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Abstract: 

The characteristics of epigenetic control including the potential for long lasting, stable 

effects on gene expression that outlive an initial transient signal, could be of singular 

importance for post-mitotic neurons, which are subject to changes with short to long 

lasting influence on their activity and connectivity. Persistent changes in chromatin 

structure are thought to contribute to mechanisms of epigenetic inheritance. Recent 

advances in chromatin biology offer new avenues to investigate regulatory mechanisms 

underlying long-lasting changes in neurons, with direct implications for the study of brain 

function, behavior and diseases. 

 

Introduction: 

One of the most intriguing and fundamental properties of brain function is the ability to 

sustain long-term changes in patterns of neuronal activity, a phenomenon broadly defined 

as memory. Memory lasts minutes to years 1 underscoring the existence of multiple 

strategies that afford neurons with short- to long-lasting functional changes. Precise 

mechanisms underlying memory formation and associated plasticity of neuronal function 

have been subject to intense investigation at the molecular, cellular and neuronal network 

levels, and are likely to involve all, or combination of changes in protein synthesis, gene 

expression, and cellular and anatomical structure.  

Recent years have seen an extensive search for gene regulatory mechanisms that respond 

on the short time scale associated with memory formation, while persisting over the long 

time scale over which memory can last. This has prompted a singular interest for the 

process of epigenetic inheritance. Epigenetic changes are defined as alterations in gene 

expression that are self-perpetuating in the absence of the original signal that caused them 
2,3.  The idea of persistent changes in gene expression triggered by transient events is 

intuitively parallel to the long term effects believed to be involved in memory.  
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 A major class of epigenetic mechanisms is thought to involve persistent changes in 

chromatin structure 2 (Figure 1).  Most, if not all, transcriptional regulatory events cause 

changes to chromatin structure and composition, due to the recruitment of chromatin 

modifying enzymes by transcription factors and by the transcriptional machinery itself.  

Less is known about whether, or under which circumstances, chromatin modifications 

can be stably maintained or propagated.  Nevertheless, the recent realization that most 

genes associated with mental retardation affect chromatin-remodeling processes 4,5, 

together with the identification of chromatin alterations in the process of neuronal 

plasticity and long-lasting changes in brain function, have recently brought chromatin 

biology to the forefront of molecular neuroscience and neuropathology.  A key question 

is whether the seemingly specific requirement of chromatin modifiers in neuronal 

processes merely reflects the complexity of transcriptional regulation in the nervous 

system, or indicates a special function of chromatin related mechanisms in memory and 

behavioral control. 

This essay will use representative examples in the recent literature to assess the 

contribution of various chromatin remodeling events to long-lasting changes in brain 

function. In order to investigate how, and when specific chromatin modifications impact 

brain function and behavior, the contribution of chromatin alterations to changes in brain 

function will be discussed according to their timing and duration, from the most to the 

least transient, throughout the life of the organism, and possibly across generations 

(Figure 2). 

Sustained changes in neuronal activity affect the chromatin 

Neuronal activity induces changes in gene expression that are essential to the 

establishment and maintenance of long-term neuronal plasticity in the adult brain 6. 

Consequently, and perhaps not unexpectedly, promoter regions of genes involved in 

neuronal plasticity show alterations in chromatin composition, and a growing number of 

reports have described changes in chromatin states, particularly in DNA methylation and 

histone marks, associated with long-term plasticity. 

1- DNA methylation and brain activity 
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DNA methylation of cytosine residues into 5-methyl cytosine, which in mammalian cells 

is mainly confined to CpG dinucleotides, is viewed as the most stable and long-lasting 

chromatin modification. Although the role of DNA methylation in constitutive silenceing 

of chromatin regions, X-inactivation, parental allele imprinting, retroviral and individual 

gene silencing is established, the precise mechanisms by which DNA methyl marks are 

set, maintained and erased are the topic of much debate (Box 1). The importance of DNA 

methylation in assisting essential gene regulation events associated with brain function 

and disease was revealed by the identification of Mecp2, a known methyl-CpG-binding 

domain protein (MBD) protein, as the target of mutations causing Rett syndrome 7. Rett 

syndrome is a severe X-linked mental retardation disorder characterized by late onset 

neurological defects in affected girls. Although Mecp2 is ubiquitously expressed in the 

mouse, the conditional knockout of Mecp2 in the mouse brain recapitulates the entire 

phenotype of the Mecp2-null 8,9, while rescue of expression of Mecp2 in postmitotic 

neurons prevents the emergence of phenotype in the mouse 10. Mecp2 is highly expressed 

by post-mitotic neurons, and the neurotrophin BDNF, a key player in neuronal plasticity 

events, has been identified as one of the main target genes of Mecp2 repression following 

neuronal activity 11,12. Recent analysis in mouse mutant lines that lack or over-express 

Mecp2 has pointed to additional candidate target genes of Mecp2 function in the 

hypothalamus 13. Interestingly, changes in gene expression observed in the mutant lines, 

though relatively modest, as well as demonstration of the direct binding of Mecp2 to 

promoter regions of candidate target genes, suggest a role of Mecp2 in direct activation 

as well as repression of transcription. Some of the transcriptional activation by Mecp2 

was shown to involve CREB1, a major transcriptional activator and essential component 

of signaling pathways underlying neuronal plasticity.  

