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ABSTRACT 24 

Range expansion by native and exotic species will continue to be a major component of global 25 

change. Anticipating the potential effects of changes in species distributions requires models 26 

capable of forecasting population spread across realistic, heterogeneous landscapes and subject 27 

to spatiotemporal variability in habitat suitability. Several decades of theory and model 28 

development, as well as increased computing power and availability of fine-resolution GIS data, 29 

now make such models possible. Still unanswered, however, is the question of how well this new 30 

generation of dynamic models will anticipate range expansion. Here we develop a spatially 31 

explicit stochastic model that combines dynamic dispersal and population processes with fine-32 

resolution maps characterizing spatiotemporal heterogeneity in climate and habitat to model 33 

range expansion of the hemlock woolly adelgid (HWA, Adelges tsugae). We parameterize this 34 

model using multi-year datasets describing population and dispersal dynamics of HWA and apply 35 

it to eastern North America over a 57-year period (1951-2008). To evaluate the model, the 36 

observed pattern of spread of HWA during this same period was compared to model predictions. 37 

Our model predicts considerable heterogeneity in the risk of HWA invasion across space and 38 

through time, and suggests that spatiotemporal variation in winter temperature, rather than 39 

hemlock abundance, exerts a primary control on the spread of HWA. Although the simulations 40 

generally matched the observed current extent of the invasion of HWA and patterns of 41 

anisotropic spread, it did not correctly predict when HWA was observed to arrive in different 42 

geographic regions. We attribute differences between the modeled and observed dynamics to an 43 

inability to capture the timing and direction of long-distance dispersal events that substantially 44 

affected the ensuing pattern of spread.  45 

 46 



 3

KEY WORDS: Biological invasions, range shift, bioclimate envelopes, species distribution 47 

models, population dynamics, spread model, global warming, landscape epidemiology, species 48 

migration, climate change, metapopulation model, Adelges tsugae 49 



 4

INTRODUCTION 50 

Across the globe, species are actively expanding their geographic ranges, some in 51 

response to recent climatic change (Walther et al. 2002; Parmesan and Yohe 2003) and others as 52 

the result of introductions into new regions (Mack 1996). In order to anticipate the potential 53 

effects of ongoing and future changes in the distributions of native and invasive species, there is 54 

increasing need to understand which factors influence the dynamics of range expansion and to 55 

develop models to forecast population spread. However, species most likely to exhibit dramatic 56 

range expansion and to therefore be of greatest interest in management contexts often possess 57 

characteristics that make changes in their distributions difficult to predict, notably spread driven 58 

by rare, long-distance dispersal events and rapid population growth (Hastings et al. 2005). The 59 

interaction between landscape heterogeneity and spread dynamics adds a layer of complexity that 60 

is rarely incorporated into models, but may be critical to developing adequate forecasts of range 61 

expansion at regional scales (Turner et al. 1993; With 2002; Hastings et al. 2005). 62 

Multiple approaches have been used to model changes in species distributions at a variety 63 

of temporal and spatial scales. Given their relative simplicity, computational efficiency, and 64 

benign data requirements, species distribution models (SDMs) remain a common technique 65 

generally regarded as providing a useful first estimate of potential changes in species 66 

distributions at the broadest of spatial extents (Pearson and Dawson 2003). SDMs rely on static 67 

correlations between species occurrences and environmental characteristics to predict 68 

distributions of species. In essence, SDMs produce mapped predictions of the geographic ranges 69 

species would occupy if distributions were constrained by abiotic factors alone. Such correlative 70 

models will accurately predict changes in species distributions only if the observed species-71 

environment relationships correspond to processes and factors that constrain the range and these 72 
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relationships remain unchanged in new ecological settings (Guisan and Thuiller 2005; 73 

Broennimann et al. 2007; Fitzpatrick et al. 2007). Even when these conditions are met, SDMs 74 

rarely incorporate the underlying processes that drive spread dynamics, most notably population 75 

and dispersal processes (Gallien et al. 2010). Therefore, although SDMs can predict potential 76 

changes in geographic distributions of species though time (e.g., Fitzpatrick et al. 2008), unless 77 

predictions from SDMs are coupled to dynamic population growth and dispersal models (e.g., 78 

Keith et al. 2008, Anderson et al. 2009), they can reveal little about the extent to which spreading 79 

populations could actually attain these changes. As a result, SDMs are more suited to mapping a 80 

species’ potential range within a study region rather than determining the probability of 81 

establishment or the likely timing of arrival in a specific location.  82 

Forecasting actual changes in the geographic distribution of populations requires the 83 

development of models that integrate habitat suitability with dynamic dispersal and population 84 

processes (Thuiller et al. 2008; Elith et al. 2010; Franklin 2010; Huntley et al. 2010). General 85 

theoretical models of spread that incorporate population growth and dispersal have been used by 86 

ecologists for decades (e.g., Fisher 1937; Skellam 1951; Kot et al. 1996), but these existing 87 

models rarely consider temporal and spatial heterogeneity in habitat suitability that may 88 

profoundly influence spread dynamics (Higgins et al. 1996; With 2002; Meentemeyer et al. 89 

