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Exciton coherence lifetimes from electronic structure
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We model the coherent energy transfer of an electronic excitation within covalently

linked aromatic homodimers from first-principles, to answer whether the usual models

of the bath calculated via detailed electronic structure calculations can reproduce the

key dynamics. For these systems the timescales of coherent transport are experimen-

tally known from time-dependent polarization anisotropy measurements, and so we

can directly assess the whether current techniques might be predictive for this phe-

nomenon. Two choices of electronic basis states are investigated, and their relative

merits discussed regarding the predictions of the perturbative model. The coupling

of the electronic degrees of freedom to the nuclear degrees of freedom is calculated

rather than assumed, and the fluorescence anisotropy decay is directly reproduced.

Surprisingly we find that although TDDFT absolute energies are routinely in error

by orders of magnitude more than the coupling energy, the coherent transport prop-

erties of these dimers can be semi-quantitatively reproduced from first-principles.

The directions which must be pursued to yield predictive and reliable prediction of

coherent transport are suggested.
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I. INTRODUCTION

Recent experimental evidence of coherent electronic energy transport at biologically rel-

evant physical scales has spurred studies of the basic dynamics1, and new methods for

propagating the quantum system state2–4 as it interacts with the environment we cannot

fully characterize. However detailed pictures of how the quantum state couples to the bath

are usually absent from these studies, which often assume an environment characterized by

a small number of parameters (for example a spectral density of the Drude-Lorentz form5).

Models for the electronic coupling usually vary in detail6–11 between the dipole approxi-

mation and the single-particle Coulomb interaction, but quantum many-particle effects are

assumed to be negligibly small. It is not clear from the literature12 at present day how well

electronic structure theory can provide all the parameters which are required to produce the

timescale of coherence decay. To address this we focus on excitonic dimers13 as prototypes

of coherent transport. At the outset the task would seem ambitious since the couplings

between chromophores are typically on the order of 300cm−1 ≈ 1 kcal/mol. Excited state

methods which can be afforded for molecules of this size, mainly time-dependent density

functional theory(TDDFT), are routinely in error14,15 by 1600cm−1. This, and the large

size of the systems of interest, are likely the underlying reason why atomistic calculations of

decoherence dynamics are so infrequent in the literature.

Recently an experiment16 has characterized coherent resonant energy transfer (CRET)

in a closely related family of anthracene dimers (1). In this investigation an exciting fem-

tosecond pulse of linearly polarized light prepares a superposition of electronic states on

a pair of identical chromophores. Then over the course of about a picosecond, the time-

dependent fluorescence is detected by upconversion with polarization sensitivity. The oscil-

lations of the fluorescence anisotropy (r(t)) measured in these experiments are a marker of

coherent transport (as demonstrated in the pioneering work of Hochstrasser17 and cowork-

ers). The three dimers, [2,2’] dithia-anthracenophane (DTA), 3,5-bis(anthracen-2-yl)-tert-

butylbenzene (MDAB) and 1,2-bis-(anthracen-9-yl)benzene (ODAB), are all derivatives of

anthracene. Theoretically DTA has been examined18 by the groups of Cina19,20 and Jang21,

who supported the picture of coherent transport. The latter work provided direct calcula-

tions of the Coulomb coupling within a model-Hamiltonian picture of transport, and used

DTA as a test-bed for an efficient new theory of CRET22,23. Building on this previous work,
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this paper elucidates how well electronic structure can provide an ab-inito master equation

for this phenomenon without assumption of site localized states, or classical coulomb(J)

coupling.