The major defects in brain function and the late onset of the phenotype observed in Rett 

syndrome and related mouse models, together with cognitive impairments and defects in 

neuronal differentiation found in mutant lines for MBD1 14 suggest an important role for 

DNA-methylation marks in assisting transcriptional networks mediating normal neuronal 

homeostasis 5.  
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Yet, perturbations in gene transcription in mutants for methyl-CpG-binding domain 

proteins (MBD) such as Mecp2 are perhaps not so surprising, as the role of CpG 

methylation in gene silencing is established, although several MBD proteins appear 

dispensable for embryonic development in the mouse 15. A slightly different set of 

questions concerns the extent to which DNA methyl marks can be modified in the adult 

brain, and whether these changes can affect neuronal function. Studies along these lines 

in the nervous system are still in their infancy, and results quite controversial. In part, 

there is still major uncertainty over key mechanisms underlying the establishment and 

erasure of methyl marks in early embryonic and germ cell precursors, where robust and 

widespread changes in methylation and demethylation are known to occur (box 1). Thus, 

extreme caution should be used in interpreting data in the brain, where such changes, if 

any, may be rather modest and affect only a few genes. 

Both maintenance and de novo DNA methyltransferases DNMT1, and DNMT3a 

respectively, are found expressed at high levels in the developing and adult nervous 

system 16. The expression of these enzymes in post-mitotic neurons is rather intriguing 

but does not necessarily imply a function in active methylation in these cells, as de novo 

and maintenance methylation in germ cell development and embryogenesis occurs during 

DNA replication. Further, injection of DNMT inhibitors reportedly leads to defect in 

memory-associated neuronal plasticity. However, the requirement of DNA synthesis for 

the activity of the drugs, together with the toxicity and lack of specificity of the inhibitors 

employed make the interpretation of the results difficult 16. CNS-specific conditional 

DNMT knockouts affecting DNA methylation in dividing neuronal precursors lead to 

profound neuronal defects, suggesting a role of DNA methylation in neuronal 

development. These results, however, provide little information about changes in DNA 

methylation in postmitotic neurons. 

Surprisingly, a recent report described a significant, though rather modest reduction in 

DNA methylation at specific promoter regions of BDNF and FGF1 in the adult dentate 

gyrus of the mouse following electroconvulsive treatment 17. Through loss of function 

experiments, the authors invoked the participation of Gadd45b (growth arrest and DNA 

damage-inducible protein 45 beta) in this phenomenon, a member of a family of 
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molecules that has been shown in some systems, though refuted in others, to act as 

cofactors promoting DNA demethylation through DNA repair 18,19,20,21. The functional 

impact on gene transcription of rather weak incremental reductions rather than genuine 

loss of promoter methylation is unclear. Further, as the precise mechanistic links between 

Gadd45 activation, DNA demethylation and DNA repair remain to be clarified (Box 1), 

the simple interpretation of these results as an indication that active DNA demethylation 

is detected in postmitotic neurons will await further supporting evidence.  

As will be detailed in a later part of this review, the methylation status of a number of 

genes involved in behavioral control has similarly been reported to vary according to 

early postnatal environmental conditions, raising particularly intriguing questions about 

the ability of the environment to affect the DNA methylation status of neural genes. 

Interestingly, 5-hydroxymethyl-2′-deoxycytidine (hmdC) was recently identified as an 

abundant nucleotide in many regions of the adult brain, including the cortex, brain stem 

and in cerebellar Purkinje neurons 22. This is an intriguing discovery, as hmdC may 

represent an intermediate for oxidative demethylation, or an end product that could 

modulate the binding of proteins that normally recognize 5-methyl cytosine. 

2- Histone modification and neuronal plasticity 

Molecular analysis of signaling pathways underlying neuronal plasticity has identified 

alterations of histone marks, particularly histone acetylation, in transcriptional units 

induced by neuronal activity, and has implicated histone modifying enzymatic complexes 

in memory formation (see background information on histone modifications in Box 2). 

These findings have raised interesting mechanistic questions, as well as new ideas for the 

design of drugs aimed at memory impairment.  

