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LEXICAL CHAINING AND WORD-SENSE-DISAMBIGUATION

RANI NELKEN AND STUART M. SHIEBER
SCHOOL OF ENGINEERING AND APPLIED SCIENCES

HARVARD UNIVERSITY
CAMBRIDGE, MA 02138

ABSTRACT. Lexical chains algorithms attempt to find sequences of words in a
document that are closely related semantically. Such chains have been argued
to provide a good indication of the topics covered by the document without re-
quiring a deeper analysis of the text, and have been proposed for many NLP
tasks. Different underlying lexical semantic relations based on WordNet have
been used for this task. Since links in WordNet connect synsets rather than
words, open word-sense disambiguation becomes a necessary part of any chain-
ing algorithm, even if the intended application is not disambiguation. Previous
chaining algorithms have combined the tasks of disambiguation and chaining by
choosing those word senses that maximize chain connectivity, a strategy which
yields poor disambiguation accuracy in practice.

We present a novel probabilistic algorithm for finding lexical chains. Our al-
gorithm explicitly balances the requirements of maximizing chain connectivity
with the choice of probable word-senses. The algorithm achieves better dis-
ambiguation results than all previous ones, but under its optimal settings shifts
this balance totally in favor of probable senses, essentially ignoring the chains.
This model points to an inherent conflict between chaining and word-sense-
disambiguation. By establishing an upper bound on the disambiguation poten-
tial of lexical chains, we show that chaining is theoretically highly unlikely to
achieve accurate disambiguation.

Moreover, by defining a novel intrinsic evaluation criterion for lexical chains,
we show that poor disambiguation accuracy also implies poor chain accuracy.
Our results have crucial implications for chaining algorithms. At the very least,
they show that disentangling disambiguation from chaining significantly im-
proves chaining accuracy. The hardness of all-words disambiguation, however,
implies that finding accurate lexical chains is harder than suggested by the liter-
ature.

1. INTRODUCTION

Morris and Hirst (1991) introduced the notion of lexical chains, which are se-
quences of semantically related words. Identifying such chains has been claimed
to be a very useful technique for many applications. The intuition is that lexical
chains may be able to provide an indication of text meaning without the need for
deep syntactic or semantic processing of a text. For instance, consider the follow-
ing toy two-sentence document:

(1) Tony Blair’s favorite drink is tea. He prefers Oolong.

1
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In this sentence, the words “drink”, “tea”, and “Oolong” might be taken to form
a lexical chain, as they are all closely related semantically. Morris and Hirst sug-
gested that identifying such chains would be useful for determining text structure.
Subsequent work has suggested using lexical chains for many NLP tasks, includ-
ing word sense disambiguation (WSD) (Okumura and Honda, 1994; Mihalcea and
Moldovan, 2001), summarization (Barzilay and Elhadad, 1999; Silber and McCoy,
2002), context-sensitive spelling correction (Hirst and St-Onge, 1998), automatic
hypertext link generation (Green, 1999), topic detection and tracking (Stokes, Carthy,
and Smeaton, 2004), and more. Following most of the canonical work on lexical
chains, we will focus here solely on nouns, though Novischi and Moldovan (2002;
2006) applied lexical chains to verbs for question answering.

Several different semantic relations based on WordNet (Miller, 1995; Fellbaum,
1998) have been used as the basis of lexical chaining, as we review in Section 2.
An invariant feature of using WordNet-based relations is that they are defined not
on words, but on synsets—WordNet’s term for a set of synonymous words, used
to represent a concept. Consequently, any chaining algorithm is forced to make
a choice between different word senses. For instance, the word “drink” is con-
nected to the chain extracted from Sentence 1 through its “single serving of a bev-
erage” sense (as opposed, e.g., to its “large body of water” sense). Such a choice
is required for each of the words in the document, which amounts to performing
all-words disambiguation. Of course, the other words in the chain might provide
strong clues for such WSD, and indeed, chaining algorithms have used this fact as
their exclusive source of disambiguation, as we review in Section 3.

In this article we examine the relation between chaining and WSD more closely.
Previous algorithms choose word-senses by maximizing chain connectivity. In
Section 4, we present a new probabilistic algorithm that balances this requirement
of chain connectivity with a choice of probable senses. In Section 5 we perform
an evaluation of lexical chaining algorithms with respect to their WSD accuracy.
We show that chaining algorithms perform poorly at this task. We show that this
lack of WSD accuracy is due to an inherent theoretic limitation of chaining algo-
rithms, by providing an upper bound on their disambiguation potential in Section 6.
While not acknowledged by previous research on chaining, the fact that chaining
algorithms are poor disambiguators is not surprising. Indeed, all-words WSD has
proven to be difficult (Edmonds and Cotton, 2001; Snyder and Palmer, 2004) (in
contrast with the simpler “lexical sample” disambiguation of a predefined small set
of target words). Our main contribution in this article is exploring the implications
of the poor WSD accuracy of chaining algorithms. We address the question of the
extent to which WSD accuracy affects chaining accuracy, by introducing a novel
intrinsic evaluation criterion for the accuracy of lexical chains in Section 7. We
then use that criterion in Section 8 to measure the impact of WSD accuracy on
chaining accuracy, showing that in fact, a degradation in WSD accuracy implies a
significant degradation in chaining accuracy. Finally, in Section 9 we discuss the
implications of this fact both for improving chaining accuracy, and for the applica-
tions of chaining algorithms to NLP tasks.
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2. SEMANTIC RELATIONS

A key component of lexical chaining is the choice of the underlying seman-
tic relation. Morris and Hirst (1991) used a relation based on Roget’s thesaurus
to (manually) find chains. Most subsequent work used WordNet (Miller, 1995;
Fellbaum, 1998) rather than Roget’s, and several different relations have been pro-
posed. See (Budanitsky and Hirst, 2001; Patwardhan, Banerjee, and Pedersen,
2003; Michelizzi, 2005; Budanitsky and Hirst, 2006) for comparative evaluations
of many of these relations. It is not our purpose here to define an optimal relation.
Instead, we will focus on the particular relations used in previous work, hso (Hirst
and St-Onge, 1998), wn (Barzilay and Elhadad, 1999; Silber and McCoy, 2002;
Galley and McKeown, 2003), and jcn (Jiang and Conrath, 1998).

