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Abstract

Solutions to the problem of large peak to average power ratio (PAPR) in orthog-

onal frequency division multiplexing (OFDM) systems are proposed. Although the

design of PAPR reduction codewords has been extensively studied and the existence

of asymptotically good codes with low PAPR has been proved, still no reduced PAPR

capacity achieving code has been constructed. This is the topic of the current thesis.

This goal is achieved by implementing a time-frequency turbo block coded OFDM.

In this scheme, we design the frequency domain component code to have a PAPR

bounded by a small number. The time domain component code is designed to obtain

good performance while the decoding algorithm has reasonable complexity. Through

comparative numerical evaluation we show that our method achieves considerable

improvement in terms of PAPR with slight performance degradation compared to

capacity achieving codes with similar block lengths. For the frequency domain com-

ponent code, we used the realization of Golay sequences as cosets of the first order

Reed-Muller code and the modification of dual BCH code. A simple MAP decoding

algorithm for the modified dual BCH code is also provided.

Finally, we provide a flexible and practical scheme based on probabilistic approach
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to a PAPR problem. This approach decreases the PAPR without any significant

performance loss and without any adverse impact or required change to the system.
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Chapter 1

Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a promising data multi-

plexing technique for the wireless communication. It provides high spectral efficiency

and simple modulation and demodulation algorithms. Furthermore, OFDM reduces

the requirement for equalization and enhances the system capacity by adapting to

the channel conditions in the frequency domain. In spite of these advantages, OFDM

is not widely used in the reverse link of the modern mobile communication systems

because of its high Peak to Average Power Ratio (PAPR). Typically, significant por-

tion of the total cost of OFDM base stations corresponds to that of power amplifiers.

This is due to the fact that comparatively large linear region is required for the power

amplifiers in OFDM systems. In general, an engineering rule of thumb is that for

every 3 dB increase in the linear region of power amplifiers, the cost of the power

amplifier doubles. OFDM transmission requires a large power amplifier linear region

because of its relatively high PAPR. Thus OFDM power amplifiers may have more

stringent requirements, which can be an issue in OFDM system design.

1
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In addition to the cost, the high PAPR of OFDM signals has other adverse effects.

For instance, if the peak transmit power is restricted due to regulatory or design

constraints, the large PAPR of the OFDM signals forces reduction in the mean power

of the signal, effectively reducing the range of the transmission and the transmit

power efficiency. This is the main barrier to the adaptation of OFDM system in the

reverse link of the mobile system.

In this light, the design of the OFDM system with high performance capacity and

reduced PAPR remains extremely important, albeit a very difficult problem to solve.

In this thesis, we propose an elegant approach to produce a solution for this problem.

The contributions of this thesis are three methods for achieving reduced PAPR. The

new channel coding structure, time-frequency turbo block code is proposed as a gen-

eral platform of utilizing PAPR reduction codewords. For achieving reduced PAPR,

Golay sequences that were proven to have bounded PAPR are applied to the time-

frequency turbo block code. The Golay sequences can be realized by cosets of the first

order Reed-Muller code. Furthermore, by having the reduced PAPR property of dual

BCH code and providing a simple MAP decoding algorithm of the augmented code of

the dual BCH, we utilize this code as an alternative candidate for the time-frequency

turbo block code. And finally, a probabilistic approach is provided as another way of

reducing PAPR without any modification of the existing channel coding structure.

1.1 Structure of This Thesis

The rest of the thesis is divided into five chapters:

• Chapter 2 gives brief overview to fundamentals of Orthogonal Frequency Divi-
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sion Multiplexing (OFDM). We discuss some basic OFDM signal representation,

pros and cons of OFDM, and modulation and demodulation schemes. We will

also discuss the Peak to Average Power Ratio (PAPR) problem.

• Chapter 3 proposes the new Turbo Block Code (TBC) structure that achieves

reduced PAPR and near capacity performance for some parameters and rates

of interest. The frequency domain signals are based on the realization of Golay

sequences of cosets of Reed-Muller code. The coding rates may be low, so we

also provide an enhancement these systems with higher transmission rates.

• Chapter 4 provides a modification of dual BCH codes amenable to a simple

MAP decoding algorithm. We will then apply the proposed modification in

TBC structure to have reduced PAPR and near capacity performance.

• In Chapter 5, we consider the probabilistic approach to PAPR reduction us-

ing channel coding. We proposed a simple PAPR reduction scheme which can

be utilized with any channel coding method amenable to soft-in/soft-out de-

coding. Proposed scheme provides significant PAPR reduction with negligible

performance loss and no adverse system impact.

• Finally, we summarize contributions of this thesis in Chapter 6.



Chapter 2

Principles of OFDM

This chapter briefly introduces the basic Principles of Orthogonal Frequency Di-

vision Multiplexing (OFDM).

2.1 Introduction

The principle of Orthogonal Frequency Division Multiplexing (OFDM) is to split

a high-rate data stream into a number of lower rate streams that are transmitted

simultaneously over a number of orthogonal subcarriers. Followings are summary of

advantages and drawbacks of OFDM transmission.

Key advantages of OFDM transmission scheme

• By allowing frequency overlap, we can achieve high spectral efficiency.

• OFDM is an efficient way to deal with multi-path; the implementation com-

plexity is significantly lower than that of a single carrier system.

4



Chapter 2: Principles of OFDM 5

• In frequency selective channels, it is possible to enhance the capacity by adapt-

ing the data rate per subcarrier or a set of subcarriers according to the signal-

to-noise ratio of the particular subcarriers.

• It is computationally efficient by using FFT techniques to implement the mod-

ulation and demodulation functions

Drawbacks of OFDM transmission scheme

• OFDM is sensitive to frequency offset and phase noise

• OFDM has a relatively large peak-to-average power ratio, which tends to reduce

the power efficiency of the RF amplifier and increase the cost of the transmitter.

More details would be provided in Section 2.3.

In a classical parallel data system, the total single frequency band is divided into

N non-overlapping frequency subchannels and data are multiplexed using Frequency

Division Multiplexing (FDM) as shown in Figure 2.1 (a). FDM method is good

to eliminate interchannel interference, but this leads to inefficient use of frequency

resources. To improve the efficiency, it was proposed to use parallel data and FDM

with overlapping subchannels as shown in Figure 2.1 (b). To realize the overlapping

multicarrier technique, we need to have orthogonality between the different modulated

carriers (subcarriers). Section 2.2 discusses the achievements of orthogonality between

subcarriers in detail.
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frequency

frequency

Saving of bandwidth

(a)

(b)

Ch. 1 Ch. 2 Ch. 10

Ch. 1 Ch. 10...

Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8 Ch. 9

Figure 2.1: Concept of OFDM signal: (a) Conventional multicarrier technique
(FDM), and (b) orthogonal multicarrier modulation technique (OFDM)

2.2 OFDM Transmission and Reception

The contents of this section is based on [1].

2.2.1 OFDM Modulation

As stated in Section 2.1, OFDM transmits data using multiple subcarriers. The

followings are fundamental characteristics of OFDM transmission.

• The use of large number of narrowband subcarriers.

• Multiple subcarriers with a very short subcarrier spacing ∆f = 1/Tu, where

Tu is the modulation-symbol time and ∆f is the subcarrier spacing (see Figure

2.2).



Chapter 2: Principles of OFDM 7

frequency

f=1/Tu

Figure 2.2: OFDM subcarrier spacing.

A basic OFDM modulator is illustrated in Figure 2.3. It consists of Nc complex

modulators, where each modulator corresponds to one OFDM subcarrier. A basic

OFDM signal Sc(t) during the time interval mTu ≤ t < (m + 1)Tu can thus be

expressed as

Sc(t) =
N−1∑
k=0

S(k)
c (t)

=
N−1∑
k=0

c
(m)
k exp(j2πfkt)

(2.1)

where S
(k)
c (t) is the k–th modulated subcarrier with frequency fk = f0 + k∆f ,

where f0 is the beginning frequency, and c
(m)
k is the modulation symbol applied to

the k–th subcarrier during the m–th OFDM symbol interval. During each OFDM

symbol interval, N OFDM-modulated symbols are transmitted in parallel using N

subcarriers. The modulation symbols can be from any modulation alphabet, such as
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Serial-to-

parallel

...

c0, c1, c2, , cN-1

c0

c2

cN-1

tfj
e 0

2

tfj
e 1

2

tfj Ne 1
2

+ Sc(t)

Sc
(0)(t)

Sc
(1)(t)

Sc
(N-1)(t)

Figure 2.3: OFDM modulation.

QPSK, 16–QAM, or 64–QAM.

The term Orthogonal in OFDM is based on the fact that two modulated OFDM

subcarriers are mutually orthogonal over OFDM symbol interval, mTu ≤ t < (m +

1)Tu. It can be expressed as the Equation (2.2).

∫ (m+1)Tu

mTu

S(k1)
c (t)S(k2)∗

c (t) =

∫ (m+1)Tu

mTu

ck1ck2e
j2π(f0+k1∆f)te−j2π(f0+k2∆f)tdt

=

∫ (m+1)Tu

mTu

ck1ck2e
j2π(k1−k2)∆ftdt

=

 c2
k1
Tu k1 = k2

0 k1 6= k2

(2.2)

The physical resource for the OFDM transmission is often defined as a 2-dimensional

time-frequency block as seen in Figure 2.4 where each column of a block corresponds

to one OFDM symbol and each row of a block corresponds to one OFDM subcarrier.
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0

1

k

N-2

N-1

m-2 m-1 m-2 m+1 m+2 m+3

Figure 2.4: OFDM time-frequency resource.

2.2.2 OFDM Demodulation

The basic principle of OFDM demodulation consists of a block of correlators as

seen in Figure 2.5. It is the most important for the demodulator that orthogonality

should be guaranteed between subcarriers. In other words, one OFDM subcarriers

do not cause any interference to any other subcarriers after demodulation. Thus the

avoidance of interference between OFDM subcarriers is not simply due to a subcarrier

spectrum separation, but rather the subcarrier orthogonality is due to the specific

frequency-domain structure of each subcarrier in combination with the specific choice

of a subcarrier spacing ∆f equal to the per-subcarrier symbol rate 1/Tu.
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...

tfj
e 02

tfj
e 12

tfj Ne 12

Sc(t)

u

u

Tm

mT

)1(

...

c0

c2

cN-1

u

u

Tm

mT

)1(

u

u

Tm

mT

)1(

Figure 2.5: OFDM demodulation.

