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Abstract

For more than three decades, research on tunneling through planar barriers has focused princi-

pally on processes that conserve momentum parallel to the barrier. Here we investigate transport

in which scattering destroys lateral momentum conservation and greatly enhances the tunneling

probability. We have measured its energy dependence using capacitance spectroscopy, and we show

that for electrons confined in a quantum well, the scattering enhancement can be quenched in an

applied magnetic field, enabling this mechanism to function as an external probe of the origin of

the quantum Hall effect.
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I. INTRODUCTION

The tendency in semiconductor science and technology has been to strive for materials

with greatly reduced defect density. This has resulted in tunneling devices such as Res-

onant Tunneling Diodes (RTDs)1 and Quantum Cascade lasers2 that require nearly ideal

translational invariance in the plane of the layers to impose lateral momentum conserva-

tion and restrict transport to quantum resonances. There are times, however, when defects

are necessary to observe new effects. A notable example of this is the integer quantum

Hall effect3, in which defects provide the energy states that allow the chemical potential

to lie between Landau levels–a necessary condition for observing the effect. Nevertheless,

the possible utility of non-ideal planar tunneling has been largely overlooked. Experimental

results have suggested4–8 and theory has shown9–11 that under certain conditions tunnel-

ing through planar barriers can be fundamentally altered by electron scattering. Here we

use capacitance-voltage spectroscopy to measure the energy dependence of this scattering-

assisted tunneling and show that the enhancement due to scattering can be quenched in

a magnetic field. By enabling simultaneous measurements of the thermodynamic density

of states and the transport characteristics of a two-dimensional electron gas (2DEG), this

measurement offers a way to probe the origin of the zero-resistance states of the integer

quantum Hall effect using only transport orthogonal to the plane of the 2DEG.

This paper is organized as follows. In Section II we present our method of measuring

the quasi-bound state lifetime and show how this measurement can be used to probe the

energy dependence of electron tunneling. Section III details the sample structure used in

our measurements as well as general constraints on the design of samples dominated by

scattering-assisted tunneling. In Sections IV and V, we present experimental results of

the energy-dependence and magnetic field-dependence, respectively, of scattering-assisted

tunneling. Finally, in Section VI we discuss possible uses and implications for scattering-

assisted tunneling.

II. MEASURING QUASI-BOUND STATE LIFETIME

Our goal is to measure the effects of momentum conservation and non-conservation on

tunneling in planar semiconductor heterostructures. Although the tunneling mechanisms
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we are investigating are also relevant to general tunneling between 3D contacts, the effect

of momentum conservation becomes more apparent when one of the contacts is a 2DEG.

This is because the quantum confinement that defines the 2DEG only allows the momentum

perpendicular to the interfaces to have certain, discrete values. Within each of these 2DEG

subbands, different electron states differ only in their parallel momentum, so monitoring the

tunneling rate while varying the occupation of a subband can provide a direct measurement

of the degree of parallel momentum conservation.

The rate νT at which electrons escape from a 2DEG by tunneling is proportional to

the tunneling probability T , and the inverse of νT defines the quasi-bound state lifetime

τℓ. Using the WKB approximation, valid for barriers of small transparency, the tunneling

probability in the absence of scattering can be calculated as

T0 ≈ exp
(

−2ℓ
√

2m(φ− ε0)/~
)

, (1)

where m is the electron effective mass, ε0 is the 2DEG ground state energy, φ is the height

of the energy barrier, ℓ is its thickness, and ~ = h/2π is Planck’s constant. Note that ε0

is the only relevant energy scale. Neither the (in-plane) kinetic energy εK nor the total

energy ε = ε0 + εK enter in the description of the tunneling process; in the absence of

scattering T is independent of εK . This is a consequence of translational invariance and

conservation of the component of momentum parallel to the tunnel barrier, ~k‖ =
√
2mεK .

Such invariance is an excellent approximation because the correlation length of interface

roughness in state-of-the-art heterojunctions is small compared to the inverse Fermi wave

vector k−1
F = (2πnS)

−1/2, where nS is the 2DEG carrier density.12

In the opposite regime, k‖ is not conserved13 but is instead coupled into perpendicular

tunneling by scattering. This enhances the tunneling probability by redirecting the electron

toward the tunnel barrier, effectively reducing the barrier height by a fraction of the kinetic

energy εK . Meshkov9 showed theoretically that the barrier height reduction reaches the full

value of εK in the limit of a very thick barrier. In such a scenario, the tunneling probability

Tε depends on the total energy ε rather than on ε0 alone and is proportional to:

exp
(

−2ℓ
√

2m(φ− ε0 − εK)/~
)

. (2)

The explicit dependence on εK makes this tunneling mechanism a sensitive function of

transport within the 2DEG.
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In our samples, tunneling occurs between the ground state of a 2DEG and a 3D contact.

(See Figure 1a for an example sample structure.) Tunneling into 2DEGs is responsible

for the characteristic D.C. transport resonances of RTDs and QC lasers; however, D.C.

measurements are not well-suited to characterizing this tunneling, especially the energy

dependence. This is because there is no low-resistance path for electrons to exit the 2DEG

once they tunnel into it. The exit path therefore forms a resistive divider with the tunnel

barrier, and the voltage drop across the tunnel barrier is thus not accurately known. A

similar problem occurs when measuring the capacitance of MOSFETs at high values of

perpendicular magnetic field,14–16 and this difficulty has necessitated sophisticated capacitive

techniques to measure such basic quantities as the density of states of 2DEGs.17
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FIG. 1. (Color online) (a), Schematic conduction band diagram of a typical heterostructure used in

our investigation, shown as the chemical potential µI of the injector is increasing so that electrons

are tunneling through the tunnel barrier (TB) into vacant 2DEG states in the QW. The insulating

barrier (INS) is opaque to tunneling at the values of VDC used in this experiment. (b), Evolution

of µI over time for VAC of frequency f . If τℓ is much longer than the period 1/f , then the 2DEG

cannot charge or discharge fast enough for µ2D to follow µI , and the device capacitance [measured

between the injector and isolated electrode] will decrease. (c), as in (a) but shown with VAC

advanced 1/2 cycle so that electrons are tunneling out of the 2DEG into the injector.

We therefore design the insulating barrier in our samples to block D.C. transport over the

range of D.C. biases VDC used in the experiment. Because the insulating barrier is opaque
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to tunneling, the chemical potential µ2D of the 2DEG is able to come into equilibrium with

the chemical potential µI of the 3D injector layer (assuming only a D.C. bias is applied).