Sensory experience and resulting neuronal activation leads to depolarization and calcium 

influx into the postsynaptic cell, which in turn triggers signals orchestrating short- and 

long-term changes in synaptic strength. The induction of specific activity-dependant 

transcriptional programs has been shown to play a key role in experience-dependent long-

term neural plasticity 6. In depth studies have led to the characterization of a prototypical 

signaling pathway that is evolutionally conserved in Aplysia, Drosophila, and mouse, and 
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by which extracellular stimuli are transformed into changes in activity-dependent gene 

expression 23. Gene regulation by the cyclic AMP response element binding protein 

(CREB), originally identified as binding to the cAMP- and Ca-dependent response 

elements of the somatostatin and cfos genes, respectively, as well as mediating long term 

synaptic potentiation in Aplysia 24, is particularly central to the expression of many forms 

of long-term memory. Following postsynaptic depolarization and Ca entry, activated 

CREB binds to the cAMP response element (CRE) in the promoter region of activity-

induced genes such as the immediate early gene cfos, and the neurotrophin BDNF, and, 

in conjunction with different combinations of other factors 23 orchestrates long term 

activity-induced changes in gene expression.  

Changes in histone post-translational modifications in general, and in histone acetylation 

in particular, have been extensively documented at promoters of genes induced by 

sustained neuronal activity. For example repeated electroconvulsive treatment, which 

induces long-term changes in neuronal activity that are beneficial for treatment of 

depression, triggers histone modifications at promoters of genes such as CREB, BDNF, 

c-fos that display sustained changes in transcription, but not at neuronal genes with 

unchanged expression 25. Similarly, an increasingly large number of paradigms have 

documented alterations in histone post-translational modifications in activity-dependent 

neuronal plasticity, addiction and long-term memory formation 6,26,27,28,29. Furthermore, 

pharmacological alteration of histone deacetylase (HDAC) activity significantly affects 

the process of memory formation, although the poor specificity of currently available 

reagents clearly limits the interpretation of the results 30,31,32. 

At the mechanistic level, CREB-associated transcriptional regulation has been shown to 

involve the recruitment of multi-component regulator complexes as well as the initiation 

of chromatin remodeling events. Activated CREB recruits CREB-binding protein (CBP), 

or its paralog p300, which functions both as a scaffolding protein and a histone 

acetyltransferase (HAT) 6. CBP recruitment in turn stimulates histone acetylation and 

transcriptional complex formation at the promoters, leading to transcriptional activation 

of many CREB-target genes. Mutations in the CBP/p300 gene are responsible for the 

mental retardation syndrome Rubinstein–Taybi 33 the phenotype of which may result 
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from impairment in either or both of CREB-dependent and -independent functions of 

CBP. The essential role of HAT activity in CBP-mediated neuronal plasticity has been 

genetically demonstrated by the selective long-term memory defects of a transgenic 

mouse line carrying a dominant negative CBP that blocks the HAT activity of the 

endogenous protein 34.  

Similarly, histone deacetylase (HDAC) activity has been associated with repression of 

neuronal activity-dependant gene transcription. HDAC2 has recently been identified by 

chromatin immunoprecipitation (ChIP) at the promoter regions of a large number of 

genes involved in synaptic plasticity or activity-dependent processes, such as Bdnf, Egr1, 

Fos, Cpg15, Camk2a, Creb1, Crebbp, NRXN3 and the NMDA receptor subunits, and 

appears to associate with known neuronal transcriptional co-repressors such as mSin3, 

MTA2 and CoREST 31. This has led to the suggestion that a balance between histone 

acetylation, leading to transcriptional activation, and histone de-acetylation with 

subsequent gene repression is as an essential component of the long-term regulation of 

activity-dependent genes in the brain. 

The study of genetically modified mouse strains, in which the function of specific 

histone-modifying enzymes has been altered in the brain has further revealed the 

fundamental contribution of chromatin remodeling to long-term neuronal plasticity and 

addiction. Cocaine induces HDAC5 phosphorylation and nuclear export in the Nucleus 

Accumbens (NuAc), and viral and genetic manipulations of HDAC5 expression in the 

NuAc significantly alter the response to chronic, but not acute cocaine and stress 

exposure 29. In another study, overexpression of HDAC2 but not HDAC1 leads to 

impairment in synapse formation and plasticity and in hippocampus-dependent long term, 

but not short-term memory formation, while conditional neuron-specific HDAC2 

knockout leads to increased synapse formation and memory facilitation 31.  

 

Postnatal, forebrain-specific deficiency of the histone methyltransferase complex 

GLP/G9 leads to a drastic reduction in neuronal euchromatic H3K9me2 levels 35. 

Genetically modified animals display complex behavioral abnormalities, including 
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defects in learning, motivation, and environmental adaptation but no apparent structural 

abnormality. Importantly the behavioral phenotypes are distinct from those found in mice 

with forebrain ablation of another histone lysine methyltransferase, Ezh2 which is 

essential for H3K27 methylation, and has been shown to play an important role in lineage 

specification and neuronal and astrocyte differentiation 36,37. Interestingly upregulation of 

neuronal progenitor and non-neuronal genes was identified in GLP/G9 deficient mice, 

suggesting an essential role of GLP/G9 in maintaining neuron-specific transcriptional 

homeostasis and in protecting adult neurons from expression of non-neuronal and 

neuronal progenitor genes. 