Hirst and St-Onge (1998) defined a very inclusive relation, hso, which includes
repetition or partial overlap between compound nouns, synonymy, single hops
along any of WordNet’s relations, and multiple hop links along certain “allow-
able paths”. Barzilay and Elhadad (1999) used a more restrictive version, which
we call wn. The wn relation links two word-senses if they are in one of the fol-
lowing relations: they are the same, they are synonyms, one is a hypernym of the
other, one is a multi-hypernym of another, one is a sibling of the other in the hy-
pernym hierarchy, or one is a meronym of the other. Much of the subsequent work
on lexical chains further restricted wn, as shown in Table 1. We will focus here on
Barzilay’s most inclusive version.

TABLE 1. Variants of wn used for chaining

algorithm repetition, synonym, hypernym/ meronym/
sibling hyponym holonym

Barzilay & Elhadad
√

multiple link single link
Silber & McCoy

√
multiple link ×

Galley & McKeown
√

single link ×

The hso and wn relations are variations on a similar theme of defining structural
relations on WordNet. The jcn relation combines WordNet structure with word
frequency counts, an idea first proposed by Resnik (1995). Each word instance in
a corpus such as the Brown corpus, is counted towards any synset it belongs to as
well as any node above it in the hypernym hierarchy. Turning these counts into
probabilities, p(s), the relation is defined as:

jcn(s1,s2) = − log p(s1)− log p(s2)+2log p(lcs(s1,s2)) ,

where lcs(s1,s2) is the lowest common subsumer of s1 and s2 in the hypernym hier-
archy. While jcn has not been used for lexical chaining per se, it is one of the more
promising relations as measured with respect to both applications and correlation
with human judgments of word similarity (Budanitsky and Hirst, 2006). Following
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Budanitsky and Hirst, we binarize the jcn relation by choosing a threshold opti-
mizing the correlation with a set of human word-pair similarity judgments. See
Appendix A for details.

3. HOW CHAINING WORKS

Since WordNet relations are defined on synsets, all lexical chaining algorithms
must undertake a form of WSD, even if that is not their stated goal. Hirst and St.
Onge’s (1998) incremental chaining algorithm works roughly as follows. Linearly
traversing the document, each new word occurrence is compared with the currently
constructed chains. If one of the word’s senses is related to one of the words in
these chains, choose that sense of the word and add the word to the chain. If the
word can be added to more than one chain, choose between them based on different
weightings of the underlying relation (e.g., prefer a synonym to a hypernym), or
the length of the chain (preferring longer chains to shorter ones). If the word is
unrelated to any existing chain, start a new chain with that word.

Subsequent work superseded this greedy incremental approach with a global
one. Barzilay and Elhadad constructed chains similarly to Hirst and St. Onge,
but delayed the disambiguation decision until after the chains have been grown.
They first construct putative chains entertaining different sense choices, and once
the number of possible interpretations exceeds a certain threshold, choose those
senses that yield the longest chains, pruning all the other senses.

Silber and McCoy suggested a more efficient algorithm. For each possible
synset covered by a word of the document, they construct a “meta-chain”, con-
sisting of all the possible word-senses that are related to it, scored by the sum of
the relation weights. They then linearly traverse the noun instances of the docu-
ment, choosing for each one the sense that yields the maximal meta-chain score.

Galley & McKeown follow a similar strategy of first constructing the connec-
tivity graph of all the possible word-senses, and for each word, choosing the word
sense that maximizes the sum of edge weights to other nodes in the graph. Since
their graph nodes are word types rather than tokens, they enforce the “one sense
per discourse” constraint. All other nodes and edges are pruned, and the resulting
connected nodes form the chains.

Viewed abstractly, these algorithms attempt to assign word senses to the words
in a way that maximizes chain connectivity. Thus, a word-sense that is connected to
some chain is preferred over a disconnected one. Differences between the different
algorithms reduce to differences in search strategy over this space.

For purposes of generality, we abstract away from some of the details of chain-
ing algorithms. First, we ignore the differential weightings of the basic relations
underlying the semantic similarity relations, viewing these instead as binary rela-
tions. Second, some chaining algorithms restrict chaining to a predefined contex-
tual window ranging from a fixed number of paragraphs to the entire document.
There is an obvious precision/recall tradeoff in choosing the size of this contextual
window. Since we are mainly concerned here with upper bounds, we choose the
most inclusive settings possible for these relations. At least for some applications,
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e.g., context-sensitive spelling (Hirst and Budanitsky, 2005), this window has been
shown to yield the best results.

WordNet word-senses are numbered in decreasing order of frequency. We write
w#i to denote the i’th most frequent sense of word w. We omit this sense number if
it is the first sense. Several of the chaining algorithms use this information for tie-
breaking between equally attractive senses. In case of a tie, Silber chooses higher-
numbered senses (since they are more specific), while Galley chooses lower-numbered
ones. Galley also assigns the first sense to any word left disconnected.

