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We consider a protocol for the control of few-qubit registers comprising one electronic spin embedded

in a nuclear spin bath. We show how to isolate a few proximal nuclear spins from the rest of the bath and

use them as building blocks for a potentially scalable quantum information processor. We describe how

coherent control techniques based on magnetic resonance methods can be adapted to these solid-state spin

systems, to provide not only efficient, high fidelity manipulation but also decoupling from the spin bath.

As an example, we analyze feasible performances and practical limitations in the realistic setting of

nitrogen-vacancy centers in diamond.

DOI: 10.1103/PhysRevLett.102.210502 PACS numbers: 03.67.Lx, 76.30.Mi, 76.60.�k

The coherence properties of isolated electronic spins in
the solid state are often determined by their interactions
with large ensembles of lattice nuclear spins [1,2]. The
nuclear spin dynamics is typically slow, resulting in very
long bath correlation times. Indeed, nuclear spins are one
of the most isolated systems in nature. This allows us to
decouple electronic spins from nuclear spins via spin-echo
techniques [3,4]. More remarkably, controlled manipula-
tion of the coupled electron-nuclear system allows one to
exploit the nuclear spin bath as a long-lived quantum
memory [5–7]. Recently this approach has been used to
prove a single nuclear qubit memory with coherence times
exceeding tens of milliseconds in room temperature dia-
mond [8]. Entangled states composed of one electronic and
two nuclear spins have also been probed [9]. The essence
of these experiments is to gain complete control over
several nuclei by isolating them from the rest of the bath.
Universal control of systems comprising a single electronic
spin coupled to many nuclear spins has not been proved yet
and could yield robust quantum nodes for larger scale
quantum information architectures.

In this Letter we describe a technique to achieve univer-
sal control of a portion of the nuclear spin bath and use it,
together with an electronic spin, to build multiqubit regis-
ters. Our approach is based on magnetic resonance control
techniques, but there is an essential difference with pre-
viously studied small quantum processors, such as NMR
molecules. Here the boundary between qubits in the system
and bath spins is ultimately dictated by our ability to
effectively control the qubits. The interactions between
the electronic spin and the nuclear qubit and bath spins
are of the same nature, so that control schemes must
preserve the desired interactions among qubits while at-
tempting to remove the couplings to the bath. The chal-
lenge to overcome is then to resolve individual energy
levels for qubit addressability and control, while avoiding
fast dephasing due to the uncontrolled portion of the bath.

Before proceeding we note that proposals for integrating
small quantum registers into a larger system capable of
fault tolerant quantum computation or communication
have been explored theoretically [10,11] and experimen-
tally [12,13]. These schemes generally require a commu-
nication qubit and a few ancillary qubits per register. The
first one couples efficiently to external degrees of freedom
(for initialization, measurement and entanglement distri-
bution), leading to easy control but also fast dephasing.
The ancillary qubits instead are more isolated and act as
memory or ancillas in error correction protocols. While our
analysis is quite general as it applies to various systems,
e.g., quantum dots in carbon nanotubes [14] or spin impu-
rities in silicon [7], we will focus on the nitrogen-vacancy
(NV) centers [4,8,9] in high-purity diamond with low
paramagnetic impurity content. These are promising sys-
tems to implement hybrid quantum networks due to their
long coherence times and good optical transitions that can
be used for remote coupling among registers, without
overly affecting the coherence of the register’s ancillary
qubits [15]. Specifically, nuclear spins can remain coherent
for a large number of electronic excitation cycles [8].
We focus on an electronic-spin triplet, as for the NV

centers (see Fig. 1). Quantum information is encoded in the
ms ¼ f0; 1g Zeeman sublevels, separated by a large zero
field splitting (making ms a good quantum number). Other
Zeeman levels are shifted off resonance by an external
magnetic field Bz along the N-to-V axis. The
Hamiltonian in the electronic rotating frame is

H ¼!L

X
IjzþSz

X
Aj � ~IjþH dip

¼1�Sz
2

!L

X
Ijzþ1þSz

2

X
~!j
1 � ~IjþH dip; (1)

where S and Ij are the electronic and nuclear spin opera-
tors, !L the nuclear Larmor frequency, Aj the hyperfine
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couplings andH dip the nuclear dipolar interaction, whose

strength can be enhanced by the hyperfine interaction [8].
When the electronic spin is in the ms ¼ 1 state, nearby
nuclei in the so-called frozen core [16] are static (since
distinct hyperfine couplings make nuclear flip-flops ener-
getically unfavorable) and give rise to a quasistatic field
acting on the electronic spin. Other bath nuclei cause
decoherence via spectral diffusion [17], but their cou-
plings, setting noise strength and correlation time, are
orders of magnitude lower than the interactions used for
control. While in thems ¼ 0manifold all the nuclear spins
precess at the same frequency, the effective frequencies in

the ms ¼ 1 manifold, !j
1, are given by the hyperfine inter-

action and the enhanced g tensor [18], yielding a wide
range of values. Some of the nuclear spins in the frozen
core can thus be used as qubits.