In another recent study, repeated cocaine administration was shown to induce repression 

of G9a and H3K9me2 and to promote cocaine preference, in part through the 

transcriptional activation of numerous genes known to regulate aberrant forms of 

dendritic plasticity. Thus H3K9 dimethylation appears essential to ensure the stability of 

proper neuronal gene expression programs 38. 

 

3. Debating the role of histone modifications in plasticity 

The studies reported here document a fascinating new side of the control of neuronal 

plasticity. However, one must exercise extreme caution in interpreting the role of histone 

modifications in this process, as histone marks are an extension and reflection of the 

underlying transcriptional network, and cannot therefore be interpreted alone (Box 2). 

The highly transient nature of histone marks must also be kept in mind. Histone 

acetylation for example was shown in some experimental systems to display a half-life in 

the order of minutes 39. Similarly a histone methyl mark such as H3K4me3, although 

more stable, has been shown in yeast not to be maintained after removal of the gene 

activating stimulus, even a loci known to be subject to epigenetic regulation 40. In a study 

looking at neuronal differentiation in vitro 41 H3K27me3 marks associated with 

polycomb-mediated repression emerge in progenitor cells as in anticipation of neuronal 

differentiation, but not in embryonic stem cells despite the fact that the corresponding 

genes are silenced in these cells as well. Thus, the histone mark does not indicate 
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silencing in absolute term, but instead the ability for dynamic regulation and recruitment 

of sequence- and context- specific transcription factors. These illuminating studies in 

simpler experimental systems emphasize the need for more detailed mechanistic studies 

of transcriptional events related to neuronal plasticity. 

What is the adult brain inheriting from the neonatal epigenome? 

The origin of behavioral diversity within individuals of a given species constitutes one of 

the most fundamental questions in behavioral neuroscience, and decades of research has 

tried to determine the respective roles of genetic and early environmental influences in 

shaping adult behavioral patterns. The term of epigenetics is increasingly invoked to 

interpret studies from rodents to non-human primates and humans, in which stochastic 

developmental events and environmental information appear to stably sculpt 

physiological, behavioral traits and disease susceptibility from the early perinatal period 

into adulthood. 

Studies of human monozygotic twins raised together, compared to monozygotic twins 

raised apart reveal significant discordance in behavioral and physiological phenotypes as 

well as in disease susceptibility that cannot be accounted for by simple Mendelian 

inheritance of genetic traits, nor by identifiable environmental differences 42. These 

results have been confirmed by analysis of genetically identical inbred rodents and cattle 

raised in tightly controlled versus variable pre- and postnatal environments 43, and more 

recently by observation of cloned animals 44. This paradox led to the early hypothesis of a 

“third component …. effective at or before fertilization” 43, the basis of which was 

proposed by some authors to rest in differential and heritable chromatin remodeling 

events that occur during cell differentiation and embryonic morphogenesis 42. Consistent 

with this hypothesis is the example of monozygotic twins discordant for Beckwith–

Wiedemann syndrome (BWS) 45, which is thought to result from unequal distribution 

among twins of DNA methylation enzymes in the inner mass stage, leading to a defect in 

maintenance of imprinting at KCNQ1OT1. However, variability in chromatin 

modifications cannot be interpreted in abstract, outside the context of specific gene 

transcriptional regulation. Sophisticated analyses of stochastic variation in eukaryotic 

gene expression, from yeast to metazoans, suggest that fluctuation in chromatin-mediated 
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events may indeed participate in gene expression variability, and that the range of 

variability is tightly linked to the degree of connectivity of genes within a transcriptional 

network, such that highly interconnected developmental networks are better able to buffer 

stochastic variability 46,47. 

Thus, a certain range of stochastic variability in the epigenetic inheritance of neuronal 

progenitors may underlie stable differences in brain function, behavior and neurological 

disease susceptibility among individuals sharing similar genomes and environmental 

conditions. However the precise mechanisms involved are far from being elucidated, and 

in depth studies of stochastic variability during brain development, such as those 

performed in simpler experimental systems, are lacking. 

 

Perhaps even more striking than a rather limited stochastic variability, are published 

reports suggesting that the early perinatal environment may actively and durably shape 

the neural, behavioral, and pathological state of individuals.  Examples in the literature 

are numerous, affecting both neural and non-neural functions, and although the 

underlying mechanisms are still largely undefined, the influence of the environment on 

the chromatin configuration of certain genes has been put forward as a leading hypothesis 

for these stable changes.  

The ability of the pre- and early post-natal environment in establishing distinct behavioral 

traits among genetically identical animals was directly demonstrated by combining 

embryo transfer and cross-fostering among the two inbred mouse strains C57BL/6J and 

BALB/cj 48. Differences between the C57BL/6J and BALB/cj strains have been well 

documented in exploratory and anxiety-related behaviors, watermaze performance and 

sensory motor gating, and were widely assumed to result from genetic factors. 