2.2.3 OFDM and Fourier Transform

Figure 2.3 and Figure 2.5 are illustrating the basic OFDM modulation and demod-

ulation schemes. However, these are not the most efficient modulator/demodulator

structures considering implementation complexity. Considering the inverse relation-

ship between subcarrier spacing and OFDM symbol duration, the complex OFDM

signal as defined by Equation (2.1) is in fact nothing more than the inverse Fourier

transform of N input symbols.

Let’s consider a discrete time OFDM signal where the sampling rate fs is equal

to N∆f . In this case, we know that ∆fTs = 1
N

, where Ts is the sampling period

such that Ts = 1/fs. With these assumptions, the time-discrete OFDM signal can be

expressed as:
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sn = Sc(nTs)

=
N−1∑
k=0

cke
j2πk∆fnTs

=
N−1∑
k=0

cke
j2πkn/N

(2.3)

Thus, the sampled OFDM signal xn is the size-N Inverse Discrete Fourier Trans-

form (IDFT) of the modulation symbols c0, c1, · · · , cN−1. Normally, IDFT is imple-

mented by the complexity efficient Inverse Fast Fourier Transform (IFFT) processing.

Similar to OFDM modulation, efficient FFT processing can be used for OFDM de-

modulation, replacing N demodulators of Figure 2.5.

2.3 PAPR Problem in OFDM Systems

The OFDM signal at time t is modeled as given in Equation (2.1)

Sc(t) =
N−1∑
k=0

cke
j2πfkt (2.4)

For any sequence ck, the instantaneous power of the corresponding transmitted

signal <(Sc(t)) is equal to <(Sc(t))
2. This power is less than or equal to the function

|Sc(t)|2, called the envelope power of the OFDM signal. The peak-to-average power

ratio (PAPR) of the OFDM signal, is defined to be the ratio of the peak power of

<(Sc(t)) to ‖c‖2, the average envelope power.

PAPR(c) = max
0≤t≤1

|<(Sc(t))|2

‖c‖2
(2.5)

The complex modulation symbol ck is assigned to the k–th subcarrier of an OFDM

system during a given symbol period. We simply assume that the sequence c =
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(c0, c1, · · · , cN−1) is modulated from the ZH–ary sequence a = (a0, a1, · · · , aN−1), i.e.

c = (c0, c1, · · · , cN−1) = (ξa0 , ξa1 , · · · , ξaN−1), where ξ = exp(2πj/H) is a primitive

H–th root of unity. This modulation is called H–phase shift keying, which in the

cases H = 2 or 4 is also known as binary phase–shift keying (BPSK) or quadrature

phase–shift keying (QPSK), respectively.

Then the OFDM signal can be written as

Sc(t) =
N−1∑
k=0

ξak exp(2πj(f0 + kfs)t)

=
N−1∑
k=0

ξak+Hfkt

(2.6)

where fk is the frequency of the k–th sub-carrier. We guarantee the orthogonality

between subcarriers by having

fk = f0 + k∆f (2.7)

The instantaneous envelope power of the signal is the real-valued function P (t) =

|Sc(t)|2, and substitution from Equation (2.6) and Equation (2.7) gives,

P (t) = |Sc(t)|2

= Sc(t) · Sc(t)
∗

=
N−1∑
k=0

ξak+Hfkt ·
N−1∑
i=0

ξ−(ai+Hfit)

=
N−1∑
k=0

N−1∑
i=0

ξak−ai+H(k−i)∆ft.

(2.8)

Then by putting i = k + u in the expression for Pa(t) given by Equation (2.8) we
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obtain

P (t) = N +
∑
u6=0

∑
k

ξak−ak+u−Hu∆ft

= N +
∑
u6=0

C(u)ξ−Hu∆ft

(2.9)

where C(u) =
∑

k ξ
ak−ak+u .

The peak envelope power (PEP) of the sequence a is the supremum over a symbol

period of P (t). From Equation (2.9), the mean envelope power of any sequence a

over a symbol period is n, and so the peak-to-mean envelope power ratio (PMEPR)

of a is the ratio PEP/N . From Equation (2.9) we see that

P (t) ≤ N +
∑
u6=0

|C(u)| · 1 ≤ N + 2
N−1∑
u=1

(N − u) = N2 (2.10)

So the PEP of any sequence a is at most N2. Therefore, the relationship between

PAPR and PMEPR is shown as:

PAPR(c) = max
0≤t≤1

|<(Sc(t))|2

‖c‖2
≤ maxP (t)

‖c‖2
= PMEPR(≤ N2

N
= N). (2.11)

In conclusion, the PAPR of an OFDM symbols having ZH–ary modulated symbol

sequences c = (c0, c1, · · · , cN−1) is at most N , which is very high compared to single

carrier modulations methods.

To satisfy the spectral masks imposed by regulatory agencies and to overcome the

implementation constraints in the nonlinear amplifier design, investigating methods

to generate a signal with favorable PAPR properties is of vital importance. With

high PAPR values, amplifiers having large power back-off values are required. If the

amplifier back-off is not adequate, then the nonlinear characteristics of the amplifier

distorts the in-band signal and creates the out-of-band interference with adjacent
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channels [2]. However, increasing the back-off of the amplifier, not only reduces the

power efficiency but also rises the amplifier cost significantly. Several PAPR reduc-

tion schemes have been extensively studied for multi-carrier systems. A category of

these techniques, including selected mapping and partial transmit signaling, reduces

the probability of generating a signal with large PAPR while it necessitates the trans-

mission of side information [3, 4]. There are also PAPR reduction methods, such as

clipping, which do not require transmission of side information, at the expense of

other adverse effects such as spectral regrowth [5]. An interesting approach is to deal

with the problem in the framework of channel coding. This approach, was first pro-

posed in [6] in which the codewords with low PAPR are determined by an exhaustive

search. There have been other PAPR reducing techniques which is utilizing coding

techniques for improving the bit error rate [7, 8, 9]. Despite extensive research on

PAPR reduction algorithms, none of the proposed methods based on channel coding

have been utilized in practice. The main reason is the loss in spectral efficiency as

OFDM block length increases and the poor error correcting capability of the proposed

schemes. Therefore, the design of a capacity achieving code for which all codewords

generate low PAPR OFDM signals, is still an important open problem.

2.4 Summary

Chapter 2 introduces basic principles of OFDM system including transmission

and reception schemes. And this also discusses about the serious PAPR problem

of OFDM system. Therefore, the main motivation of this thesis is to develop the

channel coding structures that resolve the PAPR problem.



Chapter 3

Time-Frequency Turbo Block

Coded OFDM

3.1 Introduction

As we discussed in Section 2.3, high fluctuations in the signal amplitude of multi-

carrier systems such as OFDM system, generated by the constructive addition of a

large number of sub-carriers, is considered as the principal drawback of these systems,

known as PAPR problem [10]. Various methods have been proposed to solve this

PAPR problem. As discussed in Section 2.3, an interesting category for the PAPR-

alleviating approach is to use the channel coding method to generate codewords of

reduced PAPR. This approach was first proposed in [6]. Although the method of

[6] provides a worst case guarantee for PAPR, it entails an exhaustive search which

increases the computational complexity specially for large number of subcarriers.

Furthermore since in this solution the encoding and decoding are also performed by

15
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the use of look-up tables, it also requires large memory when the OFDM block length

increases. In [11], the selection of the appropriate codeword is developed based on

specific sequences such as Shapiro-Rudin and Golay sequences. However, neither in

[6] nor in [11] the error correcting issue has been addressed. The study in [7] discusses

the error correction problem where first a powerful block code is selected and then by

using a weight vector the PAPR of the codeword is decreased. The theoretical aspects

of the relation between the code rate, minimum Euclidean distance of the code and its

block length is provided in [12] as two fundamental theorems. The first theorem proves

a lower bound for PAPR based on the three aforementioned parameters. The second

theorem provides a lower bound for the code rate as a function of maximum acceptable

PAPR, code block length and code minimum distance. Despite all the research on this

subject, the error correction capability of coding-based PAPR reduction methods has

not been paid the attention it deserves. Through the effort of seeking a relationship

between PAPR and error correction probability, [13] showed that finding the PAPR

of a code is associated with minimum distance decoding of the code. Moreover, a

sophisticated algorithm is presented in [13] to find the weight vector discussed in [7].

In [14], a new class of Reed-Muller code with reduced PAPR is proposed. Although

the error correction properties of RM code has been well-studied, the performance

of this code is quite far from the Shannon limit and can not compete with that of

the capacity achieving codes, e.g. turbo codes [15] or LDPC codes [16]. Therefore

the problem of designing codes that perform close to the Shannon limit while having

good PAPR properties has remained unsolved.

In this chapter, a time-frequency turbo block code (TBC) is proposed to solve the
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problem of achieving good BER performance with a reduced PAPR. The frequency

domain component code is designed such that it provides codewords with low PAPR.

For the choice of time domain code, the code with good error correction performance

is an appropriate candidate to compensate the comparatively low error correction

capability of RM code. The decoding of TBC is accomplished in an iterative manner

using soft-in/soft-out decoders of each component code. I exhibit the superiority of

this scheme by examining the performance and amplitude distribution of other codes

with similar code rates.

3.2 PAPR and Reed-Muller Code

3.2.1 Golay Sequences

The upper bound of n for PMEPR is attained by the sequence aaa = (0, 0, · · · , 0) of

length n, which can occur in an uncoded OFDM system. But by restricting the set of

allowed sequences to Golay sequences we can reduce the PMEPR from its maximum

value of n to at most 2. The definition of the Golay sequence is given below.

Definition 3.2.1 Let

aaa = (a0, a1, · · · , an−1)

and

bbb = (b0, b1, · · · , bn−1)

where ai, bi ∈ ZH . The sequences aaa and bbb are called a Golay complementary pair over

ZH of length n if Ca(u)+Cb(u) = 0 for each u 6= 0, where Ca(u) =
∑

k e
(2πj/H)(ak−ak+u).
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Any sequence which is a member of a Golay complementary pair is called Golay se-

quence,

Golay complementary pairs were introduced by Golay [17, 18]. The upper bound of

the PMEPR of Golay sequence is given in Theorem 3.2.1, which was proved in [19].

Theorem 3.2.1 The PMEPR of any Golay sequence is at most 2.