A perturbative master equation approach is one tool in a set of complementary ap-

proaches to the exciton transport problem where nuclear (phonon) motion is the dominant

bath. The main advantage of the master equation approach is it provides a reduced system

density matrix, and only requires perturbative information provided by derivatives of sys-

tem matrix elements and models of bath correlation functions. It should be viewed as the

most affordable approach, and is feasible whenever the closed electronic dynamics can also

be propagated, and the bath correlation function is known. Sophisticated and sometimes

formally-exact master equations which incorporate non-Markovian effects through auxiliary

density matrices that propagate along with the system3,24–27 are a difficult starting point for

atomistic simulations because the cost which is already significant with model-hamiltonians

increases further in a non-linear way with the structure of the bath correlation function and

number of system modes. If the bath correlation function cannot be approximated by a

harmonic model28 and requires nuclear dynamics29–31, the situation becomes rapidly more

difficult. Moving towards increased accuracy and increased cost, there are several dynamical

simulation techniques which can propagate electrons coupled to nuclei32,33, such as: surface

hopping (SH)34–36, Ehrenfest dynamics37–39, and semi-classical approaches40,41. These suffer

from some difficulties of their own; the latter two do not preserve detailed balance without

modification, and the former is not an acceptable model for coherence dephasing without

some additions42 which are topics of current study. At the peak of accuracy there are for-

mally exact path-integral based approaches43 which have provided vital insight into open

quantum systems, but are a difficult starting point for complex simulations.

In this work we employ the Redfield44,45 master equation. We will see below that within

our simulations the couplings between states are so much larger than the reorganization en-

ergies that Redfield theory is appropriate for this application46 and can furnish good results.

However it is a perturbative model and fails entirely when the electronic couplings are small

relative to the bath strength. For this reason it has been refined by more sophisticated,

non-Markovian models which can replace it with little additional cost. In particular the

polaron transformed theory47 of coherent transport22,23 is an attractive starting point for a

master equation which hybridizes a correlated electron Liouville equation with a rigorous
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FIG. 1: Excitonic dimers considered in this study, from left-to-right [2,2’]
dithia-anthracenophane (DTA), 3,5-bis(anthracen-2-yl)-tert-butylbenzene (MDAB) and

1,2-bis-(anthracen-9-yl)benzene (ODAB).

bath model. This direction should be pursed in future research.

II. THEORY

We wish to reproduce the decaying oscillations of the fluorescence anisotropy. The start-

ing point of our analysis is the usual Liouville-Von Neumann equation48 for the full unitary

evolution of a molecule linearly coupled to a harmonic phonon bath,

σ̇ = iLσ = i[Ĥ, σ], where: Ĥ = Ĥelec + Ĥph + Ĥelec-ph (1)

and σ is the full density matrix describing both electronic and nuclear degrees of freedom.

We now introduce fermionic operators ai and a†i , which respectively destroy and create an

electron in an arbitrary many-electron state i (the exact nature of the electronic states is

discussed below). Different choices yield different dimensionless displacements diα. Similarly,

we introduce bosonic operators bα and b†α, which respectively destroy and create a vibrational

excitation in mode α. We expand the terms in the molecular Hamiltonian and density matrix

in terms of these basis states as,

Ĥelec = (hij + δijωαd
2
iα/2)a†jai, (2)

Ĥph = ωα(b†αbα +
1

2
), (3)

Ĥelec-ph = ωαdiαa
†
iai(b

†
α + bα), (4)

σ = ρija
†
iaj × ραβb†αbβ. (5)
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Here, diα is a dimensionless parameter measuring the strength of coupling of the ith elec-

tronic state to vibrational mode α. Atomic units are used throughout this paper and it is

assumed that repeated indices are to be summed over. In Eq. (2), we see that in addition

to the usual matrix elements hij of the electronic Hamiltonian, Ĥelec includes an additional

contribution from reorganization energies of the bath, ωαd
2
iα/2.

In order to simulate CRET, 1 must be integrated for a few picoseconds. It is not yet

feasible49,50 to perform all-electron propagations for systems of this size over periods of time

which are so long on the electronic timescale. Instead, we will treat the nuclear dephasing

using a master equation, and propagate only an electronic density matrix. We propagate the

electronic density matrix using TDDFT within the Tamm-Dancoff approximation (TDA)51,

which obeys an equation of motion for an auxiliary one-particle density matrix which is the

same as the electronic part of 1. Without the added approximation of the TDA, TDDFT

(and TDHF) are non-linear, because of the dependence of the Fock operator on the state.

As a result, resonant coherent Rabi oscillations don’t properly appear in the adiabatic ap-

proximation, as was recently realized52.