VDC can then be used to control the 2DEG Fermi energy εF and carrier density nS, which

we calibrate using comparison of simulated and measured capacitance-voltage data, as well

as magneto-capacitance measurements.16,17

We probe tunneling in and out of the 2DEG in our samples using the complex, frequency-

dependent impedance of the device. This technique has been used previously to study energy

gaps18–20 and density of states21 in 2DEG systems, as well as tunneling times and density

of states in buried GaAs22 and InAs23,24 quantum dots. We measure the impedance using

a sinusoidal A.C. bias VAC of frequency f , as shown in Figure 1. The amplitude of VAC

is kept small (typically 5mVrms) to cause negligible change in nS. VAC drives the 2DEG

out of quasi-equilibrium from the injector to establish a small chemical potential difference

∆µ = µI − µ2D that oscillates with frequency f and causes electrons to tunnel back and

forth between injector and 2DEG. However, the number of electrons that tunnel before ∆µ

reverses sign is limited by the tunneling rate νT . This results in two frequency regimes of

our device: one for f << νT in which electrons have time to tunnel in and out of the 2DEG

to follow VAC , and another for f >> νT in which they do not. At low f (f << νT ), electrons

in the QW are therefore in approximate quasi-equilibrium with those in the injector, and

∆µ is negligible. VAC is then effectively applied only across the insulating barrier, and the

capacitance is at its highest. At high f , quasi-equilibrium cannot be maintained and VAC

falls across the series combination of the tunnel and insulating barriers, thus lowering the

device capacitance as shown in Figure 2a.

Each impedance-versus-frequency sweep is fitted using the equivalent circuit shown in

Figure 2b. This equivalent circuit is derived from balance of charge within the device,

as detailed in Appendix A. Our fitting procedure is discussed in Appendix B. Within this

equivalent circuit model, the frequency dependence is a result of the series combination of CQ

and RTB, yielding a time constant of τrc = CQRTB. We will discuss the relation between τℓ

and τrc shortly. RTB represents the resistance associated with tunneling through the tunnel

barrier. CQ is the capacitance of the 2DEG–also known as the inversion layer capacitance25

or the Quantum capacitance–and is equal to q2g2DA, where q is the electron charge, g2D

is the 2DEG thermodynamic density of states (TDOS), and A is the device area.26 By

fitting an impedance-frequency sweep using the equivalent circuit shown in Figure 2b, we
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FIG. 2. (Color online) (a), Representative capacitance-frequency curve from an impedance mea-

surement on sample N. (b), Device equivalent circuit that we use to fit measured impedance traces,

thereby allowing us to determine τrc. Fits are made simultaneously to both the active and reactive

impedance components. CQ is the capacitance of the 2DEG and RTB = τrc/CQ is the tunneling

resistance of the TB barrier, yielding an RC time constant of τrc. CTB and CG are geometric

capacitances of the TB and INS barriers, respectively.

can therefore extract both τrc and g2D simultaneously.

To provide insight into the physical meaning of the fitting parameters of our equivalent

circuit, especially τrc, it is worth noting the differences between the analysis used here (based

on Refs. 23 and 24) and the equivalent but distinct approach used by Ashoori et al.18,19,21

Ashoori et al. fit their data to a different equivalent circuit than ours, with the goal of

determining the tunneling conductance GTB = q2gsA/τℓ, where gs is the single-particle

density of states (SPDOS). In their case, they assume τℓ to be constant and all variations

in GTB are attributed to gs. (As we will show later, this assumption is justified for their

sample design.) In our case, we are interested in variations in τℓ, but our measurement does

not determine τℓ itself but τrc. As is detailed in Appendix A, τℓ and τrc are related by

τrc =
g2D
gs

τℓ. (3)

As shown by Ashoori et al., in an applied magnetic field g2D = gs is not generally true, and

in Section V we will discuss how the relative Landau level filling-factor dependence of gs

and g2D nevertheless allow us to qualitatively determine the behavior of τℓ.

It is also worth noting that Eq. 3 allows us to easily obtain the tunneling conductance of

Ref. 18:

GTB =
q2g2DA

τrc
=

CQ

τrc
= R−1

TB. (4)
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The results from this method of determining GTB agree with the results obtained using the

analysis of Ashoori et al., as is also shown in Appendix A. For our purposes, however, τrc

is a more useful quantity than GTB. This is because our goal is to observe changes in τℓ

independent of changes in gs, and the inclusion of g2D, which varies with Landau level filling

factor in a way similar to gs, partially cancels variations in gs in Eq. 3. This makes τrc a less

sensitive function of gs and thus a more accurate approximation to τℓ.

III. TUNNEL BARRIER DESIGN

As Meshkov showed with a rigorous calculation,9 the tunnel barrier morphology is the

aspect of the sample that most directly affects whether or not scattering-assisted tunneling

will dominate. Using a less rigorous but more conceptually simple approach, we can illustrate

the essential physics that determines the characteristics of transport and can design samples

to operate in each transport regime.

In terms of the WKB formulation of Equations 1 and 2, scattering enables the kinetic

energy associated with motion parallel to the QW to be coupled into transport in the

perpendicular direction, thereby increasing the probability that an electron will escape from

the quasi-bound state of a quantum well. However, if the kinetic energy εK is small compared

to the barrier height φ, this increase will be negligible. And even if the increase is significant,

it requires the electron to scatter, which may not occur with sufficient frequency to affect

the transport. The interplay between these factors can be captured in a diagram, shown in

Figure 3, that delineates between types of tunneling transport. To construct the diagram,

we consider tunneling through the idealized square barrier shown in the inset of Figure 3.

The tunneling rate in the case of momentum-conserved tunneling is simply ν0T0, where

ν0 = ε0/h is the tunnel-attempt frequency of an electron in the bound state and T0 is

the tunneling probability calculated according to Equation 1.27 In the case of scattering-

assisted tunneling, the relevant tunneling-attempt frequency is νS, the scattering rate, so the

tunneling rate is given by νSTε, where Tε is the tunneling probability of a scattered electron

given by Equation 2. The transport through the barrier will therefore be dominated by

scattering-assisted tunneling when the following inequality holds:

Tε

T0
≫

1

η
, (5)
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FIG. 3. (Color online) Diagram depicting the energy dependence of the tunneling as a function of

scaled barrier thickness λ = ℓ/ℓ0 and scaled electron kinetic energy ξ = εK/(φ − ε0). For small λ

and ξ (i.e. the lower left, unshaded area of the diagram), transport is predominantly momentum-

conserving and is approximately described by Equation 1. In the opposite regime (shaded region),

transport is dominated by scattering-assisted tunneling and varies with ε, as in Equation 2. Using

Equation 8 and the scaled scattering rate η, one can find values of ξ and λ for which the two

transport mechanisms yield approximately the same tunneling rate (broken line, calculated for

η = 0.1, corresponding to an approximate sheet mobility of 5 × 104 cm2 V−1 s−1 for an InGaAs

QW with a 30meV ground state confinement energy). The overlaid lines indicate the approximate

regimes of operation of several different samples over a range of εK ; only samples S and S2 extend

into the the scattering-assisted tunneling regime. Inset: Partial schematic band diagram of a

sample showing parameter definitions.

where η = νS/ν0 can be thought of as a non-dimensional scattering rate. We wish to

determine the values of barrier height and thickness for which Equation 5 is valid. Using

Equations 1 and 2, we find

1

2
log

(

1

η

)

≪ ℓ

√

2m(φ− ε0)

~

(

1−
√

1−
εK

φ− ε0

)

. (6)

We can now non-dimensionalize this equation to allow easier comparison between systems.