The proof of Theorem 3.2.1 is simple. Let aaa and bbb be a Golay complementary pair of

length N , so that by definition Ca(u)+Cb(u) = 0 for each u 6= 0. Then from Equation

(2.9), Pa(t) + Pb(t) = 2N and since Pb(t) = |Sb(t)|2 ≥ 0, we deduce Pa(t) ≤ 2N .

PMEPR(a) = maxPa(t)
‖a‖2 ≤ 2N

N
= 2. �

Theorem 3.2.2 and Corollary 3.2.1, proved in [14], are explaining how to generate

Golay sequences using monomials in the boolean functions.

Definition 3.2.2 A Boolean function is a function f from

Zm2 = {(x1, x2, · · · , xm)|xi ∈ {0, 1}} (3.1)

to Z2. We regard each 0–1 variable xi as itself being a Boolean function fi(x1, x2, · · · , xm) =

xi and consider the 2m monomials

1, x1, x2, · · · , xm, x1x2, x1x3, · · · , xm−1xm, · · · , x1x2 · · ·xm. (3.2)

We specify a sequence f of length 2m corresponding to f by listing the values taken

by f(x1, x2, · · · , xm) as (x1, x2, · · · , xm) ranges over all its 2m values in lexicographic

order. For example, for m = 3 we have

fff = (f(0, 0, 0), f(0, 0, 1), f(0, 1, 0), f(0, 1, 1), f(1, 0, 0), f(1, 0, 1), f(1, 1, 0), f(1, 1, 1))
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and so we have these vectors 111 = (11111111), x1x1x1 = (00001111), x2x2x2 = (00110011),

x3x3x3 = (01010101), x1x2x1x2x1x2 = (00000011), and x2x3x2x3x2x3 = (00010001).

Theorem 3.2.2 Let

f(x1, x2, · · · , xm) = 2h−1

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk (3.3)

where π is a permutation of the symbols 1, 2, · · · ,m and ck ∈ Z2h. Then the sequences

a(x1, x2, · · · , xm) = f(x1, x2, · · · , xm) + c

and

b(x1, x2, · · · , xm) = f(x1, x2, · · · , xm) + 2h−1xπ(1) + c′

are a Golay complementary pair over Z2h of length 2m for any c, c′ ∈ Z2h.

Corollary 3.2.1 For any permutation π of the symbols {1, 2, · · · ,m} and for any

c, ck ∈ Z2h

a(x1, x2, · · · , xm) = 2h−1

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk + c (3.4)

is a Golay sequence over Z2h of length 2m.

3.2.2 Reed-Muller Codes

Binary Reed-Muller codes first appeared in print in 1954 and remain “one of the

oldest and best understood families of codes” [20]. They have good error correction

properties, provided the block length is not too large, and have the important practical

advantage of being easy to decode. The r–th order binary Reed-Muller of length 2m

is defined as below [20].
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Definition 3.2.3 The r–th order binary Reed-Muller code RM(r,m) of length n =

2m, for 0 ≥ r ≥ m, is the set of all vectors f , where f(x1, x2, · · · , xm) is a Boolean

function which is a polynomial of degree at most r.

For example, codewords of the first order RM code of length 8 generated by

a01 + a1x1 + a2x2 + a3x3, ai = 0 or 1.

By combining Corollary 3.2.1 and Definition 3.2.3, we can simply get Corollary 3.2.2,

as given in [14]:

Corollary 3.2.2 Each of the m!/2 cosets of RM(1,m) in RM(2,m) having a coset

representative of the form
m−1∑
k=1

xπ(k)xπ(k+1) (3.5)

comprises 2m+1 binary Golay sequences of length 2m, where π is a permutation of the

symbols (1, 2, · · · ,m)

From Corollary 3.2.2, each of m!
2

cosets of RM(1,m) in RM(2,m) having a coset

representative of the form
∑m−1

k=1 xπ(k)xπ(k+1) comprises 2m+1 binary Golay sequences

of length 2m. Thus we conclude that for binary Reed-Muller codes, the PAPR of the

codewords in the cosets does not exceed 3 dB [14].

We have seen that the PAPR of certain cosets of Reed-Muller code can be upper-

bounded by 3dB. Then, we may have one question here: Can we use this Reed-Muller

code for a practical OFDM system? Reed-Muller code may not be the best choice

for the channel coding for the following reasons. First, even though Reed-Muller

code has large minimum distance, its performance is relatively far from the optimum
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performance, e.g. Shannon limit. Second, if we increase the code length, the rate of it

decreases dramatically. Therefore we try to find an alternative coding structure which

can keep the low-PAPR property of Reed-Muller code: turbo block code. Section 3.3

touches the Time-frequency turbo block code.

3.3 Low PAPR Turbo Block Code

3.3.1 Turbo Block Code: Encoding

Turbo block codes, also known as product codes, were first introduced in [21] and

then developed in [22]. As opposed to the traditional turbo codes which are generated

by concatenation of convolutional codes, TBC consists of two linear block codes. Let

us consider two systematic linear block codes C1 with parameters (n1, k1, δ1) and

C2 with parameters (n2, k2, δ2), where ni, ki and δi(i = {1, 2}) stand for codeword

length, number of information bits, and minimum Hamming distance, respectively.

The product code P = C1 ⊗ C2is obtained (see Figure 3.1) by

1. placing (k1 × k2) information bits in an array of k1 rows and k2 columns;

2. coding the k1 rows using code C2;

3. coding the n2 columns using code C1;

The parameters of the product code P are n = n1 × n2, k = k1 × k2, δ = δ1 × δ2, and

the code rate R is given by R = R1×R2, where Ri is the code rate of code Ci. Given

the procedure used to construct the product code, it is clear that the (n2 − k2) last

columns of the matrix are codewords of C1. By using the matrix generator, one can
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Figure 3.1: Structure of turbo block codes consisting of (k1, n1) vertical and (k2, n2)
horizontal block codes.

show that the (n1 − k1) last rows of matrix P are codewords of C2. Hence, all of the

rows of matrix P are codewords of C1 and all of the columns of P are codewords of

C2.

3.3.2 Turbo Block Code: Decoding

The decoding of turbo block code is performed iteratively as soft extrinsic in-

formation is exchanged between the component decoders as explained in [21]. This

section mainly refers to the work in [21]. In order to perform the iterative decoding,

we need to have soft-in/soft-out decoders for both horizontal and vertical codes. The
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Feedback for the next iteration

At the final 
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Figure 3.2: Iterative decoding procedure with two “soft-inf/soft-out” decoders with
initial L(u) = 0, i.e. equally likely source (information) bits

output of the “symbol-by-symbol” maximum a posteriori (MAP) decoder is defined

as the a posteriori log-likelihood ratio for a transmitted “+1” and a transmitted “-1”

in the information sequence

L(û) = L(u | yyy) = ln
Pr(u = +1 | yyy)

Pr(u = −1 | yyy)
(3.6)

Such a decoder uses a priori values L(u) for all information bits u, if available,

and channel values Lc · y for all coded bits. It also delivers soft outputs L(û) on all

information bits and an extrinsic information Le(û) which contains the soft output

information from all the other coded bits in the code sequence and is not influenced

by the L(u) and Lc · y values of the current bit. For systematic codes, the soft output

for the information bit u will be represented in three additive terms

L(û) = Lc · y + L(u) + Le(û) (3.7)

This means we have three independent estimates for the log-likelihood ratio of the

information bits: The channel values Lc · y, the a priori values L(u) and the values

Le(û) by a third independent estimator utilizing the code constraint. We do not
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have any a priori information available for the first iteration, thus we initialize with

L(u) = 0. Decoding of the horizontal code C− starts using the corresponding Lc · y

for the information part and for the horizontal parity part. The extrinsic information

L−e (û) of the horizontal code C− on the information bit u is from Equation (3.7)

L−e (û) = L−(û)− Lc · y. (3.8)

This independent estimate on u is now used as the a priori value for decoding code

C| vertically to obtain

L|e(û) = L|(û)− (Lc · y + L(u) + L−e (û)). (3.9)

This vertical extrinsic information will be used as new a priori value in the subsequent

decoding of code C− in the next iteration step. The whole procedure is shown in Figure

3.2.

3.3.3 Time-Frequency Turbo Block Code

In this chapter, we propose a time-frequency OFDM turbo block code to achieve

low PAPR while maintaining the performance relatively close to the Shannon limit.

This scheme is generated when horizontal and vertical codes in a TBC are exploited

in frequency and time domain respectively. In Section 2.2.1, we discussed that the

physical resource of OFDM system is often defined as a 2-dimensional time-frequency

block. The 2-dimensional structure of the output of the TBC output shown in Figure

2.3 is seen as a appropriate form of the OFDM resources as given in Figure 2.4. The

row codewords of the TBC output are transmitted using a set of multiple subcarriers

in a single OFDM symbol, i.e. by frequency domain. And each column codeword is
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transmitted using a single subcarrier of a set of multiple OFDM symbols, i.e. by time

domain. To obtain low PAPR, we confine the frequency domain component code to

a set of codes with theoretically proven to have good PAPR properties. To improve

the BER performance, we utilize powerful linear codes in the time domain.

For the choice of frequency domain component code, we have used the approach

proposed in [23, 14] to exploit Golay complementary sequences as the generalized

coset for first order Reed-Muller (RM) codes within the second order RM codes. The

rationale for using Reed-Muller code is explained enough in Section 3.2.2. Another

advantage to use the RM code is that the MAP decoding can be implemented effi-

ciently as given in [24]. Details for the MAP decoding algorithm of the RM code is

shown in Appendix A.1.

We still have the question of the code to be selected for time domain component.

Although Reed-Muller codes possess the property of having good minimum distance

for their affordable code rates, their performance is relatively far from the optimum

performance compared to other capacity achieving codes, e.g. turbo codes and LDPC

codes. Therefore RM codes, despite their appropriate PAPR properties, are not as

efficient as we need performance-wise. To select the time domain component code,

the following issues should be taken into account; efficiency in terms of bit error rate

(BER) performance, moderate decoding complexity and feasibility of generating soft

output. Considering these requirements, Bose-Ray-Chaudhuri (BCH) codes seem as

good candidates for time domain component code. This is owing to the fact that

turbo block codes using BCH codes as the component codes in both dimensions are

reported to perform close to the Shannon limit in [22]. The simplicity of BCH decoder
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is also appealing although it only generates hard output. To implement a soft-input

soft-output (approximated MAP) decoder for the BCH, the Chase algorithm is used

as proposed by [22]. Details for the BCH MAP algorithm is shown in Appendix A.2.