In principle, properties beyond the electron density can be provided with the addition of

new functionals. For the purposes of this work we make the assumption that the Kohn-

Sham density matrix is a reasonable approximation to the true density matrix. This is a

necessary first approximation to make headway, and can be relaxed by employing dynamical

models which do rigorously provide the 1RDM53. We make a small-matrix approximation to

a Kohn-Sham-Redfield scheme to evaluate the usefulness of a harmonic bath model. In the

Kohn-Sham-Redfield54 scheme, the Kohn-Sham single-particle density matrix ρks is propa-

gated according to a Redfield master equation (see below). We choose the TDA from the

outset, and assume that an approximate propagation spanned by the space of adiabatic

stationary states (ψi) coming from TDDFT/TDA with energies below 6eV (the sum of ex-

citation energy and pulsewidth) is sufficient to represent the combined dynamics. Coupling

between the states will occur via the dipole operator during excitation and the Redfield

relaxation operator described below. Transition moments between states evaluated at this

level of detail55, add a time-dependent off-diagonal term to Ĥelec, V̂
j
i (t) = ~E(t) ·µij. With a

more realistic density matrix than the Kohn-Sham density matrix these moments between

states would change most significantly.

At this point it’s convenient to collect the time independent pieces of Ĥ and work in a
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basis which diagonalizes this part of Ĥ. To this approximate electronic Liouville equation

from electronic structure, we add dissipative terms56,57 of a Markovian Redfield equation,

affording an effective dynamics of the reduced system density matrix in the presence of the

bath. The resulting Liouville equation is:

ρ̇IJ = i(ĤIKρKJ − ρIKĤKJ) +RIJKL(t)ρKL(t) (6)

RIJKL = ΓLJIK + Γ∗KIJL − δJLΓIMMK − δIKΓJMML (7)

ΓIJKL(t) =
∑
α,i,j

∫ ∞
0

dteiωKLtCα
ij(t)〈I|a

†
iai|J〉〈K|a

†
jaj|L〉 (8)

Indices I, J have been capitalized to reflect the possibility that the basis of 8 may cho-

sen differently than the basis of 1. For the purposes of electronic energy transport in

molecules, the classic description of the bath, following Huang58, is the vibrations which

underly the molecule itself. To provide an independent mode displaced harmonic oscil-

lator model (IMDHO) for the correlation function of these bath modes (α, β..), a nu-

clear Hessian calculation is performed. Cα
i,j is the thermal equilibrium correlation function

〈(dαi ωαx̂α(t))(dβj ωβx̂β(0))〉. In the IMDHO model this only contributes for α = β. The

coupling constant between the states is then the so-called Huang-Rhys factor. Assuming

that the potential surfaces of the lower and upper states are harmonic wells of the same

frequency59, this coupling constant is given by the gradient of the diagonal electronic matrix

element projected onto the mode and the mode frequency via:

Siα =
ωαd

2
iα

2
where diα = ω−1α

δ〈i|Ĥ|i〉
δQα

(9)

diα =
∑
rn

δ〈i|Ĥ|i〉
δrn

Uα
n (mn

√
ωα)−1/2 (10)

where diα is the dimensionless displacement, n is an atom with mass mn, and Uα
n is the carte-

sian mass-weighted normal mode coordinate. The correlation function of a single nuclear

mode is then given by the usual60 expression:

Cα
ij(t) = ω2

α

diαdjα
2

[(n̄α + 1)e−iωαt + (n̄α)eiωαt] where: n̄α = (e(β~ωα) − 1)−1 (11)
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FIG. 2: An example of the bath correlation functions produced from the approximations of
this paper. Cmn(ω) is constructed for every pair of states below 6.5eV within the IMDHO

model, and used to construct the Redfield tensor.

