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ABSTRACT
A central challenge in human computation is in understand-
ing how to design task environments that effectively attract
participants and coordinate the problem solving process. In
this paper, we consider a common problem that requesters
face on Amazon Mechanical Turk: how should a task be de-
signed so as to induce good output from workers? In posting
a task, a requester decides how to break down the task into
unit tasks, how much to pay for each unit task, and how
many workers to assign to a unit task. These design deci-
sions affect the rate at which workers complete unit tasks,
as well as the quality of the work that results. Using im-
age labeling as an example task, we consider the problem of
designing the task to maximize the number of quality tags
received within given time and budget constraints. We con-
sider two different measures of work quality, and construct
models for predicting the rate and quality of work based
on observations of output to various designs. Preliminary
results show that simple models can accurately predict the
quality of output per unit task, but are less accurate in pre-
dicting the rate at which unit tasks complete. At a fixed
rate of pay, our models generate different designs depending
on the quality metric, and optimized designs obtain signifi-
cantly more quality tags than baseline comparisons.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; J.m [Computer Applications]: Miscellaneous
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1. INTRODUCTION
In recent years there has been growing interest in the use

of human computation systems for coordinating large-scale
productive activity on the Internet. For example, a peer-
production system like Wikipedia attracts tens of thousands
of active editors that make millions of edits each month [13].
A game with a purpose like the ESP game attracts hundreds
of thousands of players to label tens of millions of images
through gameplay [12]. A crowdsourcing marketplace like
Amazon Mechanical Turk allows requesters to post thou-
sands of arbitrary jobs for hire each day, and attracts over
a hundred thousand workers to complete these tasks [7].

A central challenge in designing human computation sys-
tems is in understanding how to design task environments
that can effectively attract participants and coordinate the
problem solving process. At a high level, the design of a hu-
man computation system consists of two components. One
component is the design of incentives—social rewards, game
points, and money—that help to attract a crowd and to en-
courage high quality work. The other component is the or-
ganization of individuals—the selection of participants, the
assignment of subtasks, and the design of hierarchies—that
help to usefully harness individual efforts to advance a sys-
tem’s purpose. In designing the environment for a particular
task, the goal of the designer is to maximize the rate and
quality of output, while minimizing costs.

In this paper, we consider a common problem that re-
questers face on Amazon Mechanical Turk: how should a
task be designed so as to induce good output from workers?
The problem exemplifies both the incentive and organiza-
tional aspects of the design challenge: in posting a task,
a requester decides how to break down the task into unit
tasks (called HITs, for human intelligence tasks), how much
to pay for each HIT, and how many workers to assign to
a HIT. These design decisions may affect the rate at which
workers view and complete unit tasks, as well as the quality
of the resulting work.

There are a number of challenges in effectively designing
a task for posting on Mechanical Turk. The most notice-



able problem is that the effect of design on the rate and
quality of work is often imprecisely known a priori, and
likely dependent on the particular task and quality metric
specified. While a designer may have some prior knowledge
and be able to experiment with different designs, the design
space is exponential in the number of design parameters and
the number of experiments that can be performed is small.
Furthermore, Mechanical Turk is inherently noisy, and any
measurements obtained are affected in part by system con-
ditions. Moreover, some statistics of interest, such as the
number of currently active workers looking for tasks to per-
form, are unobservable by the requester.

In this work, we introduce a general approach for auto-
matically designing tasks on Mechanical Turk. We construct
models for predicting the rate and quality of work. These
models are trained on worker outputs over a set of designs,
and are then used to optimize a task’s design. We demon-
strate our approach on an image labeling task, for which we
aim to maximize the number of quality labels received within
a given amount of time, subject to budget constraints. We
consider two measures of quality: one based on the number
of distinct labels received, and another based on the num-
ber of distinct labels received that match an external gold
standard.

Experimental results show that simple models can accu-
rately predict the output per unit task for both quality met-
rics, and that the models generate different designs depend-
ing on the quality metric we care about. For predicting
the rate of work, we observe that a task’s completion time
is correlated with the amount of work requested per dol-
lar paid, and depends on the time during the day when a
task is posted. But despite these effects, we find that the
task completion time is nevertheless difficult to predict ac-
curately and can vary significantly even for the same design.
Focusing on using the quality prediction models for design,
we find that for the same budget and rate of pay, optimized
designs generated by our models obtain significantly more
quality tags on average than baseline comparisons for both
quality metrics.