Control is obtained via microwave (�w) and radio fre-
quency (rf) fields. The most intuitive scheme, performing
single-qubit gates with these fields and two-qubit gates by
direct spin-spin couplings, is quite slow, since rf transitions
are weak. Another strategy, requiring only control of the
electronic spin, has been proposed [19,20]: switching the
electronic qubit between its eigenstates induces nuclear
spins rotations about two nonparallel axes that generate
any single-qubit gate. This strategy is not the most appro-
priate here, since rotations in thems ¼ 0manifold are slow
[21]. We thus propose another scheme to achieve universal
control, using only two types of gates: (i) One-qubit gates
on the electronic spin and (ii) Controlled gates on each of
the nuclear spins. The first gate is simply obtained by a
strong �w pulse. The controlled gates are implemented
with rf pulses on resonance with the effective frequency of
individual nuclear spins in thems ¼ 1manifold, which are
resolved due to the hyperfine coupling and distinct from
the bath frequency [22]. Achievable rf power provides fast
enough rotations since the hyperfine interaction enhances
the nuclear Rabi frequency when ms ¼ 1 [23]. Any other
gate needed for universal control can be obtained combin-
ing these two gates. For example, we achieve a single
nuclear qubit rotation by repeating the controlled gate after
applying a �-pulse to the electronic spin. Controlled gates
between nuclei can be implemented by exploiting the
stronger coupling to the electron as shown in Fig. 2(a).

Avoiding direct nuclear interactions is faster as long as the
hyperfine coupling is several times larger than the nuclear
coupling.
Although selectively addressing ESR transitions is a

direct way to perform a controlled rotation with the elec-
tronic spin as target, this is inefficient as the number of
nuclear spin increases. The circuit in Fig. 2(b) performs the
desired operation on a faster time scale.
When working in the ms ¼ 1 manifold, each nuclear

qubit is quantized along a different direction and we cannot
define a common rotating frame. The evolution must be
described in the laboratory frame while the control
Hamiltonian is fixed in a given direction for all the nuclei
(e.g., the x axis). This yields a reduced rf Rabi frequency

�� ¼ �rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos’2

1 cos�
2
1 þ sin’2

1

q
(where f�1; ’1g define

local quantization axes in the ms ¼ 1 manifold and �rf

is the hyperfine-enhanced rf frequency). The propagator
for a pulse time tp and phase c is

ULð�rf ; tp; c Þ ¼ e�i½!tp�ð��c Þ��~z=2e�i ��tp�~x=2e�ið��c Þ�~z=2;

where f�~x; �~y; �~zg are the Pauli matrices in the local frame

and tanð�Þ ¼ tan’1= cos�1. An arbitrary gate U ¼
R~zð�ÞR~xð�ÞR~zð�Þ is obtained by combining UL with an
echo scheme (Fig. 3), which not only refocuses the extra
free evolution due to the lab frame transformation, but also
sets the gate duration to any desired clock time. Fixing a
clock time common to all registers is advantageous to
synchronize their operation.
In order to refocus the fast electronic-spin dephasing due

to the frozen core nuclear spins, we need to embed the
control strategy described above in a dynamical decou-
pling scheme [24] without loosing universal control. The
electron-bath Hamiltonian is given by Eq. (1), where the
index j now runs over the bath spins. Neglecting for now

U

H

U
X XZ Z

|e〉
|C1〉
|C2〉

(a)

U C
Φα

X
Z Z

AB α|e〉
|C1〉 Φα

X(b)

H H H

FIG. 2. Circuits for controlled gates U among two nuclear
spins (a) and a nuclear and the electronic spin (b). The gates
A, B, C are defined such that U ¼ ei�AZBZC and ABC ¼ 1,
where Z is a � rotation around z [35]. �� is a phase gate: j0i�
h0j þ j1ih1jei�=2 and the gate � indicates ei�=21.

|ms=1〉

|ms=0〉
ESR

| 〉

| 〉

| 〉
| 〉 4

41
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c1

c4
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c2 e-

FIG. 1 (color online). (a) System model, showing the elec-
tronic spin in red and surrounding nuclear spins. The closest
nuclear spins are used as qubits. Of the bath spins, only the ones
outside the frozen core evolve due to dipolar interaction, causing
decoherence. (b) Frequency selective pulses, in a 3-qubit regis-
ter.