In a solution of tetrachloroethylene, the redistribution of vibrational quanta in anthracene

has been studied at room temperature, with time-resolved Raman techniques and found to

occur on timescales between 1-10ps61, which would correspond to a homogeneous vibrational

linewidth of 5cm−1 for one pair of modes. In addition to all the approximations above,

we assume a Lorentzian broadening of the harmonic thermal correlation function by Γ =

40cm−1, due to anharmonicity and collisions with the surrounding medium. Diabatic results

are relatively insensitive to choices of this parameter (pure-dephasing lifetimes vary by less

than a factor of two for reasonable values). The BLYP/6-31g** pure-dephasing lifetimes of of

the bright states in DTA and MDAB are .894 and .566 ps with Γ = 40cm−1, for Γ = 100cm−1

the same two numbers are .900 and .564 ps. The result of this series of approximations are

correlation functions between each state which resemble the sum of Lorentzian peaks in

2. These functions are different for every pair of states. In the direction of further rigor,

correlation functions can be collected from classical or semi-classical dynamics calculations,

or zero-frequency pure-dephasing contributions may be calculated from anharmonicities62 of

the excited state surface.

The experimental observable we seek to reproduce is the fluorescence anisotropy r(t) =
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(I‖(t)−I⊥(t))/(I‖(t)+2I⊥(t)). Where I‖ the fluorescence intensity parallel to the stimulation

polarization. Factoring out the transition moments of the detector, and making the rotating

wave approximations, fluorescence intensity is given63 by the dipole dipole autocorrelation

function: Iγδ(t) ∝ Tr(ρ̂0µ̂γe
iLtµ̂δ) where ρ0 = |0〉〈0| is the ground state and γ, δ cartesian

indices. To spherical average in a numerical propagation of the Redfield equation, we apply

an 80fs pulse to three orthogonal directions of the molecule with a carrier frequency that

is the average energy of the first four excited states, resulting in a coherent superposition

of populated states 3. The polarization which results in all three directions over time is

then used to create a Iγδ(t). The anisotropy is then evaluated at each time using the usual

formulas64. r(t) = (1 − ρdp)/(1 + 2ρdp), where the depolarization ratio ρdp is determined

from the isotropic and anisotropic tensor invariants of Iγδ. The fit of Yamazaki’s data with

the functional form of Hochstrasser:

r(t) =
0.1

1 + e
− 2t

T
′
2C

(
(1 + 3C) + 3(1− C)e

− t

T
′
2 ∗ Cos(ωosct+ δ) + (3 + C)e

− 2t

T
′
2

)
where C = Cos2θ and ωosc = 4β2 − (T

′

2)
−2 (12)

is used to represent the experiment in this work. Since we use a many-state model we

interpret β, and T
′
2 as effective couplings and dephasing times respectively. θ is related to

the angle between transition moments, and δ is a phase-shift.

A. Choice of basis and solvation

As in the perturbation theory of the electron-correlation problem65, the choice of basis

states used in Eq. 10 has a significant impact on the results of master equations. This is

well-appreciated in the polaron-transform approach of Silbey and coworkers66. In most ap-

plications of master equations to excitonic systems, a somewhat local basis is assumed67, in

which Ĥelec is not diagonal, and the system-bath coupling is also only assumed to occur only

on the diagonal elements of the density matrix. These diagonal bath couplings are rotated

off the diagonal when the zeroth-order Hamiltonian is formed (which includes electronic and

bath reorganization contributions) and thus provide relaxation between the stationary states

when the dynamics is performed. This model which resembles the Holstein hamiltonian67

does not emerge directly from electronic structure theory. The question becomes how to
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FIG. 3: An example of how the [2,2’] dithia-anthracenophane(DTA) state populations
evolve under the application of an 80fs oscillating electric field of 0.05 au along one of three

axes (denoted by the red arrow in the figure). On the right, the corresponding stick
spectra are shown, with and without reorganization energy, and in blue the envelope of the

exciting pulse.

define an atomistic prescription for R without resorting to dynamics.