1.1 Related work
Recent works have explored the effect of monetary incen-

tives on worker performance on Mechanical Turk. Through a
set of experiments, Mason and Watts [6] show that increas-
ing monetary incentives induces workers to perform more
units of a task, but does not affect the quality of work. In
our image labeling task, we find that the quality of work can
be accurately predicted without factoring in compensation.
While related, our results are based on varying the task de-
sign and not the incentives for a particular design, and thus
do not confirm or reject their claim. Focusing on labor sup-
ply, Horton and Chilton [2] study the effect of incentives on
attracting workers to perform (multiple) HITs, and provide
a method for estimating a worker’s reservation wage.

Other works have considered designing Turk tasks by or-
ganizing workers and aggregating output. Snow et al. [10]
consider a number of different natural language annotation
tasks, and show that annotations based on the majority
output among a group of Turkers is comparable in qual-
ity to expert annotations, but is cheaper and faster to ob-
tain. Su et al. [11] consider the effect of qualification tests
on worker output, and show that workers with higher test
scores achieve higher accuracy on the actual task. Along

an orthogonal direction, our work focuses on effectively dis-
tributing work across parallel subtasks.

An interesting example of organizing workers is TurKit [5],
a toolkit for creating iterative tasks in which workers vote
and improve upon work done by other workers. Little et
al. [5] show that the use of voting and iteration allows for
complicated tasks to be completed by a group of workers,
even when the task is not easily divisible.

Building on TurKit, Dai et al. [1] propose TurKontrol,
a system for controlling the request of additional voting or
improvement tasks based on costs and the inferred work
quality. Their work applies decision-theoretic planning tech-
niques to optimizing sequential multi-HIT workflows. In
contrast, our work focuses on a complementary challenge
of learning about workers and on designing individual HITs.
While the TurKontrol authors have yet to test their method
on Mechanical Turk, we believe such decision-theoretic ap-
proaches can be effective when combined with learning about
workers and within-HIT design.

Our work is inspired in part by theoretical work by Zhang
et al. [14, 15, 16] on environment design, which studies the
problem of perturbing agent decision environments to induce
desired agent behaviors. The authors introduce models and
methods for incentive design in sequential decision-making
domains, and advance a general approach to design that
learns from observations of agent behavior to (iteratively)
optimize designs.

1.2 Outline
In Section 2 we introduce the Mechanical Turk market-

place and describe the image labeling task. Before exploring
different designs for this task, we detail in Section 3 an ex-
periment to capture the amount of variability on Mechanical
Turk, where we post the same task design multiple times un-
der varying system conditions. In Section 4 we discuss our
initial experiments and report on the performance of mod-
els for predicting the rate and quality of work. We consider
optimizing the task based on trained models in Section 5,
where we compare the performance of optimized designs to
baseline designs that pay at the same rate. We discuss the
implications of our experiments for automatic task design,
and outline the possibilities and challenges moving forward,
in Section 6.

2. MECHANICAL TURK AND THE IMAGE
LABELING TASK

Amazon Mechanical Turk (www.mturk.com) is a crowd-
sourcing marketplace for work that requires human intel-
ligence. Since its launch in 2005, a wide variety of tasks
have been posted and completed on Mechanical Turk. Ex-
ample tasks include audio transcription, article summariza-
tion, and product categorization. Increasingly, Mechanical
Turk is also attracting social scientists who are interested in
performing laboratory-style experiments [3].

On Mechanical Turk, a requester posts jobs for hire that
registered workers can complete for pay. A job is posted in
the form of a group of HITs where each HIT represents an in-
dividual unit of work that a worker can accept. A requester
can seek multiple assignments of the same HIT, where each
assignment corresponds to a request for a unique worker to
perform the HIT. The requester also sets the lifetime during
which the HITs will be available and the amount of time



a worker has to complete a single HIT. Optionally, the re-
quester can also impose a qualification requirement for a
worker to be eligible to perform the task.

