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ABSTRACT: A new method is reported for effecting cata-
lytic enantioselective intramolecular [5+2] cycloadditions 
based on oxidopyrylium intermediates. The dual catalyst sys-
tem consists of a chiral primary aminothiourea and a second 
achiral thiourea. Experimental evidence points to a new type 
of cooperative catalysis with each species being necessary to 
generate a reactive pyrylium ion pair which undergoes subse-
quent cycloaddition with high enantioselectivity.   

The [5+2] dipolar cycloaddition of oxidopyrylium ylides (1, 
Scheme 1) and two-carbon dipolarophiles generates complex, 
chiral 8-oxabicyclo[3.2.1]octane architectures 2.1 In addition to 
being a structural motif common to numerous natural products,2 
such cycloadducts have proven to be highly valuable intermedi-
ates in the synthesis of functionalized seven-membered carbocy-
cles3 and tetrahydrofuran derivatives.4 Despite the utility of this 
[5+2] cycloaddition and its widespread use in organic synthesis,5 
asymmetric examples have thus far been limited to diastereoselec-
tive variants,6 and there are currently no catalytic enantioselective 
methods that engage reactive pyrylium intermediates in cycload-
dition chemistry.7 Herein we report a dual-catalyst system consist-
ing of a chiral primary aminothiourea and an achiral thiourea that 
promotes an intramolecular variant of the title reaction with high 
enantioselectivity. Experimental evidence points to a new type of 
cooperative mechanism of catalysis.8 

Scheme 1. Oxidopyrylium cycloadditions and proposed mode of 
catalysis 

 
It has been shown recently that small-molecule chiral hydro-

gen-bond donor catalysts can serve as anion abstractors and bind-
ers in the generation and enantioselective transformation of highly 
reactive cationic intermediates,9 and we became interested in the 
potential application of the principle of anion-binding catalysis to 
oxidopyrylium formation and cycloaddition. These intermediates 
are generally accessed by thermolysis of the corresponding ace-
toxypyranone 3 (X = OAc, Scheme 1),10 or by reaction of 3 with 
an amine base.11 Upon elimination of acetic acid, reactive 1 has 
been shown to undergo [5+2] cycloadditions with both electron-
rich and electron-poor dipolarophiles.12 We hypothesized that a 

urea or thiourea catalyst might induce ionization of an appropriate 
leaving group from 3 or a tautomeric form thereof, to give 
pyrylium 4. Our efforts thus focused on identifying an appropriate 
precursor to this species (i.e. X in 3) as well as the best mode for 
activation and asymmetric induction in subsequent [5+2] cyload-
ditions.   
Table 1. Reaction optimization 

  
entry substrate  (R=) catalyst(s) yield (%)a ee (%)b 

1c 5a (Ac) 7 37 21 
2c 5a (Ac) 7 + 8 44 67 
3 5a (Ac) 7 + 8 53 67 
4 5a (Ac) 9 + 8 41 66 
5 5a (Ac) 10 + 8 30 88 
6 5b (Bz) 10 + 8 56 91 
7 5c (p-MeSBz) 10 + 8 72 91 
8d 5c (p-MeSBz) 10 + 8 76 91 

Reactions performed on a 0.05 mmol scale. a Determined by 1H NMR 
analysis using 1,3,5-trimethoxybenzene as an internal standard. b Deter-
mined by HPLC using commercial chiral columns. c No added AcOH. d 
Conditions: 10 mol% 10 + 8, 0.4 M. 

Racemic acetoxypyranone 5a11 was chosen for initial explora-
tory and ensuing optimization studies. The desired reaction was 
found to take place in the presence of a variety of chiral thiourea 
derivatives in combination with stoichiometric triethylamine, but 
no stereoinduction was observed in the formation of cycloadduct 
6.13 In contrast, bifunctional primary aminothiourea 714 induced 
formation of 6 with low levels of enantioselectivity in the absence 
of exogenous base (Table 1, entry 1). An unexpected but ulti-
mately significant observation resulted from a broad screen of 
additives, with achiral thiourea catalyst 815 dramatically improv-
ing the reaction enantioselectivity (entry 2). The addition of acetic 
acid as a second co-catalyst provided a measurable yield en-
hancement, with no effect on product ee (entry 3). Other achiral or 
chiral hydrogen-bond donors (including the urea analogue of 8) 
proved less beneficial as additives. Whereas the electron-poor bis-
trifluoromethyl anilide group is found to be an optimal chiral 
catalyst feature in a growing number of enantioselective thiourea-