If one naively choses the excited states of a single electronic structure calculation to pre-

pare a master equation, ie: hij = 0 (∀i 6= j), there are several problems. In the Markovian

case adiabatic state-derivatives only contribute to R via C(ω) at ω = 0, where there are

no physical vibrational peaks on which the gradient can be projected in Eq.(10). Rigorous

pure-dephasing contributions at this frequency can be related to anharmonicities62 which

are too expensive to calculate for systems of this size. If fluctuations of non-adiabatic cou-

plings dmn(R) = 〈m| d
dR′ |n〉|(R′=0) under the equilibrated bath were included this would no

longer be the case. The reorganization energy corresponding to dmn would also result in

mixed zeroth-order states, which would to some extent be localized. However the success of

a gradient-based IMDHO model for the spectral density of a non-adiabatic coupling would

not be very good, because the non-adiabatic coupling’s shape68 is very far from that of a

harmonic oscillator, and near zero at equilibrium. One would need to resort to optimizing

this quantity, or performing dynamics to determine a dimensionless displacement. Moreover

there is an issue that the couplings between excited states are second order response proper-

ties of the TDDFT Lagrangian and have not yet been reported for DFT69.
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In an entirely detailed picture, a reorganization Hamiltonian for solvent polarization de-

grees of freedom which are very slow on the electronic timescale, and have little impact on

the dynamics, would localize the electronic states of the system. One effective way to incor-

porate these effects into our simulation is to adopt a recently implemented diabatization70,71

procedure invented by Subotnik and coworkers which mixes the CIS (or TDA) states with

one-another such that their interaction with an implied dielectric is minimized. Again the

electron-phonon coupling is taken to be diagonal in the electronic basis, although the Hamil-

tonian now has off-diagonal Coulomb and exchange (if it is present in the density functional)

coupling. An admitted drawback of this procedure is that the poles of the 0th order Hamil-

tonian are not shifted by their interaction with the solvent model, however the ease of cal-

culation and the results we will obtain strongly support the usefulness of this idea. Because

the gradients of the diagonal elements of these states are no longer analytically available,

we have evaluated the gradient of the diabatic Hamiltonian provided by this procedure by

central differences.

III. RESULTS

A. Stationary parameters.

The vertical (ωB97//6-31g**)72 TDDFT excitation spectrum of a single anthracene

molecule has two poles below 5eV at 4.28, and 4.43 eV, with only the lower state possessing

significant oscillator strength. This is a reasonable reproduction73 bright 1B1u and dark 1B2u

states which occur experimentally at 3.43 and 3.47 eV respectively. For some of the dimers

studied the stick spectrum which results can be rationalized as simple mixture of these

states: with two bright states coming from symmetric and antisymmetric combinations of

the bright states amongst themselves. The dark states, whose realism was questioned in

previous work21, appear to have charge-transfer character, and their relative position to

the bright states in the spectrum changes depending on whether an asymptotically correct

exchange functional is used or not. The TDDFT stick spectra are in good qualitative

agreement with a correlated wavefunction based74,75 excited state theory (I). The low lying

dark states are likely real, and indeed in our dynamics simulations they are involved in

population relaxation of the bright states.
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The semi-quantitative agreement of electronic couplings (β) with the experimental

Method Species State 1 State 2 State 3 State 4

RI-SOS-CIS(D0) DTA 3.83, f=0.077 3.84, f=0.047 3.89, f=0.104 3.89, f=0.026

MDAB 3.89, f=0.003 3.90, f=0.004 4.00, f=0.150 4.01, f=0.175

ODAB 3.93, f=0.023 3.95, f=0.001 3.98, f=0.158 4.05, f=0.266

B3LYP DTA 2.84 , f=0.002 2.85, f=0.002 3.22, f=0.043 3.26, f=0.069

MDAB 3.19, f=0.001 3.20, f=0.001 3.37, f=0.153 3.38, f=0.050

ODAB 3.00, f=0.032 3.07, f=0.021 3.37, f=0.104 3.44, f=0.128

TABLE I: Singlet excited state energies (eV) and oscillator strengths, f, produced by
RI-CIS(D0)//cc-pvdz follow the same trends as the B3LYP results, although the values of

the couplings are more poorly reproduced.

oscillation periods is the most difficult aspect of the experiment to reproduce with TDDFT,

although it was not the focus of this work. If the Hamiltonian is expressed in a basis of

localized, degenerate states β is the off diagonal element between two states. In the basis

of states adiabatic which diagonalize the electronic Hamiltonian, it is related to half the

gap between the energies of the bright states. The experimental estimate of β from the

oscillation period depends on a 2-state model, and the subtraction of a relaxation lifetime.