When choosing a task to work on, a worker is presented
with a sorted list of available jobs, where for each job the
title, reward, expiration time, and number of HITs avail-
able are displayed. The list can be sorted by the number of
HITs available (the default), the reward, creation time, or
expiration time. Workers can see a brief task description by
clicking the title, or choose to ‘view a HIT in this group’ to
see a preview of a HIT. At this point the worker can choose
to accept or skip the HIT. If accepted, the HIT is assigned
to that worker until the HIT is submitted, abandoned, or
expired. Workers are not provided with additional informa-
tion on the difficulty of tasks by the system, although there
is evidence of workers sharing information on requester rep-
utation via browser extensions and on Turk-related forums.1

Upon receiving completed assignments, the requester de-
termines whether to approve or reject the work. If an as-
signment is rejected, the requester is not obligated to pay
the worker. While tasks vary greatly in pay and amount of
work, the reward per HIT is often between $0.01 to $0.10,
and most individual HITs require no more than ten minutes
to complete. There are thousands of job requests posted
at any given time, which corresponds to tens and some-
times hundreds of thousands of available HITs. For each
HIT completed, Amazon charges the requester 10% of the
reward amount or half a cent, whichever is more.

2.1 Our approach to task design
An exciting aspect of Mechanical Turk as a human compu-

tation platform is that it allows for any requester to post ar-
bitrary tasks to be completed by a large population of work-
ers. A requester has the freedom to design his or her task
as desired, with the aim of inducing workers to exert effort
toward generating useful work for the requester. The task
design allows a requester to optimize tradeoffs among the
rate of work, the quality of work, and cost. While some of
the qualitative aspects of the tradeoffs are well understood—
e.g., paying more will increase the rate of work, both because
more workers will want to accept HITs and that each worker
will want to complete more HITs [2]—optimizing the design
to achieve particular tradeoffs requires a quantitative un-
derstanding of the effect. For some non-monetary aspects
of task design, e.g., the division of a task into HITs and
assignments, the effect on the quality and quantity of work
is less well understood, even qualitatively. Such effects are
also likely to be specific to the task at hand, and depend on
particular requester goals and constraints.

We advance a particular design approach. For a given
task, as a first step we consider a requester who experiments
with a number of different designs, and uses the workers’
output and measurements of system conditions to learn a
task-specific model of the effect of design on the rate and
quality of work. As a second step, we then consider the
problem of using learned models to generate good designs
based on their predictions. We would like to understand
whether a learned model can be effective in providing a use-
ful way to guide the search for better designs. For the rest
of the paper, we detail an application of this approach for
the design of an image labeling task.

1See http://turkopticon.differenceengines.com/ and
http://www.turkernation.com/, respectively.

Figure 1: A HIT of the image labeling task

2.2 The image labeling task
We consider an image labeling task in which workers are

asked to provide relevant labels (or equivalently, tags) to a
set of images. Each HIT contains a number of images, and
for each image, requests a particular number of labels for
that image. Workers are informed of the number of images
and number of labels required per image within the guide-
lines provided in the HIT, and are asked to provide ‘relevant
and non-obvious tags.’ Workers can provide tags containing
multiple words if they like, but this is not required nor spec-
ified in the instructions. See Figure 1 for a sample HIT that
requests 3 labels for 1 image, for which possible labels may
include ‘NASCAR’, ‘race cars’, ‘red’, ‘eight’, and ‘tires.’

We obtain a large dataset of images for our task from the
ESP game,2 which contains 100,000 images and labels col-
lected through gameplay. From this dataset we use images
that contain at least 10 labels, of which there are 57,745. Of
these, we have used 11,461 images in our experiments. Any
particular image we use appears in only one HIT.

We consider two metrics for judging the quality of labels
received from workers. One metric counts the number of
unique labels received, and is thus concerned with the num-
ber of relevant labels collected. The other metric counts the
number of such labels that also appear as labels in our gold
standard (GS) from the ESP dataset. Since such labels are
those most agreed upon in the ESP game, they are labels
that are likely to capture the most noticeable features of an
image. In computing these metrics, we first pre-process la-
bels to split any multi-word labels into multiple single-word
labels, and convert upper case letters to lower case. We then
apply the standard Porter Stemming Algorithm [8] to nor-
malize worker and gold standard labels. This ensures that
labels such as ‘dog’ and ‘dogs’ are considered the same la-
bel, which is useful for our measure of uniqueness and for
comparing received labels to the gold standard. Finally, we
remove stop words like ‘a’ and ‘the’, which accounts for 0.9%
of gold standard labels and 4.6% of distinct labels collected.3

2http://www.cs.cmu.edu/~biglou/resources/
3We used a fairly short, conservative list of stop words from
http://www.textfixer.com/resources/.