2008, 2011). As a result, general models of spread provide considerable theoretical insight but 90 

offer little in terms of applied practical utility and specific predictions regarding range expansion 91 

in a region of interest. 92 

Developing models of range expansion that incorporate the dynamics of population 93 

growth and dispersal, as well as shifting habitat suitability and realistic landscape heterogeneity, 94 

could substantially improve our ability to understand and predict range expansion (Thuiller et al. 95 
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2008). Few such models have been developed and applied to large heterogeneous landscapes 96 

(but see Keith et al. (2008), Anderson et al. (2009), and Meentemeyer et al. (2011) for notable 97 

exceptions). Because long-term observational datasets documenting range expansion are rare, 98 

there have been even fewer direct comparisons of predictions from dynamic models to long-term 99 

records of spread (but see Pitt et al. 2009). Although incorporating greater realism into models 100 

may improve our understanding of range expansion, it is still unclear whether this improved 101 

understanding will translate into better forecasts, especially for those species capable of rapid 102 

spread. 103 

Here we describe a model to predict the geographic spread of the hemlock woolly adelgid 104 

(‘HWA’, Adelges tsugae Annand; Hemiptera: Adelgidae), an introduced forest pest that threatens 105 

eastern hemlock (Tsuga canadensis (L.) Carr.) and Carolina hemlock (Tsuga caroliniana 106 

Englemann) in eastern North America (Orwig et al. 2002). The model combines dynamic 107 

dispersal and population processes with fine-resolution maps characterizing spatiotemporal 108 

heterogeneity in climate and habitat to model range expansion across large, heterogeneous 109 

landscapes. We parameterize our model using field datasets on the population and spread 110 

dynamics of HWA, and we evaluate the predictions of the model against a 60-year record of 111 

HWA spread across eastern North America. These long-term empirical observations of spread 112 

provide a rare opportunity to evaluate how well dynamic spread models might anticipate range 113 

expansion. Although several studies have investigated the relationships between HWA spread 114 

and a variety of environmental factors (Koch et al. 2006; Evans and Gregoire 2007; Morin et al. 115 

2009; Fitzpatrick et al. 2010), these studies have either been limited in geographic extent and/or 116 

to a coarse spatial resolution. Further, correlations between environmental parameters and 117 

hemlock abundance have hindered the ability of regression models to draw inferences regarding 118 
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the processes influencing the spread of HWA (Morin et al. 2009). Specifically, our objectives are 119 

threefold: (1) parameterize a model using field data on population growth and historic spread 120 

patterns of HWA, (2) use this model to investigate range expansion of HWA across the range of 121 

hemlock, and (3) compare the simulated pattern of spread against the observed pattern. Of 122 

particular interest is how temporal and spatial heterogeneity in habitat suitability affect range 123 

expansion. In addition to providing taxon-specific information regarding HWA range expansion, 124 

our approach represents a general framework for developing dynamic spread models that 125 

explicitly incorporate environmental heterogeneity. 126 

 127 

METHODS 128 

Study System 129 

HWA is a small (1 mm adult) flightless insect native to Japan and China that was first 130 

collected from hemlock in the eastern United States in spring of 1951, in Richmond, Virginia 131 

(Stoetzel 2002). By 1969 HWA had spread to Philadelphia, Pennsylvania (G. Miller personal 132 

communication) and southern New England by 1985 (McClure 1990). The invaded range now 133 

stretches from Maine, New Hampshire, and Vermont in the north to Georgia in the south.  134 

HWA is a bivoltine insect that has a holocyclic lifecycle in its native range but is 135 

obligately parthenogenetic in its invaded range. The parthenogenetic nature of HWA in eastern 136 

North America means that even a single colonizing individual can start a new infestation; as a 137 

result, Allee effects at range margins are unlikely to affect spread dynamics (cf. Johnson et al. 138 

2006). Adelgid have two generations per year comprised of three life forms, the sistens, present 139 

from July to June, the progrediens, present from April to July, and the winged sexuparae, which 140 

emerge concurrently with the progrediens in spring. In Asia, the winged sexuparae fly to spruce 141 
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and reproduce sexually. Since sexuparae do not survive on spruce species found in North 142 

America (McClure 1989), this actively mobile life stage does not play a role in the invasion of 143 

HWA, and acts as a population sink. Progrediens are sessile hemlock feeders that settle 144 

exclusively on foliage from the previous year’s growth. They mature by June and give rise to the 145 

next generation of sistens. The sistens generation develops during autumn and winter, following 146 

a summer aestivation period. About 85% of sistens settle on new growth produced by the tree in 147 

spring (McClure 1991) and the remainder on older growth. In spring, the sistens produce eggs 148 

that develop into either progrediens or sexuparae, thereby completing the life cycle. Sistens tend 149 

to produce more numerous offspring than progrediens (McClure 1989). Feeding progrediens and 150 

sistens do not move between branches, so the ‘crawler’ nymphs (life stage between eggs and 151 

sessile adults) and potentially eggs are the sole dispersal stages in eastern North America. 152 

Dispersal is passive, with wind, birds, deer, and humans thought to act as the primary dispersal 153 

agents (McClure 1990). See McClure (1989; 1991) for additional details regarding the life cycle 154 

of HWA.  155 

 156 

General framework 157 

We develop a spatially explicit, discrete space-time stochastic model that links within-158 

patch population dynamics and between-patch propagule dispersal with fine-resolution maps 159 

characterizing spatiotemporal variability in climate and hemlock abundance to simulate range 160 

expansion of HWA across the heterogeneous landscape of eastern North America. The model 161 

incorporates the influence of four heterogeneous factors on HWA spread: (i) hemlock abundance, 162 

