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Abstract  
The circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942 is 

governed by a core oscillator consisting of the proteins KaiA, KaiB, and KaiC.  Remarkably, 

circadian oscillations in the phosphorylation state of KaiC can be reconstituted in a test tube by 

mixing the three Kai proteins and ATP.  The in vitro oscillator provides a well-defined system in 

which experiments can be combined with mathematical analysis to understand the mechanism of 

a highly robust biological oscillator.  In this Minireview, we summarize the biochemistry of the 

Kai proteins and examine models that have been proposed to explain how oscillations emerge 

from the properties of the oscillator’s constituents.   
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Introduction 

All organisms have evolved sophisticated mechanisms to sense and respond to changes in 

their environment.  Many environmental perturbations are unpredictable, and cells employ signal 

transduction mechanisms to sense these perturbations and mount appropriate responses.  In 

contrast, the cycles of light and temperature arising from the rotation of the Earth about its axis – 

variations that profoundly affect an enormous variety of organisms – are far from random.  

Rather, the daily rising and setting of the sun is the most universal, ancient, and predictable 

source of variation in the environment.  It comes as no surprise, then, that many organisms from 

all kingdoms of life have acquired the ability not only to sense, but also to predict, diurnal 

cycling of the environment.  From cyanobacteria to humans, endogenous biochemical oscillators 

called circadian clocks keep track of the time of day, allowing an organism to coordinate its 

physiology and behavior with the day/night cycle [1]. These clocks exert their influence over 

cellular physiology in part by controlling gene expression.  In the case of the cyanobacterium 

Synechococcus elongatus PCC 7942, the model system for the cyanobacterial clock, the 

circadian clock drives rhythmic expression of over thirty percent of the genome [2].   

A circadian clock forms an internal representation of external time, but this timepiece 

continues to run even in the absence of external cues.  That is, circadian clocks oscillate with a 

period of approximately 24 hours (hence their name, meaning “about [circa] a day [dies]”) under 

constant environmental conditions (constant light and temperature), a phenomenon known as 

free-run and one of their defining features.  Furthermore, the period of oscillation remains 

around 24 hours across the physiological temperature range despite the high sensitivity of typical 

biochemical reaction rates to temperature.  This temperature compensation is a second defining 

feature of circadian clocks.  Finally, a circadian clock would be of little use to an organism if the 
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clock’s phase bore no relationship to the actual time of day.  Hence, the phase can be altered by 

environmental stimuli (e.g., changes in light) in order to synchronize the clock with the diurnal 

cycle of the environment; moreover, in oscillating environments, the clock adapts to establish a 

fixed relationship between its phase and that of the environment.  These related phenomena, 

which constitute the third defining feature of a circadian clock, are known as phase resetting and 

entrainment, respectively [1]. 

 Generally, circadian clocks are highly robust biological oscillators.  For example, the S. 

elongatus clock is resistant to fluctuations produced by metabolic repression [3-4], cell division 

[5-6], and those arising from the inherent stochasticity of biochemical reactions and gene 

expression [7-8].  Despite such fluctuations in the cellular milieu, the S. elongatus clock 

oscillates with high precision and minimal damping for weeks in constant conditions [8-9].  

Somehow, the clock is sufficiently robust to avoid a loss of synchrony and the resulting spiral 

into a steady state.   

Circadian oscillators evolved long ago, but our understanding of the molecular 

mechanisms underlying circadian clocks remains murky.  These mechanisms have been 

investigated primarily in cyanobacteria, fungi, flies, plants, and mammals.  The prevailing 

models for the internal timepieces of all but the first of those organisms involve a negative 

transcriptional feedback loop in which so-called clock genes encode proteins that repress their 

own transcription.  These negative feedback loops typically are intertwined with other feedback 

loops and are overlaid with posttranslational regulation affecting protein stability, activity, and 

localization [1].  Disentangling the mechanisms and rigorously testing models of these oscillators 

have been hampered by the complexity of both the oscillators themselves and the cellular 

environment in which they are embedded. 
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An opportunity to break through such complexity recently emerged from investigations 

of the circadian clock of S. elongatus, whose core oscillator consists of just three proteins: KaiA, 

KaiB, and KaiC.  Although the oscillator originally was thought to be a transcriptional feedback 

oscillator analogous to those found in higher organisms [10], Kondo and colleagues showed in 

2005 that the clock of S. elongatus requires neither transcription nor translation – oscillations in 

KaiC phosphorylation state persist in the absence of transcriptional feedback and protein 

synthesis [4].  Remarkably, the Kai proteins themselves constitute a circadian clock: 

temperature-compensated circadian oscillations in KaiC phosphorylation can be reconstituted in 

vitro by combining the three Kai proteins and ATP [11].  This three-protein, test-tube oscillator 

displays all three cardinal properties of a circadian clock: free-run, temperature compensation, 

and entrainment [11-13].  Oscillations of KaiC phosphorylation free-run for at least ten days in 

vitro [14], and the period of oscillation is temperature-compensated [11,13].  The phase of the in 

vitro clock is phase-shifted by, and entrainable to, temperature shifts [12-13], although it is not 

entrainable by light, presumably because cellular components required for this property are 

absent [15-16].   