In designing the image labeling task, a designer can de-
cide on the reward per HIT, the number of images and tags
requested per image per HIT, the total number of HITs,
the number of assignments per HIT, the time allotted per
HIT, and the qualification requirements. The goal of the re-
quester is to maximize the number of useful labels received
as judged by the quality metric of interest, subject to any
time and budget constraints. For example, a requester may
have $5 to spend, and aim to collect as many unique tags
as possible within the next six hours. One can compare
two different designs based on the amount of useful work
completed within a certain time frame, or by examining the
tradeoff between the work completed per dollar spent and
the rate of work.

While all the design variables may have an effect on out-
put, we focus our efforts on designing the reward per HIT,
the number of images per HIT, the number of labels re-
quested per image, and the total number of HITs. For all
of our experiments, we fix the time allotted per HIT at 30
minutes (the default), but do not expect workers to spend
more than a few minutes per HIT. We fix the number of as-
signments per HIT at 5; this gives us multiple sets of labels
per image and will enable a study of the marginal effects of
recruiting an additional worker to a HIT on the quality of
output in future research. We require all workers to have an
approval rate of at least 95%, such that only workers with
95% or more of their previously completed HITs approved
are allowed to work on our task. This helps to keep chronic
spammers out, but is not overly restrictive on the workers
we can attract.

When posting tasks, we collect measurements of worker
views and accepts over time, the amount of time a worker
spends on a HIT, and the value of output as judged by our
quality metrics. We also collect system conditions such as
the time of day, the number of HITs available on Turk, the
page position of our posting in different list orderings, and
the number of completed HITs overall in Mechanical Turk.
The last statistic is not available directly, and is estimated
by tracking the change in the number of HITs available for
tasks in the system at two minute intervals.

3. MEASURING OUTPUT VARIABILITY
Before considering the effect of design on output, we first

report on the amount of variability in the output from Me-
chanical Turk when using a fixed task design. This lets us
know how much variance to expect from the system, and
allows us to study the effect of system conditions on output.

In particular, we consider a design for which each HIT has
a reward of $0.01, contains 1 image, and requests 3 labels.
We posted a group of 20 HITs at a time, and posted 24
groups of the same task design from 4/12/10 to 4/20/10.
Each group of HITs was allowed to run for approximately 8
hours, and groups of HITs were posted sequentially around
the clock. All groups had at least 75% of the assignments
completed, with 18 of the 24 groups finishing before the time
expired.

Table 1 summarizes the mean and standard deviation of
the rate and quality of output along a number of measure-
ments.4 The task took 5 hours and 30 minutes to complete

4We measure the completion time of an unfinished task as
the time until the job expires (∼8 hours), and only measure
the number of tags and unique workers for completed tasks.

Statistic Mean Std. Dev.
Time to 50% completion (min) 129.54 95.13 / 73%
Time to 100% completion (min) 330.44 124.93 / 38%
Total # of unique tags 264.56 18.06 / 7%
Total # of unique tags in GS 98.56 9.50 / 10%
# of unique workers 13.33 2.99 / 22%
Time to complete a HIT (s) 74.79 25.12 / 34%

Table 1: Statistics on an image labeling task with
20 HITs, where each HIT pays $0.01 and requests 3
labels for 1 image.
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Figure 2: The effect of time of posting on time until
50% and 100% completion. Bins depict the aver-
age completion time of runs posted within a 3 hour
period. Error bars represent the standard error.

on average, with the quickest run completing in just under
52 minutes and the longest run taking 8 hours and 37 min-
utes. Unlike task completion time, the number of unique
labels received and the number of such labels that are in the
gold standard vary much less, suggesting that the quality
of output from workers remains relatively constant under
different system conditions.

One possible explanation for the significant variation in
completion time is that the activity level of workers on Me-
chanical Turk varies over time. While we don’t know how
many workers are active on Mechanical Turk at any given
time, it is reasonable to think that activity level is corre-
lated with the time of day, where the system is likely to
be more active during particular ‘work hours’ than at other
times. In Figure 2 we plot the relationship between the time
of posting and the time by which 50% or 100% of the task
completes. We observe that jobs posted between 6AM GMT
and 3PM GMT complete most quickly; this corresponds to
posting between 2AM to 11AM EST in the United States
and 11:30AM to 8:30PM IST in India, the two countries that
provide 80% of workers on Mechanical Turk [4]. Given that
these times correspond to waking hours in India, we expect
most of the workers interested in this task to be from In-
dia. We geolocate workers based on their IP addresses by
using the Linux shell command whois. Of the IP addresses
for which we can determine the country of origin (247 out
of 307), 62% were from India and 23% were from the US,
which is consistent with our intuition.