 

promoted reactions,16 phenylthiourea 9 (entry 4) was found to be 
comparable to 7. This prompted an exhaustive examination of the 
effect of aryl substitution on the aminothiourea catalyst,13 and led 
to the identification of 10, which bears a 2,6-diphenylanilide 
component, as the most enantioselective aminothiourea catalyst 
(entry 5). The diminished reactivity displayed by 10 was over-
come by utilizing substrate 5b containing a benzoate-leaving 
group (entry 6). Upon exploring various substituents on the ben-
zoate a further enhancement was observed with para-
thiomethylbenzoyl substrate 5c (entry 7). This improved reactivity 
is likely not a result of better leaving group or hydrogen-bond 
accepting ability, as para-thiomethyl substitution has no effect on 
the acidity of benzoic acid (σpara = 0.017). This effect may instead 
be a result of the lower solubility in toluene of the para-
thiomethylbenzoic acid byproduct (as compared to benzoic or 
acetic acid), which precipitates during the course of the reaction. 
Finally, increasing the reaction concentration further improved the 
rate, allowing for the loadings of 10 and 8 to be reduced with this 
parent substrate (entry 8).   
Table 2. Substrate scope 

 
entry             substrate                     product time 

(h) 
yield 
(%)a 

ee 
(%)b 

 

1c,d 

 

 
 
48 

 
 
74 

 
 
91 

2 
 

72 70 90 

3 
 

72 66 89 

4 
 

96 51 89 

5 
 

72 48 86 

6 
 

72 66 90 

7e 
 

96 37 80 

  
8c,d 

 

72 54 95 

 
 9 

 

 
72 

 
42 

 
88 

 
10d 

 

 
72 

 
77 

 
90 

 
11 

 

 
72 

 
70f 

 
89f 

a Isolated yields after chromatography on silica gel. b Determined by 
HPLC using commercial chiral columns. c 10 mol% 10 + 8. d The absolute 
stereochemistry of 24 and derivatives of 28 and 6 were determined by X-
ray crystallography and that of all other products was assigned by analogy. 
e 20 mol% 10 + 8. f Determined on the free alcohol.   

With optimal catalytic conditions in hand, an examination of 
the substrate scope was undertaken (Table 2). Substitutions at the 
olefin terminus were tolerated (entries 2–7), despite a diminish-
ment of reactivity occurring upon increased substitution (entries 4 
and 7). Allenes are viable cycloaddition substrates (entries 8 and 
9), however alkyne-bearing substrates proved unreactive under 
the current set of conditions. Other viable substrates include those 
bearing substitution on the tether connecting the dipole and dipo-
larophile as in diallyl substrate 27 (entry 10), or on the pyranone 
ring as in 29 (entry 11). Product 30 bears a siloxymethylene unit 
commonly found in synthetically useful oxidopyrylium cycload-
ducts.18 Substrate variations that were not tolerated include 
methylation at the internal position of the olefin as well as a 
homologue of substrate 5c containing an additional methylene in 
the tether. Initial efforts to extend this system to an asymmetric 
intermolecular variant have been met with only moderate suc-
cess.13 
Table 3. Catalyst structure-activity relationship study 

 
 

entry 
 

catalyst 
0 mol% 8 

yield (%)a      ee (%)b 
15 mol% 8 

yield (%)a      ee (%)b 

1 10 32              72 72              91 
2 31   7              n.d. 58              71 
3 32   7              n.d. 58            –85 
4 33  10             n.d. 11             n.d. 

Reactions performed on a 0.05 mmol scale. a Determined by 1H NMR 
analysis using 1,3,5-trimethoxybenzene as an internal standard. b Deter-
mined by HPLC using commercial chiral columns. 

In order to probe the possible roles of the different components 
in this dual thiourea catalyst system, a series of reactions were run 
with different bifunctional chiral catalysts in the presence and 
absence of 8 (Table 3).  A clear and dramatic cooperative effect is 
observed between the optimal catalysts as evidenced by the poorer 
results obtained without achiral catalyst 8 (entry 1). A beneficial 
effect of 8 has also been reported recently in proline-catalyzed 
transformations, where its primary role appears to be as a phase-
transfer catalyst to solubilize proline in the non-polar media.19 
Such a role is unlikely in the present system, as all components of 
this oxidopyrylium-based cycloaddition reaction are initially so-
luble in toluene (vide supra). 