 

Biochemistry of the Kai oscillator 

The ability to reconstitute the oscillator in vitro and to mix and match its four 

components (KaiA, KaiB, KaiC, and ATP) in arbitrary combinations has permitted detailed, 

quantitative biochemical characterization of the Kai proteins.  Structures of all three proteins (or 

their homologs in related organisms) have been solved by crystallography [17-24] and/or NMR 

[25], and structural features of various heterocomplexes have been gleaned from NMR [26], 

electron microscopy [12,20], and small-angle x-ray scattering [27].   
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KaiC is the only Kai protein with enzymatic activity, and it is the central player in the 

protein oscillator.  An internally duplicated protein, it consists of two homologous domains, the 

N-terminal CI domain and the C-terminal CII domain, each containing ATPase motifs and 

belonging to the RecA-DnaB protein family (Figure 1A) [10,21,28-30].  In the presence of ATP, 

KaiC assembles into a double-doughnut-shaped hexamer, with one lobe consisting of CI 

domains and the other of CII domains (Figure 1A) [21,31-32].  Within the hexamer, each 

subunit-subunit interface forms two ATP-binding pockets, one in each lobe; ATP binding 

promotes KaiC hexamerization by bridging adjacent subunits [21,31].  KaiC possesses 

autokinase and autophosphatase activities [29,33], phosphorylating and dephosphorylating itself 

on two adjacent residues – serine 431 (S431) and threonine 432 (T432) – which are buried at the 

interface between the CII lobes of adjacent subunits [34-35].   The installation of both the kinase 

and phosphatase activities within the same protein may aid in temperature compensation of the 

oscillator period by facilitating the coupling of rate changes in one activity to offsetting rate 

changes in the other.   

With two phosphorylation sites, each subunit exists in one of four phosphoforms: 

unphosphorylated (“U-KaiC”), phosphorylated only on S431 (“S-KaiC”), only on T432 (“T-

KaiC”), or on both sites (“ST-KaiC”) [34,36-37].  In the in vitro system, the total fraction of 

KaiC phosphorylated in any form oscillates with a circadian period, with the four phosphoforms 

appearing in a cyclic order during each period (Figure 1B).  A peak of U-KaiC abundance is 

followed by a peak of T-KaiC and soon after by a peak of ST-KaiC.  Finally, a peak of S-KaiC 

appears before the cycle repeats [36-37].  The phosphoform distribution of KaiC is a major 

determinant of the phase of the oscillator.  Rust et al demonstrated that the initial phase 

(phosphorylation or dephosphorylation) can be controlled by varying the initial phosphoform 
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distribution: when KaiC initially is high in S-KaiC and low in T-KaiC, the oscillator starts in the 

dephosphorylation phase, and vice versa [36].   

Studies of the intrinsic autokinase and autophosphatase rates of KaiC and their 

modulation by KaiA and KaiB have provided insights into the origins of the cyclic pattern of 

phosphoform abundance.  Recent investigations [36-37] of these activities that took into account 

the different characteristics of the two singly-phosphorylated states have employed two 

complementary methods.  Rust et al [36] fit a kinetic model for phosphoform interconversion to 

timeseries data from partial reactions (i.e., non-oscillating reactions in which one or more Kai 

proteins is omitted) to obtain pseudo-first-order rate constants for each phosphorylation and 

dephosphorylation step.  In contrast, Nishiwaki et al [37] studied the behavior of different 

phosphomimetic KaiCs, that is, mutants designed to act as stable mimics of each of the four 

possible phosphoforms.  The dephosphorylated state of each site was mimicked by mutation to 

alanine; phosphorylation at S431 was mimicked by mutation to aspartate and at T432 by 

mutation to glutamate.  Each approach has drawbacks.  Rate constants obtained from kinetic 

modeling are model-dependent, and some rate constants are poorly constrained by the data.  

Moreover, such modeling cannot prove that a particular reaction scheme holds.  On the other 

hand, in some cases, phosphomimetic mutations do not precisely imitate the true 

(de)phosphorylated forms.  In addition, phosphomimetic mutants form hexamers in which all 

subunits have the same phosphorylation state, a situation that may not occur in the wild-type 

protein.  Nonetheless, the results of these two studies are consistent in many respects.   

KaiC is primarily an autophosphatase when incubated alone – at 30o C, the standard 

temperature for studies of the S. elongatus circadian clock, the protein dephosphorylates [4,33-

34,36,38], more quickly at T432 than at S431 [36] (Figure 1C).  Because S-KaiC is the product 
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of ST-KaiC dephosphorylation, the abundance of S-KaiC transiently increases before eventually 

decaying.  KaiB has little effect on dephosphorylation at 30o C [33,36,38].  KaiA promotes 

autophosphorylation of KaiC and inhibits some dephosphorylation steps by binding to the C-

terminal tail of KaiC, stabilizing it in a state in which autokinase activity dominates [39] (Figure 

1C).  As KaiC becomes phosphorylated in the presence of KaiA, U-KaiC is converted to T-KaiC 

(S-KaiC does not appear to be produced at an appreciable rate from U-KaiC), which in turn is 

converted to ST-KaiC.  ST-KaiC dephosphorylates exclusively at T432, yielding S-KaiC [36-

37].  KaiA inhibits the dephosphorylation of S-KaiC [36-37].  Therefore, S-KaiC accumulates 

slowly in the presence of KaiA.  The phosphorylation and dephosphorylation reactions occur on 

a timescale not much faster than that of the oscillator itself (the rate constants of the kinase and 

phosphatase reactions are less than ~0.5 hr-1), consistent with the idea that they are rate-limiting 

steps controlling the dynamics of the oscillator [36].   

Rust et al [36] and Nishiwaki et al [37] reached different conclusions about the effects of 

KaiA on S-KaiC and ST-KaiC.  Studies of partial reactions suggest that KaiA keeps the levels of 

S-KaiC low both by causing rapid rephosphorylation to ST-KaiC and by inhibiting ST-KaiC 

dephosphorylation [36].  In contrast, Nishiwaki et al showed that while KaiA slows 

dephosphorylation of T432 in an S-KaiC phosphomimetic mutant (S431D), it causes very little 

rephosphorylation of T432; formation of S-KaiC from ST-KaiC essentially is irreversible [37].  