FIG. 3 (color online). rf pulse scheme for 1 nuclear spin gate in
the ms ¼ 1 manifold. With tp ¼ �= �� and fixing c 1 ¼ �� �

and c 2 ¼ �� �, the time delays are t1 ¼ T
2 � tp � t� � �þ�

!

and t2 ¼ T
2 � t� þ �þ�

! . This yields a minimum clock time T �
4�Max ��j;!

j
1
f ���1

j þ ð!j
1Þ�1g.
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the couplings among nuclei, we can solve for the
electronic-spin evolution under an echo sequence. By de-
fining U0 and U1 the propagators in the 0 and 1 manifolds
and assuming the nuclear spins initially in the identity state
(high temperature regime), we calculate the dynamics
of the electronic spin, 	eðtÞ ¼ ½1þ ðj0ih1jfeeðtÞ þ
H:c:Þ�	eð0Þ, where feeðtÞ ¼ Tr½U1U0U

y
1U

y
0 � ¼Q½1� 2sin2ð�j1Þsin2ð!j

1t=2Þsin2ð!Lt=2Þ� is the function

describing the echo envelope experiments [18,25]. Since
in the ms ¼ 0 subspace all the spins have the same fre-
quency, feeð2n�=!LÞ ¼ 0 and the electron comes back to
the initial state. Nuclear spin-spin couplings lead to im-
perfect echo revival and ultimately to decoherence via
spectral diffusion [17]. The energy-conserving flip-flops
of remote nuclear spins modulate the hyperfine couplings,
causing the effective field at the electron to vary in time.
The field oscillations can be modeled by a classical sto-
chastic process. The evolution of the electronic spin is thus
due to two processes that can be treated separately as they
commute: the echo envelope calculated above and the
decay due to a stochastic field, approximated by a cumu-
lant expansion [26]. For Lorentzian noise with autocorre-

lation Gð
Þ ¼ G0e
�ðt=
cÞ we obtain a spin-echo decay

/ e�ð2�2=3
cÞt3 for t � 
c. By using dynamical decoupling
techniques [27] and selecting a cycle time multiple of the
Larmor precession period it is possible to prolong the
electronic coherence. Figure 4 shows how to combine the
electron modulation with the sequence implementing spin
gates. The effectiveness of these techniques relies on the
ability to modulate the evolution on a time scale shorter
than the noise correlation time. The noise of the electron-
nuclear spin system is particularly adapt to these decou-
pling schemes. Consider, for example, the NV center. The
measured electron dephasing T�

2 time is about 1 �s in

natural diamonds [18], as expected from MHz-strong hy-
perfine couplings. The intrinsic decoherence time T2 can
be orders of magnitude longer (T2 * 600 �s), reflecting
the existence of the frozen core, where spin flip flops are
quenched. The frozen core radius is about 2.2 nm [16] and
only spins with hyperfine coupling & 2:5 kHz contribute
to spectral diffusion. Both the inverse correlation time
(given by the nuclear dipolar coupling) and the noise rms
(given by the coupling to the electron) are of order of few
kHz. Dynamical decoupling schemes must thus act on time
scales of hundreds of �s. This in turns sets achievable
constraints on the gate speed.

The time of a conditional single nuclear spin rotation
must be set so that �rf is much less than the frequency
splitting between two neighboring spins (in terms of fre-
quencies). Suppose we want to control an n-spin register
without exciting bath spins at the Larmor frequency. The
minimum frequency splitting between two nuclei in the
ms ¼ 1 manifold will be at best �! ¼ !M

n for nuclear

frequencies equally spaced and !M the maximum
hyperfine-induced effective nuclear frequency. The nuclear
frequency spread due to the hyperfine interaction is then
�EN ¼ nþ1

2 !M. We want the Rabi frequencies to satisfy

the constraints: �Ee � �e � nþ1
2 !M > !M

n � �rf ,

where �Ee ¼ 2g�BBz is the gap to other Zeeman levels
(ms ¼ �1 for the NVc) and �e the �w power. For a
typical choice of 700 G magnetic field, we have �Ee ¼
2 GHz and !L ¼ 0:8 MHz. Assuming, !M 	 20 MHz
and n ¼ 4 spins, we obtain the following parameter win-
dow (inMHz) 2000 � �e � 25,�rf � 5. The gate clock
time can be as short as a few �s, allowing hundreds of
gates in the coherence time.
Since the scheme presented is based on selective

pulses, the dominant (coherent) error is due to off-
resonance effects. If the Rabi frequency is much smaller
than the offset from the transmitter frequency �!, the
off-resonance spin will just experience a shift (Bloch-

