Φenv(r) and

ρsys(r) the final result should be the same. In fact, in our CheESE implementation, we

do update Φenv(r) at each KS iteration within the DIIS-accelerated [427] KS-SCF. It is

not actually obvious whether it is more efficient to (perhaps partially) converge ρsys(r)

within the KS cycle before updating Φenv(r), or to update both ρsys(r) and Φenv(r) at each

KS iteration. The answer probably depends on the relative cost of updating the CheESE

potential compared to a regular KS iteration, as well as how the numerical stability affects

the number of iterations. Here, we have chosen to update both at each KS iteration and

have observed good convergence, but the efficiency question is left open for a future study.

On a technical point, we mention that the CheESE non-linearity implies that the

expectation value of the effective Hamiltonian, Ĥeff
e , is not minimized in general by the

(normalized) ground-state wavefunction (eigenfunction of Ĥeff
e ), except in the special case

that Φenv(r) is independent of ρsys(r). In turn, this implies that care needs to be taken when

deriving the Hartree-Fock or KS equations, which are based on a variational condition. In

fact, we side-step the issue here, when we define Φ
(k)
env(r) to be independent of ρ(r) at

each k-iteration, and hence obtain the modified KS operator in Eq. 5.27 quite trivially.

However, it turns out that we can write down an alternative variational functional, which is

minimized by the ground-state density, and also yields the same KS equations when taking

the functional derivative. More details are given in Appendix A.
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5.2.5 Obtaining the environment potential

We now discuss our implementation for computing the environment potential Φenv(r)

and the matrix elements of the modified Kohn-Sham operator Eq. 5.27 in a Gaussian basis

set. First, we emphasize that we have chosen to compute the effect of the environment as a

correction term to the isolated system Hamiltonian. However, we could alternatively define

a KS operator,

f̂(r) = −1

2
∇2 + vxc(r)− Φes(r) (5.29)

where vxc(r) is the DFT exchange-correlation potential and Φes(r) collects all the electro-

static effects,

Φes(r) = vnuc(r)−
∫
ρelec

sys (r′)

|r− r′|
dr′ + Φenv(r) (5.30)

Formally, Φes(r) can be obtained in one shot from Poisson’s equation,

∇2Φes(r) = −4πρsys(r) ∀r ∈ Ωs (5.31)

subject to the specified boundary condition

Φes(s) = Φfixed(s) (5.32)

This is the formalism used in the octopus implementation, as described in our parallel

paper [392]. However, the full potential, Φes(r), has many undesirable properties from an

algorithmic perspective. In particular, even if we subtract out vnuc(r), the potential is

still highly ‘spiked’ near the nuclei and is therefore very difficult to represent accurately and

efficiently using a grid-based numerical solver. Instead, we exploit the properties of Gaussian

basis functions to compute matrix elements over these ‘spiked’ operators analytically, and

thus only deal with the correction term, Φenv(r), by numerical solution. Compared to the

other potentials, Φenv(r) must be smooth by virtue of being a solution to Laplace’s equation,

which makes this approach much more attractive computationally.

More specifically, we base our Laplace solver for Eqs. 5.15–5.16 on a uniform finite-

element discretization, following our previous work in Ref. [568]. The starting point is to

expand the potential as

Φenv(r) =
∑
i

ciξi(r) (5.33)

where ξi(r) is a three-dimensional tensor product of n-th order one-dimensional piecewise

Lagrange interpolating polynomials assigned to the ith grid point. In the Nth finite element
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(FE), the function assigned to the ith point is given by

ξklm(r) =

{
Lk(x−XN ) ·Ll(y − YN ) ·Lm(z − ZN )

0 ∼ (the ith grid point) 6∈ (the N th FE)

where we define

Lk(x) =

n∏
j=0,j 6=k

x− jλ
(k − j)λ

;
(0 ≤ k ≤ n)

(0 ≤ x ≤ n ·λ)
(5.34)

and (k, l,m) is the local index of the ith grid point in the Nth finite element; (XN , YN , ZN )

is the origin of the Nth finite element; and n ·λ is the width of the finite elements. In all

of our calculations, we use 3rd order polynomials. It is easy to see that the value of the

potential at the ith grid point is given by ci. Substituting the expansion (5.33) into the

Laplace equation and enforcing the appropriate boundary condition leads to a set of linear

equations of the form

A · c = b (5.35)

where

Aij =

∫
∇ξi(r)∇ξj(r)dr (5.36)

and the vector b describes the boundary condition. It is important to realize that the

matrix Aij is extremely sparse and composed of relatively small, identical, overlapping sub-

blocks with O(n6) elements, where n is the order of the polynomials. (Note that we have

enforced continuity of the potential across element boundaries.) Exploiting this property,

the full set of coefficients may be efficiently determined with an amount of work that scales

linearly with the physical size of the solution domain for a given grid spacing. Here, we

solve Eq. 5.35 iteratively using the conjugate gradient method.

To impose the boundary conditions in practice, we require an efficient method for

evaluating Φsys(s) due to the system’s electrons and nuclei. We achieve this using a multi-

pole approximation previously given in detail in Ref. [568], which exploits the low scaling

properties of the fast multipole method. Having obtained an explicit representation of the

potential, the final task is to compute the matrix elements over Gaussian basis functions,

and to update the free-space Kohn-Sham matrix. Fortunately, we can again exploit the

properties of Gaussian functions and the polynomial form of the finite elements to do this

in an analytical and simple way. Specifically, we use a modified form of the McMurchie-

Davidson [341, 568] algorithm, which we have implemented for finite elements of arbitrary

order.
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Our code is designed as a stand-alone library, and in particular, the interface is ex-

tremely simple. The only information it requires is a description of the Gaussian basis set

{α}, nuclear charges and positions, the current atomic orbital density matrix, Di
αβ, the fixed

potential Φfixed(s), and of course the geometry of the solution domain, Ωsys. In return, the

library will update the Kohn-Sham matrix elements, F iαβ, at each SCF cycle. Interfacing

with an existing electronic structure code is therefore quite straightforward and requires

only three calls to the CheESE library: (a) an initialization call, CheESE init; (b) a call

to update the Kohn-Sham matrix, CheESE update; (c) a final call to free the memory,

CheESE free. We summarize the structure of the code in Algorithm 1. For our prototype

implementation we have used the DALTON 2.0 package [121]. Additional integration into

other chemistry codes is encouraged and we expect to release the library on our group’s

website soon with a permissive LGPL license 1.

Algorithm 1 Structure of CheESE implementation.

1: Call CheESE init({Zk,Rk}, Ωsys, {α}, Φfixed(s))
2: Initialize D0

αβ

3: for KS iterations, i do
4: Build free-space F iαβ
5: F iαβ = F iαβ + CheESE update(Di

αβ)

6: Diagonalize F iαβ, update Di+1
αβ

7: Test convergence; exit if converged
8: end for
9: Call CheESE final()

5.3 Benchmarks and applications

5.3.1 Computational details

Our prototype code is restricted to the simple case of a cuboid-shaped system volume,

Ωsys, with an arbitrary boundary potential, Φfixed(s). However, we have decided to choose

a specific application focus: namely the simulation of a nano-electronic device where we can

imagine a molecule placed between two parallel electrodes or plates, held at fixed potentials,

as shown in Fig. 5.1. This is similar to the studies we performed in our previous paper [392].

Our intention is that the open-source library can be extended to other relevant geometries

as required.

We describe in the next subsection the precise geometries and potential functions we

chose for Φfixed(s). In the finite-element Laplace solver, we used a value of 1.0 bohr for

1http://www.gnu.org/copyleft/lesser.html
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Figure 5.1: Geometry of the CheESE model showing the direction of the applied potential,
±V . We use a cuboid box, with the xy-plates representing the electrodes of a nano-device.
The coordinate origin is equidistant from the two plates.

the spacing, λ, in Eq. 5.34 for all the calculations in Sec. 5.3.3, and 2.0 bohr for all the

other calculations with non-zero Φfixed(s). We found that these values were sufficient to

converge the results to the precision presented in all the figures. Note that the choice of λ

reflects the smoothness of the potential, Φenv(r). Here we are able to use a relatively large

λ, which results in a modest computational cost in the Laplace solver, especially for the

smaller system volumes. Some example timings are given below.

All the calculations have been achieved by combining our library with the DALTON 2.0

quantum chemistry suite [121]. As explained above, it is relatively simple to interface our

code with any program using Gaussian-type basis sets. We have restricted our focus to DFT

calculations using the popular B3LYP exchange-correlation functional [51]. In addition, to

avoid a detailed study of basis set effects, we elected to use the standard aug-cc-pVDZ

basis for all calculations. This should be a reasonable choice for the level of accuracy we

are expecting in this chapter, with the diffuse functions providing some flexibility for any

spatial redistribution of the electron cloud under potential bias.

We have chosen to study the CheESE effect on three molecules with a similar size and

number of electrons, but different symmetries: namely, (1) benzene (neutral, quadrupolar

ground state), (2) benzene anion (charged, monopolar ground state), (3) glycine zwitterion

(neutral, dipolar ground state). The benzene and benzene anion geometries were optimized

at the B3LYP/aug-cc-pVDZ level using DALTON. In all calculations, the benzene rings were

placed in the xy-plane, with the centre of mass at the coordinate origin. The glycine

geometry was taken from reference [252]. The molecule was placed such that the amine

group was at a positive z-coordinate, and rotated such that the electric dipole moment
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Figure 5.2: Stabilization of the benzene (blue lines), benzene anion (red lines), and glycine
(green lines) molecules due to CheESE image charges in the case Φfixed(s) = 0 with varying
∆z. Part (a) compares the total energies, Esys

tot , shown as dotted lines, with the reference
free-space energies, shown as solid lines, for an xy-plate area of 200×200 bohr2. Parts (b)–
(d) highlight the CheESE effect as the difference,

∫
ρsys(r)Φimage(r)dr, between Esys

tot and
the free-space energy for (b) benzene, (c) glycine, and (d) benzene anion, with two choices
of plate area.

(with no external field) was parallel to the z-axis. The centre of mass was also placed at

the origin.

5.3.2 Specification of the boundary conditions

As stated above, our intention is to model a molecule in a cuboid cavity representing

a nano-device, with a potential bias applied across two surfaces. For our test calculations,

we have therefore chosen a very simple form for the fixed boundary potential, defined as

Φfixed(zmax) = V (5.37)

Φfixed(zmin) = −V (5.38)

Φfixed(s) =
z

zmax
V (5.39)
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on the six sides of the cavity, which linearly interpolates the potential, V , from the top plate

to the bottom plate. In all cases, the box is positioned in space such that the plates sit in

the xy-plane and are equidistant from the coordinate origin and the centre of the cavity is

at the coordinate origin; see Figure 5.1. (i.e. zmax = |zmin|.) In the following, we shall refer

to ∆z as the plate separation,

∆z ≡ zmax − zmin (5.40)

In most of the calculations, we chose plate dimensions of 108×108 bohr2, but in some cases

given below, a larger area of 200×200 bohr2 was studied. As for the plate separation, we

studied values of ∆z ranging from 40 bohr to 200 bohr.

For all the calculations, we applied boundary potentials of no more then 1 a.u. in mag-

nitude, which corresponds to approximately 27.2 V. Thus for a plate separation of 54 bohr

(which is typical in our calculations), this amounts to an electric field of approximately

2 VÅ
−1

when the plates are held at ±1 a.u. This magnitude is similar to the field strengths

previously studied by Choi et al.in their work on molecular orbital tuning [102, 260], but is

larger than the field strengths we explored in our previous paper [392].

We note that this choice of fixed potential makes the calculation of Φstatic(r) rather

trivial. Of course, this is the potential associated with a uniform electric field parallel to

the z-axis, of magnitude V/zmax. Indeed, Φstatic(r) can be accurately captured with only

a single finite element in this case. Moreover, DALTON 2.0 already has the capability to

compute Kohn-Sham matrix elements under such a uniform field. Therefore, the most

interesting part of the calculation is the contribution of Φimage(r) and this is the area we

will focus on. Nevertheless, our code can already handle more complicated Φstatic(r), so

future applications will be aimed towards exploring this functionality in addition to the

image-charge effects.

Finally, we emphasize that the CheESE model requires negligible overlap of electron

density between the system and environment. This was enforced in practice by simply

choosing a geometry which ensured that no basis function tail had a significant value (>

10−10) in the boundary region. This is a conservative constraint; a consideration of the

density itself would be favourable in future work if a boundary closer to the molecular

system was desired.

5.3.3 Energy calculations with Φfixed(s) = 0

For our test applications, we first explore the case where Φfixed(s) = 0; that is,

Φstatic(s) = 0 so the Hamiltonian is only modified by the image charge effects contained in

Φimage(r). The image charge potential is given by Eq. 5.22 and hence depends explicitly

on the total potential of the system at the boundary, Φsys(s). We can therefore expect
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Figure 5.3: Energies of neutral benzene (blue lines), benzene anion (red lines), and glycine
(green lines), with an applied potential, V , as given in Eq. 5.39, an xy-plate area of
108×108 bohr2, and ∆z = 54 bohr. The total CheESE energies, Esys

tot , are shown as dashed
lines, and the reference free-space energies are shown as solid lines.

quite different effects for our three molecules, reflecting the decay properties of Φsys(r) at

long range. In Fig. 5.2, we show how the total energy, Esys
tot in Eq. 5.28, of the three test

molecules changes as a function of the plate separation, ∆z, compared to the free-space en-

ergies. In Fig. 5.2(a), we compare the total energies for all three molecules with a plate area

of 200×200 bohr2 and varying ∆z, while in Figs. 5.2(b)–(d), we highlight the stabilization

energy due to the image effects for each molecule individually, also including results for a

smaller plate size of 108×108 bohr2.

In these calculations, the stabilization energy reduces to ∆E =
∫
ρsys(r)Φimage(r)dr

since there is no static field, and Φimage(r) is given by Eq. 5.22, so it will be larger if

Φsys(s) is larger. Indeed, if Φsys(s) is a constant, this will be the uniform value of Φimage(r)

inside the cavity. However, note that even if Φimage(r) is large, ∆E will vanish for charge-

neutral molecules if Φimage(r) is uniform because the electronic and nuclear contributions

will exactly cancel. Therefore, especially for the charge-neutral systems, the size of ∆E

depends not only on the magnitude of Φsys(s) but also on its inhomogeneity. The latter is a

function of both the cavity geometry and the symmetry of the system’s charge distribution.

Looking at Fig. 5.2, the first point to note is that all the systems are stabilized by the

boundary effect. We can attempt to interpret these results by appealing to an image charge

picture, and this is readily done for the benzene anion. In this case, the system generates a

negative potential on the boundary. Hence, the boundary condition Eq. 5.22 implies that

the anion must induce a distribution of positive image charge in the environment such that

the total potential vanishes on the cavity surface. Naturally, this positive charge stabilizes

the negative charge of the anion. However, there is a sensitive cancellation of electronic
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and nuclear contributions. For example, with ∆z = 54 bohr and the smaller (108 × 108)

plates, the nuclear contribution,
∫
ρnuc

sys (r)Φimage(r)dr, is positive (679 kcal/mol), and is

only just outweighed by its electronic counterpart,
∫
ρelec

sys (r)Φimage(r)dr, which is negative

(-695 kcal/mol), leading to a net stabilization.

The stabilization energies of the glycine and neutral benzene systems are much smaller,

however. Specifically, while the anion is stabilized by as much as 21 kcal/mol, depending

on ∆z, the stabilization energy for the glycine zwitterion is about 50 times smaller, and for

neutral benzene it’s about four orders of magnitude smaller. This is not very surprising. To

a good approximation, the cavity boundary sees the anion as a monopole, the glycine as a

dipole, and the neutral benzene as a quadrupole source at the origin. The image charges in

the environment therefore reflect these symmetries. As a result, ∆E is dominated by charge-

charge interactions in the anion case, but only dipole-dipole interactions in the glycine case,

for example. Since the latter decay more quickly with distance, it is not surprising that the

stabilization energy is much smaller. More specifically, in the neutral benzene case, again

for ∆z = 54 bohr and the smaller (108 × 108) plate size, the nuclear contribution to ∆E

is only 1.6368 kcal/mol and the electronic component is -1.6373 kcal/mol. Overall, there

is a net stabilization energy, but it is much smaller than for the anion. As a result, for

plate separations less than about 65 bohr, we find that the anion is actually more stable

than neutral benzene, which is stabilized much less by the image effect. (In free-space,

we find that the anion is about 14 kcal/mol less stable than the anion. The experimental

result is about 26 kcal/mol [67, 444]. Other examples of image stabilization from electrons

interacting with their environments have been studied experimentally by the group of Harris;

see, for example, Ref. [348] and references therein.) In the glycine case, under the same

conditions, the nuclear contribution is -2.5 kcal/mol, and the electronic contribution is

2.1 kcal/mol, giving a net stabilization which is much larger than in neutral benzene, even

though the individual terms have the same order of magnitude. In fact, the balance of

nuclear and electronic terms is subtle; for example, in glycine and neutral benzene, the

nuclear term changes sign for some plate separations.

To further understand the relative values of ∆E, we can also examine the size of

Φsys(s), which directly reflects the magnitude of the resulting Φenv(r). For example, in the

case ∆z = 60 bohr and the smaller plate size, we observe Φsys(s) / a.u. at the far corner of

the system volume, (54.0, 54.0, 30.0), to be 3.1× 10−6, 2.3× 10−4, and −1.2× 10−2 for the

neutral benzene, glycine, and anion, respectively. Consistent with the size of ∆E, we see

that the anion potential is about four orders of magnitude larger than the neutral benzene

potential.

It is also interesting to consider the decay behaviour of ∆E with plate separation, ∆z.

It is generally true that as the cavity, Ωsys, gets larger, Φsys(s) gets smaller, and the image
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Figure 5.4: Energy changes for different applied potentials when including image charge
effects in addition to a static field. Eimage, as given by Eq. 5.25, is shown for (a) neutral
benzene, (b) glycine, and (c) benzene anion, using an xy-plate area of 108×108 bohr2, and
∆z = 54 bohr.

charge effect is reduced. In the limit of an infinitely large cavity, ∆E is of course zero and

the CheESE energy converges to the free-space energy. This effect is very clear for all the

molecules in the figure, but we can also see that ∆E decays relatively more slowly for the

anion than glycine, and neutral benzene shows the most rapid decay as ∆z increases. Again,

this is due to the different multipole characteristics of the molecules and the decay rate of

Φsys(s) with ∆z. We have also shown the difference when using smaller or larger xy-plates,

which is particularly significant for the anion. In this case, to a good approximation, Φsys(s)

is spherically symmetric about the origin. Hence, when using the smaller (108×108) plates,

the ‘edge effect’ due to the finite plate areas, and the the potential on the sides of the

box (i.e. xz and yz planes) becomes the limiting boundary condition as ∆z exceeds about

100 bohr. This difference is less pronounced in the glycine and neutral benzene cases due to

the different charge distributions. With glycine, for example, the dipole is aligned along the

z-axis, and we find that Φsys(s) on the xy-plates is approximately two orders of magnitude

larger than on the xz and yz planes at equal distance; hence changes in stabilization as ∆z

varies are less affected by changes in the plate size.

5.3.4 Energy calculations with Φfixed(s) 6= 0

Here we explore the situation with non-zero static field, Φstatic(r), in addition to the

image charge effects. In particular, Φfixed(s) is given by Eq. 5.39, which describes a uniform

external field applied along the z-axis. As before, we study the same three test molecules,

and examine the change in Esys
tot as a function of the applied bias V . The results are

presented in Figs. 5.3 and 5.4, where we have chosen to use the smaller 108 × 108 bohr2

xy-plates and a z-spacing of 54 bohr throughout. This implies an external field strength

of approximately 2 VÅ
−1

when V = ±1.0 a.u. The behaviour of molecules under static
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V C6H6 glycine C6H−6
Estatic Eimage Estatic Eimage Estatic Eimage

-1.0 -20.44 -0.065 -128.74 -0.89 -77.72 -17.09
-0.5 -4.94 -0.015 -57.87 -0.59 -22.89 -16.60
-0.1 -0.20 -0.001 -10.54 -0.42 -0.95 -16.15
0.1 -0.20 -0.001 9.97 -0.34 -0.95 -16.15
0.5 -4.94 -0.015 41.61 -0.09 -22.89 -16.60
1.0 -20.44 -0.065 25.08 -0.66 -77.72 -17.09

Table 5.1: Energy differences in kcal/mol, according to Eqs. 5.24–5.25, giving the change,
Estatic, to the total energy on applying a static field with potential V /a.u., and the additional
cheese image charge contribution, Eimage.

external fields has been thoroughly studied in the literature, so the main purpose of this

discussion is to examine the significance of the image charge effects. However, we will briefly

summarize the main points of Fig. 5.3 first, which reports the total CheESE energy, Esys
tot ,

with varying V , and mostly reflects the static field effect.

Due to the choice of the applied potential, Φfixed(s), and choice of geometries, the

neutral and anionic benzene results are symmetric with respect to sign changes in V , and

in both cases the molecules are stabilized, with negative energy contributions from both

the static field interaction and the image charge effects discussed in Sec. 5.3.3. As the field

increases, the static field induces a larger electronic dipole and the stabilization increases,

while the image charge contribution is only moderately increased. In contrast, the glycine

molecule is not symmetric along the z-axis and we observe different energies for positive

and negative V . In fact, for positive V , the static field has an unfavourable direction with

respect to the molecule’s net dipole moment and the system is destabilized by the static

field, even though the image charge contribution actually remains negative. (Recall that

the amine group is nearest the positive-z plate.) However, as the field gets stronger, the

electron density is sufficiently distorted towards the upper plate that the dipole changes

sign (at approximately V = 0.65 a.u.) and we observe a turning point in the total energy

curve.

The static field effects are therefore clearly important, but here we are most interested

in the image charge contributions. Therefore, in Table 5.1 and Fig. 5.4, we highlight the

individual contributions of the static and image charge potentials, Estatic and Eimage, as

defined in Eqs. 5.24–5.25. Looking at these results, it is clear that for neutral benzene and

glycine the static field effect is much more significant than the image charge stabilization.

Even for the smaller static field strengths (∼ 0.2 VÅ
−1

), Estatic is greater than Eimage by

at least an order of magnitude in glycine, and two orders of magnitude in neutral benzene.

For the benzene anion, however, the situation is different. In fact, for a field strength
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Figure 5.5: Energy profiles of the lowest lying molecular orbitals of (a) neutral benzene,
(b) glycine, and (c) benzene anion, with an applied potential, V , an xy-plate area of
108×108 bohr2, and ∆z = 54 bohr. Since there are no relevant orbital crossings, only
the HOMO and LUMO are shown for the anion and glycine.

of 1 VÅ
−1

, the image and static contributions are comparable. Moreover, in the weaker

field, ∼ 0.2 VÅ
−1

, the image charge stabilization is approximately 16 kcal/mol, while the

stabilization due to the static field is less than 1 kcal/mol: an order of magnitude smaller!

In addition to comparing the relative sizes of Estatic and Eimage, it is also interesting

to observe how Eimage depends on the applied potential, V . Looking at Fig. 5.4, we can

see the expected symmetrical results for the benzene systems. Moreover, as V increases,

Eimage increases in magnitude. At zero V , the results are the same as shown in Fig. 5.2.

As the bias is applied, the electron cloud is distorted and the image charge distribution

changes from its approximate spherical symmetry. In fact, the change in the image charges

is such as to reinforce the bias, V , which is already stabilizing the system. In the anion,

however, the change in Eimage due to increased bias is less than 1% across the range of V

we study. In glycine, we see a non-symmetric change with V . Moreover, while Estatic is

positive for V > 0, Eimage is negative for all V , although in all cases it is quite small: less

than 1 kcal/mol in magnitude. Note that the turning point in Eimage occurs at the same

bias potential as the turning point in Estatic, when the molecular dipole goes to zero. From

our discussion in Sec. 5.3.3, this is perhaps not surprising. We know that the image charge

potential depends on Φsys(s), and as the dipole tends to zero, we can expect this boundary

potential to decrease as it depends on more rapidly-decaying higher-order moments. Indeed,

this is what we observe in the calculations.

5.3.5 Molecular orbital tuning

So far, we have looked at total molecular energies. However, as already mentioned, it is

possible to shift the total energy without making any interesting changes to the electronic

structure of the system. Indeed, the addition of a constant potential to the Kohn-Sham

operator will shift all the orbital energies by that same constant, but leave the molecular
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Figure 5.6: Static field and image charge contributions (see main text for definitions) to
the HOMO–LUMO gap for neutral benzene (blue line), glycine (green line), and benzene
anion (red line) with varying applied potential, V , an xy-plate area of 108×108 bohr2, and
∆z = 54 bohr.

orbitals themselves unchanged. In other words, it is important to observe if the orbital

energies change in different ways. For example, the HOMO (highest occupied molecular or-

bital) and LUMO (lowest unoccupied MO) orbital energies are significant in nano-electronic

or electron transport studies. [409, 259, 420, 260] Above all, the HOMO–LUMO gap is an

important property, and if the orbital energies are simply shifted by a constant, then the

gap will obviously not change.

In Figs. 5.5–5.6, we therefore plot how the HOMO, LUMO and HOMO–LUMO gap

change when we apply the CheESE model. Fig. 5.5 gives the energy profiles of the HOMO

and LUMO with varying V for the three molecules, including all the image effects. Since

the LUMO changes character as the orbitals cross in the neutral benzene case, we have

shown the three lowest lying orbitals. This explains the kinks in the neutral benzene curves

in Fig. 5.6. More precisely, Fig. 5.6(a) plots the difference between the HOMO–LUMO

gap in an isolated system and when applying only a static field. Fig. 5.6(b) plots the

difference between the HOMO–LUMO gap computed by a full CheESE calculation (with

bias potential V ) and a calculation with only the static field.

The main message in Fig. 5.5 is that the orbital energies change significantly with

applied field, thereby allowing the possibility of orbital ‘tuning’. Moreover, due to greater

changes in the LUMO compared to the HOMO, we see changes to the HOMO–LUMO gap

of as much as 75 kcal/mol (e.g. glycine at large positive V ) compared to free-space. Indeed,

the glycine HOMO–LUMO gap reduces dramatically when the field is large and directed

against the (free-space) dipole moment. The figure does not make clear the static and

image charge contributions, but the details are somewhat complex. For example, in the

benzene anion, the static field stabilizes the LUMO, but actually destabilizes the HOMO,
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while the (large, but fairly constant) image charge effect stabilizes both orbitals. In glycine,

the static field stabilizes both HOMO and LUMO for all V , while the (small, but variable)

image charge effect can either stabilize or destabilize the orbitals, depending on V .

On the other hand, we are often most interested in the gap, rather than the precise

orbital energies. Fig. 5.6 distinguishes the image charge and static contributions in this

case. As expected, we see that the static field effect is generally more important than the

image effect. In some cases, the energy change is two orders of magnitude more than that

due to the image effect. Nevertheless, the image effect is not completely negligible, and

modifies the gap by almost 1 kcal/mol in the glycine case when V = −1.0 a.u. Moreover,

with zero static field, only the image charges produce a change, and in the glycine case the

gap is increased by approximately 0.5 kcal/mol when V = 0. Interestingly, when considering

the gap, the image charge effects are most significant for glycine, not the benzene anion.

Even though the anion orbitals are shifted more by the image potential, the effect is quite

similar on both the HOMO and LUMO, so the gap changes little compared to glycine for

most values of V . It is also interesting that the benzene curves have very similar shapes

in both figures, regardless of the anion charge. In contrast, the glycine curve has a much

more complex structure, reflecting the subtle changes in the electronic structure as both

the static field and image charge potential change.

5.4 Conclusion

We have presented a new model and computer implementation for the treatment of

molecular systems in arbitrary electrostatic environments. Our work is inspired by the con-

tinuum solvent models, but has a very different application focus in mind; for example, the

simulation of molecules in nano-electronic devices. More precisely, our approach defines a

system–environment model in which the effect of the environment is completely determined

by the specification of a fixed electrostatic potential on the boundary interface, which is

known a priori. In this way, the environment field must be solved self-consistently with the

molecular system.