Hence, the phosphomimetic data suggests that once KaiC becomes doubly phosphorylated, it 

becomes irreversibly committed to dephosphorylating, while the kinetic studies of the wild-type 

protein suggest that dephosphorylation is reversible.  The details of the interconversion between 

S-KaiC and ST-KaiC strongly influence the ability of the Rust et al model to generate 

oscillations [36], and it will be important to resolve these discrepancies.   
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How does the phosphoform cycle emerge from these properties of the autokinase and 

autophosphatase activities?  Conceptually, a phosphoform cycle appears if the patterns of 

phosphoform abundance observed in KaiA-KaiC and KaiC-only partial reactions are combined 

by placing one pattern after the other in time.  Therefore, oscillations in phosphoform 

distribution could result from alternating periods of KaiA activity (phosphorylation phase) and 

inactivity (dephosphorylation phase) [36].  Indeed, Nishiwaki et al and Rust et al showed 

experimentally that, during a circadian cycle, the oscillator switches between periods of KaiA 

activity (in which incorporation of radiolabel from [γ-32P] ATP is substantial and in which newly 

introduced U-KaiC becomes phosphorylated) and inactivity (when radiolabel incorporation is 

negligible and in which newly introduced U-KaiC remains unphosphorylated) [36-37].   

The transition between the phosphorylation and dephosphorylation phase must be 

mediated by KaiB, as a KaiA-KaiC reaction never enters the dephosphorylation phase [36,38].  

Although KaiB does not appear to directly affect the kinetics of phosphoform interconversion at 

30o C [33,36], it binds preferentially to certain phosphoforms of KaiC, forming a ternary 

complex with KaiA that could inactivate KaiA.  In an oscillating reaction, the binding of KaiB to 

KaiC, and hence the co-immunoprecipitation of KaiA with KaiB, closely tracks the abundance of 

S-KaiC [36-37] (Figure 1D).  A complex of KaiB and KaiA binds to phosphomimetic mutants of 

both S-KaiC and ST-KaiC, albeit more slowly to the latter [37]; whether wild-type ST-KaiC 

appreciably binds KaiB in the in vitro oscillator remains uncertain.  The rhythmic binding of 

KaiB to KaiC and KaiA could produce fluctuations of KaiA activity, which in turn switch the 

oscillator between the phosphorylation and dephosphorylation phases.  However, other 

explanations for the trigger of switching between phosphorylation and dephosphorylation have 
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been proposed.  In the section discussing oscillator models later in this review, we will examine 

these alternative explanations.  

In addition to its kinase and phosphatase activities, KaiC has ATPase activity, which 

hydrolyzes ATP to produce ADP and Pi [40-41], and recent evidence suggests that this 

enzymatic activity may play an important role in controlling the dynamics of the oscillator.  

ATPase activity occurs in the CI ATP binding pocket and possibly in the CII pocket [40-41], and 

it is extraordinarily slow: KaiC turns over an average of 15 molecules of ATP per monomer per 

day, including ATP used as phosphate donors for autophosphorylation [41].  In an oscillating 

reaction, the rate of ATP turnover oscillates [41].  Like the kinase and phosphatase rates, the 

ATP turnover rate (resulting from a combination of the kinase reaction and the hydrolysis of 

ATP to ADP and Pi) is modulated both by the phosphorylation state of KaiC and by KaiA and 

KaiB; KaiA enhances the rate of ATP turnover, while KaiB inhibits it [40-41].  The daily ATP 

consumption is temperature compensated.  Interestingly, the ATP turnover rate of KaiC 

incubated alone also is temperature-compensated, even for phosphomimetics of U-KaiC and ST-

KaiC.  ATP turnover rates of KaiC period mutants correlate with the period of oscillation in 

vivo, suggesting that like phosphorylation and dephosphorylation, ATPase activity could play a 

major role in controlling oscillator dynamics [41].  However, the role of ATPase activity in the 

oscillator remains unclear.  Therefore, in this review we focus on the roles of 

(de)phosphorylation. 

Oscillations in phosphorylation state are accompanied by rhythms in the levels of protein 

complexes formed by KaiA, KaiB, and KaiC [27,38] (Figure 1D).  The abundance of KaiB-KaiC 

and KaiA-KaiB-KaiC complexes fluctuate, with the levels of the KaiB-KaiC complex peaking 

during the early to mid- dephosphorylation phase and the levels of the ternary complex shortly 
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thereafter [36-38].  The level of the KaiA-KaiC complex also oscillates with low amplitude [37-

38].  While these complexes play key roles in the oscillator by controlling KaiC’s enzymatic 

activities and the activity of KaiA, fluctuations in their levels most likely result from the 

oscillations in KaiC phosphorylation state, not vice versa.  First, the formation of KaiB and 

KaiA-KaiB complexes with KaiC phosphomimetics indicates a causal role for phosphorylation 

in complex formation [37].  Second, these complexes seem to be unstable relative to the time 

scale of oscillations.  KaiA and KaiB (un)binding to KaiC can occur on the second timescale, 

and the reported dissociation constants for KaiA-KaiC and KaiB-KaiC complexes are on the 

order hundreds of nanomolar to micromolar [27,38].  Interestingly, the oscillator is insensitive to 

concerted changes in Kai protein concentrations, which can be co-varied across at least an eight-

fold range with little effect [36,38].  This robustness is an important systems-level property that 

mathematical models of oscillator have sought to explain (see section on models below). 