Estimated Model R2 RMSE RRSE MAE

NpicNtag Npic log(Ntag)

Diminishing returns in tags 1.9157 (0.0743) 0.7681 1.6617 0.4816 1.1341
Linear in tags 0.8426 (0.0140) 0.9576 0.7105 0.2059 0.5491

Diminishing returns in tags 0.7241 (0.0115) 0.9576 0.2574 0.2057 0.1743
Linear in tags 0.3050 (0.0115) 0.7652 0.6064 0.4853 0.4406

Table 2: Summary of model coefficients with standard errors and goodness of fit for predicting the average
number of quality labels received per assignment. The top two models predict the number of unique tags
collected, and the bottom two models predict the number of unique tags collected that are in the gold
standard.
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(b) Predicted number of
unique tags based on total
number of tags requested.
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(c) Predicted number of
unique tags in gold standard
based on diminishing returns
in tags.
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(d) Predicted number of
unique tags in gold standard
based on total number of
tags requested.

Figure 3: Predicted vs. actual number of quality tags received per assignment

4. INITIAL EXPERIMENTS AND BEHAV-
IORAL MODELS

From the variability measurements we learned that the
completion time of a task may be highly variable, and may
be difficult to predict accurately even for a fixed design.
While some of the time variability can be explained by the
time of day in which the task is posted, there is still a sub-
stantial amount of residual noise. In contrast, we find that
the quality of work does not vary much with system con-
ditions. Based on these observations, we expect the task
design to only partially influence the rate of work, but ac-
count almost entirely for the quality of work.

In order to understand the effect of design on worker out-
put, we consider learning models for predicting the quality
of labels received per HIT and the completion time. We per-
form a series of 38 initial experiments—which serves as our
training data—in which we vary the task’s design (or config-
uration) by changing the reward (R), the number of images
(Npic) and number of labels per image per HIT (Ntag), and
the number of HITs (Nhits). We consider rewards in the
range of $0.01 and $0.10, and vary the number of images and
tags requested between 1 and 10, respectively. In choosing
the configurations, we aim to cover a large range of values
along each dimension, and to vary the total number of tags
requested per dollar pay, i.e., NpicNtag/R. For the most
part we consider jobs that consist of groups of 20 HITs (in
31 configurations), but also include a few jobs containing
30, 150, 500, and 1000 HITs, respectively. Configurations
were randomly ordered and allowed to run until completion,
and were automatically posted in series over a three week

period from 2/2/10 to 2/24/10 with no time gaps between
postings. As stated previously, we fix the number of as-
signments (Nasst) requested per HIT at 5, and require all
workers to have an approval rate of at least 95%.

In considering models for predicting the rate and quality
of work, we measure the goodness of fit by reporting the
coefficient of determination (R2), the root mean square error
(RMSE), the root relative square error (RRSE), and the
mean absolute error (MAE), between predicted and actual
output. All statistics are computed for the hold-out data
via leave-one-out cross-validation.

4.1 Predicting label quality
We consider simple models for predicting the average num-

ber of quality labels received from workers. A summary of
model coefficients and fitness is presented in Table 2.

4.1.1 Predicting unique tags
For predicting the average number of unique tags received

per assignment (Nunique),5 we hypothesize that we would
experience diminishing marginal returns as we request more
tags per image, suggesting the following model:6

Nunique = βNpiclog(Ntag) + ε

5We compute the per assignment contribution by dividing
the number of quality tags collected per HIT by the number
of assignments, which is fixed at 5.
6When taking a log, we smooth the input data by adding
1 to the number of tags (Ntag) to ensure the feature has
weight instead of evaluating to zero.