(ii) winter temperature, (iii) population growth, and (iv) dispersal. Hemlock abundance and 163 

winter temperature are characterized as raster maps comprised of 1 km  1 km cells (details 164 
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regarding the creation of these maps, which are available online from the Harvard Forest LTER 165 

data archive, can be found in Appendix A); it is across these maps that the model simulates HWA 166 

population growth and dispersal on an annual time step. Hemlock abundance in each cell (Fig. 1) 167 

determines the probability that dispersing adelgids establish in a location and also sets the upper 168 

limit to HWA population growth once a cell becomes infested. Hemlock abundance declines 169 

annually in infested cells and, for tractability, is assumed to remain constant elsewhere. Winter 170 

temperatures (Fig. A1), which change annually following observed temperature fluctuations, 171 

influence population growth by limiting the proportion of overwintering sistens that survive to 172 

produce progrediens in the next year. Mortality rates of progrediens (which includes production 173 

of sexuparae, a demographic dead end) and sistens are drawn from appropriate probability 174 

distributions.  Dispersal between cells is simulated using a function parameterized from multiple 175 

datasets documenting the spread of HWA across different regions of the eastern U.S. 176 

A single simulation of the model proceeds as follows. To initiate a simulation, a random 177 

number of HWA are introduced to a cell containing hemlock near Richmond, Virginia, the 178 

location of the first documented infestation of HWA in eastern North America (Stoetzel 2002). 179 

The simulation continues thereafter for 58 annual time steps, representing the period from 1951 180 

(date of first HWA collection in the eastern United States) through 2008, with time steps 181 

beginning with production of progrediens in the spring by overwintering sistens and ending with 182 

winter mortality of sistens. First, sistens in infested cells that have survived the winter produce 183 

the next generation of progrediens crawlers, a portion of which disperse to neighboring cells 184 

either through local diffusion or via long-distance dispersal described using a distance-based 185 

probability density function. Dispersing individuals can either initiate new infestations in 186 

uninfested cells containing hemlock, re-establish in the cell from which they originated, or die if 187 
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they fail to establish in a cell with hemlock or if they disperse to a cell without hemlock. The 188 

probability that dispersing individuals establish is equivalent to the fraction of the cell covered 189 

by hemlock crown and is therefore related to hemlock abundance. Carrying capacity of HWA 190 

populations is also determined by hemlock abundance and after dispersal, the surplus of 191 

individuals larger than the carry capacity of the cell die. The remaining population is then 192 

subjected to stochastic mortality. Surviving progrediens reproduce to create the next generation 193 

of sistens crawlers. Sistens follow the same cycle of dispersal, establishment, and mortality as 194 

progrediens, including limiting population size to carrying capacity, but with sistens being 195 

subjected to two additional forms of mortality: summer aestivation and overwintering. Hemlock 196 

abundance, and therefore carrying capacity and probability of establishment, declines each year 197 

in infested cells as a function of HWA population density. Stochasticity enters the model via 198 

random sampling from appropriate probability distributions that influence population growth and 199 

mortality, dispersal and establishment. These components are described in more detail in the next 200 

sections. The parameters of the model are summarized in Table 1. Simulations were constrained 201 

to the region of eastern North America encompassing the natural distribution of hemlock (Fig. 1). 202 

We used the results of the 1000 stochastic simulations to obtain an average representation of 203 

HWA spread. The model was written in the statistical language R (R Development Core Team 204 

2009) and the code is available from the online supplement.  205 

 206 

Hemlock abundance  207 

We mapped geographic variation in hemlock abundance (Bi) as m2 of basal area in each 208 

1 km  1 km cell i following the procedures described in Appendix A. The amount of hemlock in 209 

a cell determines both the number of HWA the cell can support and the probability that 210 
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dispersing HWA encounter hemlock. HWA attach themselves at the base of needles, typically at a 211 

rate of one individual per needle. Thus, the number of needles in a stand can serve as a 212 

reasonable estimate of the carry capacity of HWA populations. To estimate the number of needles 213 

in each stand, we used allometric relationships to compute leaf area from basal area (Kenefic and 214 

Seymour 1999) and the number of needles (Li) from the mean leaf area per needle (Santee and 215 

Monk 1981). Because sistens feed predominantly on new growth, typically at a rate of 85% on 216 

new growth and 15% on older foliage (McClure 1991, Paradis et al. unpublished), we used field 217 

surveys of uninfested hemlocks to estimate the proportion of total leaf area in new growth (i). 218 

This quantity varied by tree size and site conditions, but we estimated it to be between one and 219 

ten percent. Together, these quantities allowed us to estimate the carrying capacity of progrediens 220 

(KPi), which settle exclusively on the previous years’ growth and therefore can be approximated 221 

as KPi = Li, and sistens the carrying capacity of progrediens as KSi = 0.85Lii + 0.15Li. To 222 

estimate probability of establishment, we used allometric relationships to compute crown area 223 

(Ci) in m2 from basal area (Santee and Monk 1981). We assumed the probability that dispersing 224 