KaiC exists primarily as a hexamer throughout the circadian cycle of the in vitro 

oscillator [12,38], but in the preceding discussion of KaiC enzymology, we largely neglected its 

multimerization.  What are the effects of existing as a multimer?  The nature and magnitude of 

hexamer effects remains unknown.  In fact, we do not even know the distribution of 

phosphorylation amongst subunits in a single hexamer.  Neglecting hexamer effects is 

tantamount to assuming that: (a) that hexamerization affects neither the enzymatic properties of 

its subunits nor their propensity to bind to KaiA and KaiB; (b) hexamer effects exist, but KaiC 

monomers exchange continuously, rapidly, and randomly amongst hexamers; or (c) all subunits 

in the hexamer behave in a cooperative, concerted manner, such that each hexamer always 

consists of identical subunits.  The second scenario is ruled out by experimental evidence: Kondo 

and colleagues have shown that pervasive monomer exchange does not occur.  Rather, in an 
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oscillating reaction, monomers exchange only during the early dephosphorylation phase [14,38]; 

incubated by itself, unphosphorylated KaiC does not substantially exchange monomers on the 

hour timescale [38].  The other two scenarios are unlikely.  The crystal structure of KaiC shows a 

hexamer of heterogeneous phosphoform composition (a mixture of ST-KaiC and S-KaiC) [35].  

Moreover, features observed in the structure suggest that hexamer composition very likely has an 

effect on protein function.   The phosphorylation sites reside at the interface between subunits, 

with the phosphates on those sites forming contacts with the neighboring subunit, likely affecting 

enzymatic activity, nucleotide binding, and hexamer stability [21,35].  In addition, the C-

terminal tails of the subunits, the conformations of which govern KaiC kinase activity, form a 

hydrogen-bonding network with one another, suggesting a coupling of their conformations 

[21,39].   

 

Modeling a biological oscillator: General considerations 

How do oscillations in KaiC phosphorylation state emerge from the biochemical 

properties of the three Kai proteins combined with ATP?  Oscillations are a system-level 

property: all three proteins and ATP are required for oscillations in KaiC phosphorylation [38].  

Oscillations are sufficiently complex phenomena that intuition alone is inadequate for 

understanding them [42].  To elucidate the origins of oscillation, we must turn to mathematical 

modeling.  An iterative process of constructing models, using them to make experimentally-

testable predictions, performing the experiments, and revising the models based on the 

experimental results is required for assessing and improving our understanding of the oscillator.   

Circadian clocks are limit-cycle oscillators that follow a single, closed-loop trajectory 

(the limit cycle) through phase space (the multi-dimensional space encompassing all possible 



 11 

states of the system) under a given set of conditions [1].  Perturbations away from the limit cycle 

are followed by a return to the same trajectory, making the oscillator resistant to fluctuations in 

conditions.  The system spontaneously approaches the limit cycle from a range of initial 

conditions, getting progressively closer to the cycle as time goes on (hence the name of limit 

cycle).  The mechanisms generating the oscillations must actively keep the system from spiraling 

into a stable steady state in which all dynamical variables remain constant in time; instead, 

oscillation-generating mechanisms push the system toward the limit cycle and far away from 

equilibrium [42].    

What features must the Kai system possess in order to generate oscillations?  Considering 

the alternating phases of phosphorylation and dephosphorylation of KaiC, one requirement for 

limit-cycle oscillation becomes immediately apparent: there must be a time delay between the 

beginning of the phosphorylation phase and the switch to the dephosphorylation phase, and vice 

versa [43].  This temporal separation is necessary to keep the system away from a stable steady 

state in which the concentrations of all phosphoforms are constant.  If phosphorylation were 

immediately followed by a tendency to dephosphorylate, the two reactions would be exactly 

balanced; although ATP consumption would continue, the system would end up in a stable 

steady state and no oscillations would occur.  Time delays are required in order to cause the 

system to persistently overshoot and undershoot the steady state, keeping it away from the steady 

state [44-45].  Time delays also provide a mechanism for maintaining directionality – 

phosphorylating at one time and dephosphorylating at another.  (In mechanical systems, inertia 

can maintain directionality, but chemical systems lack inertia.)   

However, time delays are not sufficient for oscillations to occur [46].  Consider the 

hypothetical scenario shown in Figure 2A, in which KaiC is forced to cycle through the four 
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phosphoforms (independently of KaiA or KaiB) via the intermediate, singly phosphorylated 

states that provide time delays.  Because individual KaiC molecules are forced to cycle, it may 

appear as though this scheme should generate population-level oscillations in the phosphoform 

distribution of the ensemble of KaiC molecules.  But oscillations cannot occur – the system 

always spirals into a stable fixed point (Figure 2A).  The reason is that each step in the 

phosphorylation cycle of an individual KaiC molecule is a stochastic chemical reaction; the time 

it takes for each molecule to undergo a phosphorylation or dephosphorylation event varies due to 

thermal fluctuations.  These stochastic fluctuations cause some KaiC molecules to traverse the 

cycle faster than others, resulting in desynchronization.  The phosphoform distribution of the 

ensemble of KaiC molecules approaches a steady-state value as individual molecules become 

increasingly desynchronized.   

The failure of this scheme (Figure 2A) to generate oscillations illustrates the second 

major requirement for oscillations – a mechanism for maintaining sufficient synchrony amongst 

KaiC molecules to sustain population-level oscillations.  Feedback can generate this synchrony.  

KaiC molecules that progress too quickly through the cycle must act (directly or indirectly) to 

speed up the laggards until they catch up, or hold them back until the leaders can return to the 

starting point; alternatively, the laggards could speed up or slow down the leaders.  Feedback 

causes an oscillator to switch (rapidly in some systems and more slowly in others) back and forth 

between two opposing states – in our case, phosphorylation and dephosphorylation.  At the 

transition between those two states (which can be gradual, rather than instantaneous), some 

molecular event(s) cause most if not all components to switch states, thereby synchronizing 

them.  Synchrony amongst KaiC hexamers also could be promoted by monomer shuffling.  

Finally, limit cycle oscillations require nonlinearities [47], and in a chemical system require an 
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energy source.  Cooperativity, feedback, and time delay schemes can provide nonlinearities, and 

ATP consumption provides energy to the Kai oscillator.   