Estimated Model R2 RMSE RRSE MAE

NpicNtag

R
cos(t) sin(t) Intercept

Pay 25.58 (6.81) -373.45 (3452.30) 0.45 12418.24 0.88 7898.78
Pay+Time 21.47 (5.26) 12173.01 (2542.22) 1019.55 (2265.39) 5177.23 (2864.85) 0.70 9819.85 0.70 7549.67

Pay 49.79 (8.06) 4955.10 (4081.98) 0.68 14914.62 0.72 11583.57
Pay+Time 44.71 (6.35) 13775.48 (3072.81) -3103.65 (2738.20) 10801.1 (3462.78) 0.79 12630.06 0.61 9655.45

Table 3: Summary of model coefficients with standard errors and goodness of fit for predicting completion
time (in seconds). The top two models predict the 50% completion time, and the bottom two models predict
the completion time.
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(b) Predicted time to 50%
completion based on rate of
pay and time of posting.
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(c) Predicted time to comple-
tion based on rate of pay.
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(d) Predicted time to comple-
tion based on rate of pay and
time of posting.

Figure 4: Predicted vs. actual time until 50% and 100% completion (in seconds).

We find that the model’s predictions are somewhat accu-
rate, with R2 = 0.77 and RRSE = 0.48. We also consider a
model without diminishing marginal returns in the number
of labels requested:

Nunique = βNpicNtag + ε

Surprisingly, we observe a significantly better fit, with
R2 = 0.96 and RRSE = 0.21; see Figures 3(a) and 3(b)
for a comparison between the two models’ predictions. This
model suggests that the proportion of overlap in tags en-
tered across the 5 assignments is invariant to the number of
tags requested, and that at least within the range of values
in our training data we don’t observe workers running out
of tags to describe an image.

4.1.2 Predicting unique tags in gold standard
For predicting the average number of unique tags received

per assignment that are in the gold standard (Ngs), we again
hypothesize that there would be an effect of diminishing
marginal returns as we request more tags per image. Since
there is a limited number of tags per image within the gold
standard with which the collected tags can match, we would
expect the effect of diminishing returns to be much stronger
than for our other quality metric. We consider the following
model:

Ngs = βNpic log(Ntag) + ε

The prediction is highly accurate, with R2 = 0.96 and
RRSE = 0.21. The model’s fit is significantly better than
the fit of a model without diminishing returns (R2 = 0.77,
RRSE = 0.49); see Figures 3(c) and 3(d) for a comparison.

4.2 Predicting completion time
We turn to consider models for predicting completion time

based on a task’s design. A summary of model coefficients
and fitness is presented in Table 3.

Intuitively, a task is more attractive if the pay is high but
the amount of work is low. Given similar amounts of work,
we would expect the number of tags requested per dollar pay
(rate of pay) to be correlated with a task’s completion time.
We consider all 31 configurations with 20 HITs from our
training data, and predict the 50% completion time (T1/2)
and 100% completion time (T ) using the following model:

T = β0 + β1
NpicNtag

R
+ ε

We see that the rate of pay is correlated with the comple-
tion time, with R2 = 0.68 and RRSE = 0.72 for predicting
100% completion. The correlation is weaker for predicting
50% completion time, with R2 = 0.45, RRSE = 0.88.

From the results of our variability study, we also expect
the time of posting to affect the completion time. As we
saw in Figure 2, the effect of time of day on completion time
is sinusoidal. To incorporate this effect into our model, we
convert the time of day to an angle t between 0 and 2π, cor-
responding to 0:00 GMT and 24:00 GMT respectively, and
then encode it as two units, cos(t) and sin(t). This encoding
scheme ensures that each time of day has a distinct repre-
sentation and that the values for times around midnight are
adjacent. Adding these time variables, we fit the following
model:

T = β0 + β1
NpicNtag

R
+ β2 cos(t) + β3 sin(t) + ε



pay per tag R Npic Ntag Nhits Nasst Posting Fees Total Cost

‘low pay’ baseline 1/3¢ $0.01 1 3 66 5 $1.65 $4.95
optimized for Nunique (low pay) 1/3¢ $0.06 9 2 15 5 $0.45 $4.95
optimized for NGS (low pay) 1/3¢ $0.03 9 1 28 5 $0.70 $4.90

‘high pay’ baseline 1¢ $0.04 1 4 22 5 $0.55 $4.95
optimized for Nunique, NGS (high pay) 1¢ $0.10 10 1 9 5 $0.45 $4.95

Table 4: Baseline and optimized designs for an image labeling tasks with a $5 budget.

We observe an improvement in the fit, with R2 = 0.79,
RRSE = 0.61 for 100% completion time, and R2 = 0.70,
RRSE = 0.70 for 50% completion time; see Figure 4 for a
comparison between the models’ predictions. This improve-
ment is more significant for predicting 50% completion time
(R2 from 0.45 to 0.70) than for 100% completion time (R2

from 0.68 to 0.79). One possible explanation is that the ef-
fect of the time of posting diminishes as the HIT posting
begins to span a longer time frame and overlap into other
times of the day.