HWA establish in a cell is equivalent to the ratio of Ci to cell area in m2. Therefore, the number 225 

of HWA that establish in a cell is simply Ci multiplied by the number of HWA dispersing to that 226 

location. In infested cells, temporal variation in hemlock abundance in each year t was 227 

introduced by reducing hemlock abundance as a function of HWA population density, thereby 228 

also reducing carry capacity and probability of establishment in the next year. See Appendix B 229 

for a description of how hemlock decline was estimated. For tractability, hemlock abundance 230 

was assumed to remain constant in uninfested cells throughout the simulation.  231 

 232 

Winter temperature  233 
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Of the causes of HWA mortality, winter temperatures are thought to be the most 234 

important and most variable in space. The relationship between HWA mortality and temperature 235 

has been assessed in both the laboratory and the field (Parker et al. 1999; Skinner et al. 2003; 236 

Shields and Cheah 2005; Paradis et al. 2008; Trotter and Shields 2009). Winter temperatures can 237 

cause considerable mortality and trigger dramatic population declines, with southern populations 238 

typically experiencing significantly less mortality than those in the north (Shields and Cheah 239 

2005; Trotter and Shields 2009).  240 

Paradis et al. (2008) explored the relationship between winter temperature and HWA 241 

overwintering mortality and determined that of eight different measures of winter temperature 242 

they considered, average daily mean winter (December-March) temperature had the greatest 243 

explanatory power. To account for the geographic variability in HWA winter mortality, we used 244 

the best-fit regression equation from Paradis et al. (2008) to express overwintering mortality 245 

(MSwit) in cell i in year t as a function of temperature (Wit, ˚C), or: MSwit = 0.507 – 0.078*Wit. To 246 

incorporate stochasticity in MSwit, we used values for the slope and intercept drawn from the 95% 247 

confidence intervals reported by Paradis et al. (2008). See Appendix C for details regarding the 248 

creation of annual mean winter temperature maps. 249 

 250 

Within-cell population dynamics 251 

We used multi-year surveys of HWA reproduction and survival rates in Massachusetts 252 

and Connecticut to estimate mean values of parameters for the life stages of HWA. See Appendix 253 

D for details regarding how these data were collected. Using these data, we estimated probability 254 

distributions that were sampled to estimate stochastic reproduction and mortality of the sistens 255 

and progrediens generations in each cell i in year t. For the progrediens generation, these 256 
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parameters included average number of progrediens produced by each overwintering sistens (Pit) 257 

and the mortality rate of progrediens (MPit). For the sistens generation, parameters included the 258 

average number of sistens produced by progrediens (Sit) and the mortality rates of dispersing, 259 

aestivating, and overwintering sistens (MSit, MSait, MSwit, respectively, with MSwit calculated as 260 

described in the previous section). To model stochastic population growth, we sampled Poisson 261 

distributions with means Pit or Sit and multiplied these values by the existing population size of 262 

either sistens (NSit) or progrediens (NPit). Binomial distributions with means MPit, MSit, or MSait 263 

were used to model mortality of progrediens and sistens. We incorporated the influence of 264 

density dependence on population dynamics by allowing HWA density to increase to the carry 265 

capacity set by hemlock abundance as described above and by reducing hemlock abundance in 266 

infested cells as described in Appendix B.  267 

 268 

 Between-stand dispersal 269 

Range expansion of organisms is often driven by multiple mechanisms that operate at 270 

different scales (Higgins et al. 2003; Hastings et al. 2005), a process termed stratified dispersal 271 

(Hengeveld 1988). The biology and historic pattern of spread of HWA is consistent with this 272 

form of dispersal. Dispersal within hemlock stands is facilitated by progrediens and sistens 273 

nymphs crawling along branches or between proximate trees, whereas wind, birds, humans or 274 

other agents facilitate rare long-distance dispersal between stands (McClure 1990). Our model 275 

characterized stratified dispersal by allowing local diffusion between neighboring cells and by 276 

using historic data on HWA spread to fit a function that models long-distance dispersal events.  277 

To fit a function representing the frequency distribution of between-stand dispersal 278 

distances, hereafter termed the distance-based probability density function or ‘distance-pdf’, we 279 
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used multiple datasets describing the historic spread of HWA (Table 2). Note that a distance-pdf 280 

differs from a dispersal kernel, which describes the density of propagules as a function of the 281 

distance from a source (Cousens et al. 2008). The datasets describing spread varied in their 282 

geographic focus and their spatial and temporal coverage (Table 2), but all represent either 283 

purposeful or ad hoc surveys of regionally distributed hemlock stands rather than trees within 284 

stands and therefore represent a sample of successful between-stand dispersal events. Appendix 285 

E describes how these data were fit to a set of candidate distance-pdfs using maximum 286 

likelihood. Given their coarse spatial resolution, we did not use the existing USFS county-level 287 

spread dataset (http://na.fs.fed.us/fhp/hwa/maps/distribution.shtm) to inform the distance-pdf. 288 

These data were, however, used in model evaluation.  289 

For both between-cell and long-distance movements, it was assumed a small fraction of 290 

NSit (population size of sistens) and NPit (population size of progrediens) was subject to dispersal. 291 