 

Models of the Kai oscillator  

Many groups have proposed quantitative models of the oscillator, typically expressed in 

differential equations describing the rates at which key chemical species (e.g., forms of KaiC 

and/or Kai protein complexes) are produced and destroyed [12,27,43,46,48-54].  Here we 

examine these models, focusing on the sources of time delays and synchrony in each.   

 

Time delays/temporal separation of phases 

Prior to the discovery of the phosphoform cycle in 2007 [36-37], a major challenge for 

modelers was to explain the temporal separation between dephosphorylation and 

phosphorylation.  If one considers only the total phosphorylation level of KaiC (i.e., either the 

proportion of KaiC phosphorylated anywhere or the number of phosphates per KaiC unit), then 

phosphorylating and dephosphorylating KaiC molecules pass through the same phosphorylation 

states.  Without a biochemical distinction between the two phases, it becomes more difficult (but 

not impossible; see, for example, ref. [52] or the Supporting Information in ref. [54]) to explain 

their temporal separation and the maintenance of reaction directionality.  Models that neglect the 

phosphoform cycle typically achieve temporal separation by assuming that phosphorylating and 

dephosphorylating KaiC differ somehow in conformation and/or in interaction with KaiA/KaiB, 

and often need to assume that these differences are long-lived [27,46,48-50,53-55].  However, 

experimental evidence for conformational states or protein complexes with such long lifetimes 

(~12 hours) is lacking.  In fact, KaiA and KaiB binding and unbinding to KaiC can be rapid [38], 
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and KaiC passing through the middle of the dephosphorylation phase can be rapidly switched to 

a phosphorylating state when a high concentration of KaiA is added to the reaction [36].  

Similarly, following the removal of KaiA from a KaiA-KaiC reaction, dephosphorylation rapidly 

commences [36,38].  Therefore, while KaiC likely has multiple conformational states, each with 

different kinase, phosphatase, and ATPase rates, these states are short-lived and rapidly 

interconvertible.   

The need to posit kinetically-stable, non-covalent states to explain temporal separation 

was obviated by the discovery that the phosphoform population during phosphorylation and 

dephosphorylation is quite different: high levels of T-KaiC and low levels of S-KaiC mark the 

phosphorylation phase, and vice-versa during dephosphorylation, even though the total 

phosphorylation levels may be the same [36-37].  The intermediate phosphorylation states during 

the phosphorylation and dephosphorylation phases provide a source of time delays [43,45].  

Moreover, the different phosphoform distributions during the two phases establish a biochemical 

distinction between them, enabling the oscillator to “know” in which direction it should be 

going.  Critical to establishing those different phosphoform distributions, and the phosphoform 

cycle more generally, are the intrinsic directionality of KaiC phosphorylation and 

dephosphorylation, with T432 always phosphorylated and dephosphorylated before S431.  

Molecular mechanisms for the directionality of KaiC (de)phosphorylation have been proposed 

based on the KaiC crystal structure [56]; this proposal needs to be tested by obtaining and 

comparing structures of KaiC in different phosphorylation states.   

 

Synchronization 
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The mechanism by which synchronization is achieved remains under debate.  Two 

general synchronization mechanisms, not mutually exclusive, have been proposed (Figure 3).  In 

one mechanism (Figure 3A), synchronization is achieved primarily by modulation of KaiA 

and/or KaiB activity by specific states of KaiC [43,49,52,54-55].  In most models invoking this 

mechanism, stoichiometric control of KaiA activity by differential sequestration on or inhibition 

by KaiC (directly or via KaiB) is central.  In these models, the concentration of KaiA is limiting 

for phosphorylation; when specific states of KaiC inhibit the activity of KaiA, all KaiC in the 

reaction – regardless of its state – is affected, since KaiA controls the balance between the kinase 

and phosphatase activities of all KaiC molecules.  In the second synchronization mechanism 

(Figure 3B), synchrony is achieved through direct interhexamer communication via either 

monomer exchange or autocatalysis [12,46,48,50,53].  KaiA and KaiB cause KaiC molecules to 

transition between different states, but they are not the proximal source of feedback and 

synchronization.  Note that the two mechanisms are not mutually exclusive, and in some models 

both mechanisms operate to a greater or lesser extent.   

To illustrate the first category of synchronization mechanisms, we examine the 

experimentally-constrained model proposed by Rust et al [36] (Figure 2B and Figure 3A).  In 

this model, synchronization occurs via inactivation of KaiA by KaiB in the presence of the last 

phosphoform to accumulate during the phosphorylation phase (S-KaiC), causing autocatalytic 

production of S-KaiC (positive feedback) and global inhibition of phosphorylation of other 

species (negative feedback).  This inhibition of KaiA is supported by the observations that (a) 

KaiB’s binding to both KaiC and KaiA closely tracks the abundance of S-KaiC, and (b) KaiA 

activity is absent during the dephosphorylation phase, the time at which S-KaiC abundance is 

high.  Uniquely amongst published models, the Rust et al model was constructed with 
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experimentally-measured phosphorylation and dephosphorylation kinetics for each phosphoform 

interconversion.  Using these measured kinetics and assuming stoichiometric inhibition of KaiA 

by S-KaiC (via KaiB), the model generates limit-cycle oscillations with the correct period and 

pattern of phosphoform abundances (Figure 2B) [36].  The model does not invoke any role for 

direct interhexamer communication in synchronization.  Hence, stoichiometric inhibition of 

KaiA by a form of KaiC is sufficient for maintaining adequate synchrony.  Clodong and 

colleagues similarly concluded that direct interhexamer communication is not required in a 

model in which dephosphorylating KaiC stoichiometrically inhibits KaiA and is irreversibly 

committed to dephosphorylating [49].   