We scale the thickness ℓ of the barrier by the characteristic decay length in the barrier

ℓ0 = ~/
√

2m(φ− ε0), yielding λ ≡ ℓ/ℓ0. We also scale the kinetic energy εK by the effective

barrier height, φ − ε0, giving ξ ≡ εK/(φ − ε0). Using these definitions, Equation 6 can be
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rewritten as
1

2
log

(

1

η

)

≪ λ
(

1−
√

1− ξ
)

, (7)

which can easily be solved for λ:

λ ≫
1

1−
√
1− ξ

log

√

1

η
. (8)

For an electron with scaled kinetic energy ξ undergoing scattering with a scaled scattering

rate η, this equation can be used to estimate of the minimum scaled barrier thickness λ that

is necessary for the transport to be dominated by scattering-assisted tunneling.

Overlaid on the diagram of Figure 3 are the estimated transport characteristics of several

different tunnel barrier designs. As an initial check, we confirm that the tunneling through

the barrier of Ref. 17 is dominated by momentum-conserved tunneling, as was seen exper-

imentally. In the diagram, the expected transport of this sample remains fully within the

regime of momentum-conserved transport for the entire experimental range of εK . In reality,

the sample of Ref. 17 is expected to have a scattering rate η that is orders of magnitude lower

than what is plotted in Figure 3, so it is even less likely that scattering-assisted transport

would be observed in that sample than is suggested by our diagram.

The other samples shown in Figure 3 were designed using the diagram, and the transport

properties of these devices are the focus of this report. Of the relevant characteristics, the

primary difference between samples was the thickness and alloy content of the tunnel barrier;

these differences, as well as those of two other relevant characteristics, are summarized in

Table I. Schematic band diagrams of the samples are shown in Figure 4.

Three samples (N, NU, and NTU) have been designed to exhibit momentum-conserved

tunneling. As in the sample from Ref. 17, the barriers in these samples are relatively

tall and thin, making εK/(φ − ε0) small for the range of εK we can access experimentally

(εK . 30meV). Therefore, as can be seen in Figure 3, we expect these samples to exhibit

momentum-conserved tunneling.

In contrast, the two samples (S and S2) designed to show transport dominated by

scattering-assisted tunneling have relatively short, thick tunnel barriers. This makes the

experimentally-accessible values of εK a significant fraction of the effective barrier height

φ − ε0, leading to a much larger enhancement of the tunneling probability for scattered

electrons at high εK . As a result, the transport characteristics of these two samples cross

into the regime of scattering-assisted tunneling in Figure 3.
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TABLE I. Comparison between samples highlighting the InAlAs/InGaAs alloy fraction of the

tunnel barrier (X), the conduction band offset of the tunnel barrier (∆EC), the thickness of the

tunnel barrier (ℓ), the level of Si δ-doping within the quantum well (δ) as estimated by capacitance-

voltage and magneto-capacitance measurements, and the thickness w of the undoped layer adjacent

to the tunnel barrier.

Sample X ∆EC [eV] ℓ [nm] δ [1011 cm−2] w [nm]

NTU 1.0 0.52 10 0 5

NU 1.0 0.52 13 0 5

N 1.0 0.52 13 1.5 5

S 0.2 0.10 40 2 10

S2 0.25 0.13 40 2 10
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FIG. 4. (Color online) Schematic band diagrams of the samples used in this experiment. The

thickness and alloy composition of the QW and insulating barrier are the same in all samples. (a),

Sample NTU. (b), Samples N and NU (they differ only in QW δ-doping, which doesn’t significantly

affect the diagram on the scale shown here). (c), Sample S. Sample S2 (not shown here) is identical

except that the TB barrier is slightly higher (0.13eV compared to 0.1eV).
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All samples were grown via molecular beam epitaxy, lattice matched to n+ InP substrates.

The relevant structure of the samples was nominally identical except for the parameters

listed in Table I. In order of growth, the structure was: 500nm n+ In0.53Ga0.47As doped

3 × 1018 cm−3 with Si; 5 nm undoped In0.53Ga0.47As; 30 nm In0.53Al0.47As gate barrier; 10

nm In0.53Ga0.47As QW (with or without Si δ-doping in the center); tunnel barrier of thickness

ℓ; undoped In0.53Ga0.47As spacer layer of thickness w; and 300 nm n+ In0.53Ga0.47As doped

3 × 1018 cm−3 with Si. Samples S and S2 included an additional, subsequent layer of 50

nm n+ In0.53Ga0.47As doped 1 × 1019 cm−3 with Si to facilitate making high-conductivity

contacts to the top of the structure.

The samples were patterned using conventional photo-lithographic techniques and were

etched into 200µm-diameter mesas. Contacts to the substrate and top of each mesa were

formed by sputtering ∼10 nm Ti and ∼35 nm Au. The mesa sidewall was insulated with

∼300 nm SiN deposited by plasma-enhanced chemical vapor deposition. The stray capaci-

tance of the contact to the top of the mesa contributed ∼10 pF capacitance in parallel with

the device that was constant with frequency to within 50 fF in our measurement range and

was therefore easily subtracted from the data. We measured device impedance using an

Agilent 4284A LCR Meter.

IV. EXPERIMENTAL RESULTS: ENERGY DEPENDENCE

The presence of scattering-assisted tunneling can qualitatively alter the energy depen-

dence of tunneling, as illustrated in Equations 1 and 2. Here we show how our capacitance

measurement of the τrc enables us to determine this energy dependence, thereby enabling

us to determine the dominant transport mechanism in each of our samples.