The detailed encoding and decoding of the time-frequency turbo block code with

RM and BCH code can be described as follows. Assume that we have the information

bit matrix MMM such that

MMM =



mmm1

mmm2

...

mmmk1


=



m11 m12 · · · m1k2

m21 m22 · · · m2k2

...
...

. . .
...

mk11 mk12 · · · mk1k2


.

Supposed that RM2(1,m) is used for frequency component code and BCH(n1, k1)

is used for time component code, k2 is equal to m + 1. Using RM2(1,m), we en-

code the message bit sequence (mi1,mi2, · · · ,mi(m+1)) to have RM codewords ccci =

(ci1, ci2, · · · , ci2m) for i = 1, 2, · · · , k1. And using BCH(n1, k1), we encode the message

bit sequence (c1j, c2j, · · · , ck1j) to make BCH parity bits (c(k1+1)j, c(k1+2)j, · · · , cn1j)

for j = 1, 2, · · · , 2m. Now we have the matrix CCC = [ddd1 ddd2 · · · dddn1 ]
T, comprising

bits of size n1 × 2m, where AT is the transpose of the matrix A. We choose a pre-

defined coset representative sss = (s1, s2, · · · , s2m) of the form
∑m−1

k=1 xπ(k)xπ(k+1) as

given in the Theorem 3.2.2. Note that this predefined coset representative sss must

be known to both decoder and encoder. Using sss we obtain the final sequence dddi in

the frequency domain such that dddi = ccci + sss for i = 1, 2, · · · , n1 and form the matrix

DDD = [ddd1 ddd2 · · · dddn1 ]
T. Finally, we map each bit of the matrix DDD to Binary Phase

Shift Keying (BPSK) constellation symbols (‘0’ to ‘+1’ and ‘1’ to ‘-1’) and then map

the matrix DDD consisting of BPSK symbols to the corresponding 2-dimensional block.
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Decoding is basically performed iteratively as soft extrinsic information is ex-

changed between RM and BCH. The decoder receives the real-valued BPSK symbol

matrix RRR of size n1 × 2m, such that.

RRR =



rrr1

rrr2

...

rrrn1


=



r11 r12 · · · r12m

r21 r22 · · · r22m

...
...

. . .
...

rn11 rn12 · · · rn12m


.

We assumed that decoder also knows the coset representative sss which was used

in the encoder. Multiply each row of rrri = (ri1, ri2, · · · , ri2m) by (1 − 2 × sss) us-

ing symbol-by-symbol multiplication to have uuui = rrri × (1 − 2 × sss). Now we have

UUU = [uuu1 uuu2 · · · uuun−1]T. Using matrix UUU , we can perform the iterative decoding

procedure as given in Section 3.3.2.

3.4 High Transmission Rate Support

In this section, we provide two methods of increasing the transmission rate of the

time-frequency TBC scheme: higher modulation order and higher code rate.

3.4.1 Higher Modulation Order

This section provides a solution to support Quadrature Phase Shift Keying (QPSK)

without harming our encoding/decoding structure or any performance degradation

of the original time-frequency TBC structure. For completeness, we first give the

definition of ZRM, a new family of quaternary RM code. Based on this definition, we

can easily observe that the set of codewords of ZRM is a subset of RM codewords.
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Definition 3.4.1 For r = 0, 1, 2, · · · ,m, the rth order linear code ZRM4(r,m) of

length 2m over Z4 is generated by the monomials in the Boolean functions xi of degree

at most r − 1 together with two times the monomials in xi of degree r.

We have a following theorem given in [25], which defines the transformation from

binary RM codes to quaternary RM codes.

Theorem 3.4.1 For r = 0, 1, 2, · · · ,m, RM2(r,m) of length 2m is the image under

φ (Gray mapping) of the quaternary code ZRM4(r,m− 1) of length 2m−1 .

According to Theorem 3.4.1, we can just apply the inverse Gray mapping to each

RM2(1,m) code in the frequency domain in order to use QPSK symbols. If we shift

all n1 number of ZRM4(1,m− 1) codewords by a fixed coset representative given by

Corollary 3.2.1 and and map each symbol to the constellation by using π/4 shifted

QPSK mapping, i.e. ‘0’ to (1 + i)/
√

2, ‘1’ to (−1 + i)/
√

2, ‘2’ to (−1 − i)/
√

2, and

‘3’ to (1− i)/
√

2, then we still guarantee the 3dB PAPR. We note that the code rate

is the same as that of the original BPSK construction, but the transmission rate is

doubled.

3.4.2 Higher Code Rate

In this section, we provide a solution to increase the code rate in two different ways.

In Section 3.2.2, we saw that there can be m!
2

cosets of RM2h(1,m) in RM2h(2,m)

that produce Golay sequences. We might increase the code rate by using multiple

cosets rather than using a single coset.
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And in the previous section, we increase the modulation order by transform-

ing RM2(r,m) to ZRM4(1,m − 1). And ZRM4(1,m − 1) codewords are subset of

RM4(1,m− 1) with the following relationship.

ZRM4(1,m− 1) +
m−1∑
l=1

alxl = RM4(1,m− 1), al ∈ {0, 1}

We can use this Property to transmit m − 1 more information bits in the frequency

domain codes. The total code rate of the proposed TBC scheme can be up to

(2m+blog2(m!
2

)c)
2m

× k1
n1

, where bac is defined as the largest integer which is not greater

than a.

3.4.3 Encoding and Decoding

We describe the encoding and decoding procedures in this section. We have the

information bit matrix MMM such that

MMM =



mmm1

mmm2

...

mmmk1


=



m11 m12 · · · m1k2

m21 m22 · · · m2k2

...
...

. . .
...

mk11 mk12 · · · mk1k2


.

Here, k2 is equal to 2m + P , where P = blog2( (m−1)!
2

)c. Using RM2(1,m), encode

(mi1,mi2, · · · ,mi(m+1)) to have binary RM codewords ccc
(2)
i = (c

(2)
i1 , c

(2)
i2 , · · · , c

(2)
i2m) for

i = 1, 2, · · · , k1. The superscript of ccci denotes the order of the codeword. And then

using BCH(n1, k1), encode the bit sequence (c
(2)
1j , c

(2)
2j , · · · , c

(2)
k1j

) to make BCH parity

bits (c
(2)
(k1+1)j, c

(2)
(k1+2)j, · · · , c

(2)
n1j

) for j = 1, 2, · · · , 2m. Now we have the matrix CCC(2)

comprising binary symbols of size n1× 2m. Apply the inverse Gray mapping to every
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RM codeword ccci
(2) for i = 1, 2, · · · , n1 to have quaternary codeword ccci

(4) as discussed

in Property 1. We assume that we have the table consisting of 2P coset leaders of

the form
∑m−1

k=1 xπ(k)xπ(k+1). The table can be reorganized to maximize the distance

between coset leaders. According to the information bits (mi(2m+1), · · · ,mi(2m+P )),

choose the corresponding coset leader sss
(4)
i from the table. And using the remaining

information bits (mi(m+2), · · · ,mi(2m)), we obtain the sequence ttt
(4)
i such that ttt

(4)
i =∑m−1

l=1 mi(m+1+l)xl, where xi is the Boolean function of the length 2m−1. For ccci
(4) with

i > k1, we use the pre-fixed sss
(4)
i = sss

(4)
pre and ttt

(4)
i = ttt

(4)
pre. At last we obtain the final

sequence ddd
(4)
i in the frequency domain such that

dddi
(4) = ccc

(4)
i + 2sss

(4)
i + ttt

(4)
i ,

and map each quaternary symbol of ddd
(4)
i to the constellation by using π/4 shifted

QPSK mapping as given in Section 3.4.1.

Decoding of the higher transmission rate approach is based on that of the original

time-frequency turbo block code scheme with on coset. However, this decoder needs

to do extra work in order to detect 2sss
(4)
i and ttt

(4)
i . Simply let sss

(2)
i and ttt

(2)
i be the Gray

mapping of 222s
(4)
i and ttt

(4)
i respectively. There are 2(m−1)+P sequences of sss

(2)
i + ttt

(2)
i and

every sequence is unique. Therefore, we can define uuu
(2)
x in binary symbols {−1, 1} to

correspond to each sequence of sss
(2)
i + ttt

(2)
i , where x = 1, 2, · · · , 2(m−1)+P . The decoder

receives the QPSK symbol matrix RRR(4) of size n1×2m−1. It first extracts each soft bit

from a QPSK symbol by dividing the real part and the imaginary part of the received

signal, and place each soft bit to form a two dimensional binary TBC structureRRR(2) of

the size n1× 2m. Using the RM MAP decoder given by [24], we obtain the sequences

of Log-Likelihood Ratio (LLR)’s, ΛΛΛx
i by considering rrr

(2)
i × uuu

(2)
x as the input of the
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decoder for i = 1, 2, · · · , k1 and x = 1, 2, · · · , 2(m−1)+P . The most probable sequence

uuu
(2)
xi can be obtained by the following equation.

xi = arg max
1≤x≤2(m−1)+P

2m∑
j=1

(Λx
ij)

2

From ΛΛΛxi
i we calculate the most probable extrinsic information and pass it to the BCH

soft decoder. We repeat this procedure for the appropriate number of iterations.

3.5 Simulation Result

In order to provide comparative performance evaluation for time-frequency turbo

block code, we restrict the frequency domain component code to a first order RM(1,m)

code for m = 3, 4, 5, and 6 . For the time domain component code, we consider

BCH(63,51). Thus overall code rate for this turbo block code is 0.405, 0.253, 0.152,

and 0.089 respectively.

We compare the PAPR to another capacity approaching codes, turbo codes. We

examine conventional turbo code which includes two recursive convolutional codes.

The turbo code used here is the one in 3GPP2 1X EV-DO standard [26], which is the

widely deployed cellular network all over the world. For a fair comparison we set the

block length of these codes to n1×n2 (the matrix size in TBC). The transfer function

of the turbo code is as follows

[1,
1 +D +D3

1 +D2 +D3
,
1 +D +D2 +D3

1 +D2 +D3
]. (3.10)

The output of the constituent encoders are punctured or repeated to achieve the same

code rates with the TBC scheme.
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Figure 3.3: Complementary cumulative distribution function of PAPR for various
number of subcarriers for BPSK modulation.