Siegert shift) of its resonance frequency, �!BS ¼ �!�
1
t

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rfðtÞ2 þ �!2

p
dt0 	 � �2

rf

2�! ¼ � n�2
rf

2!M
. This results in

an additional phase acquired during the gate time that
needs to be refocused. Note that this error grows with the
register size and constrains �rf . When reducing the Rabi
frequency to achieve frequency selectivity, we have to pay
closer attention to the rotating-wave approximation and
consider its first order correction, which produces a shift
of the on-resonance spin �!RWA ¼ �2

rf=4!M. Other

sources of errors are evolution of bystander nuclear spins
and couplings among spins. More complex active decou-
pling schemes [28,29] can correct for these errors, allowing
to use the ms ¼ 1 manifold as a memory.
Advanced techniques like shaped pulses, with amplitude

and phase ramping, composite pulses [30], optimal control
theory or numerical techniques [31,32] can provide better
fidelity. The analytical model of control serves then as an
initial guess for the numerical searches. Pulses found in
this way correct for the couplings among nuclei and are
robust over a wide range of parameters (such as experi-
mental errors or the noise associated with static fields).
Table I shows the results of simulations in a fictitious NV
system with 1–4 nuclear spins and effective frequencies in
the ms ¼ 1 manifold ranging from 15 to 2 MHz. We
searched numerically via a conjugate gradient algorithm
for a control sequence performing a desired unitary evolu-
tion, varying amplitude and phase of the �w and rf fields.
We then simulated the control sequence in the presence of
noise, with contributions from a large, static field and a
smaller fluctuating one. The projected fidelities in the

FIG. 4 (color online). rf and �w pulse sequence to implement
a 1 nuclear spin gate while reducing the effects of a slowly
varying electronic dephasing noise. The black bars indicate
�-pulses, while the first rectangle indicate a general pulse
around the x axis. 
 ¼ T=8� t�=2 and t’ ¼ ð�þ �Þ=4!.
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absence of experimental errors are very high, a sign that
fast modulation of the electronic spin effectively decouples
it from the bath. Pulse robustness to noise is slightly
degraded as the spin number increases: as the noise induces
a spread of the electron frequency, it becomes difficult to
find a sequence of control parameters that drives the de-
sired evolution in the larger Hilbert space for every elec-
tronic frequency. The fidelity degradation is still modest
and can be in part corrected by increasing the control field
intensity. Combining these pulses with dynamical decou-
pling would provide an efficient way to coherently control
the registers.

The register size is eventually limited by the number of
nuclear spins with hyperfine coupling strong enough to be
separated from the bath. From experiments and ab initio
calculation [33] we expect hyperfine couplings of

130 MHz in the first shell, and then about 50 possible
nuclear sites with hyperfine values from 15 to 1 MHz. Even
if the concentration of 13C is increased (and the nitrogen
nuclear spin used) the size of the register will be limited to
about 10 spins. Still, such registers would be very useful for
memory and error correction purposes.

In conclusion, we have presented a general approach to
the control of small quantum systems comprising an elec-
tronic spin and few nuclear spins in the surrounding spin
bath. We have shown that several of the bath spins can be
isolated and effectively controlled, yielding a few-qubit
register. These registers can be used in proposals for dis-
tributed quantum computation and communication, where
coupling among registers could be provided either via
photon entanglement [15] or by a movable reading tip
[34]. Our control methods enable algorithms needed for
error correction and entanglement purification, while the
nuclear spins provide a longtime memory in the ms ¼ 1
manifold, via active refocusing, and the electron dephasing
is kept under control by dynamical decoupling methods.
We thus develop a modular control scheme, scalable to
many registers and applicable to various physical
implementations.

This work was supported by NSF, ITAMP, DARPA, and
the David and Lucile Packard Foundation.
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TABLE I. Simulated fidelities (F ¼ jTr½Uy
wU�=2Nj2) at the

optimal gate time. The gate is a �=2 rotation about the local x
axis for qubit 1 in a register of 1–4 nuclear qubits. Noise
parameters are T�

2 ¼ 1:5 �s and T2 ¼ 250 �s; maximum �w
and rf Rabi frequencies are 2�� 10 MHz and 2�� 20 kHz. As
expected, the optimal gate time increases with register size,
reflecting both more complex control required in a larger
Hilbert space and weaker hyperfine couplings to distant spins.
We obtained similar results for a CNOT gate between spin 1 and 2.

1 spin 2 spins 3 spins 4 spins

F (ideal) 0.9999 0.9999 0.9992 0.9995

F (noise) 0.9994 0.9995 0.9975 0.9925

time 5:0 �s 5:5 �s 6:0 �s 8:5 �s
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