As discussed in Section II, the insulating barrier prevents D.C. current flow and allows µ2D

to come into quasi-equilibrium with µI (although quasi-equilibrium is only actually achieved

in the absence of VAC). The D.C. bias VDC , instead of driving a D.C. current, alters nS,

resulting in direct control over εF . Because tunneling in our device occurs predominantly

for electrons with energy near µ2D, these electrons have a kinetic energy εK in the 2DEG

that is approximately equal to εF . Thus, our method gives us direct control over εK (and

parallel momentum ~k‖) of the tunneling electrons, and this enables us to directly measure

the energy dependence of the tunneling by varying VDC.
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A. Capacitance-frequency and capacitance-voltage

A representative series of sweeps of capacitance versus frequency at different VDC is shown

from sample N in Figure 5. Two regimes of bias dependence can be seen in panels a and b

of Figure 5. In Figure 5a, the principal change is an overall shift to higher frequencies for

increasing VDC (and therefore decreasing nS). In Figure 5b, however, VDC becomes large

enough to deplete the QW, reducing the low-frequency limit of the capacitance until the

QW is fully depleted, at which point the capacitance becomes constant with frequency.

(a) (b) (c)
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n
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FIG. 5. (Color online) (a) and (b), Capacitance-frequency data from sample N taken over a

sequence of VDC for T = 4.2K and VAC = 5mVrms. Points are data, lines are fits to data using

the equivalent circuit of Figure 2b. According to our bias convention, nS decreases with VDC . (a),

100mV steps in VDC . The QW is occupied in all traces. (b), 25mV steps in VDC . This range

of VDC depletes the QW, reducing the low-frequency limit of the capacitance. (c), Capacitance-

voltage data from the same device taken at various values of f (lines with symbols). Also shown

are two charge-step simulations of the low-frequency capacitance with different QW δ-dopings:

1×1011 cm−2 (solid line) and 2×1011 cm−2 (dashed line). The abrupt step of the simulations is

not observed in the data because the added impurities make the ground state energy nonuniform

across the sample.

The complementary measurement is shown in Figure 5c, where we report the voltage

dependence of the capacitance at constant frequency. At low frequency (500Hz), the mea-

sured capacitance mimics the energy dependence of the thermodynamic density of states

g2D of the 2DEG, which would be a step function in the absence of impurity-induced sub-

band broadening. For comparison, we show simulations of the low-frequency capacitance

of the device, which were calculated within a charge-step model28 using a self-consistent
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Schrodinger-Poisson solver based on Ref. 29. The only input to these calculations was the

expected sample structure; there were no free parameters. Near VDC ∼ 0V, electrons have

sufficient energy to access the 2DEG, and the capacitance is maximal. As VDC is increased

past ∼ 0.25V, however, ε0 becomes greater than µ2D. Electrons can therefore no longer

access states in the QW, and the capacitance drops.

Also shown in Figure 5c are capacitance-voltage sweeps at higher-frequency. The max-

imal capacitance of these traces is lower than that of the 500Hz trace because VAC is os-

cillating too rapidly for electrons to tunnel between the injector and 2DEG to maintain

quasi-equilibrium between µ2D and µI . As can be seen in panels a and b, even 10kHz is well

above the low-frequency regime of the device. For an oscillation frequency f of 1MHz, there

is negligible tunneling because the tunneling rate is orders of magnitude smaller than f , and

the capacitance therefore has very little dependence on VDC . (This range of VDC leads to

negligible change in the thickness of the depletion region of the 3D regions because of the

high doping level; otherwise some decrease of capacitance with VDC would be expected even

for high frequencies.)

We expect the behavior of samples S and S2 to be dominated by scattering-assisted

tunneling, which should lead to a qualitatively different dependence on VDC in these samples.

This is confirmed in the capacitance-frequency sweeps on sample S shown in Figure 6.

In particular, the roll-off frequency abruptly drops by two orders of magnitude for VDC

near 210mV. Also, the capacitance-frequency trace taken in the middle of the transition at

VDC = 210mV [the trace labeled (a) in Figure 6] is not as well described by the equivalent

circuit as the traces taken at VDC higher or lower by∼ 30mV. In sample N, in comparison, the

equivalent circuit describes the data accurately for all values of VDC . To more quantitatively

analyze these effects, we extract the values of τrc that result from the fits. These are plotted,

along with data from samples N, NU, and NTU, in Figure 7.

B. Quasi-bound state lifetime versus energy

The values of τrc in Figure 7, obtained from fits to the capacitance-frequency curves of

Figure 6, are plotted versus εF , which was determined for each sample from calibrations

of nS versus VDC , as described in Section II. Data from all samples are shown, except for

sample S2, which is omitted for clarity. Also plotted are calculations (labeled ‘Calc’) of
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FIG. 6. (Color online) Capacitance versus frequency data from sample S at 5K, VAC = 5mVrms,

and 10mV increments of VDC . Points are data, lines are fits using the equivalent circuit model

of Figure 2. At VDC = 270 mV, the QW is almost fully depleted. As VDC is decreased, states

in the QW become available, thus increasing the low-frequency capacitance, although the roll-

off frequency remains relatively constant. As VDC is decreased near the conditions of trace (a)

[VDC = 210 mV], the roll-off frequency of the device abruptly increases by two orders of magnitude

as a result of the onset of scattering-assisted tunneling. The maximum frequency accessible with

our LCR Meter is 1MHz.

τℓ for momentum-conserved tunneling that are described in Appendix C. Because there is

no applied magnetic field, it is reasonable to assume gs ≃ g2D (at least at high nS), and

thus we should be able to directly compare these calculations of τℓ with the measured τrc.

These calculations are self-consistent and include effects such as band bending, wavefunction

penetration into the barriers, and position- and energy-dependent effective mass. Equation 1

provides a simple, intuitive framework through which we can interpret the general features of

the data and numerical calculation. While εK does not explicitly enter into the description

of tunneling in Equation 1, the calculations of τℓ shown in Figure 7 increase with εF . This is

because both ε0 and, to a lesser extent, the tunnel barrier potential energy φ must decrease

relative to the potential energy of the injector to accomodate an increase in nS in order

to satisfy the Pauli exclusion principle. The effective barrier height φ − ε0 of Equation 1

therefore has an indirect dependence on εF , causing τℓ to increase with εF in the calculations.

This effect is more pronounced in the calculation of sample S because of its thicker tunnel

barrier.

As is evident from Figure 7, measured τrc from samples N, NU, and NTU all agree
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FIG. 7. (Color online) τrc versus εF . Lines with symbols are data; lines without symbols are

calculations of scattering-assisted (Eq2) and momentum-conserved (Calc) tunneling. Data from

samples N, NU, and NTU all show increasing τrc with εF , in agreement with their respective

calculations of momentum-conserved tunneling. (The calculation of NU was nearly identical to

that of N and is omitted for clarity.) In contrast, measured τrc in sample S decreases with εF . The

calculation including scattering-assisted tunneling (S:Eq2) is a much better description of the data

than the calculation of momentum-conserved tunneling (S,Calc). T=5K for sample S; T=4.2K for

all others. VAC=5mVrms.

with their respective momentum-conserved calculations of τℓ. This is in agreement with the

expected transport behavior of these devices from Figure 3. In contrast, for sample S the

data and the momentum-conserved calculation do not agree. In this sample the measured τrc

actually decreases with εF , indicating that, in agreement with the predictions of Section III,

the tunneling in this sample is dominated by scattering-assisted tunneling.