Figure 3.3 depicts the complementary cumulative distribution function (ccdf) of

PAPR for turbo block coded OFDM and conventional turbo code for OFDM block

lengths of the frequency domain component code equal to 8, 16, and 32 respectively,

and for the BPSK constellation. For turbo code, we divide the entire coded data

block (length n1 × n2) into smaller block with the desired length and transmit each

sub-block using OFDM. To generate the ccdf, the signal is oversampled by a factor of

four. As can be seen in Figure 3.3, the threshold from which the PAPR exceeds with

probability of 10−5, has been decreased from 9 dB in turbo code to 3 dB in TBC for

the case of 8 subcarriers, which gives 6 dB improvement. For block lengths of 16 and
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Figure 3.4: Performance comparison of turbo block code (BCH and RM) and convo-
lutional turbo code (number of subcarriers=8, Code rate=0.405)

32 the ccdf is improved by 9 dB and 10.7 dB at probability of 10−5. We should note

that this significant improvement in the PAPR distribution is obtained at no extra

cost such as decreasing the transmission rate or distorting the transmitted signal.

The proposed TBC not only provides a low PAPR but its error correcting capability

is also comparable with that of convolutional turbo codes.

Figures 3.4–3.6 present the BER performance of the proposed TBC for the num-

ber of subcarriers 8, 16, and 32 respectively under the additive white Gaussian noise

(AWGN) channel. Figures are showing BER performance of various decoding itera-

tion numbers up to 4. As expected the performance improves as iterations continue
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Figure 3.5: Performance comparison of turbo block code (BCH and RM) and convo-
lutional turbo code (number of subcarriers=16, , Code rate=0.253)

and the results converge with 4 iterations. The TBC with the code rate of 0.253 given

in Figure 3.5, for which corresponding Shannon limit is −0.81 dB, achieves BER of

10−5 at 2.7 dB which is 3.5 dB away from Shannon limit. The performance of the

code might seem far from the Shannon limit but we have to note that other capac-

ity achieving codes approach the Shannon limit asymptotically when the code block

length goes to infinity. We compare the TBC performance with another capacity ap-

proaching code, turbo code with similar block lengths. The performance of the turbo

code with the same code rates are also presented in Figures 3.4–3.6. We observe that

turbo code outperforms TBC by about 0.9 dB at BER of 10−5. The performance loss



Chapter 3: Time-Frequency Turbo Block Coded OFDM 35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

 

 

TBC (BCH+RM), Itr=1

TBC (BCH+RM), Itr=2

TBC (BCH+RM), Itr=3

TBC (BCH+RM), Itr=4

Turbo Code (R=0.152, Itr=6)

Figure 3.6: Performance comparison of turbo block code (BCH and RM) and convo-
lutional turbo code (number of subcarriers=32, Code rate=0.152)

of the proposed TBC has been compensated for by the significant improvement in

PAPR. Table 3.1 summarizes the PAPR and BER performances of both TBC and

turbo code, showing the total power gain considering both properties.

We also evaluated the performance of the higher transmission scheme given in

Section 3.4. Figure 3.7 depicts the complementary cumulative distribution function

(ccdf) of PAPR for time-frequency turbo block coded OFDM and conventional turbo

codes for n2 = 4, 8, 16 and 32 sub-carriers. The PAPR is limited to 3 dB for the

proposed scheme so that it has back-off gain of 3dB, 6dB, 8.5dB, and 9dB respectively,

over turbo codes. Figures 3.8–3.11 provide BER performance of the turbo code and
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Number of Code PAPR BER total
sub-carriers rate TBC Turbo gain TBC Turbo gain gain
8 (m = 3) 0.405 3 dB 9 dB 6 dB 3.3 dB 2.4 dB −0.9 dB 5.1 dB
16 (m = 4) 0.253 3 dB 12 dB 9 dB 2.7 dB 1.8 dB −0.9 dB 8.1 dB
32 (m = 5) 0.152 3 dB 13.7 dB 10.7 dB 2.4 dB 1.6 dB −0.8 dB 9.9 dB

Table 3.1: PAPR and BER performance comparison between the time-frequency
turbo block code and the conventional Turbo code (BPSK modulation and one single
coset assumed)

Code rates
Number of TBC structure TBC structure
sub-carriers with one coset with multiple cosets
4 (m = 3) 0.405 0.607
8 (m = 4) 0.253 0.455
16 (m = 5) 0.152 0.328
32 (m = 6) 0.089 0.215

Table 3.2: Supportable code rates of the time-frequency turbo block code with mul-
tiple coset supports

the proposed scheme for various number of sub-carriers and code rates. Our scheme

has slight performance degradation in the range of 0.5 to 1.7 dB at BER of 10−5.

This small loss can be compensated for by the corresponding PAPR gain.

3.6 Summary

In this chapter, we proposed a time-frequency turbo block code solution to the

PAPR problem of OFDM systems. To obtain low PAPRs, we restricted the frequency

domain component code to the realization of Golay sequences as cosets of the gener-

alized first order Reed-Muller codes. For the time domain components, we selected

BCH code due to its appropriate error correcting properties and simplicity of the
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Number of Code PAPR BER total
sub-carriers rate TBC Turbo gain TBC Turbo gain gain
4 (m = 3) 0.607 3 dB 6 dB 3 dB 4.9 dB 3.3 dB −1.6 dB 1.4 dB
8 (m = 4) 0.455 3 dB 9 dB 6 dB 4.4 dB 2.4 dB −2 dB 4 dB
16 (m = 5) 0.328 3 dB 11.5 dB 8.5 dB 3.4 dB 1.8 dB −1.6 dB 6.9 dB
32 (m = 6) 0.215 3 dB 12 dB 9 dB 2.7 dB 1.6 dB −1.1 dB 7.9 dB

Table 3.3: PAPR and BER performance comparison between the time-frequency
turbo block code and the conventional Turbo code (QPSK modulation and maximum
possible number of cosets assumed)

decoding. We demonstrated that the proposed TBCs can reduce the PAPRs signifi-

cantly with a small performance loss compared to best coding schemes with similar

rates and block lengths.

The original proposed structure however has limitations of transmission rate. The

transmission rate is not high enough in some cases, especially with the large number of

subcarriers used. To resolve the limitations, we improved the original time-frequency

turbo block code structure to have higher transmission rates. The transmission rate

improvement was achieved by introducing the possible mapping binary RM codes to

QPSK constellation and by utilizing multiple cosets. The improved rate TBC scheme

still showed significant large power gains compared to the conventional turbo codes

of the same rates.
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Figure 3.7: Complementary cumulative distribution function of PAPR for various
number of subcarriers for QPSK modulation.
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Figure 3.8: Performance comparison of turbo block code (BCH and RM) with multiple
cosets and convolutional turbo code (number of subcarriers=4, Code rate=0.607)
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Figure 3.9: Performance comparison of turbo block code (BCH and RM) with multiple
coset sand convolutional turbo code (number of subcarriers=8, Code rate=0.455)
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Figure 3.10: Performance comparison of turbo block code (BCH and RM) with multi-
ple cosets and convolutional turbo code (number of subcarriers=16, Code rate=0.328)
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Figure 3.11: Performance comparison of turbo block code (BCH and RM) with multi-
ple cosets and convolutional turbo code (number of subcarriers=32, Code rate=0.215)



Chapter 4

New Codes from Dual BCH Codes

4.1 Introduction

In the previous chapter, we achieved low PAPR for OFDM symbols by using

cosets of the generalized first order Reed-Muller codes in turbo block code structure.

In this chapter, we investigate another promising frequency domain TBC component

code, namely the dual BCH and its modification. The inverse Fourier transform of

the codewords of the dual BCH code have low PAPR [12]. Unfortunately no MAP

decoder for dual BCH code is known. Therefore we provide the modified dual BCH

code such that we preserve PAPR properties while making it amenable to MAP

decoding. We will then utilize the modified code in a time-frequency TBC structure.

The modified code is employed in frequency component code and BCH is employed in

time component code in the TBC. Simulation result shows that our scheme is superior

to existing capacity achieving code, e.g. turbo codes.

43
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4.2 PAPR of Dual BCH Codes

The dual of BCH code is known to have low PAPR. Let Fq be the finite field of

size q = n + 1 = 2m for a positive integer m and β be the n–th root of unity in Fq.

The t-error correcting BCH code is generated by the least common multiple of the

minimal polynomials of 1, β, β2, · · · , β2t−1 over the field F2. We denote the dual of

the t-error-correcting BCH code of length n = 2m − 1 by DBCH(m, t). In [12], an

upper bound is calculated for the peak to mean envelope power ratio (PMEPR) of

nonconstant codewords of a DBCH(m, t) as follows

Up =
2m

2m − 1
(2t− 1)2(

2 ln 2

π
(m+ 1) + 2)2 (4.1)

As can be seen for dual BCH codes with similar length, the upper bound depends

on the parameter t. We will show using numerical simulation that the upper bound

is not tight, nevertheless the dual BCH code has favorable PAPR properties only for

t = 1.

4.3 New Code Based on Dual BCH Code: Aug-

mented Dual BCH Code

4.3.1 Encoding

Since no simple MAP decoder for dual BCH codes is known, we develop a new

code based on dual BCH which is efficiently decodable. This design is not limited to

dual BCH codes and can be applied to any code which does not include the all-one

vector as a codeword.
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Throughout this chapter, message bits, coded bits and received bits are denoted

by mi, cj and rj respectively. We also use c̄ and ∗ to show the complement (additive

inverse) of c and matrix multiplication in F2 respectively. The set of all codewords

is denoted by CCC. We generate a new (n, k + 1) code by augmenting (n, k) dual

BCH code. We name this new code as augmented dual BCH code. The encoding of

augmented dual BCH code is as follows. If the message vector is (m0,m1, · · · ,mk),

the codewords of the new code are generated as follows:

ccc =

 (m1, · · · ,mk) ∗GD for m0 = 0

(m1, · · · ,mk) ∗GD for m0 = 1

(4.2)

where GD is the generator matrix of the dual BCH code. The augmented dual BCH

code inherits some of the favorable properties of cyclic codes. Specifically, generating

codewords or determining whether a vector belongs to CCC can be accomplished using

linear feedback shift registers. The new code also has a minimum distance similar to

that of the dual BCH code. Furthermore, the PAPR of the new code is equal to that

of the dual BCH code.