Theoretical models depend on either perturbation theory of monomer densities which have

been separated in an ad-hoc way, or a splitting between adiabatic energies. The latter,

super-molecule approach is more realistic and can capture whatever electron interaction ef-

fects are present in the underlying electronic structure model (although the perfect mixture

of the two states is assumed). Because of the uncontrolled nature of the approximations

relating the experimental β and electronic state gap, one should view direct comparison of

the experimental and calculated β semi-quantitatively. Only the final simulated oscillation

should be directly comparable to the experiment. Still if the adiabatic state-splitting is

more than an order of magnitude larger than the experimental β no reasonable simulation

will be possible, because the reorganization energies will not shift the oscillation into the

correct regime.

The previous work21 calculated state couplings for DTA from energy differences, tran-

sition densities, and the dipole approximation, with several choices of density functional

and geometry. Solvent effects on the coupling were also calculated (and found to be small

≈7cm−1). A range of values between 44 and 144 cm−1 was obtained, and the authors

identified the agreement with the experimental values as somewhat fortuitous. We find
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that for these covalently bonded dimers, going up-to exchange effects is insufficient (II) to

reproduce the qualitative trend in coupling energy. In II we calculate the coupling energy

with increasingly sophisticated electronic structure models. The basis is held constant,

but even in larger bases the conclusions remain the same (see III). In the first column the

monomers interact mostly via a classical coulomb interaction because the electronic struc-

ture lacks long-range exchange. The qualitative trend is correct. In the second and third,

more exchange is added and the relative agreement becomes worse. Finally with exchange

and a second-order treatment of correlation, good relative agreement is obtained. It seems

possible that coulomb only methods (TDC, BLYP, dipole-dipole, etc.) benefit from some

cancellation of non-local exchange and correlation errors.

These findings are in keeping with existing work12,76 which has found that Forster and

Dexter coupling are insufficient for nearby molecules, and indeed in error up to a factor of

two. It seems likely that for these systems separated by less than 5 Angstrom, long-range

correlation effects are required to reproduce the correct trend of energy splittings. Solvation

effects on related chromophore pairs have been studied more thoroughly than medium-range

correlation, and are known to be meaningful11. The roughly twenty percent reductions of

the coupling relative to vacuum have been reported for naphthalene dimer in a continuum

model of hexane. Ideally we would fully treat both effects, unfortunately, the costs of these

calculations are prohibitive for pursuing them as the basis for the decoherence rate.

We do not challenge the validity of the transition dipole, or transition density cube77

approximations when applied to distant chromophores. Rather we are suggesting that in

cases of nearby chromophores where long-range correlation would be considered a prereq-

uisite for ground state thermochemistry78, it’s likely also necessary to reproduce excitonic

couplings79. Correlated wave-function based models, or double hybrids should be applied to

these problems if possible. Simply choosing experimental couplings, would be inappropriate

since the basis of adiabatic electronic states from which we calculate C(t), and the exper-

imentally accessed states are different. This approach would also have difficulty accessing

the dark charge-transfer states. Phenomenological approaches which combine experimental

energies with experimental bath parameters are consistent and successful. However combin-

ing calculated electronic spectra with experimental bath correlation functions ignores the

difference between the basis states of the experiment and the calculation.
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BLYP B3LYP ωB97 RI-SOS-CIS(D)0 Exp.

DTA 64 150 220 4 14

MDAB 88 84 20 18 29

ODAB 266 284 429 273 51

TABLE II: State couplings β(cm−1) as estimated from half the difference of bright excited
state energies in the cc-pvdz basis for various methods differing in their treatment of

exchange and correlation. The agreement is best with the addition of long-range
correlation (last column). The addition of exchange appears to worsen the results. Basis

set dependence is addressed below.

B3LYP BLYP

DTA 144 93

MDAB 90 80

ODAB 257 246

TABLE III: State couplings β(cm−1) as estimated from half the difference of bright excited
state energies in the QZVP basis. With this basis these quantities are nearly converged

with respect to basis-set size, but TDDFT is still unable to reproduce the qualitative trend.