These proportions of dispersing individuals were drawn from different uniform probability 292 

distributions for local diffusion (it) and long-distance dispersal (it) and were multiplied by NSit 293 

and NPit to calculate the number of dispersing HWA in each generation. Ideally these proportions 294 

could be estimated using maximum likelihood approaches, but the data necessary to fit such a 295 

likelihood function currently are not available for HWA. To estimate the proportions of 296 

dispersing individuals, we therefore performed a sensitivity analysis that confirmed spread rate 297 

was indeed sensitive to these parameters and that reasonable results (spread rate of 298 

approximately 10-20 km per year, Evans and Gregoire 2007) were obtained if we assumed one 299 

individual in a million diffused to neighboring cells and if one individual in 100 million was 300 

subjected to long-distance dispersal as described by the distance-pdf.  301 

 302 
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Model evaluation 303 

 We evaluated predictive performance of the model in two ways. First, to assess spatial 304 

accuracy, we used the Area Under the Curve of the Receiver Operating Characteristics curve 305 

(AUC; Fielding and Bell 1997) to compare the predicted probability of infestation with the 306 

observed spatial pattern of HWA infestations in three locations: the northern extent of the range 307 

in New England, near the center of the range in Pennsylvania, and the southern extent of the 308 

range in Georgia. Second, to assess temporal accuracy, we compared the predicted timing of first 309 

infestation to the observed year of infestation using the 60-year record of spread from the USFS 310 

county-level dataset. We used the following procedure to address the scale mismatch between the 311 

model (1 km2 cells) and the observation data (county-level, >103 km2). Given the size of 312 

counties, each contained numerous cells. Each cell within a county had a predicted year of first 313 

infestation for each of the 1000 simulations. For each county, we obtained the predicted years of 314 

first infestation across all cells within the county and across all 1000 simulations. Cells that did 315 

not become infested were ignored. Thus, if a county had 100 cells, all of which were infested in 316 

all 1000 simulations, we obtained a distribution of predicted years of infestation for the county 317 

comprised of 1  105 data points. To evaluate the extent to which the predicted dates of 318 

infestation compared to the observed date, we determined whether the 95% confidence interval 319 

of the distribution of predicted years contained the observed year.  320 

 321 

RESULTS 322 

 The maximum-likelihood estimation of the distance-pdf determined a log-normal 323 

function with a mean dispersal distance of 4.73 [4.5, 5.0] km provided the most plausible fit to 324 

the observed HWA spread data (Fig. E1). Application of the model to spatially and temporally 325 
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heterogeneous hemlock abundance (Fig. 1) and mean winter temperature (Fig. C1) over the 57-326 

year simulation period suggested the probability of infestation was greatest from central 327 

Pennsylvania to the southernmost extent of the geographic range of hemlock in northern Georgia 328 

(red-yellow shading, Fig. 2, see Fig. F1 in the Appendices for an animated version of this figure). 329 

Regions of southern New York and New England, portions of which currently are infested by 330 

HWA, were generally predicted to have very low probabilities (< 1%) of invasion (blue shading, 331 

Fig. 2), whereas most of northern New England, Wisconsin and the upper peninsula of Michigan, 332 

and southern Canada had zero probability of infestation. In the southern portion of the study 333 

region, probabilities of infestation generally increased with time, before gradually declining as 334 

hemlock was lost from the region (animated Fig. F1, Appendices). In contrast, probabilities of 335 

infestation did not increase above zero in southern New England until late in the simulation, 336 

where invasion risk tended remain low and fluctuate yearly in response to year-to-year changes 337 

in winter temperature. Geographic and temporal variation in HWA population size tended to 338 

follow the pattern of probability of infestation, with population sizes being greatest south of 339 

central Pennsylvania and remaining relatively small in the north (animated Fig. G1, Appendices). 340 

Earliest infestations were concentrated in the central Appalachians, with subsequent 341 

spread to the south and followed by later spread to the north (Fig. 3). In general, HWA was not 342 

predicted to arrive in northern Pennsylvania and southern New England until after year 2000. On 343 

average, the model predicted an overall increase in infested area beginning around 1970 and 344 

continuing to increase throughout the simulation period (Fig. 4). Simulated spread was most 345 

rapid in the southwest and was slowest in the north and northeast (slopes of curves, Fig. 5).  346 

The spatial accuracy of the model measured using AUC varied by geographic region (Fig. 347 

6). AUC was highest in New England (NE, solid line Fig. 6) and Georgia (GA, dashed line Fig. 348 
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6), where the model had excellent to good discrimination (Pearce and Ferrier 2000). In contrast, 349 

model performance was poor (less than 0.5) in Pennsylvania (PA, dotted line Fig. 6), where the 350 

model over-predicted the observed extent of the invasion in the northwestern portion of the state.    351 

Of the 325 counties that were known to be infested by HWA in 2008, the observed year 352 

of first infestation fell within the 95% confidence interval of the simulated year for only 37 353 

(11.4%) (Fig. 7, hatched counties). There was no discernable geographic patterning to these 37 354 

counties, which tended to be scattered throughout the study area. In contrast, there were strong 355 

geographic patterns in model error. In general, the model predicted arrival later than observed 356 