4.3.2 Decoding

By generating the codewords as described in Equation (4.2), we can use an ap-

proach similar to [24] to decode the received words. The set of all 2k+1 codewords,

CCC, can be divided into two subsets CCCm0 and CCCm1 whose corresponding message words

have m0 = 0 and m0 = 1. Therefore, the elements of CCCm0 and CCCm1 are complement

pairwise.

CCC = CCCm0 ∪CCCm1, cccm0
i = ¯cccm1

i i = 1, · · · , 2k (4.3)
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We construct the matrix DDD of size 2k × n such that the i–th row of DDD is (1− 2cicici)

where cicici ∈ CCCm0, we define the vector LcLcLc such that its i–th element is generated as

Lci = Pr(rrr|ccci)−Pr(rrr|c̄cci). Interestingly, by multiplying LcLcLc andDDD, we can calculate, for

each bit, the summation of probabilities over two subsets of CCC in which the specific

bit is 0 or 1. The i–th component of www = LcDLcDLcD can be expressed as

wj =
∑
ccc∈CCC0

j

Pr(rrr|ccc)−
∑
ccc∈CCC1

j

Pr(rrr|ccc) (4.4)

where CCC0
j and CCC1

j are subsets of CCC in which the j–th bit is 0 or 1 correspondingly.

To calculate this wj, the value of Lci has to be available. The probability Pr(rrr|ccci)

and Pr(rrr|c̄̄c̄ci) can be efficiently calculated by multiplying the log likelihood ratio of the

received vector, λλλ, by DDDT . The i–th component of the vector ttt = λλλDDDT is:

ti =

j=n−1∑
j=0

[ln Pr(rj|cij)− ln Pr(rj|c̄ij)] (4.5)

where cij is the j–th bit of the i–th codeword. If the value of s =
∑j=n−1

j=0 ln Pr(rj|cij)+

ln Pr(rj|c̄ij) is available, considering Equation (4.5), Pr(rrr|ccci) and Pr(rrr|c̄̄c̄ci) can be easily

generated as

ln Pr(rrr|ccci) =
s+ ti

2

ln Pr(rrr|c̄cci) =
s− ti

2

(4.6)

We also note that once λλλ is available, the calculation of ln Pr(rj|0) and ln Pr(rj|1) is

straightforward.

LLR is simply calculated from wj. By Baye’s rule, Equation (4.4) is changed to
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the following equation.

wj =
∑
ccc∈CCC0

j

Pr(ccc|rrr)Pr(rrr)

Pr(ccc)
−

∑
ccc∈CCC1

j

Pr(ccc|rrr)Pr(rrr)

Pr(ccc)

= 2kPr(rrr)[
∑
ccc∈CCC0

j

Pr(ccc|rrr)−
∑
ccc∈CCC1

j

Pr(ccc|rrr)]

= 2kPr(rrr)[Pr(cj = 0|rrr)− Pr(cj = 1|rrr)]

(4.7)

The constant factor 2kPr(rrr) can be computed similarly:

q =
∑
ccc∈CCC0

j

Pr(rrr|ccc) +
∑
ccc∈CCC1

j

Pr(rrr|ccc)

= 2kPr(rrr)[
∑
ccc∈CCC0

j

Pr(ccc|rrr) +
∑
ccc∈CCC1

j

Pr(ccc|rrr)]

= 2kPr(rrr)[Pr(cj = 0|rrr) + Pr(cj = 1|rrr)]

= 2kPr(rrr)

(4.8)

Finally, we can obtain log likelihood ratio (LLR):

LLRj = ln
Pr(cj = 0 | rrr)
Pr(cj = 1 | rrr)

= ln
1 + wj/q

1− wj/q
(4.9)

4.3.3 TBC with Augmented Dual BCH Code

Using the soft decoder developed in Section 4.3.2, we can utilize the augmented

dual BCH code as the frequency component code of time-frequency turbo block code

with low PAPR. The TBC encoding and decoding are given in Section 3.3. We denote

the message length of the time domain constituent code and the frequency domain

constituent code by k1 and k2 and the code block lengths by n1 and n2. The codes

have corresponding rates of R1 = k1
n1

and R2 = k2
n2

respectively for time and frequency

domain codes and the TBC code rate is R = R1 × R2. We employ the augmented
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dual BCH code (See Section 4.3.1) as the frequency domain component code. We use

BCH code as the time domain component code as motivated in Section 3.3.3. We

note that the PAPR bound of the dual BCH code in Section 4.2 is only valid for the

nonconstant codewords. There are two constant codewords in the augmented dual

BCH code, all-zero and all-one sequences. All-zero codeword is made by the encoding

of all-zero message, 000 · · · 0, and all-one codeword is made by the encoding of all-zero

message with the exception of the first bit, 100 · · · 0. By fixing the last message bit

as ’1’, we can avoid the constant codewords of the augmented dual BCH code. This

reduces the code rate to R = k1(k2−1)
n1n2

but guarantees low PAPR.

4.4 Simulation Results

In this section, we evaluate the efficiency of the proposed turbo block coded OFDM

system based on the new code proposed in Section 4.3. The TBC encoding is per-

formed according to the method given in Section 4.3.3. As mentioned in Section

4.2, among dual BCH codes only those with t = 1 have appealing PAPR properties.

This is depicted in Figure 4.1, where complementary cumulative distribution function

(ccdf) of PAPR for dual BCH codes with m = 4, 5, and 6 are given. The maximum

PAPR for these codes with t = 1 are respectively 5.4, 6.0, and 6.3 dB and the length

of these codes are respectively 15, 31, and 63 (n2 = 2m − 1). As the parameter t

increases from 1 to 2, the maximum PAPR grows by 3.7, 5.5, and 5.5 dB respectively

for n2 = 15, 31, and 63. To illustrate the effect of the growth of t on PAPR, for

n2 = 63 the PAPR is presented for t = 11. As discussed above, we use augmented

DBCH(m,1), denoted by A-DBCH(m,1) in the frequency domain and the BCH code
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Figure 4.1: CCDF of PAPR for dual BCH codes for different values of t. n2 = 63:
marked with circles, n2 = 31: marked with stars, n2 = 15: marked with squares.

in the time domain.

We compare the performance and PAPR of these codes with a capacity achieving

code, namely turbo code given in Section 3.5. To match the block size between TBC

and turbo code, coded blocks of the turbo code are truncated into smaller blocks of

length 2m − 1 which are transmitted as OFDM symbols. Figure 4.2 compares the

ccdf of PAPR of both codes. The constellation is BPSK and the signals are four

times oversampled. As can be seen, the proposed turbo block coded OFDM scheme

provides respectively 6.4 and 7.5 dB lower PAPRs for m = 4 and 5. This significant

improvement does not come at the expense of any distortion or any reduction in the
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Figure 4.2: PAPR comparison of turbo block code and conventional turbo code.

bandwidth.

Figure 4.3 presents the performance of the proposed turbo block coded OFDM

scheme. The overall block lengths of TBC are respectively 945 and 1953 for m = 4

and m = 5 respectively and corresponding code rates are R = 0.241 and 0.146.

In the simulation, we use 4 iterations between the two constituent decoders. For

comparison, we also give the performance of the turbo code with the same lengths

and the same code rates as the TBC scheme. As presented, the performance of the

proposed system is 1.5 and 2.0 dB worse than turbo code for m = 4 and m = 5

respectively. It is noteworthy that for large OFDM block lengths there is a tradeoff
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Figure 4.3: Performance comparison of turbo block code and turbo code, n1 = 63,
n2 = 15 : marked with circles , n1 = 63, n2 = 31 : marked with stars.

between the code rate and PAPR of the proposed scheme. By increasing t, both code

rates and PAPRs increase as a function of t.

Table 4.1 summarizes the performance of the proposed scheme compared to the

conventional turbo code. From the table, we observe that TBC scheme with aug-

mented dual BCH in frequency domain and BCH in time domain gives respectively

4.5 dB and 5.9 dB gains over the conventional turbo code for m = 4 and m = 5.
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Number of Code PAPR BER total
sub-carriers rate TBC Turbo gain TBC Turbo gain gain
15 (m = 4) 0.241 5.4dB 11.8dB 6.4dB 4.1dB 2.1dB −2.0dB 4.4dB
31 (m = 5) 0.146 6.0dB 13.5dB 7.5dB 3.4dB 1.9dB −1.5dB 6.0dB

Table 4.1: PAPR and BER performance comparison between the DBCH-BCH turbo
block code (TBC) and the conventional Turbo code

4.5 Summary

In this chapter, we constructed an augmented code based on dual BCH code that

is amenable to MAP decoding. Since the PAPRs of the codewords of the augmented

dual BCH code are the same as those of a dual BCH code. We have utilized this

code as the frequency domain constituent code in a time-frequency turbo block coded

OFDM system. We have shown that the proposed scheme achieves significantly lower

PAPR at the cost of small performance degradation compared to best known capacity

achieving codes.



Chapter 5

Probabilistic Low PAPR Coded

OFDM

5.1 Introduction

In Chapter 2, we introduced a few PAPR reduction approaches including selected

mapping (SLM) or partial transmit signaling (PTS) [3] [4]. In these methods, the

probability of occurring large PAPR signals is decreased by generating alternative

signals carrying the same information and transmitting the best one in terms of

PAPR. However, the explicit transmission of side information regarding the selected

signal is crucial for the receiver to recover the signal properly. The embedding of

the side information in the data sequence may cause PAPR regrowth, reduce the

bandwidth efficiency or cause performance loss due to the potential of receiving er-

roneous side information. Alternatively, we might use dedicated channels to assure

the side information is protected by a powerful code, but this may increase the de-

53



Chapter 5: Probabilistic Low PAPR Coded OFDM 54

lay and the complexity of the system. In this chapter, we design a coded OFDM

system with reduced PAPR which does not require transmission of side information

and performs sufficiently close to the capacity achieving codes. We seek a method

with the feasibility of accommodating arbitrary code rates and block lengths and

arbitrary constellation per subcarrier. By incorporating the probabilistic and coding

approaches, We develop a method which satisfies the aforementioned requirements.

We exploit random sequences to reduce the PAPR. At the decoder, we recover both

the transmitted data and the selected random sequence.

5.2 Probabilistic Approaches in Coding for PAPR

Reduction

To develop a PAPR reduction coding method with good performance, we start

with a capacity achieving code such as turbo code consisting of two convolutional

codes. The equiprobable and i.i.d. data bits are first encoded by the turbo code and

then mapped to symbols an selected from a BPSK constellation. The modulated sym-

bols compose blocks of length of N OFDM symbols denoted by: aaa = [a1 a2 · · · aN ].