IV. DIFFICULTY OF AN ADIABATIC APPROACH.

We have already outlined several difficulties of using adiabatic states in a Kohn-Sham

Redfield scheme. Within the Markovian approximation bath correlation only appears at

zero-frequency. Another problem which afflicts both choices of basis to some degree is the

anharmonic structure of the bath correlation function. It is always possible to write a linear

system-bath coupling in terms of HO’s80, but the appropriateness of the IMDHO, or even an

oscillator model with frequency changes for a dimer system depends on the strength of the

vibronic interaction81. The adiabatic states often do not resemble displaced harmonic oscil-

lators (4), but rather possess a double-well type structure, which means that even a proper

Markovian master equation would require dynamics to obtain the bath correlation function.

In the case of most modes, this is repaired within the quasi-diabatic states. Some other

diabatization82 procedures directly mix states to eliminate electron nuclear coupling, and

along these lines one could construct a basis which leaves the electronic surfaces optimally

harmonic which would be useful for a rudimentary model of nuclear motion. In any case

the coherence lifetimes produced (IV) from our simulations based on adiabatic states are in

much poorer agreement with the experimental lifetimes than those using the procedure of

Subotnik and co-workers, as discussed further below. Because only the zero-frequency part
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of the correlation function is meaningful for work based on an adiabatic basis.

FIG. 4: Energies of adiabatic, and quasidiabatic transfer states as a function of
dimensionless displacement along [2,2’] dithia-anthracenophane’s 19th(left), and 37th(right)

normal mode. In the figure on the left it’s immediately clear by inspection that the
diabatic states are more harmonic than the adiabat’s. The figure on the right is an

example where the accuracy of using Eqn. 11 is questionable.

Adiabatic Diabatic

Species Exp. B3LYP/TZVP B3LYP/6-31g*

DTA 1.20 2.14 1.40

MDAB 0.73 0.03 1.80

ODAB 1.02 0.12 1.39

TABLE IV: Pure-dephasing time (ps) between the two brightest states (1/Rmnmn), as
obtained from two different choices of electronic basis, compared to the experimental T ’

2.

V. QUASI-DIABATIC APPROACH.

The experiments16,83 provide noisy oscillating flourescence anisotropy curves, which were

fit in that work to Hochstrasser’s17 functional form. We have directly compared the polar-

ization anisotropy decays produced in this work from first principles, to the experimental

data’s fit curve. When examining 5, the reader should keep in mind the absence of any

rotational relaxation in our simulated anisotropy, and allow for an arbitrary relative phase

shift between the coherent oscillations of experiment and theory. A low-pass filter (a step

function non-zero below .07Eh) has been applied to the calculated signal to remove high

frequency components which might be averaged over by the detector response time. The

14



FIG. 5: (The polarization anisotropy decay of ODAB calculated in this work
(ωB97//6-31g**), and compared to the analytically fit experimental decay of Yamazaki.

On the right the evolution of the real part of the coherence (ρ34(t) + ρ43(t)). The decay of
the coherence between these two states is much faster than the decay of the observable.

same simulation has been performed (IV) for all three molecules, in the hope that the rela-

tive trend of the coherence lifetimes could be reproduced. Although with vibronic coupling

emerging from a diabatic basis all the decoherence lifetimes are within a factor of two of

their experimental counterparts, the delicate relative trend of the lifetime isn’t reproduced.

This isn’t surprising given that the relative trend of couplings is also not reproduced. The

anisotropy decay can be compared (5) with the evolution of the coherence between bright

states, which largely correspond to the third and fourth states (ρ34(t)). This is the picture

of decoherence which may come from a less-detailed model of the dynamics. The much more

rapid decay of the coherence element signals the breakdown of a two-state model picture of

the anisotropy. The anisotropy decays of DTA and mDAB are not shown, because in these

cases the oscillations of the anisotropy are more than a factor of 5 too fast (because the

couplings are so severely overestimated by TDDFT).

VI. DISCUSSION AND CONCLUSIONS

Cina’s previous work20 introduced a phenomenological 2-state (J = 22.9 cm−1) model

of DTA coupled explicitly to an intra-chromophore vibration (ω12 = 385cm−1, d = .55).