(Fig. 7, purple shading) in the north and earlier than observed (Fig. 7, green shading) in the 357 

south. In some instances the difference between the observed and modeled year of first 358 

infestation differed by more than 15 years. Most notably, HWA was predicted to arrive much 359 

later than observed in counties surrounding New York, NY and the city of Philadelphia, 360 

Pennsylvania. In addition, there were 13 known-infested counties that the model did not predict 361 

would become infested (Fig. 7, black-shaded counties). These areas included Philadelphia 362 

County, PA as well as counties containing New York, NY. 363 

 364 

DISCUSSION 365 

The objectives of this study were to develop a process-based, stochastic model to 366 

simulate range expansion of HWA across the large heterogeneous landscape of eastern North 367 

America, examine how environmental heterogeneity affected spread dynamics, and to compare 368 

the predictions of the model to the observed pattern of range expansion. Taken together, our 369 

model predicts considerable heterogeneity in the risk of HWA invasion across space and through 370 

time, with spatiotemporal variation in winter temperature, rather than hemlock abundance, 371 
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exerting a primary control on simulated spread dynamics. The simulated dynamics match some 372 

aspects of the observed pattern of range expansion, most notably the extent of invasion and 373 

anisotropic spread, but our model did not correctly predict the timing of HWA’s arrival in 374 

different geographic regions. 375 

Ours joins a growing list of range expansion models that integrate temporal and spatial 376 

heterogeneity in habitat suitability with dynamic population and dispersal processes (Dullinger et 377 

al. 2004; Keith et al. 2008; Anderson et al. 2009; Meentemeyer et al. 2011). However, 378 

evaluations of dynamic models against long-term records of observed spread histories remain 379 

rare (but see Pitt et al. 2009) and such comparisons are sorely needed to quantify the extent to 380 

which dynamic models might anticipate rapid range expansion. HWA provides a particularly 381 

good study system because its population dynamics are strongly influenced by temperature and it 382 

is limited to discrete habitat patches of its host plant (hemlock). Most importantly in the context 383 

of model evaluation, the introduction and spread history of HWA are relatively well known, and 384 

therefore provides a unique opportunity to ask: Given what we know today, how well could we 385 

have anticipated the spread of HWA across eastern North America? This question can be 386 

considered in the context of (i) extent of infestation, (ii) rate of spread, and (iii) timing of arrival. 387 

In terms of extent of invasion, our simulations generally agree with the observed current 388 

extent of HWA’s spread (Figs. 2, 6) and suggest that there are few remaining opportunities for 389 

widespread invasion of HWA. The model suggests that lethal winter temperatures are likely to 390 

limit additional northward spread of HWA beyond its current northern limit. Northwestern 391 

Pennsylvania and southern New York represent notable exceptions, though invasion risks are 392 

rather low or zero across most of New York. Elsewhere, the invasion largely has already reached 393 

the extent of its potential range as determined by availability of hemlock.   394 
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The model predicted anisotropic spread (Fig. 5), generally matching the observed pattern 395 

of most rapid spread in the south and lower rates of spread elsewhere (Fitzpatrick et al 2010). 396 

Our model predicted HWA to spread most rapidly across the southern Appalachians – where 397 

winters are relatively warm and hemlock is relatively abundant. Despite an abundance of 398 

hemlock in New England, HWA was predicted to spread slowly in this region, highlighting the 399 

importance of winter temperatures in limiting range expansion. It is worth noting that our 400 

findings contrast with regression-based analyses of the observed pattern of anisotropy, which 401 

suggest that, although spread rates of HWA were relatively rapid in the south, they were greatest 402 

in the northeast (Morin et al. 2009). However, this finding may in part be an artifact of the 403 

regression approach implemented by Morin et al. (2009), which assumes spread rates are 404 

constant and therefore can overestimate spread rates if long-distance dispersal events to a 405 

particular region are followed by slower diffusion (i.e., if invasion speed varies in time). This is 406 

the case with the dispersal of HWA to the northeast, which was facilitated by early, long-distance 407 

dispersal, followed by much slower rates of diffusion (Fitzpatrick et al. 2010).  408 

Despite generally matching the observed extent of the invasion of HWA and the pattern 409 

of anisotropic spread, our model did a poor job of predicting the timing of arrival – a failure we 410 

attribute to an inability of the model to adequately capture both the timing and direction of early, 411 

rare long-distance dispersal events. Much has been written regarding the inherent difficulties of 412 

accurately measuring and modeling infrequent long-distance dispersal events and of the 413 

importance of such rare events in determining spread rate and ultimately timing of arrival of an 414 

organism undergoing range expansion (e.g., Clark et al. 1998; Higgins and Richardson 1999; 415 

Clark et al. 2001; Clark et al. 2003; Skarpaas and Shea 2007). For the most part, discussions 416 

regarding modeling long-distance dispersal have been one-dimensional in that they mainly have 417 
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considered the shape of the probability function describing the distribution of dispersal distances. 418 

A less appreciated aspect of modeling range expansion is that for models to be successful, they 419 

must also accurately model dispersal direction (i.e., anisotropy). In the case of HWA, data 420 

suggest populations spread from Richmond, VA to Philadelphia, PA then eventually to New 421 