5.2.1 Encoding

To reduce the PAPR, We seek a probabilistic approach based on random se-

quences. By multiplying the data block by s independent and randomly generated

sequences qqqs = [qs1q
s
2 · · · qsN ], s alternative blocks carrying the same information are

generated as asasas = aaa ∗ qsqsqs where ∗ stands for element-by-element multiplication. The
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criterion to select the signal for transmission is to exhibit the lowest PAPR

aaat = arg min
1<s<S

PAPR {IFFT (aaas)}, (5.1)

where IFFT (aaa) is the inverse fast fourier transform of the vector aaa and PAPR(aaa) is

the PAPR of the sequence aaa. The set of all random sequences is known to both the

transmitter and the receiver. However no explicit information regarding the selected

sequence is exchanged between the two sides.

5.2.2 Decoding

The selected random sequence is determined in the first iteration where the first

constituent code is decoded using the information of s different random sequences.

Thereby, the metrics of the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm developed

in [27] are calculated as follows:

αsl+1(t′) =
T−1∑
t=1

αsl (t)γ
s
l (t, t

′),

βsl (t) =
T−1∑
t′=0

γsl (t, t
′)βsl+1(t′),

γsl (t, t
′) =

1

(2πσ2)
n
2

exp[
−1

2σ2

|rrrl − aaa(t,t′)qqqs|2]Pr(xt = x(t,t′)).

(5.2)

The details of the above Equations can be found in [28].

For simplicity of the decoding algorithm, we assume that we transmit all-zero

codewords without loss of generality. Eventually, the decoder generates s sets of

log-likelihood ratios (LLR), each corresponding to a random sequence as follows:

λsλsλs = [λs1λ
s
2 · · ·λsN ] (5.3)
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To detect the random sequence, we maximize Pr(qqqi|λλλ1,λλλ2, · · · ,λλλs) which is equivalent

to:

q̂̂q̂q = arg max
qqqi,1≤i≤S

f(λλλ1,λλλ2, · · · ,λλλs|qqqi) (5.4)

where q̂̂q̂q denotes the detected random sequence in the receiver. The joint probability

density function of LLRs can be expressed as:

f(λλλ1,λλλ2, · · · ,λλλS|qqqi) =
S∏
s=1

f(λλλs|qqqi) (5.5)

The distribution of the output LLR of the BCJR algorithm can be well approximated

by a consistent Gaussian [29]. In a consistent Gaussian distribution, the variance is

twice the absolute value of the mean. In other words, one parameter is enough to

describe the distribution,

f(λλλs|qqqi) =
N∏
j=1

1√
2πσ2

exp
−(λsj − m̄)2

4m̄
(5.6)

When the random sequence utilized in the decoder is the one used in the transmitter,

we show the mean of f(λλλi|qqqi) by m̄ = m. Correspondingly, the mean of f(λλλj|qqqi) for

j 6= i is denoted by m′. We note that m � m′. Maximizing f(λλλ1,λλλ2, · · · ,λλλS|qqqi) for

1 ≤ i ≤ S is equivalent to minimizing Li defined as:

Li =
S∑

s=1,s 6=i

N∑
j=1

|λsj|2

m′
+

N∑
j=1

|λij|2

m
(5.7)

Since m′ � m, to minimize Li we have to maximize
∑N

j=1|λij|2. Hence the selected

random sequence is determined as:

q̂̂q̂q = arg max
qqqi,1≤i≤S

N∑
j=1

|λij|2 (5.8)
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Figure 5.1: Complementary cumulative distribution function of PAPR for turbo code
with various number of random sequences. (N=1024)

5.3 Simulation Results

In this section, we demonstrate the efficiency of the proposed method in obtain-

ing a low PAPR near Shannon limit coded OFDM system. We consider a parallel

concatenated turbo code [26] with rate R = 1
3

and coded block length of N = 1024

and N = 2048. The exact coding rate is not exactly equal to 1
3

and is 0.375 and

0.372 respectively. This is because the number of subcarriers is a power of two. This

rate matching was performed by puncturing a certain number of coded symbols. The

requirement of the power of two for the coded block length is in order to have faster
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Figure 5.2: Performance comparison of turbo code with various number of random
sequences. (N=1024)

FFT/IFFT implementation. The constituent codes are two recursive systematic con-

volutional code with the following transfer functions:

[1,
1 +D +D3

1 +D2 +D3
,
1 +D +D2 +D3

1 +D2 +D3
]. (5.9)

The transmitter selects the best signal as described in (5.8) when S = 2, 4, 8 and 16

random sequences are utilized. The complementary cumulative distribution function

(ccdf) of PAPR is depicted in Figure 5.1 and 5.3 for N = 1024 and N = 2048

respectively. The constellation is BPSK and signals are four times oversampled. As

can be seen the Figure 5.1, we are able to reduce the PAPR by 2.1, 3.1, 4.0 and 4.6dB
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Figure 5.3: Complementary cumulative distribution function of PAPR for turbo code
with various number of random sequences. (N=2048)

by using 2, 4, 8 and 16 random sequences for N = 1024. Figure 5.3 shows that the

proposed scheme has PAPR gains of 2.0, 3.0, 3.6 and 4.2 dB by using 2, 4, 8 and 16

random sequences respectively for N = 2048. Figure 5.2 and Figure 5.4 compare the

performance of the system with and without random sequences over additive white

Gaussian noise (AWGN) channel for N = 1024 and N = 2048 respectively. From the

figures, we can see that the difference between the performance for S = 2, 4, 8 and

16 is at most 0.2 dB which is negligible for both block lengths. As presented, the

significant PAPR decrease is obtained at the expense of a slightly higher decoding

complexity and a negligible performance degradation around 0.05–0.2dB compared to
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Figure 5.4: Performance comparison of turbo code with various number of random
sequences. (N=2048)

the case when no random sequence is used. It is noteworthy that the performance of

the system, when the selected random sequence is determined through the decoding

process, is exactly similar to the case that perfect side information regarding the

random sequence is transmitted to the receiver especially for the high SNR scenarios.

Table 5.1 summarizes the total gain of the proposed scheme. PAPR gain (BER

loss) is the PAPR (BER) difference of the turbo code using the number of random

sequences compared to the turbo code without using random sequences. Considering

both PAPR gain and BER loss, the total power gain ranges from 2 dB to 5 dB

depending on the number of random sequences and the number of subcarriers which
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Number of Code Number of PAPR BER Total
sub-carriers Rates Sequences gain loss gain

2 2.1 dB −0.05 dB 2.05 dB
1024 0.375 4 3.1 dB −0.05 dB 3.05 dB

8 4.0 dB −0.15 dB 3.95 dB
16 4.6 dB −0.15 dB 4.45 dB
2 2.0 dB −0.05 dB 1.95 dB

2048 0.372 4 3.0 dB −0.1 dB 2.9 dB
8 3.6 dB −0.15 dB 3.45 dB
16 4.2 dB −0.2 dB 4.0 dB

Table 5.1: PAPR and BER performance comparison between the time-frequency
turbo block code and the conventional turbo code (QPSK modulation and maximum
possible number of cosets assumed)

is identical to the block length.

5.4 Summary

For any code book, amenable to MAP decoding, we proposed a PAPR reduction

method which shifts the PAPR ccdf of original system to the left. We applied this

method to a capacity achieving code, namely turbo code and have shown performance

close to Shannon limit with significant low PAPRs. In this method, the PAPR is

decreased significantly while the performance degradation is only less than 0.2 dB

from that of a capacity achieving code. This method can be flexibly applied for

arbitrary constellation per subcarrier, arbitrary code books and code rates, and any

number of subcarriers.



Chapter 6

Summary

The key contributions of the thesis are:

• A new method to design turbo block code base on the realization of Golay

sequences as cosets of the first order Reed-Muller codes was proposed. This

method was shown to have significant power gain compared to the conventional

turbo codes. The rate of this method may be low for some application. We

thus have proposed a method to improve up on the code rate by utilization of

QPSK modulation and multiple cosets of Reed-Muller codes.

• A new code based on dual BCH code was proposed that is amenable to a simple

MAP decoding algorithm. It was shown that the TBC structure with the new

code as a frequency component code and BCH as a time component code provide

significant power gain over turbo code.

• We proposed a PAPR reduction method that can be applied for any channel

coding scheme amenable to MAP decoding. This method shifts the PAPR ccdf
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of original system to the left without any significant performance loss. We

applied this method to a capacity achieving code, namely turbo code and have

shown performance close to Shannon limit with significant low PAPRs.



Appendix A

Decoding Algorithms

A.1 MAP algorithm for Reed-Muller code

The algorithm was directly taken from [24].

Let us consider the transmission of a binary phase-shift keying (BPSK) modulated

binary code over an additive white Gaussian channel. The two conditional pdf’s of

the received symbol y are given by

f0(y) = Pr(y | 0) = 1√
2πσ

e
(y−1)2

2σ2 ,

f1(y) = Pr(y | 1) = 1√
2πσ

e
(y+1)2

2σ2 .

Since we assume a memoryless channel, the probability of receiving a real vector

yyy = (y0, y1, · · · , yn−1) conditioned on a binary vector ccc = (c0, c1, · · · , cn−1) being

transmitted can be written as the product

Pr(yyy | ccc) =
n∏
j=1

Pr(yj | cj) (A.1)
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The idea of MAP decoding of binary first-order Reed-Muller code is based on two

fold use of fast Hadamard transform, which we denote by FHTR. First, we use this

transform for fast computation of probabilities Pr(yyy | cj). Next, after some auxiliary

computations, we use this transform for fast computation of soft decisions (LLR’s)

lnPr(cj = 0 | yyy)− lnPr(cj = 1 | yyy) for all transmitted bits. The algorithm starts with

computation of the vector bbb = (b0, b1, · · · , bn−1), where

bj = ln Pr(yj | 0)− ln Pr(yj | 1), j = 0, 1, · · · , n− 1, (A.2)

ti =
n∑
j=1

ln Pr(yj | cij)−
n∑
j=1

ln Pr(yj | cij ⊕ 1), i = 0, 1, · · · , 2k − 1, (A.3)

where ⊕ denote the addition in F2. We can compute the vector ttt with the help of

FHTR transform as ttt = (t0, t1, · · · , t2m−1) = FHTR(b0, b1, · · · , bn−1).