We can use Equation 2 to predict the energy dependence (that is, the slope of the line in

Figure 7) of the scattering-asisted tunneling lifetime for sample S. (Note that this estimate

assumes that the scattering rate νS is constant with energy; we will discuss the additional

energy dependence of νS below.) The slope of this estimate (S:Eq2) is slightly steeper than,

but a reasonable approximation of, the slope observed experimentally. The magnitude of

the estimate (i.e., the vertical position of the line) is proportional to the scattering time

τs = 1/νS:

τℓ = α
τs
TS

, (9)

where α is an unknown proportionality constant. We can estimate what we would expect for
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τs from the Lorentzian half-width of the Landau levels30 (not shown). The halfwidth (Γ) is

approximately 3 meV and is approximately independent of field (as in Ref. 30). This yields

τs = ~/Γ ∼ 2× 10−13 s. The other parameter from Equation 9, α, is unknown, so we simply

use it as a fitting parameter. The results shown in Figure 7 are achieved for α = 0.005. To

gauge whether this value for α is reasonable, we note that a similar expression for τℓ is true

of the momentum-conserved approximation from Equation 1: τℓ = β/ν0T0, where ν0 = ε0/~

is the semiclassical tunneling attempt frequency and β is some unknown proportionality

constant. Agreement with experiment requires β ∼ 0.01, in approximate agreement with α.

As discussed in Ref. 9, Equation 2 provides an estimate of the tunneling probability in

the asymptotic limit of a very thick barrier. Although the TB in sample S is only 40nm,

this estimate provides a good description of the energy dependence of τrc, at least over a

large range of εF . For εF near 0 meV, however, τrc changes abruptly by two orders of

magnitude. We believe this change is due to two effects not captured by Equation 2: the

possible formation of a Coulomb gap in the single-particle density of states at low nS
19 and

the energy dependence of νS.

The formation of a Coulomb gap would increase the ratio g2D/gs, leading, via Equation 3,

to an increase τrc. However, we do not expect the formation of a Coulomb gap to cause

g2D/gs to increase by nearly two orders of magnitude (one order of magnitude or less would

be more consistent with previous results19). Our results therefore suggest that νS has a

strong energy dependence near ε0, regardless of whether a Coulomb gap is formed.

In general, νS represents a sum of individual processes such as impurity, alloy, electron-

electron, and electron-phonon scattering. These various scattering mechanisms each depend

on quantities such as εK or temperature, and thus τrc will also depend on these quantities

in samples dominated by scattering-assisted tunneling. This offers a possible explanation

for the abrupt change in τrc that occurs at low εF . For low nS (and thus low εF ), the non-

uniformities in potential energy that occur across the device become large compared to εF

(which is simply an average value across the device), and as nS is further decreased, carriers

in the QW can become strongly localized in isolated “pockets” of electrons.31 Well-width

fluctuations of a single monolayer (∼0.6 nm) have been shown to lead to such localization

in thin QWs,32 and in our system additional potential fluctuations result from the QW δ-

doping. Once the electrons are strongly localized, the system is said to have undergone a

metal-insulator transition.31,33
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If the electrons are localized to effectively zero-dimensional quantum dots, then the den-

sity of states available for scattering will be restricted and scattering will be quenched,

leading to a large decrease in the tunneling rate through the barrier. In this case, τs should

increase greatly as the QW is depleted. As τs increases, so should τrc, but only in devices

dominated by scattering-assisted tunneling. Although we can only speculate as to the scale

of localization in our devices and whether it is sufficiently small to quench scattering in our

devices, we do observe such an abrupt increase as the QW is depleted, but only for samples

S and S2. These two samples are also the only two we measured in which τrc decreases with

εK , the hallmark of transport dominated by scattering-assisted tunneling.

Because this localization will not occur uniformly across the device, we also expect it

to alter the line shape of the frequency-dependence of the capacitance. As scattering is

quenched in some regions of the device and not in others, large variations in τrc will occur

across the device. The characteristic capacitance roll-off that we observe from a single value

of τrc will be broadened by the distribution in τrc, as is observed for trace (a) in Figure 6.

This could therefore also explain the poor agreement between this trace and the fit using

our equivalent circuit model.

A similar form of localization-induced quenching of scattering occurs in the presence of

a perpendicular magnetic field; it is the origin of the quantum Hall effect.3 As we show in

the following section, the samples dominated by scattering-assisted tunneling also display

abrupt increases in τrc at the specific values of VDC and magnetic field at which the integer

quantum Hall effect is observed in lateral transport measurements.

V. EXPERIMENTAL RESULTS: MAGNETIC FIELD DEPENDENCE

Our measurements of the energy dependence of scattering-assisted tunneling suggest that

localization can quench scattering within the 2DEG and cause τrc to increase by orders of

magnitude. To further probe this possibility, we apply a magnetic field perpendicular to the

plane of the 2DEG. This leads to localization effects that are periodic in 1/H , where H is

the applied magnetic field: at integer values of the filling factor ν = nSh/qH , electrons at

the chemical potential are unable to scatter into counter-propagating states because they are

trapped in edge states or along local equi-potentials. This localization leads to quenching of

the scattering within the 2DEG and is the origin of the integer quantum Hall effect.3
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At even integer ν, the same values at which the integer quantum Hall effect is most

readily observed, τrc increases drastically in samples S and S2, as shown in Figure 8a. This

effect only occurs in samples that show the zero-field energy dependence characteristic of

scattering-assisted tunneling. Because these peaks in τrc only occur at specific values of H

corresponding to even integer ν within the 2DEG, and because they are only present in

samples dominated by scattering-assisted tunneling, we believe they result from quenching

of the scattering within the 2DEG by the same mechanism that causes the integer quantum

Hall effect, magnetic field-induced localization.
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FIG. 8. (Color online) Simultaneous measurements on samples N, S, and S2 of the magnetic

field dependence of (a), the quasi-bound state lifetime (τrc) and (b), the 2DEG thermodynamic

density of states (g2D) at T=1.85K. VDC was held constant to give nS ≃ 4.78 × 1011 cm−2 in all

samples at H=0T. Values of H corresponding to filling factors ν=4, 6, and 8 are indicated with

dotted lines. (a), At ν=4, suppression of the scattering-assisted tunneling increases τrc by orders

of magnitude in samples S and S2. The features at ν=6 and 8 are less pronounced because the