Instead, we propose that the function of 8 in the pyrylium cy-
cloaddition reaction is as a carboxylate-binding agent (Figure 1A), 



 

acting cooperatively with 10 to generate the reactive ion pair 34.  
Compound 31, the urea analog of 10, displays very low reactivity 
in the absence of 8,20 but does serve as a moderately enantioselec-
tive co-catalyst in conjunction with 8 (Table 3, entry 2). While the 
thiourea component of the optimal catalyst 10 therefore does in-
fluence the reaction enantioselectivity even in the presence of 8 
(compare entries 1 and 2), it is not necessary for obtaining reactiv-
ity or high ee. Thus, the combination of primary aminocarbazole 
32 and thiourea 8 is an effective catalyst system, catalyzing the 
selective formation of 6 in 85% ee (entry 3). It is significant that 
catalysts 10 and 32 induce cycloaddition with opposite senses of 
enantiocontrol (vide infra). Consistent with the notion that an H-
bond donor catalyst is needed to induce ionization to the pyrylium 
ion, primary aminocarbazole 32 is virtually unreactive in the ab-
sence of 8 (entry 3). Tertiary aminothiourea 3321 is unreactive 
both in the presence and absence of 8 (entry 4), pointing to the 
necessity of a primary amine for catalytic activity. These observa-
tions with basic tertiary aminothiourea 33 as well as the fact that 
acetic acid increases the rate of reaction are consistent with an 
operative enamine catalysis mechanism. Condensation between 
the amine of the catalyst and the ketone of the substrate is ex-
pected to yield a dienamine after tautomerization. Hydrogen-bond 
donor-mediated benzoate abstraction would then generate a cata-
lyst•pyrylium adduct 34 poised to undergo the intramolecular 
cycloaddition.     

 
Figure 1. (A) Proposed role for thiourea catalysts 10 and 8. Calculated 
lowest energy cycloaddition transition structures at the B3LYP/6-31G(d) 
level of theory for (B) 10•pyrylium, and (C) 32•pyrylium. 

With the goal of evaluating the viability of aminopyrylium 34 
in the cycloaddition chemistry induced by the catalyst combina-
tion of 10 and 8, a computational frontier molecular orbital analy-
sis22 of a variety of dipolarophiles and of oxido-, amido-, and 
aminopyryliums (4, Y = O–, NH–, NH2, respectively, Scheme 1) 
was performed and compared with observed trends in intermo-
lecular cycloadditions. The dominant HOMO-LUMO interactions 
between each of the three hypothetical pyrylium species and alke-
nes of varying electronic properties were thereby predicted.13 
With an oxido- or amidopyrylium, either the HOMO or the 

LUMO of the dipole can be more relevant to cycloaddition de-
pending on the dipolarophile, in line with the experimental obser-
vation that oxidopyrylium dipolar intermediates undergo reaction 
with either electron-rich or electron-deficient alkenes.5c,12 Alterna-
tively, the LUMO of an aminopyrylium was predicted to be the 
MO relevant to cycloaddition in all cases, consistent with our 
observation that intermolecular reactions under thiourea-catalyzed 
conditions only proceed with electron-rich dipolarophiles contain-
ing a high HOMO.13 The results thus point towards an amino-
pyrylium – and not an oxido- or amidopyrylium – as the relevant 
intermediate in the thiourea-catalyzed reactions described herein. 

While the unprecedented intermediacy of aminopyryliums such 
as 34 agrees with the experimental and computational data de-
scribed above, the reversal in the sense of enantioinduction ob-
served using primary amine catalysts 10 and 32 in conjunction 
with achiral thiourea 8 was difficult to reconcile by any simple 
means. A computational analysis of transition structures for cy-
cloadditions of the proposed 10•pyrylium and 32•pyrylium ions 
was therefore undertaken.23 Although these simplified models do 
not take into account the counteranion, good correlation with 
experimental results were obtained. Of the multiple first-order 
saddle points that were located for each complex, the lowest en-
ergy transition structure leads to the observed major enantiomer of 
product (Figure 1B,C), and the second-lowest energy transition 
structure corresponds to the observed minor enantiomer in each 
case.24  

In summary, we have identified a dual thiourea catalyst system 
for intramolecular oxidopyrylium [5+2] cycloadditions, providing 
enantioselective access to valuable tricyclic structures. Applica-
tion of this reaction to the synthesis of biologically active small-
molecules, further mechanistic studies into the origin of the cata-
lyst cooperativity, and extension of the underlying principles to 
other multifunctional (thio)urea-catalyzed transformations are the 
focus of ongoing investigations. 