York, NY. These early, long-distance movements to densely populated regions of the northeast 422 

were not captured in our simulations (black shading; Fig. 7), which may explain why the 423 

simulations predicted later arrival in the northeast than was observed. In fact, none of our 424 

simulations predicted that Philadelphia County, PA and the counties surrounding New York, NY 425 

would become infested. These findings can be attributed in part to the failure of our hemlock 426 

map to capture urban hemlock density. Of equal or greater importance could be the role of long-427 

distance dispersal vectors that increase the likelihood of spread to the east and northeast, most 428 

notable of which are wind and birds (McClure 1990). Dispersing progrediens hatch during the 429 

time of spring bird migration from south to north, and McClure (1990) found HWA attached to 430 

forest birds. Bird migration may be a particularly important dispersal vector in unforested areas 431 

such as cities as isolated hemlocks likely have much higher bird visitation rates per tree than 432 

trees embedded in a forest. During the time of both progrediens and sistens dispersal, dominant 433 

winds are mainly out of the west and southwest (Klink 1999). Consistent with the observed 434 

pattern of range expansion of HWA, the dominant winds and bird migrations would tend to 435 

reduce the probability of spread to the south and west, thereby delaying arrival in the southern 436 

Appalachians, while increasing spread potential to north and east. The failure to incorporate wind 437 

patterns may also explain why the model predicted a high probability of spread to upwind 438 

portions of northwestern Pennsylvania that are not currently known to be invaded (B. Regester, 439 

pers. comm.). The movement of hemlock for landscaping purposes may also play a role in 440 
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facilitating long distance dispersal of HWA, though the directionality of such movements are less 441 

clear. Taken together, the inability of the model to reproduce the observed timing of arrival in 442 

different regions seems to largely result from an inability to capture early dispersal events to 443 

northeastern cities and an overestimation of the frequency of long distance dispersal events to the 444 

south and west. 445 

Although the model failed to capture aspects of the spread of HWA, it is reasonable to 446 

ask: Within the context of the model, how likely was the observed pattern of spread? Invasion 447 

dynamics are dependent on a number of highly stochastic processes that pose major challenges to 448 

developing realistic models of range expansion. Vagaries of population dynamics and dispersal, 449 

particularly at early stages of range expansion (Higgins and Richardson 1999), can play a 450 

disproportionate role in determining the ensuing pattern of spread. It is reasonable to assume that 451 

small changes to any of these early dynamics could result in strikingly different patterns of range 452 

expansion. More broadly, the ecological patterns we observe, and on which models are 453 

parameterized, represent a single realization of a multitude of possible realizations, some more 454 

likely than others. It is critical to note that although running many simulations can reduce the 455 

influence of model stochasticity on the predicted outcome, as well as provide an indication of 456 

uncertainty, model averaging may not necessarily bring us any closer to predicting the observed 457 

pattern. In fact, it could do just the opposite as averaging multiple simulations reduces the 458 

influence of uncommon, but highly consequential, events.  459 

Knowledge of when and where an invasive species is likely to spread is critical to 460 

management efforts. In the case of HWA, there appears to be little potential for additional spread, 461 

at least under current climatic conditions, and therefore correspondingly small remaining 462 

opportunities for management intervention at the landscape scale. However, given the limiting 463 
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effects of temperature on HWA range dynamics in New England, increases in winter temperature 464 

in this region could lead to the rapid spread of HWA (Paradis et al. 2008) and subsequent loss of 465 

hemlock. Planned applications of our model to scenarios of future climate in the northeastern US 466 

and southern Canada will explore these dynamics in greater detail.  467 

As global change continues to alter the distributions of native and exotic species, there is 468 

an increasing need for spatially explicit forecasts of range expansion. Here, we combined 469 

existing techniques for modeling population growth and dispersal with fine-resolution maps 470 

characterizing spatial and temporal variability in climatic and habitat suitability to model species 471 

spread over a large heterogeneous region. Ours is the sort of integrated model recently 472 

envisioned by Huntley et al. (2010), who, like many others, have argued that dynamic models are 473 

needed to provide more realistic forecasts of changes in species distributions, such as species 474 

responses to climatic change. Validation remains a central challenge however, as it is not possible 475 

to validate predictions of events that may not occur for decades. In contrast, invasive species 476 

offer a unique opportunity to observe range expansion over relatively short time scales and can 477 

therefore serve as a means to assess dynamic models of range expansion. Our results suggest 478 

that, by some measures, dynamic models can provide useful predictions of changes in species 479 

distributions in space broadly consistent with observed patterns. However, in instances where 480 

range expansion is driven by rare events with large consequences, for models to be successful in 481 

predicting timing of arrival, they must incorporate an improved understanding of the drivers of 482 

anisotropy. In the context of the range dynamics of HWA, this would include the role of passive 483 

dispersal vectors in driving long-distance dispersal events to cities in the northeastern US and 484 

preventing spread to highly suitable locations elsewhere. 485 

 486 
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ECOLOGICAL ARCHIVES MATERIAL 642 

Appendix A. Description of how maps of hemlock distribution and abundance were developed. 643 

Appendix B. Description of how hemlock mortality in infested cells was modeled. 644 

Appendix C. Description of how annual maps of mean winter temperature were developed 645 