We have systematically explored the behaviour of our model in a number of controlled

tests, making a detailed comparison with the simpler picture of a static external field,

which is not solved self-consistently. The difference, which we term ‘the image charge

effect’, is found to strongly depend on the multipole character of the system’s total charge

distribution. Thus, it is quite small in the charge-neutral, quadrupolar, benzene system, but

somewhat larger in the dipolar (zwitterionic) glycine case. Similarly, it it is quite significant

in the charged benzene anion, where it modifies the total molecular energy by between 1

and 20 kcal/mol, which is comparable in size to the changes induced by a static field of
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strength 1 VÅ
−1

. As a result, we found that the benzene anion can actually be stabilized

relative to neutral benzene when confined inside a grounded cavity.

In addition to total energies, we also explored the effect on orbital energy levels and

the HOMO–LUMO gap, which reflects more subtle changes to the molecular orbitals than

a constant energy shift. In this case, the image charge effect was similar in magnitude

for all the molecules, modifying the gap by approximately 0.1–0.5 kcal/mol, even at zero

applied field. Nevertheless, this change is somewhat overwhelmed by the effect of a non-zero

static bias. For example, a field strength of about 1 VÅ
−1

adjusts the gap by two orders of

magnitude more than the image charge effect.

We conclude that image charge effects are often subtle, but in special cases (such as

charged systems) or in very accurate work, a careful inclusion of their contributions can be

important. Since electron transport properties are known to be rather sensitive to changes

in molecular orbitals and their energy levels, it would be interesting to test the CheESE

model in such cases as a future study.

5.5 Appendix: A variational scheme for electrostatic envi-

ronment effects

In Sec. 5.2.4, we described an iterative scheme for obtaining the CheESE ground state

from the time-independent Schrödinger equation, where Φenv(r) is fixed at each iteration

and then updated according to the new ground state. In the DFT case, the derivation of the

KS equations for the calculation at each iteration is therefore analogous to the conventional

one. In particular, the functional derivative of Esys
tot in Eq. 5.28 with respect to the system

density recovers the KS operator in the usual variational way, since Φenv(r) is density-

independent at each iteration.

On the other hand, it is also possible to consider a non-iterative algorithm, in which

Φenv(r) is not held fixed, and therefore explicitly depends on ρsys(r). In this case, we cannot

obtain the ground state density by simply minimizing the energy in Eq. 5.28; for example,

in the DFT case, the functional derivative with respect to the system density would now

introduce a spurious factor of two in the KS operator (see below). Instead, following San-

hueza et al. [462], the ground state solution of the time-independent Schrödinger equation

with a non-linear Hamiltonian, Ĥeff
e , may be found by minimizing an alternative energy-like

functional,

J = 〈Ψ̃|Ĥeff
e + Ĝ|Ψ̃〉 (5.41)

with respect to a complete set of trial wavefunctions, Ψ̃, where Ĝ depends on the form of

the non-linearity.
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To obtain the form of Ĝ in the case of the CheESE Hamiltonian, we may first recognize,

using a Green’s function formalism, that Φimage(r) depends linearly on the system density,

Φimage(r) = −
∫
ρsys(r

′)F (r, r′)dr′ (5.42)

where F (r, r′) depends only on the geometry of the system boundary, Ωsys; the precise form

of F (r, r′) does not concern us here. More specifically, we can decompose Φimage(r) into

electronic and nuclear contributions,

Φelec
image(r) =

∫
ρelec

sys (r′)F (r, r′)dr′ (5.43)

Φnuc
image(r) = −

∫
ρnuc

sys (r′)F (r, r′)dr′ (5.44)

According to Sanhueza et al. [462], non-linearities of this form are associated with an oper-

ator Ĝ, given by

Ĝ =
1

2

N∑
i

Φelec
image(ri) (5.45)

Note that we are not concerned with minimizing over the nuclear degrees of freedom.

In the DFT case, the electronic energy is given by,

Esys
elec = EDFT

0 −
∫
ρelec

sys (r)Φenv(r)dr

but using the above approach, we can see, in comparison, that J is given by

J = EDFT
0 −

∫
ρelec

sys (r)

[
Φstatic + Φnuc

image +
1

2
Φelec

image

]
dr

Now, the functional derivative of J with respect to ρelec
sys (r), using Eq. 5.43, returns the ex-

pected KS operator given in Eq. 5.27. However, the minimum J does not equal the CheESE

ground state electronic energy. Instead, if the density which minimizes J is denoted ρ∗sys(r),

then Esys
elec[ρ

∗
sys] is the correct ground state energy, in the sense of being an (approximate)

eigenvalue of the electronic Schrödinger equation (Eq. 5.17). It should be stressed that this

is the reason we quote all our results in terms of Esys
tot , even though it is not a minimum (in

general) for the ground state density!
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The Harvard Clean Energy Project



Chapter 6

Large-scale computational screening and design of

organic photovoltaic materials

6.1 Introduction

The sun is an abundant source of energy and its input on earth exceeds the global

consumption by 4 orders of magnitude. It is hence an obvious alternative to fossil or

nuclear energy supplies and will play an important role in safely and sustainably covering

the rising demands of the future [584, 112, 627, 239]. The current cost of electricity from

commercial silicon-based solar cells is unfortunately still around 10 times higher than that of

utility-scale electrical power generation [302, 71]. These traditional inorganic photovoltaics

come with further shortcomings, such as a complicated and energy-intensive manufacturing

process which leads to high production costs. They can also contain rare or hazardous

elements, and the devices tend to be heavy, bulky, rigid, and fragile.

Carbon-based solar cells have emerged as one of the interesting alternatives to this

conventional technology [74, 75, 509]. Organic photovoltaics (OPVs) range from crystalline

small molecule approaches [516, 46, 442] and certain dye-sensitized Grätzel cells [250] to

amorphous polymers (plastics) [277, 401]. OPVs have great potential in two important ar-

eas: they promise simple, low-cost, and high-volume production [189] as well as the prospect

of merging the unique flexibility and versatility of plastics with electronic features. OPVs

can be processed via roll-to-roll printing [167, 278]; there is active research in sprayable

and paintable materials [542, 190, 497, 395]; OPVs can be semi-transparent [36], variously

colored [111], they are light-weight [277], and can essentially be molded into any shape [400].

These properties make OPVs a promising candidate to achieve the ubiquitous harvesting

of solar energy [217, 152], with building-integrated [327, 224, 529] and ultra-portable ap-

plications [473, 72, 54] as primary targets. The Equinox Summit international committee,

for example, recently suggested the use of OPVs for the basic electrification of 2.5 billion

people in rural areas without access to the power grid [235].
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There are, however, still significant issues to overcome in order to make plastic solar cells

a viable technology for the future. The cardinal problems are their relatively low efficiency

and limited lifetime [483, 419]: the power conversion record has only reached 9.2% [478]

and current materials still degrade when exposed to the environment [447, 326, 57, 58]. An

increase in efficiency to about 10-15% in combination with lifetimes of over 10 years (for

production materials) could push the power generation costs of OPVs below that of other

currently available energy sources [170, 479].

In 2008, we started the Harvard Clean Energy Project (CEP) [107] to help find such

high-efficiency OPV materials. This chapter gives a general overview of CEP and provides

the context for a series of detailed technical and result-oriented papers to follow. In Sec.

6.2 we introduce the motivation and overall setup of the project, followed by a presentation

of its different components: Sec. 6.2.1 discusses our OPV candidates library, Sec. 6.2.2 the

use of cheminformatics descriptors to rapidly assess the potential of these candidates, and

Sec. 6.2.3 is focused on the high-level calculation hierarchy in CEP. Sec. 6.2.4 is concerned

with the calibration of the obtained results. The CEP database is introduced in Sec. 6.2.5

and the World Community Grid (WCG) – our primary computational resource – in Sec.

6.2.6. Throughout Sec. 6.2 we also indicate the next stages and extensions to the current

setup. We summarize our discussion in Sec. 6.3.

6.2 The Harvard Clean Energy Project

The key parameters for the improvement of OPVs are essentially known, however,

engineering materials which combine all these features is a hard problem [78, 225, 98,

470, 68]. Traditional experimental development is largely based on empirical intuition or

experience within a certain family of systems, and only a few examples can be studied

per year due to long turnaround times of synthesis and characterization [63]. Theoretical

work is usually also restricted to a small set of candidates for which different aspects of the

photovoltaic process are modeled [372, 622, 560].

The Clean Energy Project stands out from other computational materials science ap-

proaches as it combines conventional modeling with strategies from modern drug discovery

[256, 40, 338, 193, 28, 183, 141, 182]: CEP features an automated, high-throughput infras-

tructure for a systematic screening of millions of OPV candidates at a first-principles elec-

tronic structure level. 1 It also adopts techniques from cheminformatics [41, 173] and heavily

1The authors are aware of and acknowledge related work by Geoffrey Hutchison (Uni-
versity of Pittsburgh), Michel Côté (University of Montreal), and Josef Michl (University
of Colorado). Their respective research efforts each have a certain degree of overlap with
CEP.
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Figure 6.1: Structure and workflow of CEP.

relies on data mining [166, 195]. Pioneering work on cheminformatics-type approaches and

massive electronic structure calculations was, e.g., performed by Rajan et al. [430, 507, 506]

and Ceder et al. [242], respectively, in the context of inorganic solids. An in silico study

combining the scale and level of theory found in CEP is, however, unprecedented.

As the starting point for CEP we have chosen to investigate the molecular motifs at the

heart of OPV materials [78, 110]. A suitable motif is a necessary condition for a successful

OPV development. Only a limited number of structural patterns have been explored so

far, while the endless possibilities may well hold the key to overcoming the current material

issues. We emphasize that a promising molecular structure is not a sufficient condition

though, as condensed matter and device considerations have to be addressed as well. CEP

is set up with a calculation hierarchy in which we will successively characterize relevant

electronic structure aspects of our OPV candidates. Eventually, we will go beyond single

molecule, gas-phase studies and consider intermolecular and bulk phase problems.

In addition to the search for specific structures with a desired set of properties, we

also try to arrive at a systematic understanding of structure-property relationships [609,

307, 101, 312]. Learning about underlying design principles is the key to moving from a

screening effort towards an active engineering of novel organic electronics [351, 45].

While its centerpiece is the in silico study of OPV candidates, we point out that an

overarching theme of CEP is also the tight integration of experimental and theoretical work.

The project is in part guided by inputs from experimentalist collaborators (in particular

the Bao Group at Stanford University), and our most promising candidates are subject to

in-depth studies in their laboratories [491]. CEP is designed as a community tool and we

invite and welcome joint ventures.

Fig. 6.1 summarizes the overall structure and workflow of CEP, and in the following
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Figure 6.2: The 26 building blocks used for generating the CEP molecular library. The
Mg atoms represent chemical handles, i.e., the reactive sites in the generation process. We
introduce simple links between two moieties (by means of substituting two Mg for a single
C-C-bond) as well as the fusion of two rings.

sections we discuss its various components.

6.2.1 Molecular candidate libraries

The molecular structure of essentially all organic electronic materials features a conju-

gated π-backbone [143]. Modern semiconducting compounds are often composed of linked

or fused (hetero-)aromatic scaffolds [426].

We have developed a combinatorial molecule generator to build the primary CEP

library. It contains ∼10,000,000 molecular motifs of potential interest (∼3,600,000 distinct

connectivities, each with a set of conformers) which cover small molecule OPVs and oligomer

sequences for polymeric materials. They are based on 26 building blocks and bonding

rules (see Fig. 6.2) which were chosen following advice from our experimental collaborators

considering promise and feasibility. The fragments were linked and fused up to a length

of 4-5 units according to the given rules. The generator is graph-based and employs a

SMILES (simplified molecular input line entry specification) [574] string representation of

the molecules as well as SMARTS (SMILES arbitrary target specification) in its engine. It

is built around Marvin Reactor [95], and the Corina code [454] provides force-field optimized

3-dimensional structures. A detailed description of the library generator is in preparation.

The construction of the primary library was tailored towards OPV donor candidates,

but the obtained structures are of interest for organic electronics in general [144, 343].

Our generator approach is flexible and can readily produce additional libraries (e.g., geared
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towards acceptor materials or Grätzel cell dyes) by using a different set of fragments and

connection rules. Substituents can be incorporated in a similar fashion. Combinatorial

libraries allow for an exhaustive and systematic exploration of well defined chemical spaces,

but the number of generated molecules grows exponentially. At a later stage we plan to use

a genetic algorithm [406, 31, 178, 332, 288] as a complement to the current approach.The

fitness function will be based on the information gathered from the screening of the primary

library. Finally, CEP also provides the facility (e.g., to collaborators) to manually add

structures to the screening pool.

6.2.2 Cheminformatics descriptors

While the main objective of CEP is the first-principles characterization of OPV can-

didates, we also explore the use of cheminformatics descriptors [530, 512] and ideas from

machine learning [352, 595], pattern recognition [61, 160], and drug discovery [173, 338, 256]

to rapidly gauge their quality. We have devised descriptor models for parameters such as the

short-circuit current density (Jsc), the open-circuit voltage (Voc), and the power conversion

efficiency (PCE). Our models are the first step in a successive ladder of approximations for

these key quantities associated with photovoltaic performance.

The basic strategy behind this approach is to identify and exploit correlations between

certain physicochemical or topological descriptors and the properties of interest. Suit-

able descriptors are combined into models which are then empirically parametrized using

a training set of experimentally well-characterized reference systems. As descriptors are

easily computed, we can quickly (i.e., within a few days on a single workstation) obtain an

initial assessment and preliminary ranking of the entire molecular library.

In Fig. 6.3 we present the linear regression model for Voc along with the histogram

of the calculated values for the molecular library. We note that our model for Voc shows

a very good correlation. This can be rationalized considering the principle dependence

of Voc on intramolecular properties which are apparently well reflected in the employed

molecular descriptors. The Jsc model behaves similarly well although Jsc is also linked to

bulk effects. For the fill factor – a quantity primarily determined by morphology and device

characteristics – we could in contrast only obtain poor models.

The early stages of this work [391] utilized descriptors from the Marvin code by

ChemAxon [95] and for the modeling we employed the R statistics package [429]. Re-

cently, we started using the more comprehensive descriptor set from Dragon [515] and the

specialized modeling code StarDrop [396]. A focus of our current work is to utilize the

quantum chemical results discussed in the following section as a descriptor basis in our

models.

As in biomedical applications of cheminformatics, we do not expect quantitative results,
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Figure 6.3: Left: Linear regression model for Voc with the training set data. Right: His-
togram of the projected Voc values in the molecular library with the position of the training
set marked in green (with arbitrary height). See Ref. [391] for details.

but this technique can yield valuable trends which we use to prioritize and prune the high-

level screening and to uncover molecular motifs of particular interest. In Ref. [391] we give

an introduction to this approach with a detailed discussion of the systematic construction

and optimization of descriptor models.

6.2.3 First-principles screening hierarchy

Electronic structure theory offers a way to probe the properties of OPV materials

and the photophysical processes in organic solar cells [25, 446]. The complexity of these

problems, however, poses severe methodological challenges. Multi-scale simulations have

improved considerably in recent years [372, 559], but in practice we still commonly choose

to model, approximate, or deduce the different aspects of the problem separately. CEP

adopts such a divide-and-conquer approach and combines it with a calculation hierarchy to

screen for promising material candidates. This multi-level setup is designed to successively

address the relevant issues in OPVs and provide results at an increasing level of theory.

At each stage, the candidates are rated with respect to the investigated parameters. The

scoring is freely customizable to reflect different research priorities. The most promising

candidates and related structures from the library receive priority in the CEP hierarchy and

their characterization is expedited. On the other hand, if a candidate is unfit with respect

to a tested criterium and hence unlikely to be successful overall, it has lower priority and

may be characterized in less detail.

The early CEP stages concentrate on various molecular properties of our material

candidates and are hence most useful to assess macroscopic quantities which primarily

depend on them, such as the Voc. The later stages will shift the focus to intermolecular

and condensed phase characteristics. The latter are central to, e.g., exciton and charge
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Figure 6.4: (a-e) Distribution of CEP hits in the gap-LUMO plane suggested by Scharber et
al. [467]. Note that the density plots are on a logarithmic scale, and the red entries corre-
spond to O(10,000) compounds and O(150,000) individual electronic structure calculations;
(a) and (b) show the raw data from BP86/def2-SVP and BP86/def2-SVP//HF/def2-SVP
(i.e., calculations which incorporate 0% vs. 100% exact exchange), respectively; (c) and (d)
display the corresponding data after preliminary calibration; (e) shows the OPV relevant
parameter space with the 10% PCE region (with respect to a PCBM acceptor). About 0.3%
of the screened compounds fall in this high-efficiency region; (f) indicates the dynamic gap
range, i.e., the range of available LUMO energies given a particular HOMO and vice versa;
(g) displays the PCE histogram according to the Scharber model, and (h) the dipole moment
histogram; (e-h) are all at BP86/def2-SVP//PBE0/def2-TZVP level of theory (calibrated).

transport processes [56, 191, 225, 589, 372, 622], for which molecular properties alone are

clearly of limited value. Bulk structure considerations impact quantities like the external

quantum efficiency and thus Jsc as well as the overall PCE. Since the cost and complexity

of such studies increase significantly, they can only be performed for a subset of highest

rated candidates.

In the first CEP phase, we perform a set of density functional theory (DFT) calculations

[405, 271] employing the BP86 [50, 413], B3LYP [50, 296, 51], PBE0 [412, 414, 517, 416, 3],

BH&HLYP [50, 296, 52], and M06-2X [618, 617] functionals as well as Hartree-Fock (HF)

theory in combination with the single-ζ STO-6G [220, 219], double-ζ def2-SVP, and triple-ζ

def2-TZVP [571] basis sets. We test and compare both restricted and spin-polarized settings.

Our selection of functionals covers both generalized gradient approximation (GGA) and

hybrid designs with a progression in the amount of exact exchange [51] (BP86 and HF can

be seen as the limiting cases). The latter has a systematic influence on orbital localization

and thus eigenvalues [610]. The GGA BP86 is a cost effective way to obtain good geometries,

B3LYP is arguably the most widely used functional in molecular quantum mechanics, PBE0

has shown favorable performance in a variety of areas, as has the highly parameterized M06-
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2X. (We will further test meta-GGAs like TPSS [517] and double-hybrids like B2PLYP

[194] when they become available for CEP.) This range of model chemistries was chosen to

put our analysis on a broader footing, but also to assess the performance of the different

theoretical methods [271]. In total, each molecule is characterized by a BP86/def2-SVP

geometry optimization and 14 single-point ground state calculations. We obtain geometries,

total energies (including their decomposition into different contributions), molecular orbitals

(MOs) and their energy eigenvalues, electron and spin densities, electrostatic potentials,

multipole moments, Mulliken [366, 579] and natural populations [437, 439], as well as natural

atomic, localized molecular, and bond orbital analysis [438, 153, 436] for the different model

chemistries [151].

These basic electronic quantities can be used as a first approximation to the following

points. The MO energies and their differences can be related to ionization potentials, elec-

tron affinities, gaps, and partial density of states (we note that the application of Koopmans’

theorem is problematic in DFT) [505, 204, 103, 320, 610, 608, 34]. The electronic levels

have to be tuned for an efficient light absorption, for the necessary interplay between donor,

acceptor, and lead materials, as well as for atmospheric stability [78]. The delocalization of

the frontier orbitals can be associated with (intramolecular) exciton and charge carrier mo-

bility [484, 472, 243, 272, 422]. Their spatial overlap indicates the transition character and

probability of the corresponding excitation [324, 407, 142]. Excess spin densities reflect the

inadequacy of simple closed-shell solutions and can also point to a complex and potentially

unstable electronic situation [200]. Charge maps can identify chemically unstable sites in

these highly unsaturated molecules as well as patterns which may have an impact on their

packing in the condensed phase. The molecular multipole moments can correspondingly

be correlated to the organization in the bulk structure and also to transport properties

[137, 581, 70, 599]. The wavefunction analysis techniques are of interest for the study of

structure-property relations. The obtained data can furthermore be utilized as quantum

chemical descriptors for the models described in Sec. 6.2.2. The results of a consecutive

oligomer series can be used to extrapolate to the polymer limit [604, 174, 603, 287].

One example for how this basic information can be employed is the model developed

by Scharber et al. in Ref. [467]. The authors assume (based on observations on actual

OPV materials) that condensed matter aspects in such systems can be tuned to a certain

viable level (i.e., a fill factor and external quantum efficiency of each 65% can be achieved).

If that is the case, their PCE can be approximated using only gap and lowest unoccupied

molecular orbital (LUMO) energy values. This model can readily be applied to the current

CEP data as shown in Fig. 6.4. Our preliminary analysis reveals that only about 0.3% of the

screened compounds (i.e., presently resulting in ∼3,000-5,000 distinct structures, depending

on the model chemistry) have the necessary energetic levels to realize OPVs with 10% or
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higher efficiency. This underscores the importance of carefully selecting the compounds to be

synthesised and tested, and at the same time the value of the fast theoretical characterization

and extensive search that CEP can provide towards this task. An unaided search has only a

small chance of success, while CEP finds several thousand suitable structures. Fig. 6.4 also

displays the dynamic gap range and dipole moment distribution of the screened candidates

as examples for the wide range of electronic properties found in the CEP library. This

versatility will be vital to a successful discovery of materials with specifically adjusted

features (e.g., for different acceptors or tandem devices [17]).

We again emphasize that this first phase of CEP only addresses a subset of the impor-

tant material issues [221] and has the inherent accuracy of the employed model chemistries

and calibrations, if taken at face value. There are, however, four factors that add consider-

able value to these calculations: i) we correlate the computed results to actual experimental

quantities to provide insights into their relationship; ii) we use the electronic structure data

as a source for new cheminformatics descriptors, which will put our modeling efforts on a

more physical foundation; iii) the analysis of the aggregated data from millions of molecules

in combination with structural similarity measures can reveal guiding trends, even if the

absolute result for an individual candidate might be inaccurate due to a particular limita-

tion of its electronic structure; iv) by employing a variety of different model chemistries, we

compensate for the chance of such a failure in any particular method. We do not rely on

any single result but use a composite scoring with many contributions.

The calculations allow for the elimination of unfit candidates and provide a first set

of predictions for promising structural trends. For these we can carry out the subsequent

levels of increasingly more sophisticated calculations which are planned as following: we

will calculate i) vibrational spectra and partition functions to gauge phonon-scattering and

trapping in vibrational modes [534, 77]; ii) anionic/cationic states for improved electron

affinity/ionization potential values; a Dyson orbital analysis [59] can improve our insights

into the charge transfer processes [487]; iii) optimized geometries in the ionic states to

deduce the reorganization during charge migration [77]; iv) triplet states and gaps to indicate

potential for singlet fission processes [490]; v) linear response properties to assess the charge

mobility [229, 481]; vi) excited states employing the maximum overlap method [175] and/or

(range-separated) time-dependent DFT [240, 292] with an electron attachment/detachment

density [215] and natural transition orbital analysis [329] for a more sound description of

the absorption process. Each higher level result can be used to assess the interpretations at

the lower levels. Further studies could involve the calculation of transfer integrals between

oligomer pairs [77], packing and interactions in the bulk phase, as well as the use of high-

level wavefunction theory for more reliable results in complicated bonding situations. We

also want to consider the opposite approach, i.e., how well simple semiempirical and model
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Hamiltonian calculations (which are popular in other communities) perform compared to

first-principles DFT [25, 231]. Possible stages of the CEP hierarchy were recently vetted

in a successful proof-of-principle study: we predicted exceptional charge mobility in a novel

organic semiconductor and this prediction could be confirmed experimentally [491]. We also

used quantum chemical calculations in an earlier study to explain the observed mobility

values in another system [458].

6.2.4 Empirical result calibration

To bridge the gap between theory and experiment, we have introduced an empirical

calibration of the computational results. Such a calibration is a pragmatic way to ap-

proximately account and correct for differences in experimental and theoretical property

definitions, as well as in vacuo vs. bulk, and oligomer vs. polymer results.

We have established the organic electronics 2011 (OE11) training set of experimentally

well-characterized organic electronic materials for the calibration and aligned the theoretical

findings with the corresponding data from experiment. The current calibration is largely

based on data from bulk-heterojunction setups with PCBM as acceptor and introduces a

corresponding bias. A different focus can be chosen provided appropriate reference data.

The use of training sets is a common technique in other areas of quantum chemistry [120,

618]. The details of this work will be presented elsewhere. A preliminary calibration of

the current CEP results was used in the analysis shown in Fig. 6.4, and panels (a-d) in

particular demonstrate the success of this approach.

6.2.5 Database and data mining

The results of all calculations are used to build up a reference database — the Clean

Energy Project Database (CEPDB). This data collection is comparable to the more general

but much smaller NIST Computational Chemistry Comparison and Benchmark Database

(CCCBDB) [377]. As mentioned before, the information accumulated in CEPDB is not

only relevant to OPVs but to organic electronics in general. It is also designed to provide

benchmarks for the performance of various theoretical methods in this family of systems

as well as a parameter repository for other calculations (e.g., for model Hamiltonians [100,

457, 549] or custom force fields [533]). It will be available to the public by 2012.

The primary purpose of CEPDB is to store and provide access to the CEP data.

Candidates with a certain set of desired parameters can readily be identified. CEPDB also

serves as the hub for all data mining, analysis, and scoring operations to facilitate the study

of global trends, correlations, and OPV design rules. Finally, CEPDB is also responsible for

bookkeeping, archiving the raw data (including the binary MO eigenvectors for subsequent
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Figure 6.5: Left: CEP project homepage and hub for project participants. Right: The CEP
’screensaver’ as it is displayed on volunteer hosts.

calculations), keeping track of the project progress, and prioritizing the study, which are

clearly important tasks considering the scope of the project and the volume of data.

6.2.6 The World Community Grid

The massive demand in computing time for CEP is largely provided by the World

Community Grid [586, 108], a distributed volunteer computing platform for philanthropic

research organized by IBM. Presently, ∼560,000 users have signed up ∼1,800,000 computers

to the various WCG projects. Participants can donate computing time by running the

supported science applications on their personal computers, either on low priority in the

background or in screensaver mode during idle times (see Fig. 6.5). In CEP, we use a

custom version of the Q-Chem 3.2 program package [480] which was ported to the Berkeley

Open Infrastructure for Network Computing (BOINC) [20] environment. From the user

perspective, the participation in a WCG project is fully automated and usually does not

require any input or maintenance beyond the initial setup.

The WCG is a powerful resource and provides us with the means for our high-throughput

investigation. It is, however, also unusual due to the non-specialized hardware and host de-

mands. These limitations have to be taken into consideration in the design of suitable tasks.

In addition to the WCG, CEP utilizes the Harvard FAS Odyssey cluster as well as accounts

at NERSC [374] and TeraGrid [94] for problems which are outside the scope of volunteer

grid computing (e.g., due to their size and computational complexity). CEP currently char-

acterizes about 20,000 oligomer sequences per day, and so far we have studied ∼2,600,000

structures in ∼35,000,000 calculations, utilizing ∼4,500 years of CPU time. Close to 100%

of these calculations were performed on the grid, but the use of cluster resources will become

more important in the more demanding stages of the project. Their contribution in terms

of volume, however, will remain very limited.

One important aspect in a computational study at this scale is that all processes have
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to be automated to keep it feasible, efficient, and reduce human error. We created the

necessary facilities using the Python scripting language [47, 290].

6.3 Conclusions

This initial presentation of the Harvard Clean Energy Project outlined its overall ar-

chitecture, the machinery we put in place, and upcoming extensions. We pointed to first

results and more detailed reports on the various aspects of the project – tied together by

this chapter – will be given in subsequent publications.

CEP applies a modern cyberinfrastructure paradigm to computational materials science

and in particular to renewable energy research. Engineering successful OPV materials is

a complex challenge as a number of optical and electronic requirements have to be met.

We showed that CEP with its large-scale screening is well equipped for a knowledge-based

search of systems with suitable features. It provides a unique access to data for a wide array

of potential compounds with diverse electronic structures and it is ideally suited to identify

highly promising donor or acceptor candidates in the infinite space of organic electronics.

Our work can thus complement and accelerate traditional research approaches, and it can

help develop an understanding of structure-property relationships to facilitate the rational

design of new materials. We hope that joint efforts with experimental collaborators can

contribute to overcoming the current limitations of OPV materials in order to provide a

clean source of electricity which can compete with conventional power production.



Chapter 7

Accelerated computational discovery of organic

photovoltaic materials by means of

cheminformatics

7.1 Introduction

Current human consumption of energy amounts to 550 EJ per year, which corresponds

to 260 million barrels of oil equivalent (MBOE) per day. If the world economy keeps growing

at rates close to what has been observed in the last hundred years, human consumption of

energy will reach 360 MBOE per day by 2035 [113]. To maintain a supply for this growing

demand is a challenge, primarily because of the decreasing energy return on investments.