ASSOCIATED CONTENT  
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HPLC traces for scalemic cycloaddition products, geometries and 
energies of calculated stationary points, and crystallographic in-
formation. This material is available free of charge via the internet 
at http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 
jacobsen@chemistry.harvard.edu 

ACKNOWLEDGMENT 
This work was supported by the NIH (GM43214), by an NDSEG 
predoctoral fellowship to M.R.W. (32CFR168a), and by an NIH 
postdoctoral fellowship to N.Z.B. (GM089036). We thank Dr. 
Shao-Liang Zheng for crystal structure determination and Dr. 
Christopher Uyeda for the synthesis and use of catalyst 32. Fig-
ures 1B and 1C were generated using CYLview.25 

                                                                              

References 
 

(1) Recent reviews: (a) Singh, V.; Krishna, U. M.; Vikrant; Trivedi, G. 
K. Tetrahedron, 2008, 64, 3405–3428. (b) Pellissier, H. Adv. Synth. 
Cat. 2011, 353, 189–218. 

(2) For example, Englerin A: (a) Ratnayake, R.; Covell, D.; Ransom, T. 
T.; Gustafson, K. R.; Beutler, J. A. Org. Lett. 2009, 11, 57–60. Intri-
carene: (b) Marrero, J.; Rodríguez, A. D.; Barnes, C. L. Org. Lett. 



 

2005, 7, 1877–1880. Komaroviquinone: (c) Uchiyama, N.; Kiuchi, 
F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O. K.; Ashurme-
tov, O. A. J. Nat. Prod. 2003, 66, 128–131. Descurainin: (d) Sun, K.; 
Li, X.; Li, W.; Wang, J.; Liu, J.; Sha, Y. Chem. Pharm. Bull. 2004, 
52, 1483–1486. Cartorimine: (e) Yin, H.-B.; He, Z.-S.; Ye, Y. J. Nat. 
Prod. 2000, 63, 1164–1165. 

(3)  (a) Wender, P. A.; Lee, H. Y.; Wilhelm, R. S.; Williams, P. D. J. 
Am. Chem. Soc. 1989, 111, 8954–8957. (b) Bromidge, S. M.; 
Sammes, P. G.; Street, L. J. J. Chem. Soc., Perkin Trans. 1 1985, 
1725–1730. 

(4) (a) Fishwick, C. W. G.; Mitchell, G.; Pang, P. F. W. Synlett, 2005, 
285–286. (b) Krishna, U. M. Tetrahedron Lett. 2010, 51, 2148–
2150. (c) Yadav, A. A.; Sarang, P. S.; Trivedi, G. K.; Salunkhe, M. 
M. Synlett, 2007, 989–991. 

(5) (a) Wender, P. A.; Kogen, H.; Lee, H. Y.; Munger, J. D.; Wilhelm, 
R. S.; Williams, P. D. J. Am. Chem. Soc. 1989, 111, 8957–8958. (b) 
Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura, N.; Tebbe, 
A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119, 12976–12977. (c) Ali, 
M. A.; Bhogal, N.; Findlay, J. B. C.; Fishwick, C. W. G. J. Med. 
Chem. 2005, 48, 5655–5658. (d) Roethle, P. A.; Hernandez, P. T.; 
Trauner, D. Org. Lett. 2006, 8, 5901–5904. (e) Li, Y.; Nawrat, C. C.; 
Pattenden, G.; Winne, J. M. Org. Biomol. Chem. 2009, 7, 639–640. 
(f) Nicolaou, K. C.; Kang, Q.; Ng, S. Y.; Chen, D. Y.-K. J. Am. 
Chem. Soc. 2010, 132, 8219–8222. 

(6)  (a) Wender, P. A.; Rice, K. D.; Schnute, M. E. J. Am. Chem. Soc. 
1997, 119, 7897–7898. (b) López, F.; Castedo, L.; Mascareñas, J. L. 
Org. Lett. 2000, 2, 1005–1007. (c) López, F.; Castedo, L.; Mas-
careñas, J. L. Org. Lett. 2002, 4, 3683–3685. (d) Wender, P. A.; Bi, 
F. C.; Buschmann, N.; Gosselin, F.; Kan, C.; Kee, J.-M.; Ohmura, H. 
Org. Lett. 2006, 8, 5373–5376. (e) Garnier, E .C.; Liebeskind, L. S. 
J. Am. Chem. Soc. 2008, 130, 7449–7458. 