Landau level splitting is smaller at lower H. (b), We also see pronounced dips in g2D at even

integer ν, indicating that all three samples show the expected formation of Landau levels. The

Fit represents the expected behavior of g2D as calculated according to Ref. 34 with a Landau level

half-width of ΓLL =(1.22meV/T1/2)
√
H.
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As can be seen in Figure 8b, all of the samples show similar quantization of g2D into

Landau levels. These values of g2D were determined simultaneously with τrc from fits using

the equivalent circuit of Figure 2 (recall that g2D is proportional to CQ). The values we

measured agree well with previous magneto-capacitance measurements.16 Additionally, there

is quantitative agreement between our results and the model given in Ref. 34. This model

represents g2D as a sum of Gaussian Landau levels of rms half-width ΓLL. As in Ref. 34, we

find best agreement when ΓLL is proportional to
√
H. Our best-fit prefactor of 1.22meV/T1/2

is significantly larger than theirs (1meV/T1/2), which is consistent with our samples having

a significantly lower mobility. The best-fit value of the effective mass is equal to the bulk

value of 0.043m0;
35 as expected, the mass enhancement due to non-parabolic bands in the

QW is minimal because the wavefunction extends far into the quaternary barrier where non-

parabolicity decreases the effective mass.36 Because these values of g2D agree quantitatively

with both predicted values and previous measurements and were obtained simultaneously

with τrc from the fits using the equivalent circuit, we can be confident that the peaks in τrc

in Figure 8a are real variations in τrc and are not simply the result of errors in fitting or

analysis.

In sample N, the measured g2D is slightly noisier than in samples S or S2; this is due to

the significantly thinner TB in sample N, which results in a smaller change in capacitance

as the QW is depleted. Also, the low-field value of g2D in sample N is slightly larger than in

samples S and S2. This difference corresponds to an effective mass that is ∼ 10% larger in

sample N, which is due to non-parabolic band enhancement of the effecive mass for stronger

confinement within the QW. The size of this enhancement is consistent with that observed

in cyclotron resonance measurements on similar structures.37

There are two small dips in g2D in samples S and S2 adjacent to the minimum at ν=4;

these are fitting artifacts that occur because τrc is varying rapidly, leading to significant

variations across the device and poor fits using the equivalent circuit, as in trace (a) of

Figure 6. The fits (and hence values of g2D) at ν=4 are more accurate because dτrc/dH=0

at the local minimum.

We also observed a strong temperature dependence of the peaks in τrc. Although we

have not yet made a thorough investigation of this dependence, we note that for the peak

at ν=4 in sample S in Figure 8a, τrc decreased by an order of magnitude as the temperature

was raised from 1.85K to 5K. Values of τrc adjacent to but off of the peak stayed relatively
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constant at τrc ≃ 1µs.

The data shown in Figure 8 were taken by sweeping H at a single fixed value of VDC . The

complementary measurement, sweeps of VDC at fixed H were also performed, an example of

which is shown from sample S at higher temperature (T=5 K) in Figure 9a. Note that the

peak in τrc at ν = 4 is an order of magnitude smaller than the corresponding in Figure 8,

which was measured at T= 1.85 K.

To confirm that the features we observe are correlated with Landau level filling, we

peformed several sweeps versus VDC and H . The locations of the peaks in τrc were recorded

in a fan diagram, as shown in Figure 9. Also shown are the locations of minima in magneto-

capacitance traces, which have been shown to be related to minima in the density of states

between Landau levels.38 The slopes of the least-squares fits yield estimates of ν that confirm

that the effect we observe occurs at even integer ν. We see an additional smaller peak in

τrc that appears to be related to ν=1, although additional measurements at higher H are

needed to make a more accurate characterization of the feature. There is no intrinsic reason

that peaks in τrc should not also appear at odd ν; however, as in the quantum Hall effect,

features at odd ν require the electrons to become spin-polarized and therefore typically

appear at higher H than features at adjacent even values of ν.3 The onset of these features

may be further delayed by the strong disorder in our system.39

Few mechanisms other than quenching of the scattering seem adequate to explain the

observed peaks in τrc. The formation of a field-induced Coulomb gap (that is, a decrease

in gs) has been observed in 2D systems such as ours,18,19,40 and this would modify τrc via

Equation 3. However, τrc also depends on g2D, which has been shown to vary much more

strongly with Landau level filling factor ν than does gs.
18 As a result, the ratio g2D/gs should

vary with ν in a way qualitatively similar to g2D, with possibly a addional slowly-varying

change due to gs. We therefore expect that if τℓ were constant, we should observe dips in

τrc at even integer ν. This is what is observed in sample N in Figure 8 as well as in sample

NU in Figure 10. (Incidentally, this validates the analysis of Ashoori et al.,18,19 in which τℓ

is assumed to be constant). Such dips are also observed in samples S and S2 in Figure 8

at low H and in the regions adjacent to even integer ν at higher H . This suggests that

that the effects of g2D and gs are similar in all of the samples, as is expected since it is a

characteristic of the 2DEG (the characteristics of which are nominally identical in all the

samples) and not of the tunnel barrier.
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FIG. 9. (Color online) Measurements of sample S in magnetic field versus VDC at T=5 K. (a), τrc

and g2D plotted on the same scales as Figure 8. The peaks in τrc are labeled with the corresponding

value of ν. Note that this data was acquired at higher temperature than that in Figure 8. (b), Fan

diagram of maxima in τrc (circles) and minima in magneto-capacitance measurements (squares).

Dashed line illustrates the region of the diagram corresponding to the sweep in (a). Solid lines are

least-squares fits and are labeled with their corresponding Landau level filling factor ν. All lines

do not intersect at the same value of VDC because the carrier density nS is not strictly linear with

VDC for nonzero H (see Ref. 17 for a thorough discussion of this effect and Ref. 38 for a similar

fan diagram).

Furthermore, the temperature dependence of gs has been shown to be independent of ν.

In sample S, in contrast, we observed that the peaks in τrc (which occur at even integer ν)

were strong functions of temperature in the range 1.85-5K, whereas values of τrc adjacent

to but off of the peaks stayed relatively constant.