At the same time, the continuing use of fossil fuels will increase the impact of global climate

change. Almost 87% of the energy consumed by humanity is currently derived from fossil

fuels [80] and all renewable energy sources will be needed in order to satisfy the present and

future demand for clean energy.

Solar power is a prominent source for renewable energy, in particular for the produc-

tion of electricity without greenhouse gas emissions. Solar cells are made of thin layers

of photovoltaic materials which can harness sunlight for conversion into electricity. Crys-

talline silicon-based solar cells have dominated the field of commercial photovoltaics, but

drawbacks in the manufacturing process as well as high production cost have precluded

them from widespread use [169]. Thin-film technologies have led to the development of

solar cells based on other inorganic materials such as CdTe [488], as well as the develop-

ment of dye-sensitized solar cells [397]. Although none of these technologies have reached

a higher efficiency than crystalline silicon at 25% [615], they allow for the possibility of

cheaper fabrication and a favorable efficiency/cost ratio, as their production process is less

energy-intensive.

Organic photovoltaic (OPV) cells represent another thin-film approach which has drawn
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a lot of attention and has shown significant progress in recent years [218]. OPVs are partic-

ularly promising due to the abundance of their main constituents, their low cost, scalability,

and versatility of their installation. Moreover, the potential of rational design to improve

the performance of the solar cells has driven recent progress in OPVs. The record power

conversion efficiencies of OPVs have improved considerably in the last years: from 1% in

1985 [516]; 4% in 2002; 6% in 2009; and up to 9.2% in 2011 [478]. If power conversion effi-

ciencies of 10-15% in combination with a lifetime of more than 10 years can be achieved in

production materials, OPVs could compete with inorganic-based photovoltaics and become

a commercially viable alternative for harnessing electricity from sunlight in a wide range of

applications.

Organic-optoelectronic materials span a vast chemical space due to the structural versa-

tility of their carbon-based framework. The prospect of exploring this space has interesting

implications for materials design considerations. Due to challenges in the synthesis and ex-

perimental characterization of these systems, usually only a modest number of compounds

can be studied as candidates for active materials in OPVs [63, 458]. Approaches that in-

volve the in silico screening of potential organic semiconductors for OPV applications can

aid in accelerating the discovery of high-efficiency materials [386, 491, 201].

In this chapter, we review the recent progress of semiconductor polymers for plastic

solar cells, and later present the basic ideas of cheminformatics (chemical informatics) for

the search of novel organic photovoltaic materials. We adopt the use of physicochemical

and topological descriptors, which are commonly known and employed in drug discovery, for

the identification of promising organic semiconductors with desired current-voltage charac-

teristics and high power conversion efficiencies. In this context we discuss the systematic

construction and optimization of the descriptor models. This technique is employed as part

of the Harvard Clean Energy Project [107, 201], a high-throughput in silico screening and

design effort to develop novel high-performance materials for OPVs. The cheminformatics

investigation presented here is a valuable complement to the much more time consuming

first-principles electronic structure calculations performed in other parts of this project.

7.2 Bulk-heterojunction solar cells

The state-of-the-art of OPVs are based on a bulk-heterojunction (BHJ) architectures

of two semiconductor compounds: one acting as a electron donor (typically a polymer,

or a small molecule) and the other acting as an electron acceptor (a high electron affinity

molecule) [600]. Fig. 7.1 shows a schematic illustration of a BHJ solar cell. The photovoltaic

process begins with light absorption and ends with charge transport to the electrodes. It

occurs through the following steps: i) optical absorption and exciton formation, ii) exciton
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Figure 7.1: (a) Device architecture of a bulk-heterojunction solar cell. Light is incident
upon the glass substrate. (b) Bulk-heterojunction photophysics: 1) a photon excites an
electron to form an exciton, which migrates to the donor/acceptor interface; 2) a difference
between the LUMO levels of the donor and acceptor (typically of the order of 300 meV or
greater) causes the exciton to dissociate; 3) electrons and holes are transported towards the
cathode and anode, respectively; 4) charge is collected at the electrodes, thus transforming
light into current.

migration, iii) exciton dissociation at the donor-acceptor interface, iv) charge carrier mi-

gration to the electrodes, and v) charge collection at the electrodes. These five steps are

summarized in Fig. 7.1(b). This mechanism naturally carries potential losses at each stage,

mainly stemming from inefficient absorption in the beginning and exciton recombination

at the intermediate steps. Further details of these elementary processes and their limiting

factors have been described extensively in the literature [78, 262, 68].

The parameters which determine the overall efficiency of the energy conversion process

in a solar cell are examined in terms of its current-voltage (i. e., power) characteristics [521,

75]. The power conversion efficiency (PCE) is defined as the percentage of the ratio of power

output (Pout), to power input (Pin). Pout is the maximum (m) obtainable electric power:

the product of current, Jm, and voltage, Vm. It is also possible to define Pout as depending

linearly on the product of the short circuit current density (Jsc), the open circuit voltage,

(Voc), and the fill factor (FF). The fill factor is the ratio of the maximum power, JmVm,

to the product of Jsc and Voc. The product JmVm represents the potential power available

under the ideal conditions imposed by JscVoc [509]. The FF then becomes a parameter that

measures the capacity of the device to obtain the most power available. Losses depend on

the parasitic resistance of the device and other inefficiencies, which are related to the cell

morphology [370, 258]. Thus, the formula to compute power conversion efficiency can be

written as:

%PCE =
FF · Jsc ·Voc

Pin
× 100. (7.1)
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Jsc and Voc are quantities that can easily be determined under device illumination and

largely depend on the molecular properties of the donor and acceptor moieties.

As detailed by Brabec [75], Voc is related to exciton dissociation, which leads to the

charge separation process (step iii, above). Voc scales linearly with respect to the energy

difference between the highest occupied molecular orbital (HOMO) of the donor and the

lowest unoccupied molecular orbital (LUMO) of the acceptor [73]. Jsc, on the other hand,

largely depends on the charge mobility and the bandgap of the donor, which determines

the spectral overlap: the smaller the bandgap, the higher the spectral overlap. The theo-

retical understanding of the important parameters for high photovoltaic efficiency has led

to models that predict the efficiency of a donor material with respect to a given acceptor,

commonly PCBM, 1 as a function of their energy levels [467, 275]. In particular, the model

of Scharber et al., Ref. [467], has been instructive for this purpose due to its simplicity.

The first generation of OPV architectures involved a structure in which donor and ac-

ceptor layers of O(100nm) were spin-cast. These original designs for donor-acceptor bilayers

are limited by the intrinsic exciton diffusion length, as the excitons formed in the donor

layer have to reach the interface with the acceptor for the exciton to dissociate [109]. BHJ

devices involve blends of donor and acceptor materials which mix at the nanometer scale,

creating connected domains of O(10 nm) of donor and acceptor materials that facilitate

exciton diffusion to the interface before recombination takes place [601, 202, 600]. A chal-

lenge for theoretical methods for materials discovery is that the ultimate efficiency of BHJ

materials depends on annealing conditions and co-solvents, also known as additives [410].

The general complexity and multiscale nature of the device morphology is very hard to

model with electronic structure theory.

Recent developments in device architecture that go beyond simple BHJ designs are

numerous. They include textured substrates for increased light path lengths [368], the

addition of a titanium oxide (TiOx) layer on top of the BHJ layer as an optical spacer

which has internal quantum efficiencies of 100% [257, 403] and other improvements such as

plasmonic concentrators [32].

7.3 Organic photovoltaic materials

In this section, we provide a brief overview on the evolution of the different design

approaches for novel OPV materials. The sequence of developments will be relevant to the

discussion of our computational approach in the following sections, as the results from the

cheminformatics screening should correspond to the experimentally observed trends. We

11-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61
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Maximum No. top 1000
PCE VocJsc

Generation Motif Name (experimental) (predicted)

PPV MDMO-PPV [76] 3.3% —

P3HT P3HT [257] 5.0% 0

DADA PCPDTBT [410] 5.2% 17

DTAT PBnDT-DTffBT [621] 7.2% 13

QUINO PBDTTT-CF [96] 7.7% 117

Table 7.1: A non exhaustive overview of OPV development. Successive generations of OPV
based on monomers and co-monomers: We show record PCE achieved and the number
of molecules predicted in the present study corresponding to a particular design concept.
Fragment key: circle, PPV; pentagon, P3HT; square, donor; triangle, acceptor; cross, quino-
line. Color Key: Color schematically indicates bandgap size; except gray, which indicates a
fragment with good hole mobility.

show a (by no means exhaustive) overview of the OPV milestones in Table 7.1.

Many of the initial donor materials for BHJ devices derived from MDMO-PPV, 2

Fig. 7.2. These donors are combined with PCBM as the acceptor. PCBM has been exten-

sively used as a solar cell acceptor material, along with its C70 analogue [600, 230, 125],

and all reported values in this chapter (e.g., Voc, Jsc, the FF and PCE) use these molecules

as acceptors. MDMO-PPV has a low-lying HOMO of −5.4 eV. For the junction, a Voc of

0.82 V and a Jsc of 5–6 mA/cm2 was measured. The small Jsc value can be explained by

the large donor bandgap, and it ultimately limits the PCE to 3.3% [76, 218].

Regioregular poly-(3-hexylthiophene) (rr-P3HT Fig. 7.2) with a 1.9 eV bandgap emerged

as a predominant donor due to its higher Jsc, and refined morphological characteristics that

lead to a presumably higher exciton mobility than found in MDMO-PPV. This advantage

results in efficiencies of over 5% [257, 125]. A high lying donor HOMO precludes this

molecule from having a larger PCE, despite the improvements in Jsc and morphology.

Recent searches for donor materials have focused on improving either Voc or Jsc, while

Eq. 7.1 clearly suggests the need to optimize both. However, there seems to be a trade-

off between Jsc and Voc that can partially be attributed to the relatively high LUMO of

the fullerene-based acceptors and their interaction with the frontier molecular orbitals of

the donor. To improve upon this, a new generation of co-monomer based materials was

introduced, in which an electron-donor and an electron-acceptor motif are coupled to form

2poly-[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylene vinylene]
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Figure 7.2: Chemical structures highlighted in Sec. 7.3. MDMO-PPV was one of the first
donor materials used. P3HT is a prevalent donor which has shown higher Jsc, and refined
morphological characteristics. PFDTBT and PCDTBT are co-monomers, in which the
donor-acceptor polymer strategy was applied to obtain higher PCE. PBDTTT-CF is a co-
monomer, which features quinoidal stabilization and with the aid of the fluorine group has
yielded an efficiency of 7.7%.

the “monomer” of the polymer unit.

Donor-acceptor designs— One strategy, first proposed by Havinga, Zhang and oth-

ers [212, 611, 548], involves improving the donor polymer properties by using a set of

alternating electron-rich (i.e., donor) and electron-deficient (i.e., acceptor) moieties to form

co-monomers. This approach results in a smaller bandgap for the donor via the hybridiza-

tion of the energy levels between the donor (typically with high HOMO) and the acceptor

(low LUMO) fragments in the co-monomer [548, 81]. It also improves the intramolecular

charge-transfer [449, 245, 450]. This technique is thus labeled “donor-acceptor polymer”

approach (DADA in Table 7.1). For example, Mühlbacher et al. synthesized PCPDTBT, 3

Fig. 7.2, which shows a low bandgap (1.7 eV) and also absorption activity in the infrared re-

gion, with an overall efficiency of 3.2% [365]. Morphological improvements via the co-solvent

approach mentioned above, led to an improved efficiency of 5.5% [410].

Incorporation of high-mobility inducing fragments— Further improvements have been

achieved by adding a moiety which promotes the charge-carrier mobility. The co-monomer

PFDTBT, 4 Fig. 7.2 [511, 234] has three components: thiophene (T), as a donor; ben-

zothiadiazole (BT), as an acceptor; and fluorene (F), as the high-mobility fragment; it is

represented as DTAT in Table 7.1. The fluorene moiety is known to absorb at short wave-

3poly-[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]-dithiophene)-alt-4,7-(2,1,3-
benzothiadiazole)]

4poly-[2,7-(9-(2’-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4’,7’)-di-2-thienyl-2’,1’,3’-
benzothiadiazole]



Chapter 7: Accelerated computational discovery of organic photovoltaic materials by
means of cheminformatics 140

lengths, but the mixture with thienyl fragments red-shifts the absorption. The thiophene

moiety has in addition good hole-transport properties, increases planarity, and is used as

the fragment on which alkyl chains are typically fastened for improved processing. An ini-

tial success with this design was demonstrated by an improved Voc of 1.05 V. However, the

Jsc remained low at 3.65 mA/cm2. The PCE of PFDTBT was estimated to be 1.7%, but

modifying the R groups in fluorene pushed the PCE to 2.1% [511, 234].

Blouin et al. concentrated on finding better acceptor units in the co-monomer. They

substituted the fluorene moiety for carbazole, a fully aromatic system, to obtain PCDTBT, 5

Fig. 7.2. A considerable increase of the Jsc to 6 mA/cm2 was achieved, albeit with a

slightly lower Voc of 0.9 V. This resulted in an overall PCE of 3.6% [64]. Following a similar

technique, Wang et al. replaced the fluorene moiety with silafluorene (SiF), and obtained

a PCE of 5.4% [558]. The higher efficiency is a result of the broader absorption spectrum

of silafluorene, which allows for a Jsc of 9.5 mA/cm2.

Blouin et al. continued to optimize their PCDTBT co-monomer to focus on the ac-

ceptor fragments [63]. Despite the HOMO and LUMO levels being ideally tuned in some

cases, they were unable to improve their reported PCE of 3.6% [64]. Recently, Park et al.

were able to obtain 6.1% efficiency using PCDTBT and adding a titanium oxide (TiOx)

layer on top of the BHJ layer as an optical spacer [403]; an example of optimization via

modifying the device architecture. This improvement brings PCDTBT efficiency close to

the PCE limit predicted by the Scharber model [467].

Chen and Cao reviewed and analyzed donor-acceptor polymer materials which con-

tained either benzothiadiazole, thiophene, thienopyrazine or quinoxaline for a total of 39

co-monomers [98]. Their analysis revealed that systems with a lower bandgap resulted in

higher PCE values. The authors argue that although there is a linear trend between the

HOMO position and the Voc [73], there is significant scatter in the data to conclude that

other effects influence the open-circuit voltage. Furthermore, Yang et al. [592] have studied

the effect of alkyl chains on the Voc and Jsc for a given backbone. They found that there

is a significant change with respect to length and shape of the R-groups, which argues in

favor of strong dependence on morphology. The relationship between these changes are

attributed to the strength of intermolecular interactions between the polymer and PCBM

blend.

Weak donor, strong-acceptor motifs— Zhou and Price et al. have extended the donor-

acceptor polymer approach by introducing the concept of weak -donors and strong-acceptors

[620, 619, 621, 425, 424]. Co-monomers are built similar to PFDTBT: donor, thiophene,

5poly-[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-
benzothiadiazole)]
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acceptor, thiophene (DTAT in Table 7.1). Once again, thiophene moieties are present to

increase planarity and as a location to add the R-groups. Zhou et al. generate a weak -donor

moiety by starting from a strong (i.e., electron-rich) component like thiophene and then

fusing it with benzene, a less electron-rich moiety [620]. In the case of strong-acceptors,

it is important for the moiety to be π-electron deficient: the benzene moiety in the ben-

zothiadiazole unit can for instance be substituted with pyridine, to generate thiadiazolo[3,4-

c]pyridine [619]. Power conversion efficiencies following this design have reached up to 6.3%.

Further work revealed an explicit dependence between the donor HOMO and the acceptor

LUMO of this co-monomer layout. Recent findings by these authors have concentrated on

optimizing these co-monomers using different acceptors (including fluorinated moieties) and

resulted in a PCE of over 7% [621, 424].

Quinoidal structures— A successful technique to reduce the bandgap was based on

using alternating thieno[3,4-b]thiophene (TTP) and benzodithiophene (BDT) units [308,

309, 96, 306]. The reduction of the bandgap is due to the stabilization of the quinoidal

structure of TTP. BDT experiences quinoidal stabilization as well, but it also provides

rigidity to the backbone (represented as QUINO in Table 7.1. Liang, Chen et al. have

also explored the use of alkoxy sidechains to yield further improvements. In particular,

PBDTTT-CF, 6 Fig. 7.2 has the TTP unit alkoxylated and fluorinated in positions 2 and

3, respectively. PBDTTT-CF results in a maximum PCE of 7.7% [96], which is one of the

best efficiencies to date.

The fluorine moiety shifts the donor HOMO and LUMO values which leads to a greater

Voc, without affecting the Jsc. Further work based on the quinoidal strategy has met with

mixed results since the control of the bandgap becomes more difficult when there are no

explicit acceptors and donors in the polymer [266].

Improved acceptor materials— The development of acceptor materials has been domi-

nated by functionalized fullerene derivatives, such as PCBM. PCBM has been extensively

employed as a solar cell acceptor material since it was first reported in 1995 [600, 230, 125].

Although the HOMO and LUMO levels of these systems are not ideal for the known donor

polymers, no better candidates have been found [467]. C60 and C70-based molecules exhibit

a high electron mobility and affinity, which is highly isotropic due to their spherical shape.

Functionalizing them with the esther moiety provides for good solubility, as well as a higher

LUMO level, which reduces its work function [274]. Due to the relative success of PCBM,

the search for better organic photovoltaic materials has primarily become a pursuit for

finding ideal donor properties constrained by the energy levels of fullerene-based acceptors.

6poly-[4,8-bis(2-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-(4-octanoyl-5-
fluoro-thieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl]
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Recent reviews on acceptor materials include those by Anthony on organic-based non-

fullerene molecules [27] and by Xu and Qiao on inorganic-based systems [590]. We refer

to the recent work by Gendron and Leclerc for other classes of donor polymers [171]. As

outlined in this section, a series of compound-design strategies for donors and acceptors and

their rationalization has resulted in a systematic increase of reported efficiencies. In the

following section we will explore how computational approaches based on cheminformatics

can provide guidance towards innovation and the next generation of OPV materials.

7.4 Cheminformatics modelling

The rational design of donor and acceptor molecules 7 for OPVs can be pursued by

computational studies of potential candidates. Electronic structure calculations represent

a valuable tool to characterize optoelectronic features and processes central to the perfor-

mance of organic semiconductors [231, 459]. Current calculation schemes allow the predic-

tion of electronic properties such as HOMO, LUMO and optical bandgap, as well as other

molecular properties that are considered to ultimately be related to the OPV efficiency,

such as partial charges, intramolecular interactions, and geometries. These calculations

are, however, still time consuming and computationally demanding. The Harvard Clean

Energy Project (CEP) [107, 201] has been set up for an automated, large scale in silico

characterization of millions of molecules. Based on computational resources provided by

distributed volunteer computing in collaboration with IBM’s World Community Grid [586],

CEP is currently performing a systematic screening of millions of candidate molecules using

electronic structure theory. Cheminformatics methods allow the “transformation of data

into information and information into knowledge” [82] and they are being employed as a

complementary approach to the quantum chemical work within CEP.

To date, cheminformatics has primarily been designed to provide a fast way of screen-

ing large libraries of potential compounds, mostly for pharmaceutical applications. This

discipline has been described as “all the information resources that a scientist needs to

optimize the properties of a ligand to become a drug” [83]. However, the tools developed in

this field, and closely related techniques in machine learning and pattern recognition, can

in principle be applied to other materials discovery endeavors. Developments in chemin-

formatics have been driven by the combination of experimental high-throughput screening

(the assay and analysis of more than a million chemical reactions) and with the ability to

computationally predict physicochemical parameters (called descriptors). The basic strat-

egy of this approach is to obtain these descriptors for candidate molecules, often obtained

7In the following we will collectively use the term ’molecules’ for monomers, oligomers,
and actual molecules.



Chapter 7: Accelerated computational discovery of organic photovoltaic materials by
means of cheminformatics 143

from designated candidate libraries [301, 176, 471, 146, 561, 254, 285, 286, 199], to score

their fitness with respect to a desired set of properties.

One of the most important methods is the identification of quantitative structure-

property relationships (QSPR) [39, 207, 591, 295, 99, 168]. This technique has focused

intensely in the search for molecules to be experimentally screened as potential drugs, or as

drug leads [550]. More recently, QSPR were employed in the study of certain molecules for

an understanding of the fundamental processes of cellular and organismic biology [310, 134].

In similar fashion to QSPR, quantitative structure-activity relationships (QSAR) are used

to study the biological activity of such problems. We note that the complexities faced

in the interactions between organic molecules in biological systems are greater than in

those found in organic electronic materials. Despite these challenges, cheminformatics has

been successful in several areas on the interface between chemistry and biology [8]. For

instance, it is possible to analyze the conformation of drug candidates to evaluate their

docking potential to a particular biomolecular target and for a prediction of its use as a

pharmacophore.

QSPR have been developed for a wide variety of applications, which include single-

molecule, intermolecular and reactive properties. The success of this approach has stim-

ulated its use in recent years, as can be seen in several reviews [550, 253]. The materials

science community has just begun to utilize machine-learning methods, which encompass

cheminformatics and QSPR. Work in this area has led to the prediction of crystal struc-

tures of inorganic molecules [149, 430, 211, 42], as well as the development of methods for

visualizing and identifying potential porous materials [208, 520].

The simplest QSPR approaches are based on linear regression models, but more so-

phisticated forms which incorporate genetic algorithms, artificial neural networks, and the

Gaussian processes technique have been developed in recent years [519, 85, 387, 386]. Sev-

eral other techniques in cheminformatics have been used for the identification of leads not

related to regression models. These include statistical tools used in machine learning such

as principal component analysis, linear discriminants, and decision trees [138, 39, 295, 261].

QSAR and QSPR largely rely on the calculation of molecular properties called descrip-

tors, which we will discuss in Sec. 7.4.1. Descriptors include physical, chemical and topolog-

ical properties. Descriptors can be classified as either one-, two- or three-dimensional, de-

pending on whether they describe bulk properties, connectivities or conformation dependent

properties, respectively [591, 530]. The use of descriptors in cheminformatics has provided

simple rules to evaluate druglikeness, as in the case of Lipinski’s Rule of Five which analyzes

molecules using a set of structural descriptors: molecular mass, hydrogen bond donors, hy-

drogen bond acceptors, partition coefficient, and number of rotatable bonds [311]. These

rules have been very useful for the development of drug leads. Therefore, there have been
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Figure 7.3: A reaction-based approach for enumerating a molecular library. (a) Linking
reaction: Benzene molecule with Mg chemical handles in the para position reacts with
pyrrole with Mg chemical handles at the 2,5-position. One set of Mg (green) react to form
a linked co-monomer of these moieties. (b) Fusion reaction: Benzene molecule with Mg
chemical handles in the para position reacts with pyrrole with Mg chemical handles at the
2,5-position to form benzopyrrole. In both cases, a second set of Mg handles (red) is present
so that this product can be used as a reagent and enable the generation of co-monomers of
greater size.

active efforts to develop computer codes that allow the rapid evaluation of hundreds of such

descriptors [95, 396, 515].

7.4.1 The molecular library and physicochemical molecular descriptors

In order to search for donor molecules that have the best combination of electronic

properties, we built a molecular library of approximately 2.6 million conjugated molecules.

The molecular library employed is built via a combinatorial molecule generation scheme

starting from a set of 30 molecular building blocks (in Sec. 7.6). The fragments include

the most prevalent molecular motifs used in the experimental design of OPVs to date and

are chosen with input from experimentalist collaborators from the group of Zhenan Bao at

Stanford University to ensure synthetic feasibility [356]. As discussed in Sec. 7.3, R-groups

play an important role in OPV materials but for the present work we chose to focus only

on the molecular backbone.

We enumerate the library using a virtual reaction-based approach by either linking or

fusing the fragments together, as shown in Fig. 7.3. We also extend the size of the co-

monomers by properly adding molecular handles, so they can be further linked or fused.

Complete details of the molecular library generation will be presented in a separate publi-

cation [394].

We use the previously introduced descriptors for an initial characterization of our molec-

ular library. We employ the Marvin code by ChemAxon [95]. ChemAxon provides a set
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of over 200 descriptors that are relevant for drug design applications, but they nonetheless

proved useful in the application for OPV donor materials. We selected descriptors corre-

sponding to elemental analysis, charge, geometry, and electronic states based on Hückel

theory for the study of monomers for use as donor in OPVs. For atomic-based properties,

we assessed the maximum, minimum and average value in the molecule. There are a total

of 33 descriptors in our model, their classes are listed in Table 7.5. These can be easily

computed for the whole library within a few days on a single workstation.

A specific example of a descriptor that displayed statistically significant correlation

is the electrophilic localization energy, L(+), which is an atom-centered property based on

the Hückel method: the simplest semiempirical approach for obtaining quantum-mechanical

properties of conjugated molecules [237]. L(+) is the energy related to removing an atom

from conjugation, effectively donating two π-electrons to the electrophile. The lower the

value of L(+), the more reactive the compound. Therefore, a small value of electrophilic

localization energy means that the atom contributes little to the overall conjugation of the

molecule. The effect is shown in Fig. 7.4.

Figure 7.4: The electrophilic localization energy, L(+). The energy related to the bond
formation at a conjugated center, which will remove that center from conjugation, effectively
taking away two π-electrons from the conjugated backbone. The lower the value of L(+),
the more reactive the compound, meaning that the atom contributes little to conjugation.

7.4.2 Descriptor model and training set results

We have chosen a simple linear regression model for this initial investigation. The de-

scriptors chosen above are assembled accordingly and the resulting model is parametrized

using a training set of organic monomers with experimentally known current-voltage char-

acteristics. We selected a set of 50 training molecules compiled from the literature [365, 441,

489, 558, 355, 344, 23, 22, 389, 63, 522, 325, 140, 98]. These molecules include aliphatic side

chains used to control packing structures. The current chapter is concerned with donor ma-

terials of BHJ design, but this method can naturally be applied to other device architectures

and materials given the appropriate training set.
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Property R2 (all desc.) Descriptors R2

Voc 0.9580 20 0.9455
Jsc 0.9202 18 0.8989
%PCE 0.8937 15 0.8409
FF 0.6567 20 0.6170
VocJsc 0.9025 20 0.8809

Table 7.2: Summary of linear fitting results for each of the properties we study. We compare
the coefficients of determination (R2) using all 33 descriptors (all desc.) and the statistically
significant ones. The number of significant descriptors ranges from 15–20, but the R2 is not
largely affected in all cases.

As mentioned in Sec. 7.1, we focus on the four most relevant parameters for the per-

formance characteristics of a solar cell. These are PCE, and its components as expressed

in Eq. 7.1: the FF, Voc and Jsc. Note that Voc and Jsc largely depend on properties in-

trinsic to the donor and acceptor. FF broadly depends on the morphology and the specific

device architectures. We can therefore expect that the molecular descriptors used and the

experimental values will show a better correlation for the first two than for the latter. The

expression to determine PCE includes all three parameters and its correlation should thus

fit in between the others.

The multiple linear regression for the descriptor models with respect to these four

parameters was performed using the R code [429]. The correlation, as obtained by the use of

the 33 descriptors, varied from very good (R2
Voc

= 0.96, R2
Jsc

= 0.92) or good (R2
PCE = 0.89)

to poor (R2
FF = 0.66). We performed a significance test on the descriptors and eliminated

the least significant ones which only slightly reduced the precision of the fit (shown in

Sec. 7.6). The significance of the descriptors was obtained from a two-sided t-statistics test.

The p-value for each descriptor ranged from 10−3 to 10−1.

In order to mitigate the difficulty of predicting the FF from a purely cheminformatics

approach, we also built a model for the product VocJsc, which is proportional to PCE but

only contains parameters well represented in our cheminformatics approach. We summarize

the results related to the coefficients of determination (R2) of the fitting in Table 7.2. We

also present the results of the predicted properties against the measured ones in Fig. 7.5.

As stressed above, it is not unexpected that the parameters which depend on the material

properties, Voc and Jsc, result in a much better fit than the FF.