For a word w and synset s, we write w ∈ s to indicate that w is one of the
synonyms in s.

4. ALGORITHM

We now present a new generative algorithm for finding all the lexical chains
(comprising only nouns) in a document. Our algorithm generalizes previous work
and allows the integration of the lexical semantic relation with the word-sense dis-
tribution data.

4.1. Motivation. For simplicity, we first begin with a model for creating all the
nouns belonging to a single lexical chain, and then generalize to multiple chains.
Conceptually, behind every lexical chain of words, there is a chain of related
synsets, which we call an abstract chain. Consider the following simple process
for composing a chain, consisting of three steps.

(1) An abstract chain of synsets is chosen, by traversing the graph induced by
the underlying semantic relation, e.g., wn.

(2) Each synset in the abstract chain is manifested as some noun belonging to
the synset, creating the concrete chain of nouns.

(3) The rest of the nouns in the document, those not belonging to the chain,
which we call the background nouns, are generated, and interspersed with
those of the chain.

Steps (1) and (2) can be directly implemented as a Hidden Markov Model
(HMM), illustrated in Figure 1. Hidden states correspond to synsets s, where each
state s may emit any noun such that w∈ s. Transitions are allowed between synsets
related by wn.

To complete the process, the HMM must also generate the background nouns,
as in Step (3). A self-looping start state, which can emit any noun, generates
all the background nouns before the first noun of the chain. Since chains are
non-contiguous, we must also generate background nouns between adjacent chain
nouns. We do so by allowing each state si to also emit any background noun, w 6∈ si.
This also handles the generation of background nouns following the final noun of
the chain.

For example, consider the hypothetical generation of Sentence (1). According to
our model, the author first decides on the abstract lexical chain, which we assume
consists of the three synsets,1 s1 ={beverage, drink, drinkable, potable}, s2 ={tea}
1For illustration, we denote synsets here literally as sets of synonyms.



6 RANI NELKEN AND STUART M. SHIEBER

start

P
S

frag
replacem

ents

s1
s2 s3

FIGURE 1. Schematic depiction of an HMM for generating the
nouns belonging to a lexical chain. The states s1,s2, and s3 corre-
spond to different synsets, such that wn(s1,s2) and wn(s2,s3) hold,
but wn(s1,s3) does not. For simplicity, emissions are not shown.

and s3 ={oolong}. Then, each of these synsets is manifested as a word. There
are multiple choices for s1, of which the author chooses “drink”, but only one
possible choice for each of s2 and s3. The proper name “Tony Blair”, is generated
as background. Figure 2 shows a possible path through the HMM, implementing
this process.

Hidden state:

Observed word:

start

tony blair drink tea oolong

P
S

frag
replacem

entss1s2s3

s1 s2 s3

FIGURE 2. Example run through the HMM. Circles depict hidden
states, while rectangles depict observed words. Full arrows are
used for transitions and dashed arrows for emissions. Starting at
the start state, the HMM emits the background proper noun “tony
blair”, and transitions to s1, in which it chooses to emit “drink”. It
then continues to s2, where it emits “tea”, a move made possible
since the two synsets are related by wn (by hyperonymy). Finally,
it moves to s3, emitting “oolong”.

There can be alternative ways in which the HMM might generate the same ob-
served sequence. For instance, “drink” has five different senses in WordNet, given
in Table 2, each of which would be represented as a separate HMM state. Thus,
a choice of a path through the HMM imposes a particular disambiguation of the
words. For instance, the path in Figure 2, according to which “drink” was gener-
ated by s1 ={beverage, drink, drinkable, potable} imposes the choice of drink#3
as the sense of “drink”.

Different paths through the HMM will be assigned different probabilities by
virtue of the HMM’s emission and transition probabilities. We use Viterbi decoding
to find optimal paths.



LEXICAL CHAINING AND WORD-SENSE-DISAMBIGUATION 7

TABLE 2. Senses of “drink” in WordNet, sorted by decreasing frequency

Sense Corresponding synset Gloss

drink#1 {drink} a single beverage serving
drink#2 {drink, drinking, boozing, drunkenness, the act of drinking to excess

crapulence}
drink#3 {beverage, drink, drinkable, potable} a liquid suitable for drinking
drink#4 {drink} a large deep body of water
drink#5 {swallow, drink, deglutition} the act of swallowing

4.2. Emission probabilities. Previous algorithms operate as though all word senses
are equally likely, with the exception of tie-breaking as described above. We can
simulate this approach by using uniform emission probabilities. Instead, we pro-
pose to differentially weight different words. Consider first the background nouns.
We use a background probability, p(w), estimated over a section of Wall Street
Journal text of over 3 million words with add-1 smoothing2 for these, and in par-
ticular we use p(w) for the emission probabilities of the start state.

For a state that corresponds to a synset s, we need to combine two cases: the
probability of emitting a chain word, w ∈ s, and the probability of emitting a back-
ground word. Consider first the former; we compute the probability of s emitting a
chain word, w, using Bayes’ rule,

(1) p(w | s) =

{

p(s|w)p(w)
p(s) if w ∈ s

0 otherwise

where:

• We use WordNet’s sense counts for computing p(s |w) with add-1 smooth-
ing, normalizing so that for each s, ∑w∈s p(s | w) = 1.

• We compute the probability of a synset, p(s), by: p(s)= ∑w∈s p(s | w)p(w).
Thus, a synset is more likely if the accumulated probability of encounter-
ing the words included in it is higher.