We use the following simple method to compute the sums of logarithms of probabilities

from the differences of the sums. Let

s =
n−1∑
j=1

ln Pr(yj | 0) + ln Pr(yj | 1) (A.4)

Then

r
(0)
i =

s+ ti
2

=
n−1∑
j=0

ln Pr(yj | cij), (A.5)

and

r
(1)
i =

s− ti
2

=
n−1∑
j=0

ln Pr(yj | cij ⊕ 1), (A.6)

v
(0)
i = er

(0)
i =

n−1∏
j=0

ln Pr(yj | cij) (A.7)

and

v
(1)
i = er

(1)
i =

n−1∏
j=0

ln Pr(yj | cij ⊕ 1) = Pr(yyy | ccci ⊕ 1). (A.8)
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This finishes the first part of the algorithm. The second part of the algorithm is

concerned with computing soft decisions lnPr(cj = 0 | yyy) − lnPr(cj = 1 | yyy) Let us

notice that if C is an [n, k + 1] code that contains the all-one codeword and

xi = Pr(yyy | ccci)− Pr(yyy | ccci ⊕ 1), i = 0, 1, · · · , sk − 1 (A.9)

then the entries of the vector (w0, w1, · · · , wn−1) are equal to

wj =
2k−1∑
i=0

dij(Pr(yyy | ccci)− Pr(yyy | ccci ⊕ 1))

=
∑
ccc∈C(0)

j

Pr(yyy | ccc)−
∑
ccc∈C(1)

j

Pr(yyy | ccc),
(A.10)

where dij is an i’th row and j’th column element of Hadamard matrix H2m .

For this, we can use the FHTR transform for these computations. First, we form

a vector xxx with entries xi = v
(0)
i − v

(1)
i , and next compute (w0, w1, · · · , wn−1) =

FHTR(x0, x1, · · · , xn−1). Therefore

wj =
∑

ccc∈RM(1,m)
(0)
j

Pr(yyy | ccc)−
∑

ccc∈RM(1,m)
(1)
j

Pr(yyy | ccc)

= 2m+1Pr(yyy)(Pr(cj = 0 | yyy)− Pr(cj = 1 | yyy)).

(A.11)

Here, the expression ccc ∈ RM(1,m)
(0)
j refers to all codewords ccc whose j’th element are

0, and the expression ccc ∈ RM(1,m)
(1)
j refers to all codewords ccc whose j’th element

are 1. The constant factor 2m+1Pr(yyy) can be computed as follows.

q =
2m−1∑
i=1

(v
(0)
i + v

(1)
i )

=
∑

ccc∈RM(1,m)
(0)
j

Pr(yyy | ccc) +
∑

ccc∈RM(1,m)
(1)
j

Pr(yyy | ccc)

= 2m+1Pr(yyy)(Pr(cj = 0 | yyy) + Pr(cj = 1 | yyy))

= 2m+1Pr(yyy).

(A.12)



Appendix A: Decoding Algorithms 67

Finally, we compute the soft decisions or log likelihood ratios for all code bits as

follows.

zj =
wj
q

= Pr(cj = 0 | yyy)− Pr(cj = 1 | yyy) (A.13)

LLRj = ln
Pr(cj = 0 | yyy)

Pr(cj = 1 | yyy)
= ln

1 + zj
1− zj

. (A.14)

A.2 MAP algorithm for BCH code

The algorithm was directly taken from [22].

Let us consider the transmission of binary elements {0,1} coded by a linear block

code C(n, k, δ) on a Gaussian channel using binary symbols {-1, +1}. We shall

consider the following mapping of the symbols 0→ +1 and 1→ −1. The observation

rrr = (r0, · · · , rl, · · · , rn−1) at the output of the Gaussian channel for a transmitted

codeword eee = (e0, · · · , el, · · · , en−1)is given by

rrr = eee+ ggg (A.15)

where components of ggg = (g0, · · · , gl, · · · , gn−1) are additive white Gaussian noise

(AWGN) samples of standard deviation σ. By using maximum likelihood decoding

(MLD), one can show that the optimum decision ddd = (d0, · · · , dl, · · · , dn−1) corre-

sponding to the transmitted codeword eee.

If we let the reliability of decision dj is defined using the LLR of transmitted

symbol ej, which is given by

Λ(dj) = ln(
Pr{ej = +1 | rrr}
Pr{ej = −1 | rrr}

) (A.16)
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the nominator of Equation (A.16) can be written as

Pr{ej = +1 | rrr} =
∑

ccci∈SSS+1
j

Pr{eee = ccci | rrr} (A.17)

where SSS+1
j is the set of codewords {ccci} such that cij = +1. And the denominator of

Equation (A.16) can be written as

Pr{ej = −1 | rrr} =
∑

ccci∈SSS−1
j

Pr{eee = ccci | rrr} (A.18)

where SSS−1
j is the set of codewords {ccci} such that cij = −1. By applying Bayes’ rule to

Equation (A.17) and Equation (A.18) and assuming that the different codewords are

uniformly distributed, we obtain for LLR, Λ(dj) the following expression:

Λ(dj) = ln(

∑
ccci∈SSS+1

j
Pr{rrr | eee = ccci}∑

ccci∈SSS−1
j

Pr{rrr | eee = ccci}
) (A.19)

where

Pr{rrr | eee = ccci} = (
1√
2πσ

)nexp(−| r
rr − ccci |2

2σ2
) (A.20)

| rrr − ccci |2=
n−1∑
l=0

(rl − cil)2. (A.21)

Let ccc+1(j) and ccc−1(j) be the codewords respectively, in SSS+1
j and SSS−1

j , at minimum

Euclidean distance from R. By combining Equation (A.19) and Equation (A.20), we

obtain the following relation:

Λ(dj) =
1

2σ2
(| rrr − ccc−1(j) |2 − | rrr − ccc+1(j) |2) + ln(

∑
iAi∑
iBi

) (A.22)

where

Ai = exp(
| rrr − ccc+1(j) |2 − | rrr − ccci |2

2σ2
) ≤ 1, with ccci ∈ S+1

j (A.23)
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and

Bi = exp(
| rrr − ccc−1(j) |2 − | rrr − ccci |2

2σ2
) ≤ 1, with ccci ∈ S−1

j (A.24)

For high SNR, that is, σ → 0,
∑

iAi ≈
∑

iBi → 1 and thus the second term in

Equation (A.22)tends to zero. By neglecting the second term in Equation (A.22), we

obtain an approximation for the LLR of decision dj equal to

Λ(dj) =
1

2σ2
(| rrr − ccc−1(j) |2 − | rrr − ccc+1(j) |2) (A.25)

Therefore, computing the reliability of decision dj at the output of the soft-input de-

coder requires two codewords ccc+1(j) and ccc−1(j). One of this codewords is the optimum

decision codeword by Maximum likelihood Decoding (MLD). The optimum decision

ddd = (d1, · · · , dl, · · · , dn) corresponding to the transmitted codeword eee is given by

ddd = ccci if | rrr − ccci |2≤| rrr − cccl |2 ∀l ∈ [0, 2k − 1], l 6= i (A.26)

where ccci is the ith codeword and | rrr − ccci |2=
∑n−1

l=0 (rl − cil)
2. Then using an ex-

haustive search for the optimum codeword D, the computation complexity increases

exponentially with k and becomes prohibitive for block code with k > 6. In order

to have tolerable complexity for MLD, it is proposed to use Chase algorithm. [30]

In 1972, Chase proposed a suboptimum algorithm of low complexity for near-ML

decoding of linear block codes. This algorithm is based on the following observation.

At high SNR, ML codeword ddd is located in the sphere of radius (δ − 1) centered on

yyy = (y0, · · · , yl, · · · , yn−1), where yl = 0.5(1 + sgn(rl)) and yl ∈ {0, 1} with a very

high probability. Thus, we can limit the reviewed codewords in Equation (A.26) to

those in the sphere of radius (δ−1) centered on yyy. To reduce the number of reviewed

codewords, only the set of the most probable codewords within the sphere are selected
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by using channel information rrr. The procedure used to identify the set of the most

probable codewords is the following.

Step 1 : Determine the position of the p = bδ/2c least reliable binary elements of yyy

using rrr. The reliability of the elements of yyy will be defined later on.

Step 2 : Form test patterns tttq defined as all the n-dimensional binary vectors with

a single ”1” in the least reliable positions and ”0” in the other positions, two

”1”s in the least reliable positions and ”0” in the other positions, and · · · , p

”1”s in the least reliable positions and ”0” in the other positions.

Step 3 : Form test sequences zzzq where zql = yl ⊕ tql and decode zzzq using an algebraic

decoder and add the codeword cccq to subset ΩΩΩ.

Decision D is then given by applying decision rule as given in Equation (A.26) with

the reviewed codewords restricted to the subset of codewords Ω found at step 3 above.

Note that the components of the codewords are mapped from 0, 1 to +1,−1 before

computing the Euclidean distance. In step 1, the reliability of component yj is defined

using the log-likelihood ratio (LLR) of decision yj

Λ(yj) = ln(
Pr{ej = +1 | rj}
Pr{ej = −1 | rj}

) = (
2

σ2
)rj (A.27)

If we consider a stationary channel, we can normalize the LLR with respect to constant

2/σ2, and the relative reliability of yj is then given by | rj |.

Coming back to Equation (A.19), it is obvious that optimum decision ddd must be

one of two codewords, ccc+1(j) and ccc−1(j). And we find the other one, which we shall call

ccc. C can be viewed as a competing codeword of D at minimum Euclidean distance
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from R with cj 6= dj. Given codeword ddd and ccc, we can show that the soft output

given by Equation (A.25) can be expressed as the following equation:

Λ(dj) = (
| rrr − ccc |2 − | rrr − ddd |2

2σ2
)dj. (A.28)

To find codeword ccc, one must increase the size of the space scanned by the Chase

algorithm. For that purpose, we increase the number of least reliable bits p used in the

Chase decoder and also the number of test patterns. It is clear that the probability

of finding ccc increases with the value of p. On the other hand, the complexity of the

decoder increases exponentially with p and we must find a tradeoff between complexity

and performance. This implies that in some cases we shall not be able to find a

competing codeword ccc. In the event where codeword ccc is not found, we must find

another method for computing the soft output. One possible solution is to replace

Equation (A.28)

Λ(dj) = β × dj, (A.29)

where β is given in [22], where it was optimized by trial and error.
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