The fit resulted in families of significant descriptors that were different for each of

the experimental parameters. The best description included 20 descriptors for Voc and

VocJsc, 18 for Jsc and 15 for PCE. Four descriptors are present in the models of each four

parameters. We group estimates of these descriptors in Table 7.3. We notice that each

descriptor in this subset has either a positive or a negative correlation for all four values.
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Estimates
Descriptor Voc Jsc %PCE VocJsc

Rotatable bond count +0.2375 +2.3886 +0.8393 +1.9484
Electron density (lowest) −0.8403 −24.1885 −11.3297 −20.9617
Orbital electronegativity (σ) (average) −1.4448 −38.4895 −15.5656 −23.4284
Orbital electronegativity (π) (highest) +0.2317 +2.5199 +1.7823 +3.0837

Table 7.3: Estimates for the four prevalent descriptors for the Voc (20 descriptors), Jsc (18
descriptors), PCE (15 descriptors), and the product VocJsc (20 descriptors). The estimate
for each of these descriptors are all within two orders of magnitude and have the same sign.

Voc Jsc VocJsc %PCE
(V) (mA/cm2) (mAV/cm2)

Max. value (experimental) 1.04 15.0 8.63 5.32

Max. value (predicted) 2.97 41.5 23.61 10.36

% molecules above
highest experimental 43.6 37.2 43.4 1.5

% molecules with
negative value (predicted) 0.8 8.3 8.0 19.7

Table 7.4: Best current-voltage characteristics predicted from molecular descriptors in the
molecular library as compared with experimentally measured for the training set. The
highest efficiency predicted is 95% above than the best experimental value. The percentage
of molecules predicted to have parameters exceeding the highest experimental value is above
37% for the better fits. Also shown is the percentage of molecules showing (unrealistic)
negative values of the parameters.

The separation between estimates is never larger than two orders of magnitude. Therefore,

these descriptors form a tight set of estimates that affect each of the parameters in a similar

fashion.

As in most machine learning approaches, it is a complicated task to uniquely specify

the role of all of individual descriptors for a specific property. Ultimately the combination

of all the descriptors in the model is what makes the fit have a relatively good R2 value of

the fits.

7.4.3 Predictions from cheminformatics

We now apply the models created in the previous section to the 2.6 million molecules of

the candidate library and summarize our findings. The histograms of the obtained results

are shown in Fig. 7.6. In the cases of Voc and Jsc (and therefore in VocJsc) there are a

considerable number of molecules with predicted values well above the largest observed
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Figure 7.5: Results for the multiple linear regression of the four models and the values of the
training set. The predicted value from fitted descriptors is compared to the experimental
value originally used for fitting. Units are mA/cm2 for Jsc, and V for Voc.

to date. These molecules constitute the most promising candidates for BHJ donor OPV

materials within the presented cheminformatics approach. Some molecules are predicted

to have an unrealistic negative value. The fraction of molecules in this situation is small

for all parameters except for the FF, which can easily be explained by its relatively poor

model. Being mindful of the limitations of the extrapolation, we find that for Voc nearly

half of the molecules are predicted to have a value higher than the best of the experimental

molecules (1.04 V), and only 0.8% have a negative value; for Jsc, 41.5% of the molecules

have a value higher than the best experimental, and 8.3% have a negative value; only 1.5%

of the molecules have a predicted value of PCE higher than the highest experimental, and

the highest value is 10.4%, but there are 43.4% of molecules with a value of the product

VocJsc higher than the highest experimental; these molecules, combined with an appropriate

value of the FF (which is not predicted well by these descriptors) could have values of PCE

above current records. These results are summarized in Table 7.4.

We further investigate which of the highest rated molecules have the best value for each

of the three current-voltage parameters considered (Voc, Jsc, VocJsc). We test if a promising
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Figure 7.6: Histograms of the predicted current-voltage parameters (open circuit voltage
(Voc), short circuit current density (Jsc), fill factor (FF), power conversion efficiency (PCE),
and the product VocJsc) for the screening of 2,671,405 molecules. Units are mA/cm2 for Jsc,
and V for Voc. The vertical lines correspond to the experimental values of the molecules in
the training set (i.e., independent of the y-axis value). Note that the predicted values are
larger than the best experimental ones, especially for Voc and Jsc, their product, and PCE.

molecule for Voc is also a good candidate for Jsc and VocJsc. We selected the top 10% from

each group and compared them. We find that molecules predicted to have a high value of

Voc only rarely have also a high value of Jsc, and vice versa. Fig. 7.7 shows the position in

the predicted Voc vs. Jsc space of the top 10% of molecules from each group: Voc, Jsc, and

VocJsc. We observe that molecules predicted to have the highest values of the product VocJsc

have mostly a high value of Jsc and an average value of Voc, i.e. they have a higher overlap

with the top values of Jsc. This suggests that the search for high efficiency monomoers, is

particularly promising with molecules based on motifs present in both the Jsc and VocJsc

optimization.

For a more detailed analysis of the results we focus on the top thousand molecules

(all following quantities are taken w.r.t. to the top 1000) with the best current-voltage

characteristics. For Voc, we notice that these have at least one silicon atom and are built
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Figure 7.7: Top 10% molecules with highest predicted values of Voc (green), Jsc (blue),
and VocJsc (red). The intensity of the point corresponding to a given molecule is coded
according to the value of the product VocJsc. The best molecules, according to the present
study, are located in the upper left region of the figure. Units are mA/cm2 for Jsc, and V
for Voc.

mostly by both linking and fusing the 30 basic fragments. A typical molecule from this

set is shown in Fig. 7.8a. For Jsc, silicon atoms are not as common (161 molecules have at

least one) but instead selenium-containing heteroatoms are more frequent (313 molecules

have at least one) and the thienopyrrole motif is present in 822 molecules. The molecules of

this set have a predominantly linked rather than fused backbone. Fig. 7.8b shows a typical

molecule from this set.

Again, the best expected co-monomers for application in heterojunction OPVs corre-

spond, according to this QSPR analysis, to the ones with the highest value of VocJsc, for

which the set of the best thousand have molecules with silicon atoms (375), selenium atoms

(131), silicon and selenium atoms (53) and come mostly from linking the basic units (890).

The benzothiadiazole or pyridinethiadiazole motifs are prevalent in this set of candidates

(see Fig. 7.9), present in 463 molecules. Similarly, units that can potentially have quinoid

stabilization are prominent in this set. Specifically, 117 present the thienothiophene moiety.

This suggests that the search for monomers with high efficiency as OPV’s, should start

with molecules based in the motifs presented in Fig. 7.9, as well with those with potential

quinoidal stabilization. We currently work on a cross-validation of the present predictions

with the ones from the quantum chemical studies within the Harvard Clean Energy Project

which will be presented in the near future.
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Figure 7.8: Typical molecules from the set of cheminformatics predictions for highest (a) Voc

(note the mixed linked and fused heterocyclic units with silicon), (b) Jsc (note the linked
backbone, the selenium atoms and the thienopyrrole motif), (c) VocJsc (note the mixed
linked and fused structure and the benzothiadiazole and thienopyrrole motifs).

Figure 7.9: Ubiquitous motifs present in many of the most promising molecules according
to the predicted VocJsc parameter: a) benzothiadiazole or pyridinethiadiazole motif, b)
thienopyrrole motif

7.5 Discussion and conclusions

In the present chapter we introduced a cheminformatics based approach for the dis-

covery of promising OPV donor materials. We calculated the current-voltage properties of

2.6 million molecular motifs using linear regression descriptor models. These allowed us to

identify candidates with a favorable set of performance related parameters, which – accord-

ing to our QSPR analysis – have the prospect of being suitable as high-efficiency BHJ solar

cell materials. The molecules with the most promising predictions feature a variety of struc-

tural designs, but three motifs appear repeatedly in our top candidates: benzothiadiazole,

pyridinethiadazole and thienopyrrole, shown in Fig. 7.9.

As summarized in Table 7.1, the evolution of OPV donor materials has followed dif-

ferent design strategies, including the donor-acceptor polymer approach and the quinoidal

stabilization. The last column of Table 7.1 shows the number of molecules, from our top
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1000 selection, which are part of each design “generation”. We note that PPV-like molecules

were not included in our study, and P3HT was not predicted to be in the top 1000. How-

ever, there were 17 molecules that followed the donor-acceptor approach. We obtained

13 molecules with the design specified as DTAT, although in our case these systems only

had one thiophene scaffold. Finally, molecules with quinoidal stabilization (i.e., containing

thienothiophene) numbered 117. A significant fraction of our top molecules hence belongs

to the latest generation of OPVs.

Despite the limitations of this simple approach, we can conclude that the use of

QSPR and cheminformatics-type approaches can be a valuable guide for the design of

lead molecules for solar cell materials. Current efforts to improve upon the presented here

include the use of more sophisticated and flexible models, extended and improved training

sets, as well as a new generation of descriptors specifically designed for organic semiconduc-

tors. The latter can be derived from higher level quantum-chemical studies carried out in

the Harvard Clean Energy Project [107, 201].

7.6 Appendix

7.6.1 Molecular Library Generation

In Fig. 7.10, we show the set of building blocks. These are used to generate the

molecular library. Further details of the molecular library generation will be detailed in a

separate publication [394].

7.6.2 Descriptors

We selected a subset of descriptors available through ChemAxon. The subset selected

is shown in Table 7.6. These descriptors were coded in a program and applied to our huge

set of molecules.

It should be noted that many descriptors are calculated for each atom of the molecule.

In these cases we selected the lowest, the highest and the average value to be used in the

calibration and in the prediction.

7.6.3 Calibration molecules

We selected a set of 50 molecules which have been studied experimentally and results

are available.

We built molecular formulae from the original papers. For these calculations, aliphatic

chains were stripped from the molecular formula. The set of molecules with efficiency
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Figure 7.10: The thirty basic heterocyclic units used in this study are shown with their Mg
chemical handles at the 2,5- or para- position of the five-membered and six-membered ring,
respectively.

parameters measured experimentally, thus used in this study, is shown in Fig. 7.11 and

Fig. 7.12.

7.6.4 Selection of descriptors and results for the calibration molecules

Figures 7.13, 7.14 and 7.15 show plots of Voc versus each one of the 33 descriptors, none

of them showing an obvious correlation. We used R to perform a multiple linear regression.

As could have been expected, 50 experimental data with 33 descriptors make for a very

good fit with R-squared of 0.9580. Some of the descriptors are not statistically significant,

so we removed the less significant descriptors and ended up with a fitting from 20 descriptors

(with R-squared of 0.9455) all of them significant. Table 7.7 show results of the fitting.

Next, we used the same technique for Jsc. Table 7.8 show results of the fitting. In this

case, 18 significant descriptors fit the experimental values with R-squared of 0.8989.

Table 7.9 show results of the fitting of PCE. In this case, 15 significant descriptors fit

the experimental values with R-squared of 0.8409.
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Figure 7.11: First set of the fifty experimentally characterized molecules (shown here with-
out aliphatic side chains). Once stripped of the aliphatic tails, several molecules are equiv-
alent (6 and 8; 3, 16 and 18; and 48 and 50), but all are retained in the training set.
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Figure 7.13: Experimental values of Voc versus a set of 33 descriptors obtained from
ChemAxon for the set of 50 calibration molecules stripped of their aliphatic tails.

Table 7.10 show results of the fitting of FF. In this case, 20 significant descriptors fit

the experimental values with R-squared of 0.6170; not all of them are significant but one

has to go to only 12 descriptors to get them all significant and then R-squared drops to

0.4757. This is interpreted as meaning that the fitting for FF is not credible at all, as it

may be expected for this morphology based experimental parameter.

Table 7.11 show results of the fitting of the product VocJsc. The fitting is good with

R-squared of 0.8809 and all 20 descriptors are significant.

A common test of the calibration of the training set to the descriptors is the leave

“1/3 out” technique. The whole set of calibration molecules is randomly divided in three

subsets: A (17 molecules in this case), B (17 molecules), and C (16 molecules). For Voc,

the set of 20 descriptors previously selected is used to fit separately to the subsets AB (34

molecules), AC (33 molecules) and BC (33 molecules). The coefficients thus obtained are

used to predict Jsc for the set not used in the fitting (C for AB, for instance). Results are

shown in Fig. 7.16. As can be seen, the prediction of excluded molecules is consistent.

We performed the same analysis for Jsc —results are shown in Fig. 7.17— and for the

product VocJsc —results shown in Fig. 7.18.
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Figure 7.14: Experimental values of Voc versus a set of 33 descriptors obtained from
ChemAxon for the set of 50 calibration molecules stripped of their aliphatic tails.
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Figure 7.15: Experimental values of Voc versus a set of 33 descriptors obtained from
ChemAxon for the set of 50 calibration molecules stripped of their aliphatic tails.
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experimental!
predicted from ABC!
predicted from AB!
predicted from AC!
predicted from BC!

Leave 1/3 out validation!

Figure 7.16: Results of the “leave 1/3 out” correlation test for Voc.

experimental!
predicted from ABC!
predicted from AB!
predicted from AC!
predicted from BC!

Leave 1/3 out validation!

Figure 7.17: Results of the ”leave 1/3 out” correlation test for Jsc.
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experimental!
predicted from ABC!
predicted from AB!
predicted from AC!
predicted from BC!

Leave 1/3 out validation!

Figure 7.18: Results of the ”leave 1/3 out” correlation test for VocJsc.
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Descriptor Description

Molecular mass Molecular mass

logP Octanol-water partition coefficient, a measure
of hydrophobicity based on group contributions
from a set of basic fragments fitted to
experimental values [268]

Ring count Number of rings in the molecule

Hydrogen bond acceptor count Number of hydrogen bond acceptor atoms

Hydrogen bond donor count Number of hydrogen bond donor atoms
Rotatable bond count Excludes bonds connecting hydrogens

and terminal atoms

Molecular polarizability Empirical calculation based on a dipole
interaction model from atomic polarizabilities,
experimental and ab initio values [546, 349]

Refractivity Empirical calculation of atomic refractivity;
related to London dispersion forces [551]

van der Waals surface area Molecular surface area as defined
by van der Waals radii

van der Waals volume Molecular surface volume as defined
by van der Waals radii

Water accessible area Water accessible surface area based on atomic
properties

Electronic localization Energy related to removing an atom
energy* from conjugation [431, 237]

Partial charge* Partial atomic charges for π systems
and electronegativity-based calculation for
the σ network [133]

Electron density* Based on occupancy of atomic-centered
orbitals [431, 237]

Steric hindrance Steric hindrance of an atom calculated from
the covalent radii values

σ orbital electronegativity* Mulliken atomic orbital electronegativity from
σ orbitals [133]

π orbital electronegativity* Mulliken atomic orbital electronegativity from
π orbitals [133]

Table 7.5: Classes of physicochemical and topological descriptors employed in the presented
models. We note that these 17 descriptor classes amount to 33 individual descriptors. An
asterisk denotes the descriptor is based on semiempirical Hückel model calculations.
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1. Molecular mass
2. logP partition constant octanol/water
3. Ring count
4. Hydrogen bond acceptor atom count in molecule
5. Hydrogen bond donor atom count in molecule
6. Rotatable bond count
7. Molecular polarizability
8. Refractivity
9. van der Waals surface area
10. van der Waals volume
11. Water accesible area calculation (ASA)
12. Water accesible area calculation of all atoms with positive partial charge (ASA+)
13. Water accesible area calculation of all atoms with negative partial charge (ASA-)
14. Water accesible area calculation of all hydrophobic (|qi| < 0.125) atoms (ASA H)
15. Water accesible area calculation of all polar (|qi| >= 0.125) atoms (ASA P)
16. Electrophilic localization energy (lowest)
17. Electrophilic localization energy (highest)
18. Electrophilic localization energy (average)
19. Partial charge calculation (lowest)
20. Partial charge calculation (highest)
21. Partial charge calculation (average)
22. Electron density (lowest)
23. Electron density (highest)
24. Electron density (average)
25. Steric hindrance (lowest)
26. Steric hindrance (highest)
27. Steric hindrance (average)
28. Orbital electronegativity (sigma) (lowest)
29. Orbital electronegativity (sigma) (highest)
30. Orbital electronegativity (sigma) (average)
31. Orbital electronegativity (pi) (lowest)
32. Orbital electronegativity (pi) (highest)
33. Orbital electronegativity (pi) (average)

Table 7.6: The set of descriptors calculated using ChemAxon.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 17.0788482 1.9956354 8.558 1.99e-09 ***
logP −0.1328980 0.0155249 −8.560 1.98e-09 ***
RingCount 0.2204759 0.0279730 7.882 1.08e-08 ***
AcceptorCount −0.0996894 0.0139580 −7.142 7.35e-08 ***
RotBondCount 0.2374734 0.0240348 9.880 8.67e-11 ***
Refractivity −0.0075611 0.0017250 −4.383 0.00014 ***
VdWArea 0.0063744 0.0009059 7.036 9.72e-08 ***
VdWVolume −0.0083368 0.0013763 −6.057 1.36e-06 ***
ASA −0.0037351 0.0010949 −3.411 0.00192 **
ASAH 0.0024702 0.0010328 2.392 0.02347 *
ElecLocEn(lo) 0.0371339 0.0157293 2.361 0.02517 *
PartialCh(lo) −1.6637886 0.4416521 −3.767 0.00075 ***
PartialCh(hi) −3.3145356 0.5805118 −5.710 3.54e-06 ***
PartialCh(avg) 50.3586495 6.6593831 7.562 2.46e-08 ***
ElecDen(lo) −0.8402735 0.2704179 −3.107 0.00420 **
ElecDen(avg) −2.3826616 0.2394278 −9.951 7.37e-11 ***
StericHind(hi) −0.8950969 0.1545381 −5.792 2.82e-06 ***
σElecNeg(lo) 0.1993522 0.0588838 3.386 0.00206 **
σElecNeg(hi) 0.0448449 0.0190354 2.356 0.02545 *
σElecNeg(avg) −1.4447603 0.2073776 −6.967 1.17e-07 ***
πElecNeg(hi) 0.2316545 0.0345617 6.703 2.36e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04702 on 29 degrees of freedom
(8 observations deleted due to missingness)
Multiple R-squared: 0.9455, Adjusted R-squared: 0.9079
F-statistic: 25.15 on 20 and 29 DF, p-value: 4.09e-13

Table 7.7: Results for the fitting of Voc to 20 descriptors
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 241.2144 34.5775 6.976 7.91e-08 ***
logP 1.5085 0.4307 3.502 0.001424 **
AcceptorCount 1.6288 0.4314 3.776 0.000678 ***
DonorCount 6.0441 1.6055 3.765 0.000700 ***
RotBondCount 2.3886 0.3408 7.008 7.24e-08 ***
MolPolarizability −0.3654 0.1033 −3.537 0.001297 **
ASA+ −174.9657 43.9844 −3.978 0.000388 ***
ASA− −174.9481 43.9840 −3.978 0.000389 ***
ASAH 174.9342 43.9859 3.977 0.000389 ***
ASAP 175.0909 43.9871 3.981 0.000386 ***
ElecLocEn(lo) −24.2310 3.4067 −7.113 5.42e-08 ***
ElecLocEn(avg) 15.4843 2.4773 6.250 6.03e-07 ***
ElecDen(lo) −24.1885 6.1314 −3.945 0.000426 ***
StericHind(hi) 16.6785 2.8987 5.754 2.48e-06 ***
σElecNeg(lo) −6.2720 1.4874 −4.217 0.000199 ***
σElecNeg(hi) 1.1994 0.5035 2.382 0.023531 *
σElecNeg(avg) −38.4895 5.5345 −6.954 8.40e-08 ***
πElecNeg(hi) 2.5199 0.9816 2.567 0.015305 *
πElecNeg(avg) 23.4035 3.7781 6.195 7.06e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.356 on 31 degrees of freedom
(8 observations deleted due to missingness)
Multiple R-squared: 0.8989, Adjusted R-squared: 0.8402
F-statistic: 15.31 on 18 and 31 DF, p-value: 1.016e-10

Table 7.8: Results for the fitting of Jsc to 18 descriptors
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 121.834817 22.037026 5.529 3.87e-06 ***
RotBondCount 0.839267 0.162001 5.181 1.08e-05 ***
Refractivity −0.043604 0.014191 −3.073 0.004234 **
VdWArea 0.019545 0.006214 3.145 0.003503 **
ASA+ −89.561436 20.122423 −4.451 9.21e-05 ***
ASA− −89.554274 20.122510 −4.450 9.22e-05 ***
ASAH 89.537003 20.122831 4.450 9.24e-05 ***
ASAP 89.592594 20.123894 4.452 9.18e-05 ***
ElecLocEn(hi) 0.570364 0.165122 3.454 0.001535 **
PartCharge(avg) 164.421493 82.195338 2.000 0.053744 .
ElecDen(lo) −11.329732 2.569477 −4.409 0.000104 ***
StericHind(lo) −7.596139 2.418105 −3.141 0.003539 **
σElecNeg(hi) 0.523366 0.216473 2.418 0.021304 *
σElecNeg(avg) −15.565577 1.935828 −8.041 2.81e-09 ***
πElecNeg(hi) 1.782254 0.462344 3.855 0.000507 ***
πElecNeg(avg) 4.212309 1.925005 2.188 0.035839 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6436 on 33 degrees of freedom
(9 observations deleted due to missingness)
Multiple R-squared: 0.8409, Adjusted R-squared: 0.7686
F-statistic: 11.63 on 15 and 33 DF, p-value: 3.784e-09

Table 7.9: Results for the fitting of %PCE to 15 descriptors
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.179217 0.937496 0.191 0.84978
MolecMass 0.003691 0.001849 1.997 0.05568 .
RingCount −0.335110 0.105620 −3.173 0.00365 **
DonorCount −0.260610 0.097487 −2.673 0.01239 *
RotBondCount −0.107250 0.038108 −2.814 0.00884 **
MolPolarizability 0.058696 0.018165 3.231 0.00315 **
VdWVolume −0.005359 0.003037 −1.765 0.08854 .
ASA 7.987770 3.732320 2.140 0.04119 *
ASA+ −7.988750 3.732284 −2.140 0.04117 *
ASA- −7.988540 3.732144 −2.140 0.04117 *
ASAP 0.001865 0.001394 1.338 0.19150
ElecLocEn(lo) 0.478993 0.161497 2.966 0.00611 **
ElecLocEn(hi) 0.234037 0.068207 3.431 0.00188 **
ElecLocEn(avg) −0.582206 0.201671 −2.887 0.00742 **
PartialCharge(lo) −1.450116 1.032790 −1.404 0.17129
PartialCharge(avg) −14.432399 8.624697 −1.673 0.10539
ElecDen(hi) −1.170898 0.404904 −2.892 0.00733 **
ElecDen(avg) 1.407407 0.386459 3.642 0.00109 **
σElecNeg(hi) 0.077231 0.030475 2.534 0.01715 *
πElecNeg(lo) −0.046796 0.041594 −1.125 0.27011
πElecNeg(hi) −0.133699 0.070364 −1.900 0.06776 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.07763 on 28 degrees of freedom
(9 observations deleted due to missingness)
Multiple R-squared: 0.6170, Adjusted R-squared: 0.3434
F-statistic: 2.255 on 20 and 28 DF, p-value: 0.02361

Table 7.10: Results for the fitting of FF to 20 descriptors. Note that not all of them are
significant.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 171.92666 30.65770 5.608 4.69e-06 ***
MolMass 0.03479 0.01458 2.386 0.023758 *
logP 0.96304 0.28544 3.374 0.002120 **
AcceptorCount 1.11779 0.31584 3.539 0.001375 **
DonorCount 3.49484 1.37146 2.548 0.016383 *
RotBondCount 1.94840 0.28063 6.943 1.25e-07 ***
Refractivity -0.16140 0.03961 -4.075 0.000327 ***
ASA 134.93698 47.32570 2.851 0.007942 **
ASA+ -134.97116 47.32624 -2.852 0.007929 **
ASA- -134.95525 47.32343 -2.852 0.007932 **
ASAP 0.07088 0.02203 3.218 0.003167 **
ElecLocEn(lo) -12.30036 2.60418 -4.723 5.47e-05 ***
ElecLocEn(avg) 11.63824 2.18073 5.337 9.95e-06 ***
PartCharge(hi) -46.00685 12.68492 -3.627 0.001090 **
ElecDen(lo) -20.96171 5.18290 -4.044 0.000355 ***
ElecDen(avg) -9.95094 5.09448 -1.953 0.060495 .
StericHind(hi) 11.98562 2.77777 4.315 0.000169 ***
σElecNeg(lo) -5.57994 1.35516 -4.118 0.000290 ***
σElecNeg(avg) -23.42843 3.95824 -5.919 1.99e-06 ***
πElecNeg(hi) 3.08369 0.75953 4.060 0.000340 ***
πElecNeg(avg) 13.62962 2.72602 5.000 2.54e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.042 on 29 degrees of freedom
(8 observations deleted due to missingness)
Multiple R-squared: 0.8809, Adjusted R-squared: 0.7988
F-statistic: 10.73 on 20 and 29 DF, p-value: 1.427e-08

Table 7.11: Results for the fitting of VocJscto 20 descriptors
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Chapter 8

Accelerating resolution-of-the-identity second

order Møller-Plesset calculations with graphical

processing units

8.1 Introduction

Optimizing computational chemistry codes for central processing units (CPUs) run-

ning both in serial and in parallel has been the main focus of software developers in the

scientific-computing community, especially for massively parallel high-performance comput-

ing systems. However, the increasing demand for sophisticated graphics for video games,

computer-aided design (CAD), animation, and other applications is driving the develop-

ment of more and more powerful graphical processing units (GPUs), which take advan-

tage of data parallelism to render graphics at high speeds. While video cards have been

traditionally used only for graphics-intensive applications, they have also been recently

leveraged towards scientific-computing problems, such as finite-difference time-domain al-

gorithms [276], sorting algorithms for large databases [186], n-body problems [203], and

quantum Monte Carlo methods for chemical applications [19]. In these cases, program-

mers were required to construct GPU algorithms using a limited set of operations originally

intended for computer graphics applications; however, the recent release of graphics card

manufacturer NVIDIA’s compute unified device architecture (CUDA) development toolkit

for some of their high-end graphics cards allows developers to code algorithms in a C-like

language [384]. CUDA greatly eases the transition from using CPUs to general-purpose

computing on GPUs (GPGPU), as evidenced by the application of CUDA-implemented

algorithms to n-body problems in astrophysics [55] and two-electron integrals in electronic

structure problems [597]. Additionally, recent abstracts have indicated speedups using

CUDA-implemented algorithms for Coulomb integral evaluations [331] and molecular dy-

namics [501].
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Along with CUDA, NVIDIA also released compute unified basic linear algebra subpro-

grams (CUBLAS) as a linear algebra library for cards that support CUDA [382]. In this

chapter, we explore using GPGPU computing for electronic structure applications by exe-

cuting matrix-matrix multiplication operations using CUBLAS. In particular, we focus on

reducing computational time of the resolution-of-the-identity second order Møller-Plesset

perturbation theory (RI-MP2) [147, 572, 576, 333] as implemented in Q-Chem 3.1 [480, 132].

One of the widely used correlation treatments for electronic structure calculations, MP2

evaluates two-electron repulsion integrals of the form [216]

(µν|λσ) =

∫ ∫
φµ(r1)φν(r1)r−1

12 φλ(r2)φσ(r2)dr1dr2, (8.1)

where µ, ν, λ and σ are orbital basis function(φ) indices. The calculation of the energy (E)

is dependent on

E(2) =
∑
ijab

(ia|jb)2 + 1
2 [(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
,

(ia|jb) =
∑
µνλσ

CµiCνaCλbCσb(µν|λσ),

where i, j (a, b) are occupied (virtual) molecular orbitals which are Fock operator eigen-

functions with eigenvalues εi, εj (εa, εb), and C is the molecular orbital coefficient matrix.

In RI-MP2, the evaluation time is reduced compared to traditional MP2 calculations

[147, 572]. This technique involves approximating the costly four-center two-electron inte-

grals, Eq. 8.1, with the use of two-center and three-center integrals. To evaluate the integral,

products of orbital basis functions are represented as a linear combination of atom-centered

auxiliary basis functions P

ρµν(r) = µ(r)ν(r) ≈ ρ̃µν(r) =
∑

Cµν,PP (r).

By minimizing the Coulomb self-interaction of the residual density, the four-center integrals

are approximated as

(µν|λσ) =
∑
P,Q

(µν|P )(P |Q)−1(Q|λσ).

This step is an approximate insertion of the resolution-of-the-identity,

I =
∑
m

|m)(m| ≈
∑
P,Q

|P )(P |Q)−1(Q|

RI-MP2 is known to produce equilibrium geometries that rival density functional theory

(DFT) except for transition metal compounds [155]. On the other hand, RI-MP2 is also

known to capture long-range correlation effects, which are missing in many popular den-

sity functionals. So for many weakly-bound systems, where DFT results might become

questionable, RI-MP2 stands as essentially the least expensive alternative [132, 573].
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In Section 2, we present an overview of GPGPU computing and Section 3 contains gen-

eral results of matrix-matrix multiplication times for both CPU and GPU implementations.