In addition to the chain words, each state may also generate background nouns
with probability p(w). We can therefore think of the model as a mixture model
of p(w | s) and p(w) with mixture parameter α , where 0 ≤ α ≤ 1, yielding the
following final emission probabilities:

(2) p̃(w | s) =

{

α · p(w)+(1−α) · p(w|s)
∑w′:w′∈s p(w′|s) if w ∈ s

α · p(w) otherwise

2We chose add-1 smoothing for its simplicity despite its well-known deficiencies. As we will see,
these deficiencies seem to be dwarfed by the more fundamental problems illustrated by the upper
bound described in Section 6.
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The parameter α offers an explicit way of balancing between the two require-
ments of chaining—maximizing chain connectivity on one hand and choosing
probable word-sense on the other hand. For a low value of α , the probability
of emitting a background noun becomes low, and the HMM elongates the chain by
including more words in it, even at the cost of choosing less probable senses. Con-
versely, when α is high, emitting background nouns becomes less costly. Hence,
the HMM is not forced to make the chain very long, indirectly allowing only more
probable senses to be chosen. We learned an optimal value for α by optimizing
the HMM’s WSD accuracy on ten randomly chosen held-out SemCor documents.
Interestingly, best results were achieved when setting α to be 0.9999. We discuss
the significance of this choice in Section 5.

4.3. Transition probabilities. Previous works used a variety of weighting schemes
for scoring chains, depending on the type of relations between the chain nodes (for
instance, synonyms are preferred over hypernyms), and their distance in sentences
and paragraphs. The actual weights were determined entirely heuristically, and
differed between algorithms. Although we could simulate such scoring schemes
using the transition probabilities, one would like to have a more principled way of
determining these probabilities. Ideally, we would learn such transition probabili-
ties from a corpus manually tagged with lexical chains. Unfortunately, no such re-
source exists. Even documents tagged with wide-scale disambiguation information
as in SemCor (Miller et al., 1993) are rare and insufficiently large for estimating
such transition probabilities. We make the major simplification of relying instead
on the unigram probabilities, p(s). Thus, the probability of transitioning from state
s1 to a state s2, related by wn, is just p(s2), normalized over all such s2’s.

(3) p(s2 | s1) =











p(s2)
∑s:wn(s1 ,s) p(s) if wn(s1,s2)

0 otherwise

For the start state, we set the following transition probabilities, based on a pa-
rameter β :

• The probability of staying in the start state, while generating more back-
ground nouns is p(start | start) = β ;

• the probability of moving to a first synset is p(s | start) = (1−β )p(s).

Metaphorically, β signifies the “gravitational pull” of the start state. For a high
value of β , the HMM will tend to remain in the start state for a long prefix of the
document, assigning words to the background. For lower values of β , the HMM
starts the chain earlier. We found an optimal value of β = 0.6 on the same held-out
SemCor set.

For simplicity, our model ignores sentence and paragraph distances, which were
included in previous work. We could easily add these by introducing HMM states
for emitting sentence and paragraph separator tokens.
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4.4. Finding chains using iterative Viterbi decoding. The HMM described above
provides a generative model for producing chains. For reconstructing chains from a
document, we use Viterbi decoding, which finds the most probable path—sequence
of synsets—through the HMM that could have generated the document’s nouns. To
find additional chains, we mask (delete) the nouns spanned by the chain, and rerun
Viterbi decoding. We repeat this process until all the nouns in the document have
been assigned to some chain, including trivial chains of only one word.

In principle, a single large HMM, with a state for each of WordNet’s noun
synsets, is applicable for all texts. For efficiency, though, we prefer to construct
a separate HMM per document. For a document D, we restrict the states to all
possible synsets, S, that include some word in D, under any of its senses. We re-
strict the possibly emitted words to all the possible manifestations of the synsets
in S, even words not in D, which are important for the probability computations.
For instance, for the word “drink”, we include the synsets corresponding to all five
possible senses listed in Table 2, and allow the emission of all the words included
in these synsets.

We have implemented the HMM using the AT&T FSM library (Mohri, Pereira,
and Riley, 1997), in particular taking advantage of the library’s Viterbi decoding
utilities for finding chains.

As illustration, Table 3 provides the top ten lexical chains identified by our sys-
tem for br-e22 (using the sub-optimal parameterization α = 0.9,β = 0.6). Since
chain words are generated by states corresponding to synsets, decoding not only
finds chains but also disambiguates the chain words. We report each word sense
just once per chain, in order of first appearance in the text.

TABLE 3. Top lexical chains identified by our algorithm on br-e22
using the wn relation

(1) music#1, harmony#2, art#1, dance#1, melody#1, ballet#2, tune#1,
stravinsky#2, popularism#1, serialism#1, chorus#3.

(2) musician#2, composer#1, conductor#1, classicist#1, stravinsky#1.
(3) world#1, man#4, masses#1, people#1, public#1.
(4) issue#1, idea#1, center#5, thought#1, goal#1, purpose#1, intention#1,

design#5, idea#4.
(5) paris#1, washington#1.
(6) era#1, century#1, years#2, epoch#1, stage#1, time-period#1, time#2, age#5.
(7) pleasure#1, enjoyment#1, enthusiasm#1, tenderness#4, hope#2, mood#1.
(8) ussr#1, motherland#1, native-land#1.
(9) quality#1, clarity#2, difference#1, fecundity#3, fruitfulness#1.

(10) talent#1, flair#1, endowment#1.

There are two interesting trends to note about the chains produced by our system.
First, the system tends to prefer higher-frequency senses (i.e., lower WordNet sense
indices). Second, unlike Galley and McKeown (2003), we do not explicitly encode
the “one-sense-per-discourse” constraint. This property often emerges in the chains
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identified by the system, though it is not absolute; for instance, note the two senses
of “stravinsky” (the composer, and the music written by him) in Table 3. Since
these senses are not linked in WordNet, the two chains are disjoint.