(7)  For an isolated example of Rh-catalyzed benzopyrylium cycloaddi-
tions that proceed in low (<20%) enantioselectivity, see: (a) Hodg-
son, D. M.; Stupple, P. A.; Johnstone, C. ARKIVOC 2003, 49–58.  
Transition metal-catalyzed asymmetric 1,3-dipolar cycloadditions of 
carbonyl ylides to access similar products have been reported: (b) 
Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Wa-
tanabe, N.; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417–1418. 
(c) Hodgson, D. M.; Labande, A. H.; Pierard, F. Y. T. M.; Expósito 
Castro, M. Á. J. Org. Chem. 2003, 68, 6153–6159. (d) Hodgson, D. 
M.; Brückl, T.; Glen, R.; Labande, A. H.; Selden, D. A.; Dossetter, 
A. G.; Redgrave, A. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 
5450–5454. (e) Shimada, N.; Anada, M.; Nakamura, S.; Nambu H.; 
Tsutsui, H.; Hashimoto, S. Org. Lett. 2008, 10, 3603–3606. (f) Ishi-
da, K.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 
8842–8843. 

(8) A remarkable effect of TfNH2 on the enantio- and diastereoselectiv-
ity of rhodium-catalyzed cyclopropanations of α-cyano dia-
zoacetamide has been noted by Charette and co-workers. The basis 
for this cooperative effect appears to be entirely different from the 
one described herein: Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. 
Chem. Soc. 2009, 131, 6970–6972. 

(9) (a) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. 
Am. Chem. Soc. 2007, 129, 13404–13405. (b) Reisman, S. E.; Doyle, 
A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198–7199. (c) 
Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887–890. (d) 
Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358–
15374. (e) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. 
N. Science 2010, 327, 986–990. (f) Knowles, R. R.; Lin, S.; Jacob-
sen, E. N. J. Am. Chem. Soc. 2010, 132, 5030–5032. (g) Brown, A. 
R.; Kuo, W.-H.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286–
9288. (h) De, C. K.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 
2009, 131, 17060–17061. For a recent review, see: (i) Zhang, Z.; 
Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187–1198. 

(10) Hendrickson, J. B.; Farina, J. S. J. Org. Chem. 1980, 45, 3359–3361. 
(11) (a) Sammes, P. G.; Street, L. J. J. Chem. Soc., Chem. Commun. 

1982, 1056–1057. (b) Sammes, P. G.; Street, L. J. J. Chem. Soc., 
Perkin Trans. 1 1983, 1261–1265. 

(12) Sammes, P. G.; Street, L. J. J. Chem. Res., Synop. 1984, 196–197. 
(13) See Supporting Information for details. 
(14)  For preparation and use, see reference 9g and references therein. 
(15) (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217–220. (b) 

Wittkopp, A.; Schreiner, P. R.  Chem. Eur. J., 2003, 9, 407–414. 
(16) For examples that include a direct comparison of different aryl thiou-

reas, see: 9b, 9c, 9d, 9g, 9h, and 21. 

(17) McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420–427. 
(18) See references 3a, 5b, 6a, and 6d for examples. 
(19) (a) Reis, Ö.; Eymur, S.; Reis, B.; Demir, A. S. Chem. Commun. 

2009, 1088–1090. (b) Companyó, X.; Valero, G.; Crovetto, L.; Mo-
yano, A.; Rios, R. Chem. Eur. J. 2009, 15, 6564–6568. (c) Demir, A. 
S.; Eymur, S. Tetrahedron: Asymmetry 2010, 21, 112–115. (d) 
Demir, A. S.; Eymur, S. Tetrahedron: Asymmetry 2010, 21, 405–
409. 

(20) In general, ureas are substantially weaker Brønsted acids than the 
corresponding thioureas, and accordingly also poorer H-bond do-
nors: pKa of N,N'-diphenylthiourea (DMSO) = 13.5, while N,N'-
diphenylurea = 19.5: Bordwell, F. G.; Algrim, D. J.; Harrelson, J. A., 
Jr. J. Am. Chem. Soc. 1988, 110, 5903–5904. 

(21) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 
12672–12673. 

(22) Zhang, G.; Musgrave, C. B. J. Phys. Chem. A 2007, 111, 1554–
1561. 

(23) B3LYP/6-31G(d) has been established as an appropriate level of 
theory for studying oxidopyrylium [5+2] cycloadditions: (a) López, 
F.; Castedo, L.; Mascareñas, J. L. J. Org. Chem. 2003, 68, 9780–
9786. (b) Wang, S. C.; Tantillo, D. J. J. Org. Chem. 2008, 73, 1516–
1523. 

(24) Uncorrected electronic energy differences between the two lowest 
energy diastereomeric transition structures are 1.31 kcal/mol for 
10•pyrylium and 1.33 kcal/mol for 32•pyrylium. See Supporting In-
formation for structures. 

 (25) CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009; 
http://www.cylview.org.



 

 

 

  

 