In Section 4, we describe performance improvements achieved through the use of a GPU

in RI-MP2 calculations of a series of alkanes, showing the effect of changing the number

of electrons and the quality of the basis set used in the computation. Finally, in Section

5, we conclude with our resulting RI-MP2 speedup and the potential impact that GPGPU

computing can have on electronic structure calculations.

8.2 General-purpose computing on graphical processing units

Graphical processors are able to outperform CPUs for certain applications because of

intrinsic parallelization within the device. Multi-core and parallel CPU architectures, while

able to run many instructions simultaneously, require computational threads to be explicitly

coded to make optimal use of the available resources. Whereas a single-core CPU can only

execute a single instruction at a time (although several instructions may be in the pipeline),

a GPU can execute a single instruction on many pieces of data at the same time, using a

single instruction, multiple data (SIMD) paradigm. This inherent parallelization is a result

of hardware architecture; graphics cards are composed of an array of multiprocessors, each

of which has its own section of pipeline bandwidth. The graphics card used in this study has

16 multiprocessors, with each multiprocessor containing eight processors and able to handle

up to 768 threads concurrently [384]. At any given clock cycle, each multiprocessor executes

the same thread on all eight processors, although each processor operates on different data.

The threads are periodically switched to minimize the chance that a thread is waiting for the

appropriate data to be available. For problems that exhibit high levels of data parallelism,

GPUs can provide considerable computational speedup since this hardware design allows

multiple computational threads to execute quickly on a block of data that is reused. This

approach is ideal for rendering graphical data, but some scientific-computing applications

can also be adapted for use on these powerful video cards.

Until recently, a major hurdle in developing general-purpose applications for GPUs was

the difficulty of programming for them. The only access to the device was either through

graphics packages like OpenGL or by using a special assembly language made for the card.

Graphics packages provide the wrong abstraction for non-graphical applications, making

programs written with them difficult to understand, maintain and use. Writing assembly

code directly for the device is a less than ideal solution because of limits on the number

of instructions the card is able to process at a given time and the expertise required to

write code for a particular GPU. However, due to the computational potential of GPUs for

general computation, programmers were interested in implementing linear algebra routines
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on GPUs, even before the release of the CUDA toolkit [281, 145]. Operations such as vector

products and matrix-matrix multiplication are easily parallelizable, have high levels of data

reuse, and are important building blocks for other applications. With the release of the

CUBLAS library, migrating code written in C and Fortran to GPUs is now considerably

easier.

Despite decades of sustained progress in state-of-the-art of quantum chemistry method-

ology, speeding up calculations and thereby increasing the size of tractable molecules is an

ongoing activity. The use of GPUs provides an important opportunity to gain further

speedups when linear algebra operations are heavily used, as in RI-MP2. For this study,

we focus on the effect of carrying out matrix-matrix multiplication using a GPU since this

operation is one of the more time-consuming routines for CPUs to perform. The best known

matrix-matrix multiplication algorithm scales as O(n2.3) in computational time with ma-

trix edge length [114]. The CUBLAS matrix-matrix multiplication function scales as O(n3)

[382], nevertheless the scaling prefactor is found to be considerably smaller than for com-

parable CPU algorithms, as discussed in Section 3.

8.3 Computational setup and matrix multiplication compar-

ison

The hardware setup consists of a single NVIDIA Quadro FX 5600 GPU, an AMD Dual

Core Opteron 170 processor, a LanParty NForce 4 motherboard, and two gigabytes of RAM.

The operating system used is Ubuntu 7.04 with a Linux 2.6 kernel and the Intel Fortran

Compiler v10.0. In order to characterize CUBLAS function performance, we obtained

benchmarks of the speed of matrix-matrix multiplication using both the host CPU (regular

BLAS function) and the GPU (CUBLAS function). Fig. 8.1a shows the average (N=20)

computational times to multiply a pair of square matrices with 300 to 4000 elements on a

side. To multiply a pair of 300 by 300 matrices, both the CPU and the GPU took only a

hundredth of a second. As the size of the matrices increases, the benefit of the GPU becomes

apparent. Large matrices can be multiplied about thirteen times faster on the GPU than

on the host CPU, a significant gain for a moderate programming effort. We separately

analyzed the times of preprocessing, actual matrix multiplication and postprocessing for

the CPU and the GPU. The preprocessing and postprocessing times are due mostly to data

transfer between the motherboard and the GPU memory. The scaling with matrix size is

the same for a given stage in both units, but the prefactor is reduced twenty-fold for the

GPU in the case of the multiplication step. This reduction in evaluation time overwhelms

the modest increase in pre- and post-processing time for the GPU and the advantage of

using the GPU for this function increases for larger matrices.
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Figure 8.1: Average processing times for the multiplication of large matrices using a CPU
and a GPU (as a coprocessor). Pairs of square matrices are multiplied on an AMD dual-
core CPU and on an NVIDIA Quadro FX 5600 GPU. (a) For matrices as small as 750
elements per side, the GPU outperforms the CPU. For matrices with an area of a few
million elements, a 13x speedup is obtained using the GPU. Inset: Matrices larger than 213

elements on a side cannot be directly multiplied in the GPU due to memory limitations, but
splitting the matrices into smaller pieces before GPU multiplication shows no appreciable
difference in total time. (b) For small matrices, the data transfer overhead of the slow PCI
bus makes he GPU slower than the CPU implementation.

A challenge to effectively using GPUs for linear algebra occurs when matrices become

very large though. The GPU on-board memory is a finite resource which can restrict the

number of matrix elements that can be passed to the card. While the Quadro FX 5600 has

1.5 gigabytes of on-board RAM, the memory required to multiply very large matrices can

exceed this limit, causing the device to crash. When we attempted to multiply matrices

larger than 8192 elements on a side, the memory on the device was exhausted and the

CUBLAS library process stopped. To get around this memory limitation, the large matrices

can be split into pieces before being sent to the GPU, multiplied there, and then put back

together using the CPU. The inset of Fig. 8.1a shows the result of using this method on

a hardware system consisting of a single NVIDIA Quadro FX 5600 GPU, an AMD Dual

Core Athlon X2 processor, an Asus M2N32-SLI Deluxe motherboard, and four gigabytes of

RAM. Data points for matrices smaller than 8192 elements on a side are multiplied using

the standard library call while points for larger matrices use the method described. While a

little performance is lost transferring data in the bus, multiplying these very large matrices

in multiple passes on the GPU is still significantly faster than using just the CPU.

In electronic structure applications, however, many of the matrices that need to be
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multiplied are much smaller than a thousand elements on a side. Fig. 8.1b shows average

(N=20) computational times for multiplying a pair of square matrices that have only 20 to

300 elements on a side. The major bottleneck for using the GPU is revealed by this figure –

the PCI bus latency. Data communication between the GPU and the CPU is conducted via

a NVIDIA CK804 PCI x16 Bridge (Clock 66 MHz, Width 32 bits), which is considerably

slower than typical memory access for a CPU. The time it takes to transfer data over the

bus is long enough to make using a GPU for matrix multiplication on matrices smaller

than two hundred elements on a side inefficient. Our approach, therefore, is to set a lower

bound on when to use the graphics card processors, similar to Yasuda’s use of a threshold

parameter to control integral evaluations [597]. If a resultant matrix has an area smaller

than the square of a cutoff threshold, it is multiplied using the CPU and all matrices larger

than the cutoff are multiplied using the GPU. Since electronic structure calculations use

rectangular matrices, the optimal cutoff threshold is not obvious, as discussed in the next

section.

8.4 Speedups of RI-MP2 calculations on a series of alkanes

Within Q-Chem 3.1, the RI-MP2 correlation energy is evaluated in the five steps. The

steps are listed below with the following abbreviations: atomic basis functions, auxiliary

basis functions, occupied and virtual orbitals have the same notation as in Section 1, N

(M) is the number of atomic (auxiliary) basis functions, O (V) is the number of occupied

(virtual) orbitals, and α, β, γ and η are prefactors for the estimated computational cost.

Step 1: Evaluate (P |Q), which are a two-electron repulsion integrals between two auxiliary

basis functions and form the square root of its inverse matrix, (P |Q)−
1
2 . The estimated

computational cost of this step is αM2 + βM3.

Step 2: Evaluate (µν|P ), which are two-electron repulsion integrals between a pair of nor-

mal atomic basis functions, then transform the 3-center integrals into (ia|P ). The

estimated computational cost of this step is γN2M + 2N2MO + 2NMOV.

Step 3: Form Bia,Q via

Bia,Q =

AUX∑
P

(ia|P )(P |Q)−
1
2 .

The estimated computational cost of this step is 2M2OV.

Step 4: Form (ia|jb) via

(ia|jb) ≈
AUX∑
Q

Bia,QBjb,Q.
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The estimated computational cost of this step is MO2V2.

Step 5: Evaluate RI-MP2 energy using

ERI−MP2 =
∑
ijab

|(ia|jb)− (ib|ja)|2

Ei + Ej − Ea − Eb
.

The estimated computational cost of this step is ηO2V2.

We observe that steps 1 and 5 contribute little to the total CPU time, whereas step

2 and 3, which both scale as O(n4) with the system size, have comparable costs. Step 4,

which scales as O(n5), dominates the RI-MP2 energy evaluation, and becomes our primary

concern in this study. In the original code for step 4 within Q-Chem 3.1, there is a loop

over (i, j) pairs, and within the loop, a matrix of size MV is multiplied to the transpose

of a matrix of the same size. In this chapter, we introduce a new parameter, S, which

groups S occupied orbitals together during the computation and, within each loop, results

in the total matrix size of M(SV ). Based on speedups obtained for n-octane (which uses

the smallest matrices of the series), S is set to five for all n-alkane calculations. This simple

code modification stacks matrices that would otherwise be smaller than the cutoff threshold

together, allowing the GPU to be used more effectively.

Fig. 8.2 shows the speedup in RI-MP2 calculations obtained simply by modifying the

code as described above and using the GPU as a coprocessor to execute the matrix-matrix

multiplication in step 4. Results are shown for n-octane (Fig. 8.2a) and for n-tetradecane

(Fig. 8.2b), both treated with a cc-pVDZ basis set [139]. Total computational time is

plotted against the threshold used to send matrices to the GPU with CPU time for each

calculation shown as a reference. As seen in Fig. 8.2a, the value of the threshold must be

set smaller than the maximum matrix size to ensure that matrices are sent to the GPU

(around 850 for n-octane with the cc-pVDZ basis and S = 5). For larger systems, such as

n-tetradecane (Fig. 8.2b), the maximum matrix size is greater than 1000, so a speedup is

obtained for all threshold values. For the n-alkane series comparison, a threshold of 350

is used. However, it should be noted that the value of S and the cutoff threshold can be

optimized to minimize the impact of bus latency discussed in Section 3. While systems as

large as C22H46 with the cc-pVDZ basis set did not reach the limit of the graphics card

memory, calculations as small as C14H34 with the cc-pVTZ basis set [139] cause the device

to crash. Code modifications are currently underway to incorporate the method described

in Section 3 into Q-Chem 3.1 to treat larger systems with more accurate basis sets.

A price to pay for the speedup achieved by using the GPU is some loss of precision

(see Fig. 8.3). Current GPUs only support 32-bit single precision floating point numbers

instead of the 64-bit double precision numbers used by modern CPUs; however, this is most
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Figure 8.2: Total RI-MP2 calculation time for n-octane and n-tetradecane using a CPU and
a GPU (as a coprocessor). If a matrix edge is smaller than the threshold, it is multiplied in
the CPU, otherwise it is multiplied in the GPU. For both cases the matrix grouping factor
S is set to five. (a) For n-octane, larger thresholds revert back to CPU timings because
there are no matrices with edges larger than 850 (vertical line) when using the cc-pVDZ
basis set. (b) n-tetradecane calculations are 70% faster than the CPU in the 150-500 range
of thresholds.

likely a temporary setback because manufacturers have promised double precision support

in future generations of GPUs. The precision degradation due to single precision is not of

great concern with our RI-MP2 calculations as long as an appropriate cutoff threshold is

used. In general, the energies obtained using single precision on the graphics card were only

slightly different from the ones found using double precision on the CPU. As seen in Fig. 8.3,

the difference of the RI-MP2 correlation energy using the GPU from that found using double

precision using the CPU is on the order of 10−4 Hartrees for both n-octane and n-decane.

Fig. 8.4 shows the total and RI-MP2 correlation energy for a series of conformers of n-octane

as the torsional angle of the central bond is rotated. The average error introduced in the

RI-MP2 correlation energy is only -0.08 mHartrees (Fig. 8.4b), preserving the trend of the

CPU calculation.

The general picture of the speedups obtained by combining the use of the GPU and

the CPU can be seen in Fig. 8.5, where we report calculations of single point energies with

the RI-MP2 method for a series of linear alkanes using the cc-pVDZ basis set. Energies for

alkanes with an even number of carbon atoms from octane (C8H18) to doeicosane (C22H46)

are calculated. Speedups of 1.5x (35%) to 4.3x (77%), with an average of 2.7x (63%),

are achieved throughout the series. This is a significant increase of efficiency in molecular

calculations with no considerable expense of precision. Even with GPUs that only work with
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Figure 8.3: RI-MP2 correlation energy obtained for n-octane and n-tetradecane using the
cc-pVDZ basis set on a CPU and a GPU (as a coprocessor). (a) For n-octane, the GPU-
implemented algorithm returns an energy only 0.11 mHartrees off of the value obtained using
the CPU alone. (b) For n-tetradecane, the CPU-calculated energy is -2.02124 Hartrees (not
shown).

single precision arithmetic, the average error in RI-MP2 correlation energy is 0.3 mHartrees

(RMSD: 0.5 mHartrees, MAD: 0.3 mHartrees). This is only 6×10−5 % of the average total

energy.

To show the effect of using the GPU for matrix-matrix multiplication in RI-MP2 cal-

culations, Fig. 8.6 plots the computational time required by each RI-MP2 step for the series

of alkanes. For C22H46, a system with 178 electrons, the time required to evaluate step 4

of the RI-MP2 calculation on the CPU is 78% of the total (Fig. 8.6a). By using the GPU

(Fig. 8.6b), the time spent on this step is reduced to 50% of the total RI-MP2 time. The

next largest contribution to the calculation becomes step 2, which increases from 10% to

35% of the RI-MP2 time when using the GPU for doeicosane. This step involves the evalua-

tion of three-center integrals and subsequent two-index transformations. For the evaluation

of three-center integrals, in the future we can potentially adapt the approach developed by

Yasuda for the evaluation of two-center integrals to approximate Coulomb integrals. We

expect that by combining the two approaches, a total speedup of 6.6x can be obtained for

RI-MP2 treatment of electron correlation with only a moderate programing effort.
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Figure 8.4: Total and RI-MP2 correlation energy obtained for n-octane conformers using
the cc-pVDZ basis set on a CPU and a GPU (as a coprocessor) over a range of central bond
torsional angles. (a) Total energy from single point calculations for the series of conformers.
(b) RI-MP2 correlation energy for the series of conformers shows that the average random
error introduced by the GPU calculations is -0.08 mHartrees (RMSD: 0.1 mHartrees, MAD:
0.05 mHartrees).

8.5 Conclusions

In this chapter, we demonstrated that simply rerouting one linear algebra routine in

the evaluation of RI-MP2 correlation from a CPU to a GPU achieved a speedup of 4.3x for

the calculation of the single point energy of doeicosane. To the best of our knowledge, this

is the first implementation of a CUBLAS library function in electronic structure codes. The

C-like language of CUDA allows easy migration of code segments to implementations using

a GPU. The resulting price/performance is very competitive; the parallelization offered

by graphical processors will allow scientific calculations that are usually run on clusters

and special-purpose supercomputers to be evaluated at a fraction of the cost. Efforts to

reduce computational time even more by implementing the two-electron repulsion integrals,

as well as other linear-algebra operations in the code (matrix-vector multiplication and

diagonalization routines), are underway. The recent availability of the CUBLAS library is

an encouraging development for electronic structure developers. The level of abstraction

allowed us to encapsulate the linear algebra calls of Q-Chem in such a way that all matrix-

marix multiplies are carried out with CUBLAS with minimal code modification. This

encapsulation strategy allows for faster adoption of other novel technologies such as other

types of linear algebra co-processing units as they become available. The challenge left for

the electronic structure community is to restructure and adapt the current algorithms to
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Figure 8.5: Total processing times for the calculation of RI-MP2 single point energies for a
series of linear alkanes using the cc-pVDZ basis set on a CPU and a GPU (as a coprocessor).
The series of linear alkanes with even numbers of carbon atoms from octane (C8H18) to
doeicosane (C22H46) is investigated. Speedups of 1.5x to 4.3x (average 2.7x) are achieved
throughout the series with an average RI-MP2 correlation energy error of 0.3 mHartree.

environments where the linear algebra operations can be carried out expeditiously aided by

GPUs or other similar devices such as field-programmable gate arrays (FGPAs).
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Figure 8.6: Computational time for the each step of the RI-MP2 calculation is plotted for
a series of linear alkanes. The time required for step 5 is less than 1 s which is smaller than
the visible scale of the graphs. (a) The breakdown of processing times for each step on
the CPU shows that the matrix-matrix multiplication is 78% of the total calculation time.
(b) Using the GPU as a coprocessor, the cost of step 4 is reduced to only 50% of the total
computational time.



Chapter 9

Accelerating correlated quantum chemistry

calculations using graphical processing units and a

mixed-precision matrix multiplication library

9.1 Introduction

Ever since scientists began to solve the equations of molecular quantum mechanics us-

ing numerical methods and computational tools, the interplay between fundamental theory

and application has been inextricably linked to exponential advances in hardware technol-

ogy. Indeed, many influential contributions to quantum chemistry have been motivated by

insights into how best to utilize the available computational resources within the same the-

oretical model. One example is Almlöf’s appreciation of the discrepancy that had appeared

between data storage capacity and raw processor speed [14]. His subsequent introduction

of the Direct SCF technique transformed calculations from being memory (or disk) bound

into being processor bound; previously impossible applications could be attempted by using

additional processor time.

We are now witnessing yet another era in the optimization of quantum chemistry codes,

following an explosion of interest in the application of coprocessors such as graphics process-

ing units (GPUs) to general scientific computing [385]. This interest in GPUs and related

massively-parallel processors is largely driven by their tremendous cost to performance ratio

(in operation counts per second per unit of currency) which arises from the economies of

scale in their manufacture and their great demand in numerous multimedia applications.

Another key factor in their widespread uptake for scientific use is the recent release of

NVIDIA’s compute unified device architecture (CUDA) programming interface that allows

development of algorithms for the GPU using a relatively simple extension of the standard

C language [385].

A GPU is an example of a stream-processing architecture [251] and can outperform
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a general-purpose central processing unit (CPU) for certain tasks because of the intrinsic

parallelization within the device which uses the single instruction, multiple data (SIMD)

paradigm. Typical GPUs contain multiple arithmetic units (streaming processors) which

are typically arranged in groups of eight to form multiprocessors that share fast access

memory and an instruction unit; all eight processors execute the same instruction thread

simultaneously on different data streams. In contrast, in multiple-core or parallel CPU

architectures, each thread must have an instruction explicitly coded for each piece of data.

One of the most recent GPU cards, the Tesla C1060 from NVIDIA, contains 240 streaming

processors, can provide up to 933 GFLOPS of single-precision computational performance,

and has a cost which is approximately one order of magnitude less than an equivalent CPU

cluster.

GPUs are therefore well-suited to high-performance applications with dense levels of

data parallelism where very high accuracy is not required. (Although double-precision cards

are available, in the case of NVIDIA GPUs, they have a peak FLOP count approximately

10 times less than single precision cards.) The challenge for scientists wanting to exploit the

efficiency of the GPU is to expose the SIMD parallelism in their problem and to efficiently

implement it on the new architecture. A key component of this task is a careful consideration

of the memory hierarchy to efficiently hide memory access latency.

Already, GPUs have been recruited extensively by the scientific community to treat

a wide range of problems, including finite-difference time-domain algorithms [276], and n-

body problems in astrophysics [203]. For computational chemistry, GPUs are emerging as

an extremely promising architecture for molecular dynamics simulations [501, 21], quantum

Monte Carlo [19], density-functional theory and self-consistent field calculations [597, 596,

539, 538, 540, 541] and correlated quantum chemistry [552] methods. Efficiency gains of

between one and three orders of magnitude using NVIDIA graphics cards have been reported

compared to conventional implementations on a CPU. In this way, new domains of scientific

application have become amenable to calculation where, previously, extremely expensive

and rare supercomputing facilities would have been required.

As an example of the more general impact of accelerator technologies, Brown et. al. [84]

have accelerated density-functional theory up to an order of magnitude using a Clearspeed

coprocessor. The Clearspeed hardware is a proprietary compute-oriented stream architec-

ture promising raw performance comparable to that of modern GPUs, while offering double-

precision support and an extremely low power consumption. The challenges of efficiently

utilizing the Clearspeed boards are similar to those of using GPUs, requiring a fine-grained

parallel programming model with a large number of lightweight threads. Thus, the algo-

rithmic changes suggested for their work and ours have a common value independently of

the precise hardware used, which will of course change with time.
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In the current chapter, we introduce two new techniques with general utility for the

adoption of GPUs in quantum chemistry. Firstly, we propose a general approach for the

efficient GPU acceleration of matrix-matrix multiplications where the matrix size is too

large for the whole computation to be held in the GPU’s onboard memory, requiring the

division of the original matrices into smaller pieces. This is a major issue in quantum

chemical calculations where matrix sizes can be very large.

Secondly, we describe how to improve the accuracy of general matrix-matrix multi-

plications when using single-precision GPUs, where the 6-7 significant figures are often

insufficient to achieve ‘chemical accuracy’ of 1 kcal/mol. To solve this problem, we have im-

plemented a new algorithm within a heterogeneous computing model whereby numerically

large contributions to the final result are computed and accumulated on a double-precision

device (typically the CPU) and the remaining small contributions are efficiently treated by

the single-precision GPU device.

We have applied these ideas in an extension of our previously published GPU-enabled

implementation of resolution-of-the-identity second-order Møller-Plesset perturbation the-

ory (RI-MP2) [147, 572, 576, 333]. Thus the paper begins in Section 9.2 with an overview

of the RI-MP2 method and our previous GPU implementation. In Sections 9.3 and 9.4,

we discuss our new matrix-multiplication library and its performance. In Section 9.5, we

examine the accuracy and speedups achieved when applying the technology to RI-MP2

calculations on molecules with up to 168 atoms, and we end the paper with some brief

conclusions.

9.2 GPU acceleration of RI-MP2

One of the most widely-used and computationally least expensive correlated treatments

for electronic structure is second-order Møller-Plesset perturbation theory (MP2). MP2

is known to produce equilibrium geometries of comparable accuracy to density functional

theory (DFT) [155], but unlike many popular DFT functionals is able to capture long-range

correlation effects such as the dispersion interaction. For many weakly bound systems where

DFT results are often questionable, MP2 is essentially the least expensive and most reliable

alternative [573]. The expression for computing the MP2 correlation energy takes the form

E(2) =
∑
ijab

(ia|jb)2 + 1
2 [(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
(9.1)

in terms of the {i, j} occupied and {a, b} virtual molecular orbitals (MOs) that are eigen-

functions of the Fock operator with eigenvalues {ε}. The MO integrals

(ij|ab) =
∑
µνλσ

CµiCνjCλaCσb(µν|λσ) (9.2)
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are obtained by contracting two-electron integrals over the (real) atomic orbital (AO) basis

functions

(µν|λσ) =

∫ ∫
φµ(r1)φν(r1)r−1

12 φλ(r2)φσ(r2)dr1dr2 (9.3)

where C is the matrix of MO coefficients describing the expansion of each MO as a linear

combination of AOs. One way to considerably reduce the computational cost associated

with traditional MP2 calculations (which formally scales as O(N5) with the number of

basis functions) is to exploit the linear-dependence inherent in the product space of atomic

orbitals. This allows one to expand products of AOs as linear combinations of atom-centered

auxiliary basis functions, P ,

ρµν(r) = µ(r)ν(r) ≈ ρ̃(r) =
∑

Cµν,PP (r) (9.4)

and to therefore approximate all costly four-center two-electrons in terms of only two- and

three-center integrals,

˜(µν|λσ) =
∑
P,Q

(µν|P )(P |Q)−1(Q|λσ) (9.5)

where we have assumed that the expansion coefficients are determined by minimizing the

Coulomb self-repulsion of the residual density. The result is equivalent to an approximate

insertion of the resolution-of-the-identity (RI).

All our work is implemented in a development version of Q-Chem 3.1 [480], where the

RI-MP2 correlation energy is evaluated in five steps, as described elsewhere [552]. Previ-

ously we showed that step 4, the formation of the approximate MO integrals, was by far

the most expensive operation for medium to large-sized systems, and requires the matrix

multiplication

(̃ia|jb) ≈
∑
Q

Bia,QBjb,Q (9.6)

where

Bia,Q =
∑
P

(ia|P ) (P |Q)−1/2 (9.7)

The evaluation of Eq. 9.6 is typically an order of magnitude more expensive than

Eq. 9.7. We shall concentrate on these two matrix multiplications in this chapter. Consis-

tent with our previous paper [552], we will repeatedly refer to these evaluations as step 3

(Eq. 9.7) and step 4 (Eq. 9.6) as we investigate the accuracy and efficiency of our new GPU

implementation.
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Included in the CUDA software development toolkit is an implementation of the BLAS

linear algebra library, named CUBLAS [383]. As previously reported [552], we accelerated

the matrix multiplication in Eq. 9.6 by simply replacing the BLAS *GEMM routines with

corresponding calls to CUBLAS SGEMM. This initial effort achieved an overall speedup of 4.3x

for the calculation of the correlation energy of the 68-atom doeicosane (C22H46) molecule

with a cc-pVDZ basis set using a single GPU. At this early stage in development, we used

the GPU purely as an accelerator for *GEMM and made no effort to keep data resident on

the device.

In the present chapter, we further explore the acceleration of our RI-MP2 code through

the application of CUBLAS combined with two new techniques. These enable us to perform

more accurate calculations on larger molecules and basis sets involving larger matrices while

also mitigating the errors associated with single-precision GPUs. We discuss both techniques

in the following section.

9.3 GPU acceleration of GEMM

In large-scale quantum chemistry calculations, the size of the fundamental matrices

typically grows as the square of the number of atomic basis functions (even if the number of

non-negligible elements is much smaller). Moreover, intermediate matrices are sometimes

even larger, such as the B matrices of Eq. 9.7.

A GPU can only accelerate a calculation that fits into its onboard memory. While the

most modern cards designed for research can have up to 4 GiB of RAM, consumer level

cards may have as little as 256 MiB (with some portion possibly devoted to the display). If

we wish to run large calculations, but only have a small GPU available, then some means

of dividing the calculation up and staging it through the GPU must be found.

Next, we consider the question of accuracy arising from the use of single-precision GPU

cards. It turns out [540], that many operations do not require full double precision support

to achieve acceptable accuracy for chemistry, but, nevertheless, single precision is not always

sufficient. Double-precision (DP) capable GPUs have only become available within the past

year, and so are not yet widespread. Moreover, we cannot rely on the support of DP cards

by manufacturers in the future since the commercial driving force behind such processors

is the wealth of multimedia applications that do not require high precision. We address

this problem with the introduction of a new way to balance the desire for GPU acceleration

with a need for high accuracy.



Chapter 9: Accelerating correlated quantum chemistry calculations using graphical
processing units and a mixed-precision matrix multiplication library 185

9.3.1 Cleaving GEMMs

Consider the matrix multiplication

C = A ·B (9.8)

where A is an (m × k) matrix and B is an (k × n) matrix, making C an (m × n) matrix.

We can divide A into a column vector of r + 1 matrices

A =


A0

A1

...

Ar

 (9.9)

where each entry Ai is a (pi×k) matrix, and
∑r

i=0 pi = m. In practice, all the pi will be the

same, with the possible exception of pr, which will be an edge case. In a similar manner,

we can divide B into a row vector of s+ 1 matrices

B =
(
B0 B1 · · · Bs

)
(9.10)

where each Bj is an (k × qj) matrix and
∑s

j=0 qj = n. Again all the qj will be the same,

with the possible exception of qs. We then form the outer product of these two vectors

C =


A0

A1

...