5. CHAINING AND WSD ACCURACY

WSD is inherently tied to chaining. Not only was WSD one of the earliest
suggested applications of chaining, Galley and McKeown (2003) have suggested
using WSD to evaluate chaining algorithms. Galley and McKeown ran a compar-
ative evaluation on a subset of Semcor (Miller et al., 1993). Since Semcor is the
source of the word-sense frequencies used by some of the evaluated algorithms,
testing on Semcor might be biased. We therefore reran the systems on the test data
of the “English all words” task of the Senseval-3 workshop (Snyder and Palmer,
2004) consisting of three manually disambiguated texts with a total of 918 words.

We received source code for Barzilay’s, Silber’s, and Galley’s systems. To
control for different preprocessing, we bypassed any part-of-speech tagging, noun
chunking, and paragraph segmentation, using the tagging provided with the evalu-
ation documents instead. Some of the systems only reported word chains, and not
the word senses they impose; we augmented them to report the senses as well.3

Conversely, the implementation of Galley & McKeown’s system that we received
from the authors only computes the WSD, not the chains themselves.4

Results for both datasets are given in Table 4.5 While Galley & McKeown’s
algorithm does show clear improvement in WSD accuracy over the previous algo-
rithms, it is decidedly worse than the first-sense heuristic, which simply chooses
the most frequent sense. This fact is particularly striking since their algorithm takes
word-sense frequency into account as described in Section 3.

TABLE 4. WSD evaluation of chaining algorithms using wn

Algorithm Semcor Senseval-3

Barzilay & Elhadad 56.6% 53.6%
Silber & McCoy 54.5% 52.9%
Galley & McKeown 63.0% 61.2%
First sense 76.4% 70.4%

To illustrate the WSD inaccuracy, consider the following chain computed by the
Barzilay & Elhadad algorithm (as reimplemented by Silber & McCoy) for one of

3Based on such technical considerations we chose to use Silber & McCoy’s re-implementation of
Barzilay & Elhadad’s system rather than the original. We use WordNet 1.7.1 for all experiments
involving wn.
4Barzilay & Elhadad’s original system, but not subsequent systems, eliminated certain frequent
words from consideration as part of chains (similar to stop-words). We manually applied this heuris-
tic to ignore the words “something”, “somebody”, “anything”, and “anyone”.
5The result for Galley & McKeown is slightly higher than published due to post-publication improve-
ment (M. Galley, p.c.).
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the Senseval-3 documents, CL23, surrounding the concept “man”: guy, man, land-
lord, wife, customer, bourboun#3 (of the royal Bourboun family), end#8, back#4
(end and back as football positions), job#10 (Book of Job), slip#5 (as in “wee slip
of a lad”). Since this is a “strong chain”—i.e., one containing many words, the
algorithm attempts to elongate it by forcing many words into the chain. It does so
by sometimes choosing outrageously improbable senses for the words.

For the hso and jcn relations we report Michelizzi’s results (2005). While
Michelizzi’s work is not strictly speaking a chaining algorithm, he uses these rela-
tions for WSD in a way that is very reminiscent of chaining. Picking a semantic
relation, he traverses the document words left to right, and for each word w i finds
the score of the relation between wi and all the other words in a contextual win-
dow, choosing the word-sense that maximizes the sum of these scores. Thus, his
results are very pertinent to the discussion. His reported F1-measure on all parts
of speech of a 5-document subset of Semcor, and the Senseval-3 dataset are given
in Table 5. The results are not only well below the baseline, they are in fact worse
than random.6

TABLE 5. Michelizzi’s WSD results using hso and jcn

Algorithm Semcor-5 subset Senseval-3

hso 25.0% 21.2%
jcn 37.3% 31.5%
Random 41.4% 43.4%
First sense 76.4% 69.3%

Our HMM algorithm achieves a dramatic improvement in WSD accuracy over
all previous algorithms, and is the only one that nearly reaches the baseline, as
shown in Table 6. The improvement is achieved by explicitly balancing the re-
quirements of elongating chains and choosing the most probable senses, a balance
that is managed explicitly through the use of the parameter α . We achieve the best
results when α is set very close to 1, tipping the balance entirely in favor of the
probable senses. Decreasing α even slightly immediately degrades WSD accuracy.
That such a small change in this parameter has a large effect on accuracy is due to
the fact that it is amplified through many iterations of Viterbi decoding. Even at
this setting, our model is still subtly different than simply choosing the first sense.
Due to our use of Bayes’ rule in Equation (1), a synset with fewer word synonyms
is preferred over a synset with more. Note that for the hso and jcn relations, the
results are not directly comparable with those of Michelizzi’s, since he reports F1
on all parts of speech.

While our algorithm achieves better results than all previous ones, it only reaches
the baseline’s performance when we set α to be almost 1, under which setting the
HMM essentially ignores chains in favor of choosing the most probable senses.

6Michelizzi reports better results with the Lesk relation, which is based on word overlap of the synset
glosses (Lesk, 1986), but these results too are well below the baseline.
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TABLE 6. Top WSD results for HMM algorithm on Senseval-3 documents

Underlying Relation α = 0.999 α = 0.9999

wn 67.1% 70.2%
jcn 67.9% 70.1%
hso 61.4% 69.0%

These results point to a basic conflict between chaining and WSD. Previous al-
gorithms relied on the single constraint of maximizing chain length. Our algorithm
balances this constraint with the choice of probable senses, but turns out to work
best only when the balance is set totally in favor of the probable senses. In Sec-
tion 6 we show that this conflict is not just apparent in existing algorithms, but is
in fact inherent to chaining, by computing an upper bound on the WSD potential
of chains.