The scale of resistance change we observe also does not seem consistent with the presence

of weak points or defects in the tunnel barrier. Such defects would have a much lower
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tunneling lifetime than the rest of the QW, leading to significant lateral current spreading

within the quantum well that would be suppressed at even integer ν and low nS. However,

it is clear from the frequency dependence of the impedance in sample S at ν=4 (plotted in

appendix B) that the fractional area occupied by weak points is a few percent or less. This

implies that the conductivity of the weak spots must be at least four orders of magnitude

larger than that of the rest of the barrier to explain the 100-fold increase in conductivity

away from integer ν. It seems implausible that such a large variation in tunnel barrier

conductivity would occur systematically across multiple devices in high-quality MBE-grown

material. Moreover, samples with thin tunnel barriers (N, NU, and NTU), which would

seem most prone to growth problems such as dopant diffusion, never exhibited the large

spikes in τrc that were observed in samples S and S2. Furthermore, such highly conducting

defects were not observed in the insulating barriers of samples S and S2, and the quaternary

barriers in those samples were grown as a digital alloy of ternary layers (1.5 nm superlattice

period) in order to avoid any problems specific to the growth of quaternary alloys.

Another aspect of our data that cannot be explained by defects in the tunnel barrier is

the dependence of τrc on nS in samples S and S2 at zero magnetic field. If our measurement

were probing the tunneling resistance of a defect and scattering-assisted tunneling were not a

factor, then the tunneling lifetime should increase with nS as in the control samples, which

is not what we observe. On the other hand, it would also be immediately evident if the

defect had negligible resistance and we were probing the lateral resistance of the quantum

well (i.e. current spreading from the weak point, which would become more conductive

with nS and therefore at first glance might seem to explain our data). In that case the

effective/active area of the 2DEG would become frequency-dependent, resulting in very

poor agreement with our equivalent circuit model, and the measured 2DEG thermodynamic

density of states would become strongly dependent on carrier density, which we also do not

observe.

We therefore conclude that our samples behave as designed: the control samples (N, NU,

and NTU) are dominated by direct tunneling, whereas samples S and S2 are dominated by

scattering-assisted tunneling that can be quenched at even integer ν and at low nS.
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VI. OUTLOOK

As we have shown, it is possible to utilize scattering-assisted tunneling as a novel, non-

local probe of lateral transport within a 2DEG. This opens the door to several new re-

search directions, such as probing the onset of localization in 2DEGs in the form of Wigner

crystallization41 or Anderson localization31 at low nS in zero magnetic field, where sample

resistance becomes too high for lateral transport measurements. It may also enable the

investigation of electron scattering within the interior of quantum spin Hall systems, which

have recently shown edge state transport similar to the quantum Hall effect at zero magnetic

field.42

At non-zero magnetic field, further measurements are needed to explore the dependence

on temperature and carrier density of scattering-assisted tunneling at integer ν. At lower

temperatures and higher magnetic fields, it is also possible that this technique could be used

to probe the fractional quantum Hall effect. However, proper sample design will be critical

because the fractional quantum Hall effect is only observable in high-mobility samples43

where there is little scattering to cause scattering-assisted tunneling. Also, at lower temper-

atures it is unclear whether the Coulomb gap18 will become so large as to be an impediment

to our A.C. measurement technique. However, it is possible that our approach is more sen-

sitive to scattering than lateral transport measurements, which could enable measurements

of localization in regimes of mobility and temperature that do not exhibit localization in

lateral transport measurements.

Beyond characterization of scattering in 2DEGs, there are other conceivable applications

for scattering-assisted tunneling. For example, a device dominated by scattering-assisted

tunneling could yield spin-polarized transport if the scattering were spin-dependent. The

design of the tunnel barrier would greatly enhance the tunneling rate of scattered electrons

(as it does in samples S and S2), thereby functioning as a filter for scattered electrons.

If carriers of only one spin species were scattered, then the tunnel current would be spin-

polarized.

In sum, we have directly measured the energy dependence of transport dominated by

scattering-assisted tunneling and demonstrated its sensitivity to scattering within a buried

2DEG. By making transport in one direction a function of transport in other directions,

scattering-assisted tunneling offers a unique coupling that will undoubtedly find additional
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applications.
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Appendix A: Derivation of Equivalent Circuit

There are two popular approaches that can be used to analyze capacitive devices like ours,

with the primary difference between the two being the treatment of the capacitance of the

2DEG (which we will call the quantum capacitance CQ following Ref. 26). In the treatment

of Ashoori et al.,19 for example, the device is modeled with an equivalent circuit that does

not explicitly include CQ, and CQ (or, equivalently, the 2DEG thermodynamic density of

states) must be calculated separately. In the analysis of Luyken et al.,24 CQ is treated

explicitly. While the two methods of analysis are ultimately equivalent, it is important to

not confuse the two approaches. For example, the lifetime τrc = RTBCQ that we extract

from our equivalent circuit is not able to be described using the equivalent circuit of Ashoori

et al. because that circuit does not include CQ.

Both approaches begin with an equation (Eq. 1 in Ref. 24 or Eq. A4 in Ref. 19) describing

the tunneling current between the injector and the 2DEG:

dσ2D

dt
=

1

τℓ
qgs∆µ, (A1)

where σ2D = qnS is the charge density in the QW, τℓ is the quasi-bound state lifetime of

the QW, gs is the 2DEG single-particle density of states (which governs the tunneling rate),

and ∆µ = µI − µ2D is the chemical potential difference between the injector and 2DEG.

We calculate the electrostatic response of the device, following the analysis of Luyken et

al., as

qg2D∆µ = −∆σ2D + q2g2D∆φ, (A2)
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where ∆σ2D is the net difference between σ2D and its time-averaged value; and ∆φ is the

change in electrostatic potential between the injector and QW, which accounts for both the

effects of electron charging in the QW and the applied bias VAC = V0e
iωt. Note that the

thermodynamic DOS g2D is the relevant quantity here. Without loss of generality, we can

define s such that s = gs/g2D. Mutiplying both sides of Equation A2 by s and plugging into

Eq. A1, we arrive at

dσ2D

dt
=

d∆σ2D

dt
= −

s

τℓ

(

∆σ2D −
CQ

A
∆φ

)

, (A3)

where CQ = q2g2DA for device area A.

The difference between the electric fields in the tunnel barrier and insulating barrier is

proportional to the sheet charge of the 2DEG, which allows us to find ∆φ:

∆φ =
CG

CTB + CG

V0e
iωt −

A

CTB + CG

∆σ2D, (A4)

where CTB and CG are the geometric capacitances of the tunnel barrier and insulating

barrier, respectively. Defining τrc = τℓ/s, we arrive at the non-homogeneous differential

equation

d∆σ2D

dt
+

1

τrc

(

1 +
CQ

CTB + CG

)

∆σ2D

=
1

τrc

CGCQ

CTB + CG

V0

A
eiωt, (A5)

which has the solution

∆σ2D =
V0

A
eiωt

CGC
∗
Q

CTB + CG + C∗
Q

, (A6)

where C∗
Q = CQ/(1 + iωτrc). Using Eq. A4, it is trivial to find ∆σI , the charge density

change on the injector:

∆σI =
CTB

A
∆φ =

CTB

C∗
Q

∆σ2D . (A7)

Note that in the limit τrc → 0 this relation reduces to ∆σI/∆σ2D = CTB/CQ, consistent

with the calculation of Luryi.26

We thus arrive at the equation determining the current response of the device:

I(t) = A
d

dt
(∆σ2D +∆σI)

= iωV0e
iωtCG

CTB + C∗
Q

CTB + CG + C∗
Q

, (A8)

25



which is equivalent to that of the circuit shown in Figure 2, provided that RTB = τrc/CQ.