Ar

 ·
(
B0 B1 · · · Bs

)
(9.11)

=


A0 ·B0 A0 ·B1 · · · A0 ·Bs

A1 ·B0 A1 ·B1 A1 ·Bs
...

. . .

Ar ·B0 Ar ·Bs

 (9.12)

Each individual Cij = AiBj is an (pi×qj) matrix, and can be computed independently of all

the others. Generalizing this to a full *GEMM implementation, which includes the possibility

of transposes being taken, is tedious but straightforward.

We have implemented this approach for the GPU, as a complete replacement for *GEMM.

The pi and qj values are chosen such that each sub-multiplication fits within the currently

available GPU memory. Each multiplication is staged through the GPU, and the results

assembled on the CPU. This process is hidden from the user code, which simply sees a

standard *GEMM call.
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9.3.2 Heterogeneous computing with MGEMM

With the problem of limited memory solved, we will now demonstrate how to overcome

the lack of double precision GPU hardware. Again, consider the matrix multiplication

C = A ·B (9.13)

We can split each matrix element-wise into ‘large’ and ‘small’ components, giving

C =
(
Alarge + Asmall

)(
Blarge + Bsmall

)
= A ·Blarge + Alarge ·Bsmall + Asmall ·Bsmall

The AsmallBsmall term consists entirely of ‘small’ numbers, and can be run in single precision

on the GPU (using the cleaving approach described above, if needed). The other two

terms contain ‘large’ numbers, and need to be run in double precision. However, since

each of the ‘large’ matrices should be sparse, these terms each consist of a dense-sparse

multiplication. We only store the non-zero terms of the Alarge and Blarge matrices, cutting

the computational complexity significantly. Consider

C ′ik = AijB
large

jk (9.14)

Only a few Blarge
jk will be non-zero, and we consider each in turn. For a particular scalar

Blarge
jk, only the kth column of C ′ will be non-zero, and equal to the product of Blarge

jk

and the column vector Aij (where j is fixed by the particular Blarge
jk we are considering).

This non-zero column vector C ′ik can be added to the final result, C, and the next Blarge
jk

considered. A similar process can be applied to the AlargeBsmall term (producing row vectors

of C). Again, this approach can be generalized to a full *GEMM implementation including

transposes.

The remaining question is that of splitting the matrices. We have taken the simple

approach of defining a cutoff value, δ. If |Aij | > δ, that element is considered ‘large,’

otherwise it is considered to be ‘small.’

We have implemented our algorithm we have dubbed MGEMM, for ‘mixed-precision gen-

eral matrix multiply.’ It operates similarly to the other *GEMM routines, but takes one extra

argument - the value of δ.

9.4 MGEMM benchmarks

We will now discuss some benchmarks for MGEMM. Our aim is to assess the speed and

accuracy of MGEMM for various matrix structures and choice of cutoff tolerance compared to a

DGEMM call on the CPU. In particular, it is important to benchmark how much computational
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Figure 9.1: Speedup for various *GEMM calls as a function of (square) matrix size (averaged
over ten runs). Most elements were in the range [−1, 1], with the ‘salt’ values in the range
[90, 110]. Times are scaled relative to running DGEMM on the CPU.

speed is gained using the mixed-precision MGEMM with the GPU as a function of the loss in

accuracy compared to DGEMM. Throughout this section, CPU calculations were made using

an Intel Xeon E5472 (Harpertown) processor clocked at 3.0 GHz attached to an NVIDIA

Tesla C1060 (packaged into a Tesla S1070). The GPU calls were limited to 256 MiB of

RAM to model a more restricted GPU in a typical BOINC (Berkeley Open Infrastructure

for Network Computing) client [66, 107].

9.4.1 Using model matrices

In Fig. 9.1 we show the speedup for a variety of *GEMM calls using matrices of increasing

(square) size. Three different types of matrix were considered, based on the number of

randomly scattered ‘large’ elements. All the matrices were initialized with random values

in the range [−1, 1] forming the ‘background’, and ‘salted’ with a fraction fsalt of random

larger values in the range [90, 110]. The size of the MGEMM cutoff parameter δ was chosen

such that all the salted elements were considered ‘large’.

There are three MGEMM curves plotted, for different values of fsalt = 10−2, 10−3 and

10−4. The SGEMM(cleaver) curve corresponds to doing the full matrix multiplication on

the GPU using the GEMMcleaver and includes the time taken to down-convert the matrices

to single precision on the CPU. The DGEMM(cleaver) curve corresponds to a full double-

precision matrix multiplication on the GPU, which is possible for modern cards, and we

include it for completeness. Square matrices were used in all cases, with no transpositions in
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the *GEMM calls. All the runs were performed ten times and speedups are obtained relative

to the time taken for the corresponding DGEMM call on the CPU.

Examining the results, we see that SGEMM on the GPU gives a speedup of 17.1x over

running DGEMM on the CPU for a matrix of size 10048× 10048, and is even faster for larger

matrices. This represents an upper bound for the speedups we can hope to obtain with

MGEMM for such matrices. The speedups increase significantly as the matrices become larger

due to the masking of memory access latencies and other overheads when employing the

GPU for more compute-intensive processes.

Considering the MGEMM results, we see that the speedups are strongly dependent on the

number of large elements which must be evaluated in double-precision on the CPU. For the

relatively high value of fsalt = 10−2, running MGEMM was actually slower than running DGEMM

on the CPU alone. This is understandable when one considers the extra steps in the MGEMM

algorithm. In addition to down-converting the matrices to single precision, the CPU has to

perform cache-incoherent operations on the ‘large’ multiplications. We store our matrices

column-major, so the operations performed in Eq. 9.14 are cache-coherent. However, it is

easy to see that the corresponding operations for C ′ = AlargeBsmall will be cache-incoherent

for both C ′ and Bsmall (recall that Alarge will be stored as individual elements). This brings

a huge penalty over a standard *GEMM implementation which is tiled for cache-coherency.

In contrast, for fsalt = 10−4, there is much less penalty to running MGEMM over SGEMM

on the GPU, due to the small fraction of large elements computed on the CPU. Speedups of

approximately 10x are observed for the largest matrices. For fsalt = 10−3, the performance

is naturally reduced, and speedups of approximately 2x relative to CPU DGEMM are obtained

for the largest matrices. In this case MGEMM runs approximately 2.5 times slower than full

DGEMM on the GPU (available in the most modern cards). We may also note that the

thresholds for matrix cleaving can be discerned. They start at matrix sizes of 3344 for

double precision and 4729 for single precision. These are detectable on the curves, but do

not alter the times significantly.

In Fig. 9.2, we examine the accuracy of MGEMM for various matrix structures. Shown in

the figure are the maximum absolute errors of a single element (relative to the CPU DGEMM

result) plotted as a function of matrix size, for different fractions fsalt and sizes of salted

values. As before, all the matrices were initialized with random values in the range [−1, 1],

but now the salting sizes were grouped into two ranges: [90, 110] and [9990, 10010]. There

is one curve using SGEMM corresponding to a fraction of salted values, fsalt = 1%, in the

range [90, 110], and several MGEMM curves.

Looking at the figure, we see that the salted SGEMM calculation produces substantial

errors for the largest matrices, which are of the same order of magnitude as the background

elements themselves. In contrast, the errors are significantly reduced when using MGEMM
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and are the same regardless of the fraction or size of the salted elements. In fact, these

limiting MGEMM errors are the same as the errors observed when using SGEMM on a pair of

unsalted random matrices. Essentially, MGEMM is limiting the maximum error in any element

to that of the ‘background’ matrix computed in single precision since the cutoff tolerance

guarantees that all the salted contributions will be computed in double precision on the

CPU.

The order of magnitude of the limiting error can be rationalized from a consideration of

the number of single-precision contributions per output element (approximately 1000-10000

in this case) and the expected error in each (approximately 10−6 − 10−7 for input matrices

with a random background on [−1, 1]). A consequence of this observation is that an upper

bound to the maximum error can be estimated from a consideration of only the matrix size

and the cutoff parameter δ, although this estimate will be very conservative in cases where

there is no obvious ‘constant background’, as we shall see in the following.

9.4.2 Using RI-MP2 matrices

For a more realistic assessment of MGEMM for quantum chemistry applications, we also

ran benchmarks on two pairs of matrices taken from an RI-MP2 calculation on the taxol

molecule in a cc-pVDZ basis, as described below in Section 9.5. In this case, the MGEMM

cutoff parameter δ will nolonger be dimensionless, but rather will take the same units as the
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Figure 9.3: Fraction of ‘large’ elements as a function of the cutoff parameter, δ, for the
taxol RI-MP2 matrices in steps 3 and 4 of the algorithm outlined in Sec. 9.2.

the input matrix elements, which, for Eqs. 9.6 and 9.7, are all computed in atomic units.

For simplicity, we have dropped these units in the following discussion and assumed their

implicit understanding based on the matrices that the δ-value is referring to.

As summarized in Section 9.2, our RI-MP2 implementation has two steps involving

significant matrix multiplications. That is, the evaluation of Eqs. 9.6 and 9.7. As described

in Sec. 9.2 and consistent with Chapter 8 [552], we shall refer to these two matrix mul-

tiplications as step 3 (Eq. 9.7) and step 4 (Eq. 9.6) throughout the following discussion.

Although step 3 is typically an order of magnitude faster than step 4, we need to take care

to study it since we are interested not only in speed, but also error accumulation using

MGEMM.

For the case of taxol in a cc-pVDZ basis, the full (P |Q)−1/2 matrix is of size 4186×4186.

However, in the Q-Chem implementation, the full (ia|P ) and Bia,Q matrices do not need

to be explicitly constructed. Instead, it is sufficient to loop over discrete batches of i,

depending on available memory. As seen above, larger matrices deliver a greater speedup

when multiplied on the GPU, thus there is a motivation for choosing as large a batch

size (over i) as possible in our GPU calculations. In these test benchmarks, we chose

batch sizes of 1 and 7 based on the available CPU memory such that the (ia|P ) and Bia,Q

matrices have dimensions of 897 × 4186 and 6279 × 4186, respectively. We do not batch

the step 3 matrices since there are only O(N) multiplications taking place and the more

computationally intensive process is step 4, which has order O(N2) operations.

We note that the structure of these matrices was found to be very different from the

model matrices considered in the previous subsection. Specifically, the distribution of large
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and small elements was structured, as described below. In the case of the (P |Q)−1/2 matrix,

involving only the auxiliary basis set, the large elements were heavily concentrated on the

top left-hand corner in a diagonal fashion, while the other matrices were observed to have

a striped vertical pattern of large elements. In the current implementation, the main issue

affecting the efficiency of MGEMM is the ratio of large to small elements in the input matrices,

but in general we can also expect the sparsity structure to impact performance. In cases

where the structure is known in advance, a more specialized treatment could give worthwhile

speedups, but this is beyond the scope of the current chapter.

The precise fractions of large and small elements for the taxol case are plotted in

Fig. 9.3 with varying cutoff parameter δ for both the step 3 and step 4 matrices. We should

note that these curves are only for one particular i-batch, as explained above, and not the

full matrices. However, to ensure that the results are representative of the full matrix, we

have checked the distributions from the other batches, and we chose the most conservative

matrices for our plots, which had large elements across the broadest range of δ-values.

Looking at the curves, it is significant that the step 3 matrices have a greater fraction

of large elements than the step 4 matrices, and specifically, the (P |Q)−1/2 matrix has the

largest elements of all. This means that for a constant δ-value, we can expect MGEMM to

introduce larger errors in the step 3 matrix multiplications than in step 4. In future work,

it could be advantageous to tailor the δ-value for different steps in an algorithm, or even

different input matrices, but in this first study, we use a constant δ-value throughout any

given calculation.

In the model matrices of the previous subsection, the distribution would have resembled

a step function around δ = 1.0, rapidly dropping from 1.0 to the chosen fraction of salted

values for δ > 1.0, and rapidly stepping again to 0 for δ-values beyond the salt size. In

contrast, we see a continuous decay of element values in the real matrices across many

orders of magnitude. In Fig. 9.1, MGEMM was seen to outperform DGEMM for a fraction of salts

of order 10−4. Comparing to Fig. 9.3, this suggests that δ should be greater than 0.01 to

ensure significant MGEMM speedups when considering the (ia|P ) and Bia,Q matrices, while

the fraction of large elements in the (P |Q)−1/2 matrices only becomes this small for δ-values

of order 10.

Having analyzed the distributions, we can consider their effect on the accuracy and

speedups compared to the model benchmarks. On the top plots of Fig. 9.4 and Fig. 9.5,

we show how the speedup for various *GEMM calls (compared to a CPU DGEMM call) varies

with δ, averaged over ten calls. We see that the MGEMM performance varies continuously

from being almost the same speed as CPU DGEMM to reaching the GPU SGEMM limit for

sufficiently large cutoff values. As expected, for the step 4 matrices, significant speedups

are only observed for δ-values greater than approximately 0.01. Similarly, for step 3, the
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Figure 9.4: Results from the step 3 matrix multiplication in a taxol RI-MP2 calculation as a
function of the cutoff variable δ. Top: MGEMM speedups relative to a CPU DGEMM calculation.
Bottom: Maximum absolute error (Hartree1/2) in a single element of the output matrix for
MGEMM and SGEMM runs.

greatest speedups are only observed for much larger δ-values, approximately 1 to 2 orders of

magnitude greater than for step 4. The limiting values for the speedups are approximately

5x and 9x for step 3 and step 4, respectively. This difference is mainly due to the different

sizes of the matrices used in each benchmark, recognizing that the smaller matrices used in

step 3 will give smaller speedups (c.f. Fig. 9.1).

Considering the MGEMM accuracy, the bottom plots in Fig. 9.4 and Fig. 9.5 show the

maximum absolute errors of a single element (relative to the CPU DGEMM result) plotted as a

function of δ. As δ increases, the MGEMM errors steadily increase as expected, with the single

precision limit being approached for sufficiently large δ. Again we see significant differences

between step 3 and step 4, as expected from the element distributions. Firstly, the errors

in step 3 are approximately 2 orders of magnitude greater than in step 4. Moreover, in

step 4, the errors reach the SGEMM limit for δ ∼ 0.1, while the errors in step 3 continue to

increase for cutoff values an order of magnitude larger. Examining Fig. 9.3, it is expected

that the relatively large fraction of elements greater than 1.0 in the (P |Q)−1/2 matrix are

responsible for these observations.

Unexpectedly, however, the errors are not seen to steadily converge to the SGEMM limit

for step 3 in the same way as for step 4, with errors larger than SGEMM being observed for

δ > 2.5. We have performed additional tests to understand why this may be happening

and our conclusion is that it results from error cancellation effects. To verify this idea, we

repeated similar calculations replacing all matrix elements with their absolute values, so
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Figure 9.5: Results from the step 4 matrix multiplication in a taxol RI-MP2 calculation as a
function of the cutoff variable δ. Top: MGEMM speedups relative to a CPU DGEMM calculation.
Bottom: Maximum absolute error (Hartree) in a single element of the output matrix for
MGEMM and SGEMM runs.

that any error cancellation would be essentially removed. The result was a monotonic curve

much more similar to that observed for step 4, showing the same steady convergence to the

SGEMM limit (not shown).

We may now consider the advantages of using MGEMM over SGEMM in terms of accuracy

and speed. Comparing the subplots in Figs. 9.4 and 9.5 we can see that for a rather

modest performance decrease from approximately 5x to 4x, and 9x to 7x, for steps 3 and

4 respectively, an order of magnitude reduction in the errors can be obtained. However,

it might be noted that in all cases the maximum errors are rather small in these tests,

being only of order 10−6 in the worst case. Considering real RI-MP2 applications, we

might therefore expect the final errors in the molecular energy to be almost negligible using

single precision only. However, in Sec. 9.5, the benchmarks show that for larger molecules

the errors propagate such that the resulting correlation energy errors are too large to be

acceptable.

Finally, from Fig. 9.2, we can estimate an upper bound on the maximum absolute error

of each element for different δ-values. Since the matrix dimension is approximately 4000,

the choice δ = 0.1 would give a conservative error bound of approximately 4000 ∗ 10−6 ∗ 0.1

which is of order 10−4. However, because the matrices do not have a ‘constant background’

of 0.1 this estimate is very conservative, and the observed error in Fig. 9.5 is much less.
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9.5 RI-MP2 acceleration benchmarks

In this section, our intention is to perform full RI-MP2 quantum chemistry calculations

on real molecules and to benchmark the speedups and accuracy in the resulting molecular

energy that can be obtained when using the GPU. In this case, we include in the timings all

steps required to compute the RI-MP2 correlation energy (after the SCF cycle has finished)

while the GPU *GEMM libraries are used to accelerate the matrix multiplications in steps 3

(Eq. 9.7) and 4 (Eq. 9.6), as described in the previous sections. As a result, the observed

speedups will be reduced compared to the previous benchmarks since not all steps are

accelerated.

For all these benchmarks, we used an AMD Athlon 5600+ CPU clocked at 2.8 GHz,

combined with an NVIDIA Tesla C1060 GPU with 4 GiB of RAM. For some calculations,

the GPU was limited to 256 MiB of RAM, as described below.

We emphasize that only the latest GPU cards have double-precision support to enable

CUBLAS DGEMM, while older cards also have limited memory which significantly constrains

the size of even the CUBLAS SGEMM matrix multiplications. Our previous attempts to use

GPUs to accelerate RI-MP2 calculations were limited to molecular systems with less than

500 basis functions [552] due to this constraint. However, using the matrix cleaver in the

(MGEMM) library, we are now able to run calculations of a size limited only by the CPU

specification, independent of the GPU memory.

For our test systems we chose a set of linear alkanes (C8H18, C16H34, C24H50, C32H66,

C40H82) as well as two molecules of pharmaceutical interest, taxol (C47H51NO14) and vali-

nomycin (C54H90N6O18), and we considered both the cc-pVDZ and cc-pVTZ [139] basis

sets.

The matrix cleaver and MGEMM were implemented in a modified version of the Q-Chem

3.1 RI-MP2 code previously described [552]. Concerning the batching over occupied orbitals,

as discussed in Section 9.4.2, only the step 4 matrices were batched. For taxol, the batch

size was 7, as before. For all molecules, the batch size was chosen dynamically based on the

matrix sizes and available CPU memory (for taxol, this results in a batch size of 7, as used

before). However, in these benchmarks the batching issue is less important since we were

limited to only 256 MiB of GPU RAM, which means that large batches would have to be

cleaved by the MGEMM library in any case.

Firstly, in Table 9.1 we benchmarked the reference case of using either CUBLAS SGEMM

or DGEMM for each test molecule using the double-ζ basis set. The table shows the speedup

in computing the RI-MP2 correlation energy and the error relative to a standard CPU

calculation (for SGEMM only). The speedups and SGEMM errors are seen to be greater for

the larger molecules, as expected, with the largest speedups observed for valinomycin at
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Speedup SGEMM energy error
Molecule SGEMM DGEMM (kcal mol−1)

C8H18 2.1 1.9 -0.05616
C16H34 4.5 3.7 -0.12113
C24H50 6.9 5.2 -0.62661
C32H66 9.0 6.4 -0.75981
C40H82 11.1 7.2 -1.12150
Taxol 11.3 7.1 -6.26276

Valinomycin 13.8 7.8 -9.99340

Table 9.1: Speedups using CUBLAS SGEMM and DGEMM and total energy errors relative to
CPU DGEMM for various molecules in a cc-pVDZ basis.

13.8x and 7.8x, using SGEMM and DGEMM, respectively. However, while CUBLAS DGEMM gives

essentially no loss of accuracy, the SGEMM error is approximately -10.0 kcal mol−1, which is

well beyond what is generally accepted as chemical accuracy.

The results from Table 9.1 highlight the need for MGEMM to reduce the errors when

double-precision GPUs are unavailable. As an initial test of MGEMM for this purpose, we

repeated the calculation of the taxol molecule in the double-ζ basis set (1123 basis functions)

for various choices of cutoff value δ. Fig. 9.6 shows the speedup relative to CPU DGEMM as

well as the absolute error in the energy.

As the cutoff increases, the MGEMM speedup increases rapidly to the asymptotic limit of

10.6x, which is slightly less than the SGEMM limit of 11.3x due to the MGEMM overhead. In

contrast, the energy error in this range increases almost linearly towards the SGEMM limit.

Recalling Figs. 9.4 and 9.5, it seems that the errors are dominated by the step 3 operations,

where we form the Bia,Q matrices, since these errors are also seen to steadily increase over

the range of cutoff values considered in Fig. 9.6. The overall speedups are also seen to have

a similar shape to the step 3 speedups, but are approximately twice as large. This reflects

the greater speedups in step 4, noting that step 4 on the CPU is the most expensive step

in the algorithm.

To achieve a target accuracy of 1.0 kcal mol−1, Fig. 9.6 shows that a cutoff value of

δ < 2.0 in the case of taxol in a double-ζ basis is necessary. However, trading the accuracy

and speedup, a good choice of cutoff would be δ = 1.0. This gives an error of 0.5 kcal mol−1,

which is an order of magnitude smaller than using SGEMM, with a speedup very close to the

MGEMM limit and only about 7% less than the SGEMM limit.

In Table 9.2, we explore the performance of MGEMM using a constant cutoff value of

δ=1.0. The table shows speedups and total energy errors for each molecule in both the

double-ζ and triple-ζ basis sets. In this particular case, we have limited the GPU to use

only 256 MiB of RAM to mimic the capability of older cards and emphasize the use of the
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Figure 9.6: Taxol MGEMM calculation using a double-ζ basis set with respect to the double
precision cutoff (δ). We plot the MGEMM speedup relative to CPU DGEMM and it shows a rapid
increase with δ towards an asymptotic value of 10.6x. We also show the energy difference
relative to CPU DGEMM, which is seen to increase steadily over the range of δ-values chosen,
but is significantly less than the previously computed SGEMM error of 6.6276 kcal mol−1

.

MGEMM cleaver. This will naturally result in a loss of speedup compared to utilizing a larger

GPU memory. In the case of taxol the reduction is approximately 20%, but obviously still

much faster than a calculation using only the CPU.

Looking at Table 9.2, the trends are the same as in Table 9.1, but the MGEMM errors are

seen to be approximately an order of magnitude less than the SGEMM errors (for the larger

molecules). For valinomycin in the cc-pVDZ basis, the SGEMM speedup is reduced from 13.8x

to 10.1x using MGEMM, but the error in the total energy is also reduced from -10.0 kcal mol−1

to -1.2 kcal mol−1, which is now very close to chemical accuracy. Moreover, while CUBLAS

DGEMM clearly has the advantage (when available) of not introducing errors, if -1.2 kcal

mol−1 is an acceptable accuracy, MGEMM may even be favoured since the DGEMM speedup is

only 7.8x compared to 10.1x. Moreover, since the error increases as δ is increased, there will

be a substantial error cancellation when obtaining energy differences. Thus, the apparent

error in MGEMM will approach the DGEMM value.

It is unsurprising that the errors are larger when using the triple-ζ basis. The manner

in which the errors grow can be anticipated using the arguments mentioned in Section 9.4,

where we estimate an upper bound on the maximum absolute error from MGEMM by consider-

ation of a constant background of elements no larger than the cutoff threshold and the size

of the input matrices. In practice, this upper bound can be rather conservative. Moreover,
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Speedup Energy error (kcal mol−1)

Molecule Double-ζ Triple-ζ Double-ζ Triple-ζ

C8H18 1.9 2.7 -0.01249 -0.03488
C16H34 3.8 5.6 -0.00704 -0.04209
C24H50 5.8 8.2 -0.14011 -0.33553
C32H66 7.9 9.2 -0.08111 -0.29447
C40H82 9.4 10.0 -0.13713 -0.51186
Taxol 9.3 10.0 -0.50110 -1.80076

Valinomycin 10.1 - -1.16363 -

Table 9.2: MGEMM speedups and total energy errors with respect to CPU DGEMM for various
molecules in a cc-pVDZ and cc-pVTZ basis.

if the quantity of interest is the final energy, we must also take into account how the ma-

trices are used after the application of MGEMM (e.g if they are multiplied by large numbers).

Nevertheless, a topic of future study could be the search for a more sophisticated method

for determining a safe and optimal δ-value for a given size of acceptable error in the final

energy.

9.6 Conclusion

We have developed and implemented two new tools for the acceleration of computa-

tional chemistry codes using graphical processing units (GPUs). Firstly, we proposed a

general black-box approach for the efficient GPU acceleration of matrix-matrix multipli-

cations where the matrix size is too large for the whole computation to be held in the

GPU’s onboard memory. Secondly, we have shown how to improve the accuracy of matrix

multiplications when using only single-precision GPU devices by proposing a heterogeneous

computing model whereby both single and double precision operations are evaluated in a

mixed fashion on the GPU and CPU, respectively.

This matrix cleaver and mixed-precision matrix multiplication algorithm have been

combined into a general library named MGEMM [475] , which may be called like a standard

SGEMM function call with only one extra argument, the cutoff parameter δ, which describes

the partitioning of single and double-precision work. Benchmarks of general interest have

been performed to document the library’s performance in terms of accuracy and speed.

Compared to a CPU DGEMM implementation, MGEMM is shown to give speedups approach-

ing the CUBLAS SGEMM case when very few operations require double precision, correspond-

ing to a large δ value (which is equivalent to having a large fraction of small elements in the

input matrices). However, when the fraction of large elements approaches 0.1% or greater,
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much less benefit is seen. Concerning accuracy, MGEMM restricts the maximum error in an

element of the output matrix to an upper bound based on the size of the matrix and the

choice of δ-value. In practice, this upper bound is usually conservative. In general, the

precise performance achieved with MGEMM is strongly dependent on the distribution of large

and small values in the input matrices, as we have shown.

To illustrate the utility of MGEMM for quantum chemistry, we have implemented it into

the Q-Chem program package to accelerate RI-MP2 calculations. We have considered both

the use of modern high-end GPU cards, with up to 4 GiB of memory and double-precision

capability, as well as legacy cards with only single-precision capability and potentially only

256 MiB of RAM. Greater speedups, but also larger absolute errors in the correlation energy

were observed with the larger test molecules. In particular, for the 168-atom valinomycin

molecule in a cc-pVDZ basis set, we observed speedups of 13.8x, 10.1x and 7.8x, for SGEMM,

MGEMM and DGEMM, respectively. The corresponding errors in the correlation energy were

-10.0 kcal mol−1, -1.2 kcal mol−1, and essentially zero, respectively. The MGEMM δ-value was

chosen as 1.0 for these benchmarks.

We have also suggested ways in which the size of the MGEMM error may be parameterized

in terms of a conservative error bound. In addition, we have observed that the correlation

energy error grows approximately linearly with the choice of δ-value, which may suggest a

route to the a priori determination of the δ for a given target accuracy.

As we submit this paper for publication, we have become aware of the planned release

of the next-generation GPU from NVIDIA, currently code-named Fermi. This card will

have double-precision support with a peak performance only a factor of 2 less than single-

precision operations. However, despite the emergence of double-precision GPU devices, it

is our hope that the current chapter will provide a framework for thinking about other

mixed-precision algorithms. Even with the more widespread availability of double-precision

cards in the future, we have seen how MGEMM can run faster than CUBLAS DGEMM if a

specified level of accuracy is tolerated. Indeed, practical calculations on GPUs are very

often bound by memory bandwidth to/from the device, rather than raw operation count.

In these cases, the transfer and processing of only single-precision data could effectively

double the performance compared to naive double-precision calculations.

Moreover, we are interested in the use of commodity GPUs as part of a grid-computing

environment, such as the BOINC network. CUDA capable GPUs are extremely common

in legacy gaming devices, but most of the client machines will not host the latest high-end

hardware. We therefore see a significant application for MGEMM in leveraging these large

numbers of legacy cards to overcome their lack of RAM and double-precision arithmetic.

We are therefore optimistic overall about the role MGEMM can play in helping to accelerate

computations using GPUs in the near future.



Chapter 10

Accelerating correlated quantum chemistry

calculations using graphical processing units

10.1 Introduction

With the advent of modern quantum theory a century ago, scientists quickly realized

that quantum mechanics could offer a predictive theory of chemistry, revolutionizing the

subject in the same way that Newton’s laws had transformed the study of classical mechan-

ics. Over the intervening decades, we have witnessed an exponential increase in available

computing power. Coupled with tremendous advances in theory and algorithmic methods,

as well as the painstaking development of sophisticated program suites often consisting of

millions of lines of code, the scope of phenomena now amenable to the predictive techniques

of quantum chemistry is large and continually growing.