In contrast, in models invoking the second synchronization mechanism, KaiC hexamers 

directly communicate with one another to synchronize their phases.  In one model [50], a 

complex of KaiA and phosphorylated KaiC acts autocatalytically, accelerating the  association of 

KaiA with KaiC and phosphorylation of the latter; no experimental evidence for such 

autocatalysis has been reported.  Other models [12,46,48,53] employing the second 

synchronization mechanism rely on monomer exchange/shuffling between KaiC hexamers to 

maintain synchrony.  Monomer exchange has the obvious effect of averaging hexamer 

compositions, thereby reducing inter-hexamer variability arising from the inherent stochasticity 

of kinase and phosphatase reactions.  Indeed, such shuffling occurs during the early 

dephosphorylation phase.  However, some models [46,53] assume that monomer exchange has a 

much stronger effect on the oscillator than mere averaging.  In these models, highly 

phosphorylated hexamers that have just entered a dephosphorylating state not only exchange 

monomers amongst themselves, but also induce exchange with hexamers in the normally non-

exchanging, phosphorylation-prone state (Figure 3B).  This results in hybrid hexamers 
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containing a mixture of subunits in phosphorylation- and dephosphorylation-prone states.  The 

dephosphorylation-prone subunits act dominantly to switch the phosphorylation-prone subunits 

into the dephosphorylating state.  This process results in the synchronization of KaiC hexamers 

into the dephosphorylation-prone state (Figure 3B).   

Ito and colleagues experimentally probed the mechanism of synchronization by mixing 

oscillators in different phases, then monitoring the total phosphorylation level of KaiC in the 

mixtures [14].  All mixtures continued oscillating, but dephosphorylating reactions dominated in 

determining the resulting phase: when a dephosphorylating reaction was mixed with a 

phosphorylating reaction, the phase of the mixture was similar to that expected if the 

dephosphorylating reaction had been incubated alone.  The authors explain the dominance of 

dephosphorylating over phosphorylating reactions in terms of induced monomer exchange, with 

a secondary role for phase-dependent sequestration of KaiA (Figure 3B).  They show that six 

hours after mixing a phosphorylating and dephosphorylating reaction, more exchange has 

occurred between KaiC molecules originating from the two original hexamer pools than would 

be expected if those pools were unaffected by one another.  Ito et al interpret this observation in 

terms of a process in which the dephosphorylating hexamers induce monomer exchange with the 

otherwise non-exchanging, phosphorylating hexamers, resulting in synchronization into a 

dephosphorylating state, as described above. This process is reinforced by the inactivation of 

KaiA by KaiB and KaiC.  The switch back to the phosphorylation phase is caused by the release 

of KaiA inhibition [14]. 

However, these results also could be explained in terms of the KaiA-inhibition 

mechanism of synchronization.  Although the authors [14] did not monitor the phosphoforms 

distribution of KaiC, we know that dephosphorylating and phosphorylating oscillators contain 



 18 

very different distributions.  KaiC in dephosphorylating oscillators is enriched in S-KaiC, which 

(via KaiB) could inactivate KaiA from the phosphorylating reaction following mixing [36-37].  

KaiA activity then would drop, in turn causing dephosphorylation of the KaiC originating from 

the phosphorylating mixture.  Hence, KaiC from both origins would dephosphorylate – and 

because dephosphorylating hexamers mix with each other [14,38], the two pools of hexamers 

exchange monomers.  A KaiA-inhibition mechanism also is consistent with the observation that 

the dominance of the dephosphorylating reaction requires that it constitute over 10% of the final 

mixture [14]; this concentration threshold is easier to explain with stoichiometric inhibition of 

KaiA than with induced monomer exchange.  In light of these considerations, the extent to which 

directly-induced monomer exchange plays a role in the in vitro oscillator remains unclear.  

 

 

Open questions and future directions for the in vitro oscillator 

Below, we highlight some of the fundamental unresolved questions about the Kai 

oscillator, the answers to which will be required to build a coherent understanding of how robust 

oscillations emerge from the biochemical properties of the Kai proteins.   

o Hexamer effects:  What phosphorylation states does a hexamer visit?  That is, 

what combinations of subunit phosphorylation states appear in hexamers?  How 

much variability exists amongst hexamers at any given time?  What are the effects 

of subunit composition on the enzymatic and protein binding activities of the 

hexamer?  How cooperative are subunit phosphorylation and dephosphorylation 

in the hexamer? 
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o Role of ATPase activity:  What is the role of ATPase activity [40-41] (as distinct 

from kinase activity)?  Does ATP hydrolysis provide energy with which to power 

a conversion of KaiC into a high-energy state? 

o The pacesetter: What is the fundamental timekeeper in the Kai oscillator?  Is it 

ATPase activity, kinase and phosphatase activity, or some combination of the 

two?  Perhaps all three reactions are controlled by a more fundamental process, 

such as the conversion of KaiC into a rare conformational state in which those 

reactions actually occur.  Most likely, the rate of conformational change would be 

influenced by the phosphorylation state of KaiC and possibly the other products 

of the enzymatic activities (ADP and Pi). 

o Synchronization: What maintains sufficient synchrony in the oscillator to avoid 

dephasing due to the inherent stochasticity of chemical reactions? Is it rhythmic 

inhibition of KaiA and/or monomer exchange?  If induced monomer exchange 

occurs, what is the molecular mechanism by which some special state(s) of KaiC 

induce exchange with otherwise non-exchanging KaiC? 

o The structural biology of oscillator dynamics: While atomic structures of each of 

the Kai proteins have been solved, the structural bases for the many unique and 

complex behaviors of the oscillator remain unclear.  For example, what is the 

structural basis for the ordered (de)phosphorylation executed by KaiC, and why is 

the rate of KaiC ATPase activity independent of temperature?  Further 

experimental and computational studies on the structural dynamics of the Kai 

proteins should provide insights into these exceptional features of the Kai 

oscillator.  Obtaining structures of KaiC in different phosphorylation states and in 
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complex with KaiA and/or KaiB will be of critical importance to those 

investigations. 