Surprisingly, C57BL/6J mice developing in a BALB/cj uterus and reared by a BALB/cj 

mother showed 3 out of 4 tested behaviors identical to that of BALB/cj mice and 

significantly different from other C57BL/6J. Thus a combination of pre- and early post-

natal maternal environment is able to significantly shape the development of adult 

behavior. 
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In studies with far reaching impact on human health, worldwide epidemiological analyses 

in humans as well as direct experimentation in animal models indicate that defects in 

maternal and early postnatal nutrition influence a number of health risks factors in adult 

life, mainly cardiovascular and metabolic diseases such as hypertension, insulin 

resistance and obesity, a phenomenon commonly named metabolic syndrome 49. 

Nutritional deficiency, and restriction or excess in the maternal and post-natal diet during 

critical developmental time-windows results in permanent alterations in the adult function 

of peripheral organs, such as the liver, kidney, heart, adipocyte, and of the hypothalamo-

pituitary-adrenal (HPA) axis. In addition to a direct perturbation of developmental events 

underlying organogenesis, the influence of early nutrition on the establishment and 

maintenance of cytosine methylation, including the methylation of retrotransposons 50,51 

and of imprinted genes 52 points to chromatin remodeling as a potential target of early 

environmental influence. 

More generally, the HPA axis and the organization of peripheral and central stress 

responses have emerged as a main target of long-lasting perinatal environmental 

influences. Seminal work with rodent neonates showed that manipulations of the mother–

infant relationship have long-term consequences on neuroendocrine and behavioral 

responses later in life, and that maternal handling exerts a strong inhibitory effect on the 

HPA function of adult offspring, resulting in lower stress and fear responses 53,54. A series 

of recent studies from rodents to non-human primates and humans have investigated the 

molecular mechanisms by which maternal-infant relationship may exert such lasting 

changes on HPA function.  

In the rat, variation in the amount of maternal grooming, licking and associated 

somatosensory stimulation of the pups lead to differences in fear responses and HPA 

function of the adult offspring. In a remarkable non-genetic transmission of behavior 

traits, daughters raised or cross-fostered by poorly grooming mothers, become highly 

fearful and stressed adults, and in turn are poorly grooming dams 55. A signaling pathway 

linking maternal care to the stress response of the offspring has been proposed. High 

maternal somatosensory stimulation increases 5HT signaling in the hippocampus of the 

pups, and activates a cAMP-dependant protein kinase signaling pathway, which in turn 

leads to increase in the expression of the transcription factor nerve growth factor induced 
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protein A (NGFI-A). NGFI-A binds to and regulates the activation of the exon 17 

promoter of the glucocorticoid receptor (GR) promoter, leading to increase in 

transcription of specific isoforms of the GR. High level of GR expression in offspring of 

high grooming moms is stably maintained into adulthood, well after maternal stimulation 

has ceased, suggesting a mechanism to permanently increase GR transcription. 

Interestingly, differences in GR expression between the offspring of high- and low-

grooming females correlate with differential levels of DNA methylation and histone 

acetylation at the exon 17 GR promoter that display NGFI-A recognition sites, resulting 

in alterations in NGFI-A binding 56. Low DNA methylation, high histone acetylation of 

exon 17, and resulting high NGFI-A binding and GR expression correlated with high 

level of maternal care are established within the first week of postnatal life, and 

maintained in the adult. Notwithstanding the caveats related to the low target specificity 

of the drug, and its rather indirect effect, brain infusion of the adult offspring with the 

HDAC inhibitor trichostatin A (TSA) is reported to eliminate the maternal effect on GR 

expression 56. In another report of the effect of early life stress on chromatin remodeling 

of genes with important behavioral functions, mild though significant hypomethylation of 

the arginine vasopressin (AVP) promoter was recently described in the mouse 

hypothalamus following experimental mom-infant separation 57.  

These still highly correlative data have led to the suggestion of a mechanistic link 

between life-long changes in behavioral traits, and the establishment of chromatin 

modifications of key genes in a critical perinatal period. Identifying a clear causal 

mechanistic relationship between these events will require an in depth understanding of 

the players and mechanisms involved: What are the neuronal types involved across the 

brain? What broader changes may be taking place in chromatin and in transcriptional 

networks? In a system as complex as the brain and underlying behavioral circuits, 

obtaining specific genetic and pharmacological tools will significantly enhance the ability 

to answer these questions. Chromatin remodeling is only one part of a larger puzzle of 

how behavioral traits are generated and maintained, and the rather modest changes in 

methylation levels observed in only a few genes seem unlikely to underlie such profound 

behavioral differences across the population. Other mechanisms proposed to mediate 

stable behavioral differences are equally attractive. The maternal-infant relationship in 



	   14	  

non-human primates for example has been shown to affect brain function through 

neurotrophin action 58, which may or may not include any chromatin related events. 

 

The influence of mom and dad on the brain of offspring 

Genomic imprinting 

Genomic imprinting is a set of epigenetic modifications unique to placental mammals and 

flowering plants that is established in the parental germ lines and somatically maintained, 

and that results in the preferential expression of the maternal or the paternal allele of 

certain genes. The monoallelic expression makes these loci especially vulnerable to 

mutations and deregulation, and they often contribute to diseases and disorders 59. The 

evolutionary pressures that lead to imprinting of specific loci are matters of great debate 
60,61,62. The first imprinted genes discovered: Igf2 63 and Igf2r 64 are paternally and 

maternally expressed, respectively, and have opposing effects on embryonic growth.  