6. UPPER BOUND ON THE WSD POTENTIAL OF CHAINS

Fixing a semantic relation, let us look more closely at the graph induced by
the semantic relation on the correct disambiguation of a document. In this graph,
the nodes are the word-senses (types, not tokens), w#i, where there is an edge
between different word-senses if they are in the relation we are examining. For
example, Figure 3 shows this graph for Senseval document CL23 using the jcn
relation, with distances proportional to the jcn value.7 The graph is rendered
using Pajek (Batagelj and Andrej, 2002) using the Fruchterman and Reingold
method (1991), with some manual jitter to improve readability.

Strikingly, many nodes in this graph are disconnected, corresponding to word-
senses that are not connected to any different correct word-senses in the docu-
ment. These disconnected word-senses are extremely problematic for chaining
algorithms. To see why, consider an instance of a word w, the true sense of which,
w#i, is disconnected in the graph. Whichever chain w will be added to, it may never
be through sense i. Consequently, we can safely say that w#i will not be correctly
disambiguated solely by virtue of chaining.8

Once we also add word-sense frequency into the picture, this fact does not imply
that any disconnected words are erroneously disambiguated. We can, however,
identify two sub-classes of the disconnected word-senses as extremely likely errors
even when incorporating sense frequencies:

• If w#i is disconnected and i > 1, then w#i is not part of a chain, and is also
not the most frequent sense. Hence a chaining algorithm has no reason to
choose it as the correct sense.

7We use WordNet 2.0 for all experiments involving jcn.
8Multiple occurrences of w#i might be chained together in a chain consisting solely of these word-
senses, but in that case, there would be no reason to choose sense i. Another possibility is for w#i
to be connected to some incorrect sense of another word w′#i′. Since such cases lead to another
disambiguation error, we discount them as noise.
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FIGURE 3. Connectivity graph of Senseval document CL23.
Nodes are word-sense tokens annotated with the sense number un-
less it is the first sense. Edges correspond to the jcn relation with
distances proportional to the value of the relation.

• If w#i is disconnected and some other sense of the word, w# j, is connected,
a chaining algorithm would prefer w# j over w#i.

We call the union of these two classes the unreachable senses. We can quantify
these for the Senseval-3 documents as shown in Table 7. For the hso relation there
are very few unreachable senses (at least when allowing the entire document as
potential context). For the wn and jcn relations, however, at least 23.6% of the
word-senses are unreachable, and thus we can safely count them as likely errors.
Of course, there is no guarantee that a chaining algorithm would be able to cor-
rectly disambiguate the reachable senses. In fact, to beat the baseline of 70.4%, a
chaining algorithm must get at least 92.1% (70.4%/(1−23.6%)) accuracy on the
reachable senses, which is unlikely to be achieved by chaining alone. Thus, chain-
ing algorithms using either of these two relations are unlikely to beat the first-sense
baseline.
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TABLE 7. Distribution of disconnected senses on Senseval-3 data.
Connectedness is computed separately for each of the 3 docu-
ments. Numbers and percentages are given cumulatively over the
918 nouns in the documents.

Relation Disconnected Unreachable
number percentage number percentage

hso 51 5.6% 48 5.2%
wn 365 39.8% 230 25.1%
jcn 297 32.4% 217 23.6%

The import of these results is that not only do chaining algorithms yield poor
WSD results in practice, they are unlikely to beat the baseline even in theory, at
least for the wn and jcn relation. For the hso relation, this upper bound is uninfor-
mative, but note that since this relation is so inclusive (especially when considering
the entire document as context window), it is also likely to connect many incorrect
senses, which could explain its weaker performance in practice.

To illustrate this point, consider the following lexical chain extracted from CL23:9

{moving van, brakes, horn#10, truck, driver, cab, driver, truck driver, driver, truck}.
Under both the wn and the jcn relations, the word-sense horn#10 (automobile horn)
is disconnected from all the other correct word-senses in CL23, and in particular
it is disconnected from the words in this chain (unfortunately, horn is not listed as
a meronym of truck, just of car). Thus, no chaining algorithm based (solely) on
either wn or jcn can correctly disambiguate this word.

Under the much more inclusive hso relation, horn#10 is related to “brake”, and
“truck”, but also to quite a few other words (e.g., way#6, elevator, table#2), and
other senses of the word horn are related to even more words (e.g., pet, stop, hand,
blood). It is of course the task of the chaining algorithm to filter the correct connec-
tions from these possible ones. Thus, while our upper bound says nothing about
the hso relation, the challenge for a chaining algorithm based on hso is clear. It is
entirely conceivable that such an algorithm would be able to find the correct senses,
although there is no evidence that it can.

What is the significance of the poor WSD accuracy for the accuracy of chain-
ing itself? Is it possible to achieve accurate chaining despite poor WSD? For
many NLP tasks such as machine translation, the contribution of WSD is incon-
clusive (Carpuat and Wu, 2005). It would be tempting to dismiss the significance
of the poor WSD by simply resolving not to use chains for WSD. The problem,
however, runs much deeper. Errors in WSD immediately propagate to errors in
chaining. For example, if we are unable to connect horn#10 to the words truck,
driver, etc., then we can never find the exact chain above. Moreover, since other
senses of horn are connected to other words, we are likely to construct another

9We thank one of the anonymous reviewers for graciously annotating the document for lexical chains.
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chain based on a bogus sense. To quantify the effect of these errors in WSD on the
accuracy of chaining, we need an intrinsic evaluation measure.