(contains Figure B1). 646 

Appendix D. Description of field data collection and analyses used to estimate HWA 647 

reproduction and survival rates. 648 

Appendix E. Description of the estimation of the dispersal-distance probability density function 649 

using maximum likelihood (contains Figure E1). 650 

Appendix F. Animated version of Fig. 2 (probability of HWA infestation). 651 

Appendix G. Animation of spatiotemporal changes in HWA population size. 652 

Supplement 1: R code used for spread simulations. 653 
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Table 1. Overview of default and fitted parameter values of the HWA range expansion model. 654 

Symbol Parameter Type Value, range, or distribution 

General    

i index of a particular cell index — 

j index of a particular year index 1951 – 2008 

Population dynamics    

N0 Initial population size in Richmond, VA in 1951 random ~Pois(1000) 

KPit Carrying capacity of progrediens in cell i in year t, equal to Lit modeled — 

KSit Carrying capacity of sistens in cell i in year t, function of Lit and it modeled — 

NPit Progrediens population size in cell i in year t  modeled [0, KPit] 

NSit Sistens population size in cell i in year t modeled [0, KSit] 

Wit Winter temperature in cell i in year t observed — 

Pit Number of progrediens produced by each sisten in cell i in year t random ~Pois(142.7) 

Sit Number of sistens produced by each progredien in cell i in year t random ~Pois(22.2) 

MPit Mortality rate of established progrediens in cell i in year t random ~Binom(0.98) 

MSit Mortality rate of established sistens in cell i in year t random ~Binom(0.64) 
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MSai Mortality rates of sistens during aestivation in cell i in year t random ~Binom(0.71) 

MSwit Overwintering mortality rate of sistens in cell i in year t, function of Wit modeled [0, 1] 

Host dynamics    

Bit Basal area of hemlock in cell i year t modeled — 

Lit Leaf area in cell i in year t, function of Bit modeled — 

Cit Crown area in cell i in year t, function of Bit modeled — 

it Proportion of Lit that is new growth random ~Uniform(0.01, 0.05) 

Dispersal dynamics    

 Mean of the log-normal dispersal pdf  modeled 4.73 km 

 Standard deviation of the log-normal dispersal pdf modeled 3.27 km 

it Proportion of individuals diffusing to adjacent cells in cell i in year t random ~Uniform(0, 1  10-6) 

 it Proportion of long-distance dispersers in cell i in year t random ~Uniform(0, 1  10-8) 

 655 

  656 
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Table 2. Datasets describing the spread of hemlock woolly adelgid at the landscape scale that 657 

were used to parameterize the dispersal probability density function. See acknowledgements for 658 

data sources. Published sources are footnoted.  659 

Region Number of locations Year of first/last observation 

Georgia 1057 2003/2006 

Southwestern Virginia 98 1997/2007 

Pennsylvania 1598 1982/2006 

Connecticut & Massachusetts* 142 1998/2007 

New Hampshire 73 2000/2008 

* Preisser et al. (2008) 660 

661 
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Figure 1. Eastern North America showing modeled hemlock abundance at 1km  1km 662 

resolution versus the geographic range of hemlock (USGS 1999). The red star indicates the 663 

location of Richmond, Virginia where introduced populations of hemlock woolly adelgid were 664 

first collected in 1951. 665 

 666 

Figure 2. Predicted probability of infestation of hemlock stands by hemlock woolly adelgid 667 

averaged over 1000 simulations of range expansion initiated in Richmond, Virginia, using annual 668 

winter temperatures experienced during the period 1951-2008. The observed extent of the 669 

invasion in 2008 is delineated by the bold gray line. Hemlock stands not predicted to become 670 

infested in any of the 1000 simulations are shown in black. Unshaded regions do not contain 671 

hemlock. 672 

 673 

Figure 3. Total area infested versus time for each of the 1000 individual simulations (dashed gray 674 

lines) and the mean (solid black line) total area infested.  675 

 676 

Figure 4. Predicted year of infestation of hemlock stands by hemlock woolly adelgid averaged 677 

over 1000 simulations of range expansion initiated in Richmond, Virginia using annual winter 678 

temperatures experienced during the period 1951-2008. The observed extent of the invasion in 679 

2008 is delineated by the bold gray line. Hemlock stands not predicted to become infested in any 680 

of the 1000 simulations are shown in black. Unshaded regions do not contain hemlock. 681 

 682 

Figure 5. Area of hemlock infested versus year averaged over 1000 simulations within different 683 

geographic regions defined by dividing the study area into 22.5˚ intervals (16 cardinal directions) 684 
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using Richmond, Virginia as the origin. The rate of spread, indicated by the slope of the line in 685 

each panel, is most rapid in the southwest and slowest in the northeast. 686 

 687 

Figure 6. Receiver Operating Characteristics (ROC) curves showing model performance in three 688 

geographic regions, including New England (NE), Georgia (GA) and Pennsylvania (PA). 689 

 690 

Figure 7. Map of the difference between the observed (inset) and mean simulated year of 691 

infestation for counties infested by the hemlock woolly adelgid up to year 2008. Green/purple 692 

shading indicates counties for which the model predicted a county to become infested 693 

earlier/later than was observed. Grey shading indicates counties for which the simulated data fell 694 

within one year of the observed date. Hatching highlights those counties for which the observed 695 

year of infestation fell within the 95% confidence interval of the simulated year. Black shading 696 

represent counties where HWA has been observed, but which none of the 1000 simulations 697 

predicted to become infested. 698 
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