Since these landmark papers, the vast majority of imprinting studies have focused on 

embryonic growth and development 65,66. In rodents and humans, nearly 100 imprinted 

genes have been identified, which are often organized in clusters in the genome. A 

bioinformatic approach estimated the existence of 600 imprinted genes in the mouse 

genome 67, although this study failed to predict any imprinted genes on the X-

chromosome, which are now known to exist 68,69.  

Strikingly, many imprinted genes have been found to be expressed in the brain, where 

they serve unknown functions, and genetic analysis in mice has identified behavioral and 

neurological function as the second most frequent function affected in mouse mutants for 

imprinted genes, right behind embryonic growth 70. A handful of studies have 

demonstrated roles for some imprinted genes in the regulation of homeostatic brain 

functions such as thermoregulation, maintenance of circadian rhythm, feeding behavior, 

as well as maternal and mating behaviors 70.  Further, it has been proposed that imprinted 

genes regulate a broad spectrum of social behaviors, including mother-infant bonding, 

kin recognition, risk taking behavior, the sharing of resources within social groups, and 

sexually dimorphic behaviors 70 Clinical studies of patients with neurological disorders 
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related to imprinting, such as Angelman Syndrome, Prader-Willi Syndrome and Turner 

Syndrome, have also demonstrated clear roles for imprinted genes in the regulation of 

human social behaviors 71.  

 
Work on imprinted loci demonstrates that the imprinting status of some genes can be both 

temporally and spatially regulated. These data on only a small number genes so far 

provide additional complexity to the long held view that imprinting is stably established 

in parental gametes and early embryonic stages, and suggest instead that mechanisms 

may exist throughout adulthood to dynamically modulate the outcome of parental 

chromatin marks. Interestingly, as parental marks are established in primordial germ cells 

of offspring’s, environmental factors in the prenatal maternal environment will affect 

genomic imprinting of F2s (Figure 2). 

 

Trans-generational inheritance  

As shown in many of the examples cited in this review, a growing body of evidence 

indicates that the chromatin state can be influenced by environmental conditions. This, in 

turn, opens the door for a mechanistic underpinning of the so-called “soft inheritance” 

according to which specific environmental conditions may lead to a non-Mendelian 

transgenerational inheritance of certain traits, a phenomenon widely reported in plants, 

and increasingly discussed in animals as well 72. For example in utero alterations of DNA 

methylation affecting F1s and F2s have been reported as a result of a maternal diet that 

affects single carbon metabolism, or that contains endocrine disrupting compounds 
72,73,74,75. Although no direct evidence yet links imprinting, perturbed chromatin states and 

nutritional environment changes, the hypothesis that imprinted genes may play a role in 

the trans-generational effects of the maternal diet on the physiology of offspring has 

increasingly been suggested 73. More generally, environmental effects on genomic 

imprinting during pregnancy appears as an attractive mechanism to explain trans-

generational effects, which in mammals has yet to be observed beyond F2s 72,76 

 

Outlook on chromatin remodeling processes in the adult brain 
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The increasingly large number of experimental data associating long-term changes in 

brain activity with alterations in chromatin raises several fundamental questions. Histone 

posttranslational modifications and other chromatin remodeling events are expected 

mechanisms of gene regulation in any cellular system undergoing long-lasting changes. 

Nothing unique to the brain in the chromatin remodeling events has been reported so far, 

and it is unclear that these provide anything but a transient contribution to the underlying 

transcriptional network that may not be sustained in the absence of the network itself. 

Finally, the predictive value of the observed changes, a “code” of modification associated 

with specific changes in brain activity that in turn may be exploited for further 

experimental or clinical intervention is far from established. 

Chromatin remodeling events described so far in the context of long-term changes in 

brain function are merely part of a larger and much more complex transcriptional control 

pathway. The level of mechanistic detail achieved in understanding chromatin 

remodeling within the context of transcriptional control in simpler or reconstituted 

experimental systems 77 is far from being reached in the nervous system. Only a few 

histone PTMs or other chromatin remodeling events have so far been investigated. 

Moreover, little mechanistic insight has been gained to date, that may underlie the 

reported specificity of chromatin remodeling events to the subsets of genes affected by 

neuronal activity. The interesting examples of ncRNA-mediated targeted DNA 

methylation identified in plants 78, the transcriptional silencing of distant  chromosome 

domains by long non-coding RNAs 79 represent new mechanisms providing specificity to 

chromatin remodeling events that may be worth investigating in the context of the brain 

development and function. Finally, chromatin remodeling events are not intrinsically long 

lasting, and in fact, with perhaps the exception of Polycomb group proteins 80, the 

inheritance of chromatin marks through DNA replication is still an open question. Thus, 

chromatin components, as well as the associated transcriptional regulatory machinery 

may be required to determine the stability or dynamic state of chromatin changes. 