It was found that coherent vibrational dynamics could be used to modify the dynamics of

excitation transfer, although only weakly in the case of DTA. In the theory of Jang and

coworkers21 the electronic coherence oscillation period is given by the bare coupling renor-
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malized by a bath contribution which depends on the parameters of a super-ohmic spectral

density. Reversing these parameters such that they reproduce the experimental vibrational

progression and oscillation period, they estimate a bare (purely electronic) coupling for DTA

between 53 and 100cm−1, about 40cm−1 less than their B3LYP calculations. In this work

the ODAB fluorescence anisotropy decay, and the coherence lifetimes of MDAB and DTA

are satisfactorily reproduced from a TDDFT/TDA based Redfield model of the electronic

system. However the TDDFT/TDA is found to overestimate bare electronic couplings of

these dimers, and misses the relative trend with many choices of basis and functional. Long-

range correlation is implicated as another physical effect which reduces the bare Coulomb

coupling.

The theory of CRET is mature22,23 within its assumed model of the system and bath,

but deriving those models from first-principles electronic structure calculations is not yet

routine. It should be pursued further, because two-state, uncorrelated models of the elec-

tronic dynamics are now much less realistic than sophisticated4,84 treatments of system-bath

correlation. An accurate calculation of the coupling between chromophores separated by less

than 5 Angstroms likely requires a treatment of long-range correlation, beyond the scope of

local TDDFT. However with available technology, a single calculation of excited energies for

these molecules which treats long-range electron correlation is a somewhat demanding com-

putation. To provide a fully predictive picture of coherent transport the cost of correlated

electronic structure should be further reduced, and the CRET theories should be hybridized

with a correlated, many-state Liouville equation. This paper suggests that a picture of the

bath as broadened nuclear motion, where solvation serves to localize70,71 the electronic states

provides reasonable qualitative predictions of the decoherence rate. Since our model of the

ODAB fluorescence anisotropy emerges directly from calculated data

1. Computational Details

Structures of [2,2’] dithia-anthracenophane (DTA), meta- Dianthraceneophane(MDAB)

and ortho-Dianthraceneophane(ODAB) were optimized using the B3LYP85 functional and

def2-TZVP basis86 (and auxiliary basis87) in the ORCA88 program package, the same model

used to evaluate their harmonic vibrational frequencies and modes. These geometries and

modes were re-used for excited state calculations. A local exchange approximation, COSX89
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was also invoked. Transition moments between states and excitation energies were obtained

from the Q-Chem program package90 evaluated as expectation values of the dipole opera-

tor with TDA density matrices using the functionals and basis sets described in the text.

The Redfield equation was integrated with a 0.05 atomic unit timestep, via a basic 4th or-

der Runge-Kutta propagation, after an 80fs gaussian-enveloped 0.05 atomic unit oscillating

electric field was applied as a stimulating pulse. The harmonic correlation function was

evaluated at 273.15K.
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86A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).

87F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).

88F. Neese, ORCA – an ab initio, Density Functional and Semiempirical program package,

Version 2.6 (University of Bonn, 2008).

89F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chemical Physics 356, 98 (2009).

90Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Oschsenfeld, S. T. Brown, A. T. B.

Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr., R. C.

Lochan, T. Want, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis,

S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D.

Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D.

Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu,

G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan,

N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D.

Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. W. III, W. Zhang, A. T. Bell, A. K.

Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III,

J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, Phys. Chem. Chem. Phys. 8,

3172 (2006).

21

http://dx.doi.org/10.1002/jcc.21781
http://dx.doi.org/10.1002/jcc.21781
http://dx.doi.org/DOI:10.1063/1.1502647
http://dx.doi.org/10.1002/9780470141427.ch4
http://dx.doi.org/DOI:10.1063/1.3498901
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1039/B515623H
http://dx.doi.org/DOI: 10.1016/j.chemphys.2008.10.036

	ÒExciton coherence lifetimes from electronic structure
	Abstract
	I Introduction
	II Theory
	A Choice of basis and solvation

	III Results
	A Stationary parameters.

	IV Difficulty of an adiabatic approach.
	V Quasi-Diabatic Approach.
	VI Discussion and Conclusions
	1 Computational Details

	VII Acknowledgments
	 References