The fit of these models suggests that the rate of pay and
the time of posting are correlated with the completion time,
but that there is still a substantial amount of unexplained
variance. To use these models for prediction and design, it
would be useful to consider not only the expected comple-
tion time, but also to be mindful of the variance in the pre-
diction. Furthermore, the current models are only trained
on configurations with 20 HITs, and do not incorporate the
effect of varying the number of HITs. We leave exploring
these directions for future work, and for now focus on using
the quality prediction models for design.

5. DESIGN EXPERIMENT
The initial experiments provide us with an understanding

of how worker output responds to different design, and pro-
vide the building blocks for effective task design. Even at
the same level of desirability to workers—e.g., as measured
by the pay per tag, or more generally, the estimated pay per
hour—we expect some designs to induce more quality out-
put than other designs. The learned models can thus help us
make informed design decisions, for particular quality met-
rics we care about.

We demonstrate the potential benefit of optimizing de-
signs based on the learned models by considering a simple
design experiment in which we compare different designs at
a fixed pay per tag. We focus our comparison on the num-
ber of quality labels received (per dollar spent), and do not
concern ourselves with the rate at which work completes.7

Fixing the rate of pay allows us to compare designs based
on the kind of work they request, and removes the effect
of assigning more work at a lower rate of pay to get more
quality labels from confounding the comparison.

We consider experiments at two pay rates: a low rate that
pays 1

3
¢ per tag, and a high rate that pays 1¢ per tag. For

each pay rate, we compare the output of baseline designs
to designs optimized for each of our two quality metrics.
Each design is given a budget of $5, which must account for
fees paid to Amazon as well as payments to workers. As in

7In practice, we can set the rate of pay based on how quickly
we want work to get done. But since time is not considered
in this experiment, fixing the rate of pay allows for a fair
comparison between designs.

our initial experiments, the number of assignments per HIT
(Nasst) is fixed at 5.

To optimize the task design, we choose values for the re-
ward per HIT (R), number of images per HIT (Npic), num-
ber of tags requested per image (Ntag), and the total number
of HITs (Nhits) to maximize the total number of quality tags
received as predicted by the model with the best fit, subject
to budget and rate of pay constraints. We consider rewards
in the range of $0.01 and $0.10 per HIT, and the number
of images and tags requested per image in the range of 1
and 10, respectively. For example, the following formulation
captures the optimization problem for finding a design that
maximizes the total number of unique tags received as pre-
dicted by our model, subject to a $5 budget and a pay rate
of $0.01 per tag:

max
R,Npic,Ntag,Nhits

0.8426NpicNtagNhitsNasst

NHITNasst(R+ max(0.1R, 0.005)) ≤ 5 (1)

R/NpicNtag = 0.01 (2)

Constraint 1 ensures that the cost of the design stays
within budget, and constraint 2 ensures that the pay per
tag is $0.01. The max term in the budget constraint corre-
sponds to Mechanical Turk’s per assignment fees, which is
10% of the reward or half a cent, whichever is more.

Table 4 summarizes the baseline and optimized designs for
both pay rates and quality metrics. For the low pay rate, we
use as the baseline the same design that we had considered
previously for measuring variability (but with more HITs).
For maximizing the number of unique tags collected, we see
that the optimized design attempts to save on posting fees
by putting more work into a HIT and paying more per HIT,
which allows for more tags to be requested. For maximizing
the number of unique tags that are in the gold standard, the
optimized design avoids diminishing returns by requesting 1
tag per image, and also saves on posting fees by putting
more work in a HIT. For the high pay rate, we consider a
baseline design that requests 4 tags for one image. Here
the optimized designs for the two quality metrics are the
same; more work is put into each HIT to save on posting
fees (hitting the upper bound on reward per HIT), and only
1 tag is requested per image to avoid diminishing returns.