 

 

A complicating and often neglected factor in the interpretation of histone modifications in 

neuronal plasticity results from the fact that what so-called “histone-modifying enzymes” 
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play in fact other roles in the cell beyond histone modifications, such as scaffolding and 

modifying non-histone substrates. The Elongator complex, for example, plays an 

essential role in the migration and differentiation of cortical neurons 81. Although 

Elongator is a known histone H3 acetylase in the nucleus, it also targets cytoplasmic 

proteins such as a-tubulin and other unknown substrates. The reduction of a-tubulin 

acetylation via expression of a nonacetylatable a-tubulin mutant leads to defects in 

neuronal branching of cortical neurons that are similar to mutations in the acetylation 

subunit of Elongator, demonstrating that a-tubulin is in fact the key target of this 

complex. Moreover, Elongator acetylation of a-tubulin in vitro is counteracted by 

HDAC6-mediated deacetylation, illustrating a delicate balance in acetylation-

deacetylation of substrates distinct from histones in the process of neuronal maturation. 

In another study, HDAC6, in addition to its well-described histone-modifying activity, 

was shown to biochemically and functionally interact with Cdc20 and to stimulates 

Cdc20-APC activity through polyubiquitination 82 in a process essential to dendrite 

morphogenesis in post-mitotic neurons. 

In conclusion, despite the clear involvement of chromatin modifications demonstrated in 

many paradigms of long term changes in brain function, the relative lack of mechanistic 

insights beyond correlative observations with a handful of changes such as few of the 

known histone PTMs, does not yet permit one to draw a precise picture of the impact of 

chromatin remodeling on changes in neuronal activity. The transcriptional machinery 

itself is not invariant, and in addition to specific transcription factors, core components of 

the transcription machinery could also vary among different cell types. For example, 

during skeletal myogenesis, cells no longer use the canonical TFIID complex but instead 

use a specialized complex, generating a customized pre-initiation machinery for this cell 

type 83. Similarly, different effectors may interact with different chromatin marks 

according to the biological context. Clearly, the complexity in histone PTMs and 

chromatin remodeling has not yet been approached in the context of neuronal function, 

and genetic dissection of essential substrates and enzymes, together with precise 

reconstitution experiments will be critical to gain insights into the chromatin machinery 

that orchestrates stable changes in brain processes.  
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BOX 1: DNA methylation and demethylation 

The DNA can be covalently modified by methylation of the cytosine residue into 5-

methyl cytosine, which in mammalian cells is mainly confined to CpG dinucleotides. The 

presence of another methyl cytosine modification, 5-hydroxymethyl-2′-deoxycytidine 

(hmdC) was recently reported in the adult mouse brain 22, and its functional significance 

is yet to be determined.  

CpG methylation has been involved in X-inactivation, genomic imprinting, suppression 

of transposable elements, and is required for proper embryonic development. The 

locations of CpG-rich regions of the genome, also called CpG islands, are often 

correlated with gene promoter regions, and changes in the methylation status of key 

developmental genes has been proposed to participate in restriction of pluripotency and 

lineage commitment. The role and mechanisms of DNA methylation in ensuring tissue-

specific gene expression are not entirely clear. Moreover, the extent and underlying 

mechanisms of changes in methyl marks are highly debated questions that are of 

particular relevance for the study of long lasting transcriptional changes in the brain.  

To directly visualize changes in methylation marks associated with the establishment of 

lineage- and pluripotency-specific transcriptional programs, large scale and genome-wide 

analysis of DNA methylation has been recently performed, documenting differences in 

patterns of methylation according to the developmental stage or cell type analyzed 
84,85,86,87. Surprisingly, significant differences were also uncovered in gene regions outside 

CpG islands, and for ES cell outside of CG context, underscoring the still poorly 

understood complexity of transcriptional control in promoter regions as well as gene-

bodies. Widespread differences in composition and pattern of cytosine methylation were 

observed in different cell types 85,86, although the number of promoters that display either 

loss or gain of methylation between ES cells and terminally differentiated neurons 

appears rather modest 41 

Microarray analysis of the methylation status of 15,000 promoters in ES cells and 

terminally differentiated pyramidal neurons in vitro reported a gain of DNA methylation 

on only 343 (2.3%), and an even less frequent loss of DNA methylation, on 22 (0.1%) of 
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the tested promoters during neuronal differentiation. Strikingly, analysis at an 

intermediate developmental stage, that of neuronal progenitors, shows that most changes 

occur at the transition from ES cells to progenitor state, suggesting that alterations in 

DNA methylation correlate more strongly with fate commitment and loss of pluripotency, 

rather than with terminal neuronal differentiation 41. Interestingly, many promoters 

bearing the Polycomb-mediated histone H3 methylation (H3K27me3) in ESCs acquired 

DNA methyl marks during differentation, suggesting interrelated processes. 