 

In studying the protein oscillator, we must keep in mind the cellular context in which it 

functions in vivo.  In the cell, the protein oscillator is embedded within a transcriptional feedback 

loop and interacts with components of the input and output pathways [5,53].  The cellular 

environment fluctuates, and the oscillator has evolved to function robustly in the face of such 

noise.  How do the properties of the protein oscillator relate to these evolutionary constraints, 

and what molecular mechanisms give rise to those properties?   

o Temperature compensation:  What makes the oscillator’s period essentially 

insensitive to temperature?  In principle, a temperature-independent period could 

be achieved by a balance between period-lengthening and period-shortening 

processing that are themselves sensitive to temperature, and/or with period-

determining processes that are insensitive to temperature.  Like the ATPase 

activity of KaiC [41], the activity of a key kinase in the mammalian clock appears 

to be minimally sensitive to temperature [57].  Early work [4] suggested that the 

kinase and phosphatase activities of KaiC also may be minimally sensitive to 

temperature, although individual rate constants were not measured.  However, not 

all of the fundamental processes governing the Kai oscillator can be insensitive to 

temperature; if they were, the experimentally-observed resetting by temperature 

shifts [13] could not occur.  The paradox between a temperature-insensitive 

period and a temperature-responsive phase in the Kai oscillator remains 

unresolved.   
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o Extent of robustness:  How sensitive is the oscillator to the stoichiometry of the 

Kai proteins?  More generally, how robust is the oscillator to fluctuations (in 

contrast to sustained changes) in protein concentrations, which inevitably occur in 

vivo?  

o Mechanism of phase resetting: While the in vitro Kai oscillator is not affected by 

fluctuations in light, the in vivo clock does reset in response to pulses of darkness.  

What is the mechanism by which dark pulses are sensed and the Kai oscillator 

reset?  The protein CikA is involved in dark pulse-induced phase resetting [16], 

but the way in which it impinges on the Kai oscillator is unknown.     

o Role of transcription/translation feedback in vivo.  In vivo, the Kai protein 

oscillator feeds back onto itself by rhythmically modulating the production rate of 

new KaiB and KaiC molecules, causing the concentrations of these species to 

oscillate.  Interestingly, newly transcribed/translated (and hence 

unphosphorylated) KaiC appears to be produced maximally when existing KaiC is 

highly phosphorylated.  What are the consequences of adding U-KaiC into the 

system at this time?  More generally, what are the effects of the transcriptional 

feedback on the protein oscillator?  Does it enhance robustness of the oscillator to 

intracellular and extracellular (environmental) perturbations/noise?   

A recent study [58] showed that, in vivo, certain non-phosphorylatable 

phosphomimetic mutants of KaiC designed to mimic either U-KaiC or ST-KaiC 

can generate oscillations in a luciferase-based gene expression reporter in the 

absence of wild-type KaiC.  However, the amplitude of these oscillations was 

reduced relative to that of the wild-type oscillator.  These data indicate that 
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oscillatory phosphorylation is not the sole source of rhythmicity in vivo.  Perhaps 

the combination of a phosphorylation-independent activity of KaiC (e.g., ATPase 

activity) and transcriptional feedback generates the weak rhythms.  The authors 

[13] suggest that such phosphorylation-independent oscillations couple 

cooperatively with the oscillations in phosphorylation state to generate the 

exceptional robustness of the clock in vivo. 

 

In answering these questions, the construction and interrogation of quantitative models of 

the Kai oscillator will be essential.  These models need to be evaluated by subjecting non-trivial 

predictions to experimental tests.  One of the simplest ways to test a model is to examine its 

ability to predict the behavior of Kai reactions of different stoichiometries.  The oscillator’s 

behavior as the concentrations of KaiA or KaiB are lowered across the failure threshold 

(bifurcation point) has been examined, as have the effect of concerted changes in the 

concentrations of all three proteins [38], but a systematic exploration of oscillator dynamics as a 

function of stoichiometry has not been performed.  The effects of stoichiometry are easily 

explored experimentally, and generally different models will make different predictions about 

the boundaries of oscillation and the sensitivity of period, amplitude, and waveform to 

stoichiometry.  Through an iterative process of experiment and modeling, a fuller, more holistic 

understanding of the Kai protein oscillator will be obtained.  Ultimately, we may find that the 

mechanisms that make the Kai oscillator an extremely robust timepiece are employed by other 

biological oscillators, including the eukaryotic circadian clocks that prima facie appear so 

different from the cyanobacterial clock. 
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Figure Legends 

Figure 1.  Biochemical features of the Kai oscillator.   

(A) The structure of KaiC (PDB 2GBL).  (Upper left) The surface of a KaiC hexamer viewed 

from the side of the double-doughnut-shaped multimer.  Each subunit is shown in a different 

color.  ATP molecules bound at the interface between adjacent subunits are shown in yellow; 

only the edge of the adenine base is visible, with the remainder of the nucleotide buried in the 

subunit-subunit interface.  (Lower left) The top of the KaiC hexamer, viewed from the CII side, 

with the C-terminal tails (residues beyond 497) omitted for clarity.  This view is obtained by 

rotating upper left view by 90oC out of the plane of the page.  (Right)  Cutaway view showing 

the locations of the ATPs and the two phosphorylation sites at the subunit-subunit interface.  

Chain E has been removed to reveal the buried ATP and phosphorylation sites.  The ATP 

molecules, phosphorylated S431 (chain F), and phosphorylated T432 (chain F) are highlighted  

Figures were rendered using VMD [59]. 