Modern computational chemistry has an important role to play in many practical ap-

plications, such as the discovery of new drugs or industrial catalysts, and the development

of new materials or technologies to meet global energy and environmental challenges. Its

widespread application has resulted in major efforts to reduce its computational cost: ac-

curate quantum chemistry methods consume a significant fraction of computing resources

at national laboratories.

As a result, we are witnessing a new era in the optimization of quantum chemistry

codes following an explosion of interest in the utilization of coprocessors such as graphical

processing units (GPUs) [385]. This interest in GPUs and other accelerators is largely driven

by their combination of formidable performance and relatively low cost. But another key

reason for their emergence in scientific fields was the release of NVIDIA’s CUDA (compute

unified device architecture) toolkit that dramatically simplified the process of developing

code for GPUs.

Already, GPUs have started to be used by computational chemists to treat a wide range

of problems. These include molecular dynamics [501, 21], and quantum Monte Carlo simu-
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lations [19], density-functional theory and self-consistent field calculations [597, 596, 539,

538, 540, 541] as well as correlated quantum chemistry applications [552, 393]. Efficiency

gains of between one and three orders of magnitude have been reported compared to con-

ventional implementations on a CPU. Thus new domains of scientific application are now

possible where, previously, extremely expensive and rare supercomputing facilities would

have been required.

A very important area for many scientific applications is the acceleration of linear

algebra operations, which are quite well-suited for GPU architectures. Included in the

CUDA software development toolkit is an implementation of the BLAS linear algebra li-

brary, named CUBLAS [383]. By simply replacing the BLAS *GEMM routines with corre-

sponding CUBLAS SGEMM calls to accelerate key matrix multiplications, our group [552] was

able to achieve a speedup of 4.3x when calculating the RI-MP2 (resolution-of-the-identity

second-order Møller-Plesset perturbation theory [222, 147]) correlation energy of doeicosane

(C22H46).

This initial effort was one of the first quantum chemistry applications to leverage GPUs,

but it revealed several issues for future work. For example, while modern GPU cards

designed for research can have up to 4 GiB of RAM, consumer level cards may have as little

as 256 MiB. Without some means to overcome the memory bottleneck, our first attempts

to use GPUs to accelerate RI-MP2 calculations were limited to systems with less than 600

basis functions.

Another issue is numerical precision. The vast majority of GPU cards currently in use

worldwide support only single-precision arithmetic. Single precision is generally insufficient

to achieve ‘chemical accuracy’ of 1 kcal/mol in calculations on anything but the smallest and

simplest systems, since the errors quickly accumulate for larger molecules. An interesting

topic in the computer science [304, 226] community has been the development of libraries

which achieve precision beyond the hardware specification through algorithmic techniques.

In this chapter, we consider this problem in detail for the special case of single-precision

GPU devices and applications to quantum chemistry.

In summary, we describe our efforts to develop tools for the GPU acceleration of cor-

related quantum chemistry calculations [552, 393]. We address the issues of limited GPU

device memory, as well as achieving higher accuracy using only single-precision GPU op-

erations. We begin in Section 10.2 with an overview of basic quantum chemistry theory,

followed by the algorithms behind our new libraries. Next we report the efficiency of our

methods for general matrix multiplications and in the context of accelerating quantum

chemistry calculations. We end the chapter with a brief conclusion and our future perspec-

tive.
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10.2 Quantum chemistry theory

Traditional quantum chemistry strives to solve the time-independent Schrödinger equa-

tion,

Ĥ(r,R)ψ(r,R) = E(R)ψ(r,R) (10.1)

where ψ(r,R) is the electronic wavefunction for a molecular system defined by the Hamil-

tonian Ĥ(r,R) in terms of a set of coordinates for the electrons, r, and nuclei, R. The

total molecular energy is given by the eigenvalue E(R) and is often referred to as the po-

tential energy surface. It is parameterized in terms of the nuclear coordinates since we have

assumed the Born-Oppenheimer approximation, and is fundamental to the ab initio theory

of chemical reaction dynamics.

The solution of Eq. 10.1 yields the electronic wavefunction for a given nuclear con-

figuration, and in turn the probability density for finding an electron at a given point in

space. Exact solution is intractable, even numerically, for all but the simplest systems due

to the formidable nature of the many-body problem inherent in the form of Ĥ(r,R), which

describes not only the electronic kinetic energy, but also the complex Coulomb interac-

tions between the electrons and nuclei. Only for one-electron systems, where there is no

electron-electron coupling, are exact solutions readily available.

Nevertheless, it is a hallmark of quantum chemistry that there is a well-defined hierar-

chy of methods for solving Eq. 10.1 approximately. Indeed, given sufficient computational

power, a solution may be improved systematically to yield a wavefunction of arbitrary nu-

merical accuracy. The simplest method in the hierarchy is a mean-field approach known as

Hartree-Fock (HF) theory.

In HF theory, we write the electronic wavefunction for an N -electron system as an

antisymmetrized product of molecular orbitals, φ(ri), which are wavefunctions for a single

electron under a one-electron Hamiltonian known as the Fock operator,

f̂(r,R) = ĥ(r,R) +

N/2∑
j=1

[
2Ĵj(r)− K̂j(r)

]
(10.2)

The one-electron, ĥ(r), Coulomb, Ĵj(r), and exchange, K̂j(r), operators are given by

ĥ(r,R) = −1

2
∇2 + v(r,R) (10.3)

Ĵj(r) =

∫
φ∗j (r

′)φj(r
′)

|r− r′|
dr′ (10.4)

K̂j(r)φi(r) =

∫
φ∗j (r

′)φi(r
′)

|r− r′|
dr′φj(r) (10.5)
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where v(r,R) is the nuclear potential. The associated Hartree-Fock equations,

f̂φi(r) = εiφi(r) (10.6)

permit a complete set of eigenfunctions. In the simplest case where N is even, each of

the N/2 orbitals corresponding to the lowest eigenvalues is associated with two electrons of

opposite spin. These occupied orbitals are used to construct the many-electron wavefunction;

they are labelled by the subscripts i, j, . . . The remaining functions form the virtual orbitals

and are indicated by the subscripts a, b, . . ..

Although in some implementations, the Hartree-Fock equations are solved numerically,

the traditional approach is to expand the molecular orbitals (MOs) in a basis of atomic

orbitals, {ηα},

φp(r) =

Nb∑
α

cαpηα(r) (10.7)

The optimized coefficients, cαp, and orbital energies, εp, are determined from the secular

equations, which in matrix notation can be written as

FC = SCε (10.8)

where S is the atomic orbital (AO) overlap matrix, 〈ηα|ηβ〉, F is the AO Fock matrix,

〈ηα|f̂ |ηβ〉, C is the matrix of MO coefficients and ε is the diagonal matrix of MO energies.

These are the celebrated Roothaan-Hall self-consistent field equations.

The Hartree-Fock solution (in a complete AO basis) generally recovers more than 99%

of the exact energy, which is remarkable. The neglected energy is known as the corre-

lation energy, and its accurate and efficient recovery is the central challenge in quantum

chemistry. Indeed, for the purposes of predictive chemistry, we are largely interested in

energy differences which are of similar magnitude to the correlation energy: about 0.04 Eh

(100 kJ mol−1) for two electrons in a doubly occupied orbital.

Currently the most popular approach for solving Eq. 10.1 including electron correlation,

is density functional theory (DFT). DFT, which bypasses explicit construction of the many-

body wavefunction and focuses only on the much simpler 3-dimensional electron density

as the basic variable, is extremely useful due its favorable balance between accuracy and

efficiency.

Instead, we examine in this chapter another approach: a widely-used and computation-

ally efficient correlated wavefunction-based method, known as second-order Møller-Plesset

perturbation theory (MP2) [222]. MP2 is known to produce equilibrium geometries of com-

parable accuracy to density functional theory (DFT) and in particular is able to capture

long-range correlation effects such as the dispersion interaction. For many weakly bound
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systems where DFT results are often questionable, MP2 is essentially the least expensive

and most reliable alternative.

If HF theory can be thought of as a first-order solution to Eq. 10.1, then MP2 theory

is the second-order solution within the framework of perturbation theory, where the many-

electron Hamiltonian is partitioned as

Ĥ =
∑
i

f̂(ri) + λĤ(1) (10.9)

We have introduced an order parameter, λ, to expand the energy and wavefunction,

E = E(0) + λE(1) + λ2E(2) + · · · (10.10)

Ψ = ΨHF + λΨ(1) + λ2Ψ(2) + · · · (10.11)

where ΨHF is the zero-order (Hartree-Fock) wavefunction, and the zero and first-order

energies are given by

E(0) =
∑
i

εi (10.12)

E(0) + λE(1) = 〈ΨHF|Ĥ|ΨHF〉 (10.13)

The second-order (MP2) correlation energy takes the form

E(2) =
∑
ijab

(ia|jb)2 + 1
2 [(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
(10.14)

where the MO integrals,

(ij|ab) =
∑
µνλσ

CµiCνjCλaCσb(µν|λσ) (10.15)

are obtained by transforming the AO integrals,

(µν|λσ) =

∫ ∫
ηµ(r1)ην(r1)ηλ(r2)ησ(r2)

|r1 − r2|
dr1dr2 (10.16)

One way to considerably reduce the computational cost of MP2 calculations is to exploit

the linear dependence in the product space of atomic orbitals. This allows us to expand

products of AOs as linear combinations of atom-centered auxiliary basis functions, P ,

ρµν(r) = ηµ(r)ην(r) ≈ ρ̃µν(r) =
∑

Cµν,PP (r) (10.17)

and to therefore approximate Eq. 10.16 in terms of only 2 and 3-index quantities as

˜(µν|λσ) =
∑
P,Q

(µν|P )(P |Q)−1(Q|λσ) (10.18)
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The idea is equivalent to an approximate insertion of the resolution-of-the-identity (RI),

I =
∑
m

|m)(m| ≈
∑
P,Q

|P )(P |Q)−1(Q| (10.19)

from which the name RI-MP2 is derived.

Our work is implemented in a development version of Q-Chem 3.1 [480], where the RI-

MP2 correlation energy is evaluated in five steps, as described elsewhere [552]. Previously

we showed that steps 3 and 4, the formation of the approximate MO integrals, were by far

the most expensive operations for medium to large-sized systems, and require the matrix

multiplications

(̃ia|jb) ≈
∑
Q

Bia,QBjb,Q (10.20)

and

Bia,Q =
∑
P

(ia|P ) (P |Q)−1/2 (10.21)

These are the two operations we will concentrate on accelerating in this chapter.

10.3 GPU acceleration of GEMM

In this section we first describe our cleaving algorithm to allow matrix multiplications

of arbitrary size to be accelerated on the GPU (assuming sufficient CPU memory). Next, we

propose two different algorithms for the MGEMM (‘mixed-precision general matrix multiply’)

library, using two different schemes to partition the matrices into simpler components.

10.3.1 Cleaving GEMMs

Consider the matrix multiplication

C = AB (10.22)

where A is an (m× k) matrix, B is an (k × n) matrix, and C an (m× n) matrix. We can

divide A into a column vector of r + 1 matrices

A =


A0

A1

...

Ar

 (10.23)
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where each entry Ai is a (pi × k) matrix, and
∑r

i pi = m. In practice, all the pi will be the

same, with the possible exception of pr, which will be an edge case. In a similar manner,

we can divide B into a row vector of s+ 1 matrices

B =
(

B0 B1 · · · Bs

)
(10.24)

where each Bj is an (k× qj) matrix and
∑s

j qj = n. Again all the qj will be the same, with

the possible exception of qs. We then form the outer product of these two vectors

C =


A0

A1

...

Ar


(

B0 B1 · · · Bs

)
(10.25)

=


A0B0 A0B1 · · · A0Bs

A1B0 A1B1 A1Bs

...
. . .

ArB0 ArBs

 (10.26)

Each individual Cij = AiBj is an (pi × qj) matrix, and can be computed independently

of all the others. Generalizing this to a full *GEMM implementation, which includes the

possibility of transposes being taken, is tedious but straightforward.

We have implemented this approach for the GPU as a complete replacement for *GEMM.

The pi and qj values are chosen such that each sub-multiplication fits within the currently

available GPU memory. Each multiplication is staged through the GPU, and the results

assembled on the CPU. This process is hidden from the user code, which simply sees a

standard *GEMM call. In this way, we are able to multiply matrices of arbitrary size using

MGEMM regardless of the available GPU memory.

10.3.2 Bitwise MGEMM algorithm

Consider the partitioning of a double-precision (DP) floating point number, A = m∗2k,

A ≈ Au +Al (10.27)

where Au and Al are single-precision (SP) numbers storing the uppermost nu, and the next

lowest nl, significant bits of m, respectively. Consider next the multiplication of two scalars,

A, B. Applying the bitwise partitioning, we can approximate the full DP multiplication as

four SP multiplications,

AB ≈ AuBu +AuBl +AlBu +AlBl (10.28)
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where the result of each SP multiplication is accumulated in DP. For Eq. 10.28 to be exact,

nu and nl must now be sufficiently small such that no round-off error occurs when storing

each of the four multiplications in SP.

Anticipating the performance of Eq. 10.28, we can introduce an alternative approxi-

mation, involving only three SP multiplications,

AB ≈ AuBu +AuBl +Al(Bu +Bl) (10.29)

where Bu +Bl is replaced by the SP cast of B. In general, we can expect the round-off error

associated with AlBu to be of the same order of magnitude, on average, as the round-off

error associated with Al(Bu +Bl).

Finally, we can generalize Eq. 10.29 for the matrix multiplication,

AB ≈ AuBu + AuBl + Al(Bu + Bl) (10.30)

where, for each element of X ∈ {A,B},

Xij ≈ Xu
ij +X l

ij (10.31)

As above, the final term may be considered as either two separate multiplications, or as a

single multiplication where Bu+Bl is pre-summed. All the multiplications may be evaluated

efficiently using the CUBLAS SGEMM library routines on the GPU. The results may then be

accumulated in DP on the CPU to yield the final approximation for AB.

For Eq. 10.30 to be exact, in addition to the issues for scalar multiplication, we have

the additional round-off errors arising from the multiply-add operations. Specifically, if A

is a M ×K matrix and B is a K ×N matrix, AB effectively consists of MN dot products

of length K. As K increases, or as the range of magnitudes of Xij becomes wider, more

round-off error will occur due to the accumulation in SP. We explore these issues more in

the benchmarks below.

10.3.3 Heterogeneous MGEMM algorithm

A different way to improve the precision is to consider the magnitudes of the matrix

elements from the outset. That is, we decompose the matrix multiplication, C = AB, by

splitting A and B into ‘large’ and ‘small’ components, giving

C =
(
Alarge + Asmall

)(
Blarge + Bsmall

)
= ABlarge + AlargeBsmall + AsmallBsmall (10.32)

where we have taken the simple approach of introducing a cutoff value, δ, to define the

split. i.e. if |Xij | > δ, the element is considered ‘large,’ otherwise it is considered ‘small.’
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Figure 10.1: Pictorial representation of the heterogeneous MGEMM algorithm. The bottom-
left and top-right panels show the A and B matrices and their separation into matrices with
large and small elements, given a cutoff parameter δ. The right-bottom panel shows the
components of the final AB matrix, where the green component involves a dense matrix
multiplication computed with cublas-SGEMM, while the blue components involve sparse
matrix multiplications computed with a daxpy-like algorithm (explained in the text). The
blocks follow the nomenclature shown on Eq. 10.32.

The AsmallBsmall term consists entirely of ‘small’ numbers, and can be run with reason-

able accuracy in single precision on the GPU (using the cleaving approach described above,

if needed). The other two terms contain ‘large’ numbers, and need to be run in double

precision to achieve greater accuracy. However, since each of the ‘large’ matrices will often

be sparse, these terms each consist of a dense-sparse multiplication.

We only store the nonzero terms of the Alarge and Blarge matrices, cutting the compu-

tational complexity significantly. Consider

C ′ik = AijB
large
jk (10.33)

Only a few Blarge
jk will be nonzero, and we consider each in turn. For a particular scalar

Blarge
jk , only the kth column of C′ will be nonzero and is equal to the product of Blarge

jk

and the jth column vector of A. This nonzero column vector C ′ik can be added to the

final result, C, and the next Blarge
jk considered. A similar process can be applied to the

AlargeBsmall term (producing row vectors of C). Again, this approach can be generalized

to a full *GEMM implementation including transposes. Fig. 10.1 shows a cartoon of the
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Figure 10.2: MGEMM enhancement versus the number of upper bits, nu, (and nl = 23) for
N×N matrices where N ∈ {1, 10, 100, 103, 104}. The matrices were initialized with uniform
random numbers on the range [1, 2].

heterogeneous MGEMM algorithm described above.

10.4 MGEMM benchmarks

We now explore the accuracy and efficiency of the two MGEMM algorithms for various

matrix structures. Clearly, the aim is to achieve greater accuracy than a simple SGEMM

call on the GPU, but with minimal extra computational cost. Throughout this section,

calculations were made using an Intel Xeon E5472 (Harpertown) CPU clocked at 3.0 GHz

attached to an NVIDIA Tesla C1060.

10.4.1 Bitwise MGEMM benchmarks

First we examine the MGEMM algorithm described in Section 10.3.2. In the following,

we chose to only benchmark the implementation using 3 multiplications, as in Eq. 10.29.

Numerous test calculations showed that using 4 explicit multiplications gave no significant

improvement in accuracy over the scheme with 3 multiplications. Since the latter is faster,

it should obviously be favoured.

To quantify the accuracy, we found it useful to introduce a new metric which we call the

enhancement, χ. Using DGEMM as the reference, if s and m are the root mean square (RMS)

errors in a matrix element for SGEMM and MGEMM, respectively, then we define χ = s/m.
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Note that when multiplying two N × N matrices, the RMS errors are evaluated from N2

data points. For the small matrices, therefore, the number of data points was insufficient

to obtain reliable statistics. To remedy this, we repeated the smaller matrix multiplications

(with different random numbers) to get more data points. The number of repeats was

chosen to ensure that the standard error of the mean was at least two orders of magnitude

smaller than the RMS error.

Fig. 10.2 shows the enhancement for the multiplication of random N × N matrices

with varying number of upper bits, nu, (and nl = 23). Five curves are shown for N ∈
{1, 10, 100, 103, 104}. The matrices were initialized with numbers uniform in the range

[1, 2].

The enhancement is dominated by round-off errors in the AuBu terms. On average,

these errors are of the same order of magnitude as the SGEMM errors, thus MGEMM will only

show an improvement when these errors vanish. We can achieve this by first remembering

that a single-precision float can only store 24 significant bits in the mantissa. Therefore, if

we only multiply floats with less than 12 significant bits, there will be no round-off error

associated with the operation.

For N = 1, the effect is clear in Fig. 10.2: the enhancement suddenly decreases for

nu > 12. For N > 1, the number of bits, nu, must be sufficiently small to also prevent

round-off errors when accumulating results from many multiply-add operations. As N

becomes larger, this effect is exacerbated, so the optimal nu decreases.

Decreasing nu, however, introduces larger errors into the other terms, such as AuBl.

These errors are smaller than the AuBu errors, but increase exponentially as nu decreases.

Decreasing nu is therefore favourable until the AuBu errors vanish, but there is no advantage

to decreasing nu further. In general, the combination of these effects means that the peak

enhancement decreases with N .

Fig. 10.3 explores the peak enhancement in more detail. Each curve uses the optimal

nu values and initializes A and B with uniform random numbers on one of 5 intervals:

[1,W ] where W ∈ {2, 100, 103, 104, 105}.
For W = 2, the enhancement decreases from O(103) to O(101) as N increases, for

reasons discussed above. For errors corresponding to a classical random walk, we’d expect

χ to decrease as
√
N , which implies a gradient of 1/2 in the log-log plot; this is approximately

true for W = 2. For W > 2, however, the gradient in the log-log plot is reduced, and the

enhancements are almost 2 orders of magnitude smaller for all N > 1. In summary, bitwise

MGEMM is clearly most effective in a few special cases, such as for very small matrices, or

when all the matrix elements are the same order of magnitude.

Table 10.1 highlights the issues regarding speedup when running bitwise MGEMM on the

GPU compared to DGEMM on the CPU for different N . In addition, we catalogue the optimal
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Figure 10.3: MGEMM peak enhancement versus matrix size using uniform random numbers
on 5 ranges: [1, 2], [1, 100], [1, 103], [1, 104], and [1, 105]. Optimal values of nu upper bits
(and nl = 23) were used for all data points.

values of nu, as a function of N and W (the range of random numbers [1,W ].) As expected,

the speedup increases as N increases, but unfortunately, bitwise MGEMM is only faster for

the very largest matrices. The overheads of using the GPU, such as data transfer costs and

memory access latencies, are well known; for N < 1000 the acceleration can be marginal

(see also Fig. 10.4). In addition, in our simple implementation of Eq. 10.29, there is also a

significant overhead from splitting and processing the A and B matrices. Equation 10.30

implies three matrix multiplications, which are independent of each other. Therefore, it has

not escaped our attention that this scheme is parallelizable. In summary, we see up to 3

times speedup over CPU DGEMM for large N , but a slowdown for N ≤ 1000.

10.4.2 Heterogeneous MGEMM benchmarks

We now benchmark the second MGEMM algorithm, described in Section 10.3.3. Fig. 10.4

shows the speedup for a variety of *GEMM calls on the GPU with respect to the size, N , of

a N ×N matrix, relative to the time taken for the corresponding DGEMM call on the CPU.

The input matrices were initialized with uniform random values in the range [−1, 1]

and then ‘salted’ with a fraction fsalt of random larger values in the range [90, 110]. Both

SGEMM and DGEMM were timed using the GPU (the latter being possible for modern cards,

and included for reference). Three MGEMM runs were tested, for fsalt = 10−2, 10−3 and

10−4. The size of the cutoff parameter δ was chosen such that all the salted elements were
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Optimal nu
N Speedup W = 2 W = 100 W = 103 W = 104 W = 105

1 0.01 12 12 12 12 12
10 0.01 10 6 6 6 6
100 0.07 9 5 4 4 4
1000 0.52 7 4 4 4 4
10000 2.87 5 3 3 3 3

Table 10.1: Speedups relative to CPU DGEMM and optimal number of upper bits, nu, when
using bitwise MGEMM for various matrix sizes with random elements on five intervals [1,W ].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2000  4000  6000  8000  10000  12000

S
pe

ed
-u

p 
re

la
tiv

e 
to

 C
P

U
 D

G
E

M
M

Matrix size

MGEMM fSalt = 10-2

MGEMM fSalt = 10-3

MGEMM fSalt = 10-4

SGEMM (Cleaver)
DGEMM (Cleaver)

Figure 10.4: Speedup for various *GEMM calls as a function of matrix size. Most elements
were in the range [−1, 1], with the ‘salt’ values in the range [90, 110]. Times are scaled
relative to running DGEMM on the CPU.

considered ‘large’. All timings were averaged over ten runs.

Running CUBLAS SGEMM is approximately 17.1 times faster than running DGEMM on the

CPU for a matrix of size 10048×10048, and is even faster for larger matrices. This represents

an upper bound for the speedups we can hope to obtain with MGEMM for such matrices.

Leveraging the GPU for small matrices is not effective, due to well-known overheads such

as memory transfer and access latencies.

In contrast, the MGEMM speedups are strongly dependent on the fraction fsalt, which

determines how much of the calculation is done in double-precision on the CPU. For fsalt =

10−4, the speedups are approximately 10x, but for fsalt = 10−3, speedups of approximately

2x relative to CPU DGEMM are observed. Indeed, for fsalt = 10−2, MGEMM is actually slower

than CPU DGEMM.
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Figure 10.5: RMS error in a single element for various GEMM calls as a function of matrix
size compared to CPU DGEMM. Background elements were in the range [−1, 1], with the ‘salt’
values in the range [90, 110] or [9990, 10010].

Next we consider the accuracy enhancement when using MGEMM compared to SGEMM.

In Fig. 10.5, we show the root mean square (RMS) errors of each matrix element relative

to CPU DGEMM for different matrix sizes. As above, all the matrices were initialized with

uniform random values in the range [−1, 1], but now the salting sizes were grouped into

two ranges: [90, 110] and [9990, 10010]. Results are shown for SGEMM and MGEMM for various

salting fractions.

As expected, SGEMM produces substantial errors. With a fraction of salted values,

fsalt = 1%, in the range [90, 110], the errors are of O(0.01) for the medium-sized matrices.

In contrast, the errors are more than 2 orders of magnitude smaller when using MGEMM, and

are the same regardless of the fraction or size of the salted elements. The limiting MGEMM

errors are the same as the SGEMM errors for a pair of unsalted random matrices on [−1, 1]

because the MGEMM algorithm guarantees that all the salted contributions are computed on

the CPU. Indeed, if the salts were larger or more numerous, the SGEMM errors would be even

larger, but the MGEMM errors would be unchanged. This is in stark contrast to the behaviour

of the bitwise MGEMM algorithm.

10.4.3 Comparison of MGEMM schemes

The behaviour of the two MGEMM algorithms is very different. First, the speed of the

bitwise MGEMM depends only on the size of N , not on the elements of A or B. Moreover,
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it is only 3 times faster than CPU DGEMM in the best case. In contrast, the speed of the

heterogeneous MGEMM algorithm strongly depends on the fraction of ‘large’ elements. While

it is up to 10 times faster than CPU DGEMM for a 0.01% fraction of large elements, for a

1.0% fraction, it is actually slower.

Concerning the accuracy of the two algorithms, consider the following cases. First,

suppose the elements of A and B are random numbers on the interval [1, 2]. Mean errors

produced by bitwise MGEMM are approximately 2 to 3 orders of magnitude smaller than

SGEMM, depending on the matrix size (c.f. Fig. 10.2). In contrast, it is obvious that no value

of δ can be chosen to make the heterogeneous MGEMM useful. At the other extreme, consider

two matrices with a vast majority of elements in the range [0, 1], and a small minority of

scattered elements of unlimited size. Now, the heterogeneous MGEMM will be extremely useful,

while the bitwise algorithm is likely to be quite ineffective due to the problems previously

explained.

For this research, we are interested in accelerating quantum chemistry. It turns out that

the relevant A and B for the RI-MP2 method have large N and very large W , suggesting

that the heterogeneous algorithm should be the method of choice.

10.5 RI-MP2 acceleration benchmarks

We now show how the tools described above can accelerate full RI-MP2 quantum

chemistry calculations on real molecules. To achieve this, we accelerate the evaluation of

Eq. 10.20 and Eq. 10.21 using MGEMM running on a GPU. We compare to the use of standard

DGEMM BLAS on the CPU, and CUBLAS SGEMM on the GPU. For all these benchmarks, we

used an AMD Athlon 5600+ CPU clocked at 2.8 GHz, combined with an NVIDIA Tesla

C1060 GPU with 4 GiB of RAM. The matrix cleaver and MGEMM were implemented in a

modified version of the Q-Chem 3.1 RI-MP2 code described elsewhere [552].

As anticipated in the previous section, the bitwise MGEMM library does not give useful

improvements compared to a standard CPU DGEMM. In the evaluation of Eq. 10.20, we

observed no significant improvement in accuracy using bitwise MGEMM, and an enhancement

of only 2.5 for Eq. 10.21. Thus we decided not to study the use of bitwise MGEMM further

here. The results of applying the heterogeneous MGEMM algorithm (just MGEMM, from now on)

were much more encouraging.

For our test systems we chose a set of linear alkanes (C8H18, C16H34, C24H50, C32H66,

C40H82) as well as two molecules of pharmaceutical interest, the anti-cancer drugs taxol

(C47H51NO14) and valinomycin (C54H90N6O18). We used the cc-pVDZ and cc-pVTZ [139]

atomic orbital basis sets throughout.

First, in Table 10.2 we benchmark the reference case of using either CUBLAS SGEMM
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Speedup SGEMM energy error
Molecule SGEMM DGEMM (kcal mol−1)

C8H18 2.1 1.9 -0.05616
C16H34 4.5 3.7 -0.12113
C24H50 6.9 5.2 -0.62661
C32H66 9.0 6.4 -0.75981
C40H82 11.1 7.2 -1.12150
Taxol 11.3 7.1 -6.26276

Valinomycin 13.8 7.8 -9.99340

Table 10.2: Speedups using CUBLAS SGEMM and DGEMM and total energy errors relative to
CPU DGEMM for various molecules in a cc-pVDZ basis.

or DGEMM for each test molecule using the double-ζ basis set. The table shows the speedup

in computing the RI-MP2 correlation energy and the error relative to a standard CPU

calculation (the DGEMM errors are negligible). The speedups and SGEMM errors are greater for

the larger molecules, with the largest speedups observed for valinomycin: 13.8x and 7.8x,

using SGEMM and DGEMM, respectively. However, while CUBLAS DGEMM gives essentially no

loss of accuracy, the SGEMM error is approximately -10.0 kcal mol−1, which is well beyond

what is generally accepted as chemical accuracy.