7. INTRINSIC EVALUATION OF LEXICAL CHAINS

Evaluation of chaining algorithms has traditionally been task-based. Barzilay
and Elhadad (1999) used human judges to evaluate the quality of the summaries
produced by their algorithm. Silber and McCoy (2002) separately chained texts and
their human-generated abstracts, and measured the overlap between the highly-
scoring chains in the main text with those of the abstract. Being extrinsic, such
evaluation provides only indirect evidence of the accuracy of the produced chains.
Moreover, summary evaluation raises its own set of issues (Mani, 2001).

Ideally, a direct intrinsic evaluation metric would consist of a set of documents
manually marked for their correct chains, and a way of comparing two chainings on
the same document. Unfortunately, manual chaining annotation efforts to date have
been extremely limited (Hollingsworth and Teufel, 2005; Morris and Hirst, 2005).
Moreover, chaining evaluation is complicated by the lack of a crisp definition of
what constitutes a chain.

We propose to compensate for the lack of sufficient manual annotation by pro-
viding an automated approximation. Consider the connected components (CC) of
the graph defined in Section 6 on the correct word-sense types. These connected
components, in turn, partition the document into sets of word-sense tokens that
are related by the underlying relation. These sets are plausible approximations of
lexical chains, since they define collections of word tokens that are semantically
related. For example, “hour”, “minute”, “second”, and “day” form a connected
component in the graph, and the corresponding approximate lexical chain would
be: { hour, minute(2), second, day }, denoting the number of multiple occurrences
in parentheses.

Some additional chains derived this way from the document are: { friend, com-
panion, buddy(2) }, { mouth, arm, spine, throat, hand, back, face, heel#2, eye(10),
head } , { fire#6, surprise, premonition, nightmare#2, kind, annoyance#2, think-
ing, line#8, thought#2(2), dream(3), trouble, mind, grievance(3), plot, grudge(2),
feeling, twinge, brain#3, thought }, { driver(3), truck driver }.

Using the same relation used by an algorithm for its evaluation might introduce
bias with respect to the “true” chains, as the underlying relation might itself be
suspect. Such bias, however, is really only in favor of the algorithms, as the CCs
only allow chains that might potentially be found by the algorithm.

Note that for this approximation to be meaningful, the graph must be sufficiently
sparse. Thus, while this approximation works well for wn and jcn, it is less mean-
ingful for hso, which is so densely connected.

In addition, we need a way to compare chains computed by any algorithm with
the CCs. Hollingsworth and Teufel (2005) make a first step in this direction by
suggesting a metric for comparing different chains based on (partial) term overlap.
Fortunately, we can complete this measure to give a fuller picture by applying stan-
dard measures of clustering evaluation to chaining evaluation (Zhao and Karypis,
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2002). The only caveat with respect to treating chains as clusters is that clusters
do not take into account the linear ordering of the words in the chain or in the
document. This fact, though, does not seem to diminish from the validity of the
evaluation.

Let the gold chaining approximation as computed by the connected components
consist of gold chains G1, . . . ,Gq, of lengths m1, . . . ,mq, and the chains computed
by an algorithm be C1, . . . ,Ck, of lengths n1, . . . ,nk , respectively. Let ni j be the
number of word tokens that were assigned to chain Ci and belong to gold chain G j,
and let n be the total number of word-sense types.

The precision of chain Ci with respect to gold chain G j is: pi j =
ni j

ni
. The purity

of a chain is defined as Purity(Ci) = max j(pi j), intuitively capturing Ci’s precision
with respect to the gold chain it fits best. The purity of the entire chaining is the
weighted average of the individual chain purities: Purity = ∑i

ni
n Purity(Ci). A

second useful measure is entropy. The entropy of Ci is H(Ci) = −∑q
j=1 pi j log pi j .

The entropy of the entire set of chains is defined as the weighted average of the
individual chain entropies: entropy = ∑k

i=1
ni
n H(Ci).

We conducted an intrinsic evaluation of the chaining algorithms using these
evaluation criteria. Evaluation is done on Document CL23 with respect to the wn
relation. For each algorithm, we have a choice of either using these lexical chains,
or ignoring these and super-imposing the CC construction on top of the word-
senses emitted by the algorithm. To consistently accommodate both the baseline
and Galley’s algorithm, which do not actually output lexical chains, we chose the
latter option. Results are shown in Table 8. The ranking of the algorithms accord-
ing to these criteria is consistent with their ranking according to WSD accuracy. In
particular, while the HMM algorithm does better than all previous ones, it performs
similarly to the baseline.

TABLE 8. Intrinsic evaluation of chaining algorithms using the
CC construction with respect to the wn relation over CL23.

Algorithm Purity Entropy

Barzilay & Elhadad 0.576 0.214
Silber & McCoy 0.524 0.319
Galley & McKeown 0.617 0.243
HMM 0.786 0.070
First sense 0.780 0.059

8. POOR WSD ACCURACY IMPLIES POOR CHAINING ACCURACY

Armed with an intrinsic evaluation method for lexical chains, we can now quan-
tify the effect of disambiguation accuracy on chaining accuracy. We performed
the following experiment. For Document CL23, we first computed the connected
components on the correct disambiguation and used these as our approximation of
gold chains. We proceeded to progressively perturb some of the word senses of the
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document, each time replacing a correct sense with an incorrect one. For each such
perturbation, we recomputed the connected components, and compared the result
with the original with respect to purity and entropy. The result is shown in Figure 4
using the jcn relation. Results for the wn relation are similar. When all the word-
senses are the correct ones, purity is 100% and entropy is 0. As more and more
word-senses are perturbed, purity degrades linearly. Entropy likewise increases for
a while, but note that just before 80% of the word-senses are incorrect, it starts
decreasing. This is just an artifact of the entropy computation; when so many of
the senses are incorrect, pi j is often 0, in which case, by convention pi j log pi j is
also 0 (as it would be if pi j had been 1).
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FIGURE 4. Effect of WSD accuracy on chaining purity and entropy