The mechanisms by which differential methylation patterns are established in mammals 

remain highly debated. While enzymes carrying DNA methylation are shared between 

plants and mammals, and their mechanisms of action well understood 88, a lot of 

uncertainty is left regarding mechanisms of DNA de-methylation 89. DNA demethylation 

can result from passive demethylation in absence of maintenance methylation following 

DNA replication, or from an active process of enzymatic removal of the 5-

methylcytosine mark. Active genome-wide demethylation are thought to occur at two 

times of development (figure 2), in the male pronucleus of the zygote, right after 

fertilization, and in primordial germ cells of E11.5-12.5 embryos. Unfortunately none of 

the plant enzymes involved in the active process appear conserved in mammals, and there 

is still some debate as to how these events occur. The DNMTs, which are expressed in 

both fetal and adult tissues may be involved, while other studies, including in the adult 

brain, have proposed a very different mechanism in which 5-methylcytosine is removed 

from DNA in a deamination and base excision/repair process 17,18,21,90,91,92. Two recent 

reports in mouse primordial germ cells and somatic cells induced to pluripotency have 

given additional credence to the deamination-repair dependent DNA demethylation 

process 93,94. How more targeted promoter demethylation process may occur is unknown, 

although some reports have shown interesting switch of DNA methylation and 

demethylation in hormone-induced transcriptional control 82. 

 

BOX 2- Histone modifications 
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Histones, particularly H3 and H4, are subject to extensive covalent post-translational 

modifications (PTM) that include methylation, acetylation, phosphorylation, 

ubiquitination, sumoylation, biotinylation, ADP-ribosylation, and likely more to be 

discovered, each occurring at specific sites and residues 95. Some histone modifications 

act in cis to directly alter the local chromatin structure, while others act in trans to 

influence the recruitment of chromatin-modifying factors. In trans, histone modifications 

enable specific binding partners to dock, often as part of larger multi-molecular 

complexes that generate further chromatin remodeling. Acetylated histone residues are 

recognized by bromodomains, often associated with histone acetyltransferases (HAT), 

thus leading to spread of the histone modification. Similarly methylated lysine residues 

are recognized by chromodomain- containing proteins. This recognition is highly 

dependent on the chromatin context, such that a given chromodomain- or bromodomain- 

containing protein may only bind to a given set of methylated, or acetylated histone 

residues, respectively, and only in the presence of other defined chromatin effectors 96. 

Histone modifications do not occur in isolation, but often as combinations of marks. The 

understanding of the regulation and physiologically relevant substrate specificity of these 

enzyme complexes remains a challenge. Moreover, many histone-modifying enzymes 

also target non-histone substrates, underscoring the complexity of chromatin dynamic 

and associated cellular processes.  

Concerted efforts have been made to establish clear functional links between histone 

modifications and changes in transcriptional activity, leading to the enticing and highly 

debated hypothesis of a “histone code” with predictive value on the transcriptional status 

of genes 97,98. For example silenced chromatin typically displays low levels of histone 

acetylation, together with high levels of H4K20me3 and H3K27me3, while 

hyperacetylation, H3K4me3 and H3K36me3 are recognizable marks of active 

transcription. Faced with the ever growing number and complexity of chromatin 

modifications within a given transcriptional unit, it is however becoming clear that a 

single histone mark, or defined combination of, are not be simply predictive of a given 

transcriptional outcome: H3K9me2/3 and H3K4me2/3 for example are found enriched on 

silenced and actively transcribed genes, respectively, but are also present in the reciprocal 
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state 99. The possible combinatorial effect of multiple histone modifications has recently 

been addressed by a genome-wide analysis of PTMs occurring on single nucleosomes in 

correlation with transcription levels 96,100. The data largely confirm known bias towards 

certain combination of histone marks at promoters, transcription sites, gene bodies and 5’ 

and 3’ UTRs, which had previously been associated with active or repressive chromatin 

states. However, discrete PTM combinations rarely appear repeated within the genome, 

with most patterns detected on single promoters. Thus, instead of revealing a simple 

predictive “code” shared by many genes, in depth observation of histone modification 

patterns highlights instead the unique complexity of each transcriptional unit and 

associated transcriptional regulatory machinery to ensuring proper response to cellular 

signals. 
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Figure 1: Mechanisms involved in chromatin modifications 

Five broad and interrelated mechanisms are known to affect chromatin structure: DNA 

methylation, histone modification, insertion of histone variants, remodeling complexes, 

and non-coding RNAs.  All five have been shown to be essential contributors to the 

development and cell fate determination of tissues including in the nervous system, while 

histone modifications and DNA methylation have so far been more extensively 

investigated in the context of adult brain function. 

 

 

Figure 2: Contribution of various chromatin remodeling events throughout life of 
an organism. 

Chromatin modifications occurring at different time points during the life of an organism 

have been associated with various short to long-lasting regulatory events that affect the 

development and the function of the brain and other tissues. 
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