Quantum chemistry generally aims to achieve a target accuracy of 1.0 kcal mol−1. In

Table 10.3, we explore the performance of MGEMM using a constant cutoff value of δ=1.0 to

try and reduce the SGEMM errors in Table 10.2. The results show speedups and total energy

errors for each molecule in both the double-ζ and triple-ζ basis sets. In this particular case,

we have limited the GPU to use only 256 MiB of RAM to mimic the capability of older

cards and emphasize the use of the MGEMM cleaver. This will naturally result in a loss of

speedup compared to utilizing a larger GPU memory. In the case of taxol the reduction is

approximately 20%.

Speedup Energy error(kcal mol−1)
Molecule Double-ζ Triple-ζ Double-ζ Triple-ζ

C8H18 1.9 2.7 -0.01249 -0.03488
C16H34 3.8 5.6 -0.00704 -0.04209
C24H50 5.8 8.2 -0.14011 -0.33553
C32H66 7.9 9.2 -0.08111 -0.29447
C40H82 9.4 10.0 -0.13713 -0.51186
Taxol 9.3 10.0 -0.50110 -1.80076

Valinomycin 10.1 - -1.16363 -

Table 10.3: MGEMM speedups and total energy errors with respect to CPU DGEMM for various
molecules in a cc-pVDZ and cc-pVTZ basis.
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Looking at Table 10.3, the trends are the same as in Table 10.2, but the MGEMM errors are

approximately an order of magnitude less than the SGEMM errors (for the larger molecules).

For valinomycin in the cc-pVDZ basis, the SGEMM speedup is reduced from 13.8x to 10.1x

using MGEMM, but the error in the total energy is also reduced from -10.0 kcal mol−1 to

-1.2 kcal mol−1, which is now very close to chemical accuracy. Moreover, while CUBLAS

DGEMM clearly has the advantage (when available) of high accuracy, if -1.2 kcal mol−1 is

deemed an acceptable accuracy, MGEMM could be favoured since the DGEMM speedup is only

7.8x compared to 10.1x. Note that the errors are larger for the triple-ζ basis simply because

it requires more computation, which leads to greater error accumulation; this is a general

issue not only for higher quality basis sets, but also for larger molecules using lower quality

basis sets.

10.6 Conclusion

We have demonstrated how computational quantum chemistry can benefit from lever-

aging the power of graphical processing units in a very simple way. Our new tools are easy

to incorporate into existing legacy codes where matrix multiplications involve a substantial

fraction of the overall computational cost. Clearly, more efficient use of the GPU can be

achieved in special cases by devoting time to rewriting and redesigning the algorithms for

GPU architectures. However, this is often not a feasible option in practice, especially for

a mature discipline such as quantum chemistry where we typically employ large program

suites representing years or decades of coding effort.

In summary, our contribution has been the development, testing and benchmarking of

a general black-box approach for the efficient GPU acceleration of matrix-matrix multipli-

cations. In particular, our new library, which we call MGEMM [475], works for matrices of

arbitrary size, even if too large for the whole computation to be held in the GPU’s onboard

memory. Moreover, while assuming only single-precision operations to be available on the

GPU, we have demonstrated two algorithms whereby orders of magnitude greater accuracy

can be achieved within the context of a mixed-precision approach.

To illustrate the utility of MGEMM for quantum chemistry, we combined it with the

Q-Chem 3.1 [480] program package and computed the MP2 correlation energy of the 168-

atom valinomycin molecule in a cc-pVDZ basis set. Using SGEMM, MGEMM and (GPU) DGEMM,

we observed speedups of 13.8x, 10.1x and 7.8x, respectively, while MGEMM was an order of

magnitude more accurate than SGEMM, thus achieving ‘chemical accuracy’.

Traditionally, GPUs have only had single-precision (SP) support and it remains true

that the vast majority of GPU cards worldwide currently do not have double precision (DP)

capability. Indeed, we are interested in using commodity GPUs within a grid-computing
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environment, such as that promoted by the Berkeley Open Infrastructure for Network Com-

puting (BOINC) [66]. GPUs in a typical BOINC client do not have DP support, yet com-

prise a formidable resource worldwide.

Nevertheless, DP devices and co-processors are now available. Moreover, the trend

seems to be towards the release of more advanced DP support in the future, such as the

next-generation GPU from NVIDIA, currently code-named Fermi. Fermi will reportedly

have a DP peak performance which is only a factor of 2 less than the SP performance. (For

NVIDIA’s C1060, the ratio is approximately 12).

It is therefore valid to question the potential of mixed-precision algorithms for next-

generation GPU architectures. We believe this is an open issue. For example, practical

calculations on GPUs are very often bound by memory bandwidth, rather than raw op-

eration count. While DP cards are getting faster, this I/O bottleneck is likely to remain.

In these cases, the transfer and processing of only SP data could effectively double the

performance compared to naive DP calculations. Overall, we believe that mixed-precision

algorithms could remain important for applications were the highest performance is a pri-

ority.
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Conclusions and future directions

We have developed methods to study the response of molecules in nanoscale environ-

ments. In the case of SERS, the analyte is surrounded by nanostructured environments

in the form of particles or surfaces. This cause a change in terms of the Raman response

of the molecule with respect to the incident field. In the case of materials for organic

photovoltaic applications, the molecular environment involves other molecules of a similar

type (e.g., a donor) and its counterpart (e.g., the acceptor). The interaction between these

two components is essential for enabling energy transfer processes. In both cases, the de-

velopment of quantum chemistry methods has aided to understand phenomena present in

spectroscopy and solar energy harvesting. As a third rail, the development and use of new

hardware technologies has permitted the study of high-throughput approach in quantum

chemistry, while GPUs have permitted an order of magnitude or more acceleration in post

Hartree-Fock methods.

We have contributed to an understanding of the local effects of the metal–molecule

interactions in SERS. Specifically, we have shown that there are both static and dynamic

effects present in the chemical enhancement effect. To show this, we studied the immediate

environment of the molecule by way of approximating the metal nanoparticle as a metal

cluster. This work led us to propose a potential additional enhancement by means of adding

a transition metal overlayer on top of a typical plasmonic substrate. We posited that the

improved metal–molecule interactions would provide a lending effect. This effect was proven

experimentally to yield an overall analytical enhancement.

We also developed a set of algorithms that we chose to name CheESE: Chemistry in

Electrostatic Environments 1. This involved studying the effect of a molecule when inside a

metallic environment by modifying the system’s boundary conditions such that they could

1Quantum chemists should also enjoy the delight of naming their methods after something pronounceable,
after all the NMR community has been doing this for some time, as they name their methods GRAPE or
CORPSE. Why does our community like acronyms like B3LYP/6-31G*?
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simulate a perfect metallic conductor. Our model system was studying benzene and how

an excess electron could in fact be stabilized due to image charge effects. These methods

were developed both for real-space and basis-set based quantum chemistry codes.

Our motivation for developing CheESE was to approximate the metallic environment

to study SERS. In this way, we could go beyond local effects, prevalent in the cluster models,

and account for image-charge and plasmon phenomena present in the metal nanoparticles

of arbitrary shape. In fact, this implementation became a set of initial steps to consider

the SERS effect in a truly multiscale fashion. To account for plasmon resonances, methods

must be developed to go beyond simple Drude-like phenomenology of the plasmon effect.

As mentioned in Chapter 1, it is perhaps useful to consider 2D jellium-like models for

the metallic surfaces. Ultimately, the study of SERS must be motivated by experimental

results, and therefore attempting to reproduce the nanoscale conditions will become of prime

importance; especially when these conditions are very hard to elicit experimentally.

The massive search for new materials for organic photovoltaics has brought about a

serious change of thinking for the analysis of quantum chemistry calculations. A researcher

typically deals with tens or perhaps hundreds of results. The CEP, by means of distributed

computing, has currently obtained tens of millions of results. We began developing and

applying cheminformatics methods to complement those of quantum chemistry in the search

for molecules. In a way, this was a necessary step to propose a molecular library of potential

candidates. However, we went a step ahead and started investigating whether machine

learning methods, prevalent in drug discovery and pattern recognition, will be useful to find

better materials.

Although the material parameters that are important for organic solar cells are known,

they are not always simple to calculate and much less easy to predict. The search for

structure-property characteristics using machine learning then becomes increasingly impor-

tant. We have begun this research with a relatively simple regression, however work left

in progress promises the use of more complex machinery including classification tools and

non-linear methods that rely on Bayesian statistics. At the same time, it is important to

emphasize that machine learning is no substitute to theoretical methods. Rather, these

methods should be used to enhance the properties that quantum chemistry methods yield.

For instance, we are beginning to use ground state results to train a set with mixed topo-

logical and quantum chemistry values, leading to the smallest root-mean-square deviations

we have yet found for any model.

We have also contributed to the field of accelerating quantum chemistry codes using

heterogeneous architectures, namely GPUs. As this provided us with a different kind of

computational resources, we strived to obtain a balance between implementing code for the

new hardware, while keeping sections of code that were not necessary to port. As the GPU
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field in chemistry was just blossoming, it was necessary to develop new tools and borrow

and improve old ones, such as mixed-precision approaches. Our strategy to use GPUs for

only certain parts of the calculations eased its implementation with Q-Chem, one of the

more popular quantum chemistry programs. Its most current release contains the GPU

acceleration of RIMP2, which we covered in Chapters 8–10.

The field of general purpose applications to GPUs matured in under five years. This

has led to GPUs to become semi-ubiquitous in the newest supercomputer designs as well

as in most or if not all modern workstations. In order to progress with the work presented

in this dissertation, it is important to continue integrating all the different areas. Meth-

ods development under new setups and architectures is essential for enabling the research.

Similarly, high-throughput methods used in computer science and other fields will become

increasingly important to assess underlying correlations, which cannot always be extracted

using current theories. The study of molecules under nanoscale environments must have

feedback from different areas, even if they seem as disparate as SERS and organic photo-

voltaic generation. This means the development of a true multiscale implementation where

molecular and nanometer-sized effects are considered will fuel quantum chemistry research

in the years to come.



Appendix A

On the electron localization function

A.1 Motivation

The electron localization function (ELF) has become a useful tool to characterize the

electronic structure of the system [53, 463, 464, 485]. ELF is designed to be inversely propor-

tional to the probability of finding an electron of the same spin close to another, and to have

a range from 0 to 1. The properties of the ELF have been widely understood. For instance,

the ELF shines light on bonding, such that one can interpret regions where σ- or π-bonds

dominate. This function has been used for several applications ranging from understanding

reactivity such as electrophilic aromatic substitutions [165], electrophilic aminations [16],

and even iron chalcogenide clusters [448].

In this appendix, we will begin by reviewing the concept of curvature, and then apply

it to the Fermi hole, in Secs. A.3 and A.4. Finally, we will develop the formulas of ELF in

Sec. A.5.

A.2 Curvature

For a set of Cartesian parametric equation x = x (t), y = y (t), where t is shown in

Fig. A.1. The curvature is defined as [267]:

K =
∂θ

∂s
(A.1)

In turn, we can define these as the set of parametric equations:

K =
∂θ/∂t

∂s/∂t
=

∂θ/∂t√(
∂x
∂t

)2
+
(
∂y
∂t

)2
(A.2)

We are able to obtain Eq. A.2 by noticing that ∂s can be represented by its x and y

components, as seen in Fig. A.1. To get the curvature, we are left to find out what is ∂θ/∂t.
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Figure A.1: Schematic representation of the curvature of a function γ (s). s is the arc
length; θ is the tangential angle; t is the tangent; N is the unit normal vector.

We begin by relating tan θ with its derivative:

tan θ =
∂y

∂x
=
∂y/∂t

∂x/∂t
=
y′

x′
=⇒ ∂

∂t

(
∂y/∂t

∂x/∂t

)
=
x′ − y′′ − x′′ − y′

x′2
(A.3)

= sec2 θ
∂θ

∂t
(A.4)

And so,

sec2 θ =
1

cos2 θ
=

(√(
∂x
∂t

)2
+
(
∂y
∂t

)2
)2

(
∂x
∂t

)2 =
x′2 + y′2

x′2
(A.5)

So after combining Eqs. A.3– A.5 we obtain:

∂θ

∂t
=

1

sec2θ
·
x′ − y′′ − x′′ − y′

x′2
=
x′ − y′′ − x′′ − y′

x′2 + y′2
(A.6)

And finally, we get the curvature as:

K =
x′ − y′′ − x′′ − y′

(x′2 + y′2)3/2
(A.7)

Therefore, for a 2D plot in the form y = f (x), the curvature will then be:

K =
1y′′ − 0

(1 + y′2)3/2
=

y′′

(1 + y′2)3/2
(A.8)

A.2.1 Interpretation

Returning to Fig. A.1, one can also understand the curvature as the acceleration, or

rather, the derivative of the tangent T . Therefore, K (s) = ||Γ′′ (s) ||, where naturally the

first derivative of the curve is the tangent T . Physically, the curvature measures how fast

the vector is rotating. In this sense, if we could map the curvature to a circle (or sphere),

the curvature will be the reciprocal of its radius.
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A.3 The Fermi hole and its curvature

The pair density of a N -fermion system can be described by a many-body wave-

function, as derived by Dobson [135]:

n2 (r1, σ1; r2, σ2) = N(N − 1)
∑

σ3···σN

∫
d3r3 · · ·

∫
d3rN |φ (r1, σ1; r2, σ2; . . . , rN , σN |2 (A.9)

= 2Γ (x1, x2|x1, x2) (A.10)

= 2Γ2σ1σ2 (r1, r2) (A.11)

Notice that Γ is a pair density matrix. Becke uses Eq. A.11 to express n2. n2 can

be interpreted as the probability density of finding one particle at position r1 with spin

projection σ1 and simultaneously a second particle at r2 with spin projection σ2. The

departure of n2 from a product of spin densities: n (r1, σ1)n (r2, σ2) is termed a “hole”.

This quantity has also been explored by Löwdin [318], and he expressed it originally as in

Eq. A.10. We notice that for antiparallel spins, the hole is due to interparticle repulsion.

Therefore, it is termed as the Coulomb hole. The hole for parallel spins has been termed

the Fermi hole [318], due to the Fermi statistics that must be obeyed. The antisymmetry

of the wavefunction implies that for σ1 = σ2 and r1 = r2, Γ = 0. Löwdin further derived

that Γ behaves quadratically in the limit as r12 → 0, where r12 = |r1 − r2|. This means

that the gradient vanishes at r12 = 0 as well.

The curvature of the hole, then becomes an interesting quantity in order to shed light

on particle-particle interactions. In Sec. A.2, we derived the interesting properties for a 1D

curvature in Sec. A.2. Briefly, for a 1D system, the curvature of any plot y (x) is given by:

y′′
(
1 + y′2

)−3/2
, but as we mentioned, the gradient goes to zero. Therefore, at r12 = 0 the

curvature depends on the second derivative and on the direction of approach. We can use

the Laplacian to define the curvature at point r:

C (r, σ) =
[
∇′2n2

(
r, σ; r′, σ′

)]
r′=r

(A.12)

What Dobson [135] finds for a Hartree-Fock system the curvature is related to a quan-

tity Ds, such that:

CHF = 2n (r, σ)

[
τ (r, σ)− 1

4

|∇n (r, σ)|2

n (r, σ)

]
= 2n (r, σ)Dσ (A.13)

where Dσ is:

Dσ = τ (r, σ)− 1

4

|∇n (r, σ)|2

n (r, σ)
, (A.14)
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and τ (r, σ) is given by the sum of the square of the gradient of the occupied wavefunctions:

τ (r, σ) =
∑
i,occ

|∇φi (r, σ)|2 (A.15)

A.4 Laplacian of the pair density matrix

Becke and Edgecombe’s work [53] uses the gradient of Eq. A.11, but their derivation

is motivated by taking a spherically-averaged Taylor-expansion around the conditional pair

probability, which also leaves a Laplacian term, and so the curvature will be related to the

leading elements of the Taylor expansion. This will be developed in Sec. A.4 below.

Similar to Dobson, albeit in a more detailed way, we aim to understand what is the

curvature of Eq. A.11. In order to reach this for the ELF formalism [53], Becke uses the

negative of the Fermi hole density: the exchange charge density nx↑ [49]. After showing

the Laplacian (and hence the curvature) of this function, we can go ahead and obtain it for

Eq. A.11.

From Eq. A.11, we recall that the 2-body probability density for like spin pairs (i.e.,

σ =↑) is for two electrons at r and r + s, respectively [49]:

Γ2� (r, r + s) = n↑(r)n↑(r + s)− |n1↑ (r, r + s)|2 , (A.16)

where n1↑ (r, r + s) is the exchange charge density and is given by:

n1↑ (r, r + s) =

σ=↑∑
i

φ∗i (r)φi(r + s). (A.17)

In this case, the summation is restricted to orbitals of σ =↑ spin only.

The exchange energy can be given as the integral over r1 and r2 over r12. However, if

one changes the variables to r = r1 and s = r1 − r2, and multiply and divide by n↑(r):

Ex↑ = −1

2

∫ ∫
1

r12
n1↑ (r1, r2) dr1dr2 = −1

2

∫ ∫
s−1n↑(r)nx↑ (r, r + s) drds,

where nx↑ is the exchange charge density and is given as:

nx↑ (r, r + s) =
|n1↑ (r, r + s)|2

n↑(r)
(A.18)

Equation A.18 is also referred as the conditional probability of a finding a second σ↑

electron at position r + s, when a first σ↑ spin electron is located with certainty at position

r [53]. nx↑ must fulfill certain properties that are detailed elsewhere [49, 53]. As mentioned

in Sec. A.3, one of the most important points is the small-s behavior of Γ2� near the

reference point r [48]. Löwdin showed that it scales quadratically as s = 0 (i.e., r12 = 0).

Thus one can take a spherically-averaged Taylor expansion of Γ2� to see its curvature [49].
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A.4.1 Study of the short-range behavior of s

Since we are interested in the region of small s, we take the Taylor expansion of

nx↑ (r, r + s) of s around the reference point r:

nx↑ (r, r + s) =

∞∑
n=0

1

n!
(r + s− r)n

∂

∂s
nx↑ (r, r1) |r1=r′

=
∞∑
n=0

sn

n!

∂

∂s
nx↑ (r, r1) |r1=r′

= es ·∇1nx↑ (r, r1) |r1=r′ (A.19)

The spherical average of the Taylor expansion is developed in Sec. A.6. It shows that:〈
es ·∇1

〉
=

(
1 +

1

3!
s2∇2

1 + . . .

)
nx↑ (r, r1) |r1=r′ (A.20)

Going through the derivation, when we take the Laplacian of nx↑ (r, r1) |r1=r′ :

∇2
1nx↑ (r, r1) |r1=r′ = ∇2

1

|n1↑ (r, r1)|2

n↑(r)
=

1

n↑(r)
∇2

1 |n1↑ (r, r1)|2 . (A.21)

Taking the Laplacian of the last term in Eq. A.21 yields Eq. A.22:

∇2
1 |n1↑ (r, r1)|2 = ∇2

1

∑
ij

φi(r)φ∗i (r1)φ∗j (r)φj(r1)|r=r1

=
∑
ij

φi(r)∇2
1

(
φ∗i (r1)φ∗j (r)φj(r1)

)
=
∑
ij

φi(r)φ∗j (r)∇2
1 (φ∗i (r1)φj(r1))

=
∑
ij

φi(r)φ∗j (r)
[(
∇2

1φ
∗
i (r1)

)
φj(r1) + φ∗i (r1)∇2

1φj(r1) + 2 (∇φ∗i (r1) ·∇φj(r1))
]
r=r1

=
∑
j

φ∗j (r)φj(r1)︸ ︷︷ ︸
n↑

∑
i

(
∇2

1φ
∗
i (r1)

)
φi(r) +

∑
i

φ∗i (r1)φi(r)︸ ︷︷ ︸
n↑

∑
j

φ∗j (r)∇2
1φj(r1)+

+ 2
∑
i

(∇φ∗i (r1))φi(r) ·
∑
j

(∇φj(r1))φ∗j (r) (A.22)

Afterwards, we go ahead and divide by n↑(r), and evaluate r = r1. At this limit,

nx↑ (r, r) = n↑(r). We can cancel out the terms present in Eq. A.22:

∇2
1nx↑ (r, r1) |r1=r′ =

∑
i

∇2φ∗i (r)φi(r) +
∑
i

φ∗i (r)φi(r)+

+
2

n↑(r)

∑
i

(∇φ∗i (r))φi(r) ·
∑
j

(∇φj(r))φ∗j (r)

= ∇2n↑(r)− 2τ↑(r) +
2

n↑(r)

∑
i

(∇φ∗i (r))φi(r) ·
∑
j

(∇φj(r))φ∗j (r).

(A.23)
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The last step is reached by using Eq. A.15 and by noting that at this limit,

∇2n↑ = ∇2
∑
i

(φ∗iφi) =
∑(

∇2φ∗i
)
φi +

∑
i

∇2φ∗i (φi) + 2
∑
i

(∇φ∗i ) (∇φi) .

By considering φ to be real,

∇n↑ = ∇
∑
i

φ∗iφi =
∑

(∇φ∗i )φi +
∑

φ∗iφi = 2
∑
i

(∇φi)φi.

Therefore, under this assumption, the last term in Eq. A.23 is∑
i

(∇φ∗i (r))φi(r) ·
∑
j

(∇φj(r))φ∗j (r) =

(
1

2
∇n↑

)(
1

2
∇n↑

)
.

Finally, Eq. A.23 yields:

∇2
1nx↑ (r, r1) |r1=r′ = ∇2n↑(r)− 2τ↑(r) +

1

2

(∇n↑(r))2

n↑(r)
(A.24)

The short-range behavior of the exchange charge density up to second order in s is:

〈nx↑ (s)〉 = n↑ +
1

6

(
∇2n↑ − 2τ↑ +

1

2

(∇n↑)2

n↑

)
s2.

We can do the same analysis, but with Eq. A.11, in the form of Eq. A.16:

Γ2� (r, r1) |r=r1 = ∇2
1

(
n↑(r)n↑(r1)− |n1↑ (r, r + s)|2

)
= n↑(r)∇2

1n↑(r)−

(
∇2(r)n↑(r)− 2τ↑(r) +

1

2

(∇n↑(r))2

n↑(r)

)
n↑(r)

Γ2� (r, r1) |r=r1 = 2n↑(r)

(
τ↑(r)− 1

4

(∇n↑(r))2

n↑(r)

)
(A.25)

We reach Eq. A.25 by noticing that we have solved for the Laplacian in the last term

of Eq. A.16 in Eq. A.24, but in this case the 1/n↑ term does not appear, so that only affects

the evaluation part. We notice that the inside part of Eq. A.25 is Dσ, derived in Eq. A.13.

In fact, this is the quantity used by Becke and Edgecombe to define the electron localization

function, which we will further develop in the next section.

A.5 The electron localization function

Once we have established the origin of Dσ, and its relation to the curvature of the

Fermi hole, we can go ahead and see if it has any issue in chemistry. In fact, it turns out

that the electron localization and Dσ are inversely related. If Dσ is large, this means that
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the exchange hole curvature changes rapidly and thus, there is a small localization of the

second electron, since the Fermi hole will be very deep. In the case of finite systems, for

example, Dσ should decay to zero meaning that all the electrons are fully localized [53].

However, since Dσ is not bound from above, we need to use this quantity in a smarter

way. Therefore, Becke and Edgecombe [53] proposed the following definition for ELF:

ELF =
1

1 + χ2
σ

, (A.26)

where χσ = Dσ/D
0
σ, where D0

σ is the D-value of the uniform-density electron gas, which is

used as reference:

D0
σ =

3

5
(6π)2/3 ρ5/3

σ . (A.27)

What Eq. A.27 does is give a bound to the ELF in Eq. A.26. The range of ELF goes

as 0 ≤ ELF ≤ 1. ELF=1 corresponds to perfect localization, just as in the case of high Dσ,

and ELF=1/2 corresponds to electron-gas-like probability of localization, as we are using

the bound. Lastly, Becke and Edgecombe note that for multielectron systems in regions

dominated by a single, localized, τ -electron orbital, the value of Dτ vanishes, and therefore

the value of ELF approaches unity [53]. These tools are all what is necessary for ELF to

give an understanding of bonding and electron pairs.

A.6 Solution of a spherically-averaged Taylor expansion

We take the spherical average of the Taylor expansion 1, as used by Becke [48]:

〈
es ·∇1

〉
=

1

4π

∫ 2π

0
dφ

∫ 1

−1
d cos θes ·∇1 cos θ =

1

2

es ·∇1 cos θ

s ·∇1
|1−1

=
1

2

es ·∇1 − e−s ·∇1

s ·∇1
=

sinh (s ·∇1)

s ·∇1〈
es ·∇1

〉
=

1

4π

∫
es ·∇1dΩ =

sinh (s ·Ω1)

(s ·∇1)
=

(
1 +

1

3!
s2∇2

1 +
1

5!
s4∇4

1 + . . .

)
(A.28)

1It is helpful to use a f (r) term so that the solution of the integral is more evident
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Resolution of the identity approximation

We have implemented a heterogeneous version of the resolution-of-the identity second

order Møller-Plesset perturbation theory (RIMP2) [147, 572, 576, 333]. In the following, we

provide a derivation of the RI approximation, which we used in Chapters 8–10. Moreover,

we rely on the derivation presented by Hättig [210], though we will be consistent with the

notation developed in the chapters mentioned above.

The electron repulsion integrals using atomic orbitals (AOs) ηα are obtained by solving

the following four-index, two-electron integral:

(µν|λσ) =

∫ ∫
ηµ(r1)ην(r1)ηλ(r2)ησ(r2)

|r1 − r2|
dr1dr2. (B.1)

We exploit the linear dependence in the product space of atomic orbitals. This allows us

to expand the products of the AOs as linear combinations of atom-centered auxiliary basis

functions, P ,

ηµ(r)ην(r) ≈
∑
P

Cµν,PP (r) (B.2)

The advantage of this approach is that the dimensionality is much smaller. The coefficients

Cµν,P can be determined through a least squares procedure. We define the error in the

expansion of an orbital pair:

Rµν (r1) = ηµ (r1) ην (r1)−
∑
P

Cµν,PP (r1) . (B.3)

We can express the quadratic error in the Coulomb repulsion integrals (µν|λσ) as:

(Rµν |Rλσ) =

∫ ∫
Rµν (r1)Rλσ (r2)

|r1 − r2|
dr1dr2.

The integrals must fulfill the Schwartz inequality. Minimizing (RµνRλσ) with respect to the

expansion coefficients C leads to the following conditions:

d

dCµν,P
(Rµν |Rλσ) = 0⇔ (Rµν |P ) = 0⇔ (µν|Q)−

∑
P

Cµν,P (P |Q) = 0. (B.4)
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We notice (P |Q) is a 2-index, 2-electron quantity, while (µν|Q) is a 3-index, 2-electron one:

(P |Q) =

∫ ∫
P (r1)Q (r2)

|r1 − r2|
dr1dr2;

(µν|Q) =

∫ ∫
ηµ(r1)ην(r1)Q (r2)

|r1 − r2|
dr1dr2.

From Eq. B.4, we can obtain the coefficients Cµν,P . It is straightforward to obtain this by

converting the equations into matrix form:

(µν|Q)−
∑
P

Cµν,P (P |Q) = 0→ D−CV = 0→ C = DV
−1
,

where D = (µν|Q); C are the matrix elements Cµν,P ; and, V = (P |Q). Therefore, the

coefficients are given by:

Cµν,P =
∑
Q

(µν|Q) (Q|P )
−1

, (B.5)

and we can express Eq. B.1 in terms of only 2 and 3-index quantities as:

˜(µν|λσ) =
∑
P,Q

(µν|P )(P |Q)−1(Q|λσ). (B.6)

Finally, this idea is equivalent to an approximate insertion of the resolution-of-the-identity

(RI),

I =
∑
m

|m)(m| ≈
∑
P,Q

|P )(P |Q)−1(Q| (B.7)

from which the name RI-MP2 is derived.
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