In Figure 10a, we compare this analysis with that of Ashoori et al.,18,19 in which they use a

different equivalent circuit (but equivalent overall analysis) to find the tunneling conductance

GAshoori
tun = q2Ags/τℓ. By our analysis, this is given by GTB = CQ/τrc. It is apparent from

the close agreement of the two traces that these two analyses are equivalent.

Figure 10b provides a visual description of why we observe dips in τrc at even integer ν

in samples with momentum-conserved tunneling.
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FIG. 10. (Color online) Tunneling conductance calculated by two equivalent models (top panel)

and the components of τrc (bottom panel) plotted versus VDC for sample NU at H = 6 T and T=5

K. The comparison between our analysis technique and that of Ashoori et al. (top panel) shows

that the two yield almost identical results. The pronounced dips in GTB that occur at ν = 2 and

4 reflect dips in gs. These appear as peaks in the plot of G−1
TB (bottom panel). The plot of τrc

nevertheless exhibits dips at ν = 2 and 4 because the dips in CQ at these values of VDC are more

pronounced than the peaks in G−1
TB .
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Appendix B: Fitting

The fitting of the complex impedance using the equivalent circuit of Figure 2b was done

using the leasqr function of the mathematical software package Octave. We obtained identi-

cal results using the Fortran library MINPACK from within the statistical software package

R. CG was held fixed at an estimated, bias-dependent value during fitting. Using Eq. A8, we

fit the impedance of the device using CQ and τrc = RTBCQ as free parameters rather than

CQ and RTB independently. The 95% confidence interval of the fit parameters was typically

less than 10% of their value. Error in estimated CG leads to additional uncertainty in τrc

(∼ 10%) but such error results in a systematic shift in τrc and does not significantly affect

our analysis.

Example fits from samples N and S are shown in Figure 11. It is evident that the equiv-

alent circuit provides an accurate description of device behavior in both cases. Figure 11a

shows sample N (a control sample) under conditions of zero magnetic field and zero applied

bias. In Figure 11b and c, data is shown from sample S over a range of ν including ν = 2.

At ν = 2, lateral transport within the 2DEG is suppressed, quenching scattering. These

conditions also serve to isolate any conductive defects in the barrier, preventing current

fan-out from the defect within the QW. Thus, if a significant area of the tunnel barrier were

defective, it would be manifested as a significant broadening of the frequency dependence in

Figure 11b and c. Although the fits are not perfect, they are closer than would be possible

if even a few percent of the area of the tunnel barrier were defective. The slight broadening

that is observed (relative to the fit to the equivalent circuit) is not surprising; any areas of

the sample in which scattering has not been fully quenched at 6T will tunnel with a faster

rate. Supporting this interpretation is the observation that the quality of the fit at ν=2

continually improves as H is increased to 6T, the maximum field attainable in our system,

and we therefore expect that the quality of the fit would be even better at higher magnetic

fields. Also, because of the large QW impurity concentration in this sample, the Landau

levels have are not fully formed, g2D is still measureably large at ν = 2, and thus even at

ν = 2 there is a capacitance step at low f . Over the plotted range of VDC , g2D changes by

slightly more than a factor of 6.
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FIG. 11. (Color online) Measured capacitance and loss tangent versus frequency (symbols) and fits

to both components of the data simultaneously using the equivalent circuit of Figure 2b (lines).

(a), Sample N measured at H = 0T, VDC = 0V, T = 4.2K. (b) and (c), Sample S measured at a

variety of VDC with T = 5 K and H = 6 T. The bias VDC=30 mV corresponds to ν = 2; VDC=-60

mV corresponds to mid-way between ν = 2 and 4.

Appendix C: Calculation of τℓ in the absence of scattering

We can compare our measured values of τrc with theoretical estimates of τℓ, which we

calculate in the absence of scattering using the energy width Γ of the quasi-bound state

resonance. First we found the self-consistent potential energy profile of our device using

a conventional Schrödinger-Poisson solver based on Ref. 29. This calculation finds the

quasi-equilibrium distribution of charge across the device, accounting for such effects as

conduction band bowing within the QW and wavefunction penetration into the barriers.
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Using the equilibrated conduction band profile, we then solved the Schrödinger equation for

the entire device (including the 3D conducting contacts, which enter as self-energies) using

a non-equilibrium Green’s function (NEGF) formalism within a single-band effective mass

model. Generally we followed the treatment of Refs. 44 and 11. It should be noted that

the plane-wave eigenstate basis was used for the transverse directions and no transitions

between states of different k‖ were allowed, thereby ensuring momentum is conserved in

the plane of the QW.45 [We did not use the NEGF formalism to find the self-consistent

conduction band profile because the width of our quasi-bound state resonance is so small

that the calculation would have had to been performed at a prohibitively large number of

energies.] The NEGF calculation determined the spectral function A(z, z′, εz) of the device,

where εz is the energy associated with motion in the z-direction. The diagonal elements of

A (elements for which z = z′) are proportional to the density matrix of the system.44 For

energies near the quasi-bound state resonance, the energy dependence of A(z, z, εz) for z in

the center of the QW can be approximated with a Lorentzian function:

A(zQW , zQW , εz) =
α

(εz − ε0)
2 + (Γ/2)2

, (C1)

where ε0 is the energy of the center of the resonance, Γ is its characteristic width, α is a

proportionality constant, and z = zQW in the center of the QW.44 We extract Γ from the

calculation of A by fitting A with the function in Equation C1. Typical values for Γ were

of order 10−11 eV. The tunneling rate 1/τℓ is related to the width of the quasi-bound state

resonance by 1/τℓ = Γ/h,46 which allows us to easily find τℓ.

Adding scattering to this calculation is not trivial because once the quasi-bound state

is ‘dressed’ by scattering interactions, it will in general no longer have a Lorentzian energy

profile,47 and τℓ = h/Γ will no longer hold. Well-developed methods11,44,45 of calculating

transport in the presence of scattering typically treat only steady-state transport, which

is negligible in our devices. Although fully quantum mechanical calculations of scattering-

assisted transport in our device are clearly needed, they are outside the scope of our exper-

iment.
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