Figure 4 verifies the intuition that a degradation in WSD accuracy leads directly
to a severe degradation in chaining accuracy, validating our claim that WSD accu-
racy is essential for chaining accuracy. As a baseline, we applied the CC construc-
tion on the first-senses, and show the resulting purity and entropy scores.10

9. CONCLUSION

The relation between lexical chaining and WSD is a subtle one. We have shown
that the strategy adopted by chaining algorithms for WSD leads to poor WSD accu-
racy in practice, and is in fact theoretically unlikely to succeed at this task. The ob-
vious conclusion would simply be not to use chaining algorithms for WSD. While
running contra Okomura and Honda, this conclusion by itself is hardly surprising

10While the purity value for the baseline is close to the randomized curve, the entropy value is lower.
This is because the baseline assigns a uniform sense choice for all occurrences of the same word.
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or interesting. Our main point in this article, however, goes beyond that simple
conclusion to examine the implications of this fact for chaining research. We have
shown that the choice of incorrect word-senses leads to incorrect assignment of
words to chains. We show this both for an example in Section 5 and quantitively in
Section 8. Thus, WSD accuracy turns out to be crucial for any chaining application,
even if WSD is not their stated goal.

We can summarize our contribution with the slogan that chaining is “WSD-
complete”, in the sense that on one hand, accurate chaining implies accurate dis-
ambiguation. On the other hand, given accurate disambiguation, chaining can be
achieved simply and efficiently, by connecting the senses. Thus, a positive take-
home message of this article is a simple way to improve both the accuracy and the
efficiency of chaining—first apply the best possible WSD algorithm, and then con-
nect the resulting senses, for instance using the CC construction. This approach
improves not only the WSD accuracy, but consequently also the accuracy of the
chains. Additionally, it obviates much of the discussion in the literature on the
optimal search strategy for chains.

Unfortunately, the fact that robust open WSD has proved to be so difficult im-
plies that the resulting chains will still be far from accurate. Thus, if current state-
of-the-art disambiguation algorithms achieve WSD accuracy just above the base-
line, we can expect the chaining purity and entropy to be slightly better than the
baseline point in Figure 4.

The ultimate question that remains open is the effect of this inaccuracy on ap-
plications, such as the application of lexical chains to summarization. As we have
shown, WSD inaccuracy propagates to chaining inaccuracy as measured by de-
creased purity and increased entropy. If the chains themselves are noisy, how accu-
rate are the summaries based on them? This is an empirical question, which we feel
has not been adequately addressed by previous evaluations. Recently, more robust
summarization evaluation techniques have been developed (Lin, 2004), opening
the way to a principled analysis of this dependency.

A final point relates to the underlying semantic relation. Our results are general
in that due to the structure of WordNet, any relation connecting WordNet synsets
must apply some form of disambiguation, and is thus prone to the hardness of open
disambiguation. For specificity, we have given results for three different relations.
Obviously, this analysis does not exhaust either the range of relations discussed in
the literature or the range of possible relations. All we have shown is that for re-
strictive enough relations defined on WordNet senses, WSD is a serious cause for
concern when constructing lexical chains. Our methodology can similarly be ap-
plied to additional relations. For more inclusive relations, such as the hso relation,
we run the risk of running into the converse problem of having too many potential
connections. Although our formal criterion does not apply to this type of relation,
this risk might explain why this relation does not perform as well as some of the
more inclusive ones in evaluations.

Nothing in our analysis precludes the possibility that new lexical semantic rela-
tions might yield better chaining accuracy. Morris and Hirst (2004) have called for
an approach that goes beyond WordNet-based relations to “non-classical relations”,
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such as the relation between “dog” and “bark”. Such relations may turn out to be
much more informative. Moreover, they may be defined directly on words rather
than word-senses, and thus might avoid the unfortunate dependence on WSD. One
recent intriguing direction is the mining of lexical semantic relations from search
engine page counts (Cilibrasi and Vitanyi, 2007; Bollegala, Matsuo, and Ishizuka,
2007), though as Kilgarriff (2007) warns, such raw counts should be taken with a
grain of salt.
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APPENDIX A. CHOICE OF THRESHOLD FOR jcn

We follow Budanitsky and Hirst (2006) in choosing a threshold for jcn based on
correlations with human word-pair similarity judgments (Rubenstein and Goode-
nough, 1965). This process requires extending the jcn relation from senses to
words, jcn(w1,w2), by choosing the pair of senses with maximal jcn. Note that
this form of disambiguation of a disembodied pair of words is very different from
the kind of WSD of words within a document context. This approach yields a high
level of correlation, which they optimize to determine a threshold. They report a
correlation of -0.781. Using our implementation on a newer version of WordNet
(2.0 vs. 1.5) yields a correlation of -0.8535. To replicate Budanitsky and Hirst’s
choice of a threshold, we define

jcn′(w1,w2) =

{

1 if jcn(w1,w2) > th
0 otherwise

.

Choosing any value between 5.5 and 7.5 for th yields an optimal correlation of
-0.8544, slightly better than the original correlation value without a threshold. We
chose the most inclusive of these, th = 7.5.
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