 

 (B) Rhythmic phosphorylation of KaiC in a KaiA-KaiB-KaiC reaction.  (Top) Image of an SDS-

PAGE gel used to resolve the four phosphoforms of KaiC.  The time in hours at which each 

sample was acquired is indicated; the three proteins were mixed and placed at 30 oC at time zero.  

(Bottom) Quantification of the KaiC phosphoform distribution as a function of time.  U-KaiC, 

unphosphorylated KaiC; T-KaiC, KaiC phosphorylated only on T432; S-KaiC, KaiC 

phosphorylated only on S431; ST-KaiC, KaiC phosphorylated on both S431 and T432; Total, 

percentage of KaiC phosphorylated at either or both residues (S-KaiC + T-KaiC + ST-KaiC). 
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(C) Diagram showing the major KaiC autokinase and autophosphatase reactions that occur in the 

presence or absence of KaiA, according to Rust et al [36] and Nishiwaki et al [37].  In the fitted 

rate constants obtained by Rust et al [36], the rate constant for the dephosphorylation of ST-KaiC 

to T-KaiC was nonzero, but we now believe that this is a fitting artifact and that the rate constant 

is, in fact, negligible, consistent with the phosphomimetic data of Nishiwaki et al; therefore, we 

do not show an arrow from ST-KaiC to T-KaiC.  The arrow denoting the phosphorylation of S-

KaiC to produce ST-KaiC is colored gray to indicate the disagreement between the results of 

Rust et al [36] (which suggest that the process occurs at an appreciable rate) and those of 

Nishiwaki et al [37] (which suggest that the process does not occur) .  As the rate at which S-

KaiC can be phosphorylated to yield ST-KaiC in the presence of KaiA plays an important role in 

the model of Rust et al, it is important to further investigate whether this process occurs.       

(D)  A schematic showing key Kai protein complexes that appear during a circadian cycle.  KaiA 

symbols represent dimers, while KaiB symbols represent either dimers or tetramers.  At any 

point in time, the composition of Kai protein complexes is heterogeneous, and a large fraction of 

KaiC is not bound by KaiA or KaiB; here, only a single complex is shown at each time point to 

emphasize when key complexes appear.  The precise stoichiometries of the various Kai protein 

complexes remain uncertain, and we have selected arbitrarily a few possible stoichiometries.    

Also, while phosphorylated S431 (pS431) and phosphorylated T432 (pT432) are located at the 

interface between subunits (see Figure 1A), here we show them on the outer surface of the 

subunits for clarity.  Active KaiA shuttles amongst KaiC hexamers in the phosphorylation phase, 

promoting ordered KaiC phosphorylation.  KaiB binds primarily to S-KaiC (which appears 

through dephosphorylation of ST-KaiC), but also may bind to ST-KaiC.  Bound KaiB inactivates 

KaiA, possibly through the formation of KaiA-KaiB-KaiC ternary complexes, which accumulate 
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as S-KaiC levels rise during the mid-dephosphorylation phase through decay of the ST-KaiC 

reservoir.  As levels of S-KaiC themselves decay through dephosphorylation, KaiB binding – 

and hence KaiA inhibition – is relieved, releasing active KaiA to begin the phosphorylation cycle 

anew.   

 

 

Figure 2.  Generation of oscillation by KaiA, KaiB, and KaiC.   

(A) Top, A hypothetical cyclic reaction scheme for KaiA- and KaiB-independent KaiC 

phosphorylation and dephosphorylation that does not generate oscillations.  Middle, Timecourse 

of phosphoform abundance with all phosphoform interconversions modeled as first-order 

reactions with rate constants of 0.116 h-1.  Bottom, Trajectories of the system starting with 

various initial conditions; black arrows denote directionality of the trajectories.  Notice that all 

trajectories spiral into a stable fixed point, marked with a solid black circle.   

 

(B) Top, Diagram of the model proposed by Rust et al [36] for limit cycle oscillations of the Kai 

oscillator.  Lines emanating from KaiA ending in an arrowhead (black) or bar (gray) indicate 

stimulation or repression, respectively, of the transition toward the indicated form of KaiC; only 

the dominant effects of KaiA are shown. S-KaiC inactivates KaiA via KaiB.  Figure is from Rust 

et al, Science 318: 809-812 (2007).  Reprinted with permission from AAAS.  Middle, 

Timecourse of phosphoform abundance modeled using the same rate constants employed in 

Figure 4B of Rust et al [36].  Bottom, Trajectories of the system starting with various initial 

conditions; black arrows denote directionality of the trajectories.  Notice that all trajectories, 

regardless of initial conditions, approach the limit cycle, which is indicated by red arrows.     
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Figure 3.  Two KaiC synchronization mechanisms.   

(A) Synchronization through stoichiometric control of KaiA activity by differential inhibition by 

KaiB and KaiC.  Shown is a schematic demonstrating how the global inhibition of KaiA activity 

by S-KaiC (via KaiB) prevents the phosphorylation of all KaiC hexamers in the reaction, 

according to the model of Rust et al [36].  Any hexamers with a phosphoform composition 

typical of the phosphorylation phase begin to dephosphorylate as a result of the loss of KaiA 

activity.   

 

(B)  Synchronization through direct interhexamer communication via monomer 

exchange/shuffling.  Shown is the scheme described by Ito et al [14] in which synchronization is 

effected through forced monomer exchange between phosphorylating KaiC and a special, 

dominant form of dephosphorylating KaiC that appears in the early dephosphorylation phase 

(grey box).  Inhibition of KaiA by dephosphorylating KaiC (via KaiB), and the release of that 

inhibition following dephosphorylation, also plays a role in maintaining synchrony.  Adapted 

from ref. [14] by permission from Macmillan Publishers Ltd: Nature Structural and Molecular 

Biology, copyright 2007. 
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