Figures 5(a) and 5(c) show the models’ predictions with
bars representing the 95% prediction interval for these de-
signs. We see that the difference in the predicted numbers of
unique tags per dollar spent between baseline and optimized
designs is small, since the benefits of the optimized design is
only from savings in posting fees. By avoiding diminishing
returns in tags, designs optimized for the numbers of unique
tags that are in the gold standard are expected to perform
significantly better.
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(a) Predicted number of unique tags per dollar spent.
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(b) Actual number of unique tags per dollar spent.
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(c) Predicted number of unique tags in gold standard per
dollar spent.
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(d) Actual number of unique tags in gold standard per
dollar spent.

Figure 5: Predicted and actual number of quality tags received per dollar spent for baseline and optimized
designs. Error bars in predictions indicate the 95% prediction intervals, and error bars in results represent
the standard error over 5 runs of each design.

5.1 Results
We post 5 groups of each design in round-robin order.

Each group was initially ran for 6 hours; if it didn’t finish
within 6 hours, it was resumed at a later time.8 Figures
5(b) and 5(d) show the average number of unique tags and
unique tags in the gold standard received per dollar spent,
with bars capturing the standard error of the mean.

In all comparisons, we find that the optimized models re-
ceived more quality tags than baseline comparisons. The
optimized designs for unique tags received 38% more tags
in the low pay condition, and 33% more in the high pay
condition. For collecting unique tags that are in the gold

8We initially posted the baseline designs between 3/25/10
and 3/29/10, and the optimized designs between 4/22/10
and 4/26/10. While almost all trials of the high pay config-
urations completed within this time frame, many of the low
pay configurations did not; these configurations were ran to
completion between 4/29/10 and 5/7/10.

standard, the optimized designs received significantly more
quality tags than the baseline comparisons, with 71% more
in the low pay condition and 60% more in the high pay con-
dition. For all baseline and optimized designs, the actual
number of gold standard tags received is very close to our
model’s predictions (within 11%), and well within the pre-
diction intervals.

Interestingly, our optimized designs received significantly
more unique tags than our models predicted, by 28% in the
low pay condition and 38% in the high pay condition. One
possible explanation is that our model underpredicts the
number of unique tags when the number of tags requested
per image is low as is the case in our designs. After checking
the model’s predictions on the training data, we notice that
our model underpredicts for 10 out of the 11 configurations
that request one or two tags per image (by 15% on average).
Our model also underpredicted the number of unique tags
obtained by the baseline in the low pay condition by 27%,



suggesting that the model may need to be refined to obtain
more accurate predictions.

6. DISCUSSION
By learning about how workers respond to designs in our

initial experiments, we are able to construct models that
can accurately predict worker output in response to differ-
ent designs. These models are then used to optimize the
task’s design, subject to designer constraints such as budget
and rate of pay, to induce quality output from workers. Our
results show that optimized designs generated by our mod-
els obtain significantly higher quality labels than baseline
comparisons.

We are interested in extending the current work along a
number of directions. We would like to understand the effect
of distributing work across multiple assignments on the qual-
ity of output, and to include the number of assignments as a
design variable. We are also interested in revisiting models
for predicting the rate of work, and figuring out how to incor-
porate them to design with respect to time-related tradeoffs.
One possible direction is to learn the relative rates at which
work completes for different designs, which may be suffi-
cient for accurately predicting the relative output between
designs. Furthermore, while this work focuses on the design
of a task with identical, parallel subtasks, we are also inter-
ested in the design of ‘organizational hierarchies’ [9] among
workers, where workers can leverage each others’ work and
perform different roles in the task.

We believe the same approach of learning from observa-
tions of behavior to optimize designs can be effectively used
to design other tasks, with respect to different performance
metrics, and in richer design spaces. While linear regres-
sions were used for this work, other modeling approaches
and learning techniques can be similarly incorporated into
the design process. Models of behavior need to be specific
to the particular task and performance metric at hand; con-
structing accurate models will likely require drawing from
social science theories, gaining an understanding of the task
domain and the population of workers, and learning from
experimentation.

In addition to accurate models, we need methods that help
to discover effective designs after few experiments. While we
trained our models on a set of manually picked designs and
then used these models to design once, we can imagine a
process that automatically picks subsequent experiments in
a way that drives the search for better designs. One such
method is suggested by Zhang et al. [14], which iteratively
optimizes a design by selecting subsequent designs to exper-
iment with based on the model’s current predictions of the
best design. Methods can also take into account the cost of
exploration, and make tradeoffs between exploiting known
designs and conducting more experiments. The development
of such methods for task design—methods that automate
the process of experimentation, learning, and optimization—
presents an exciting area for future investigation.
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