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Semiclassical methods face numerical challenges as the dimensionality of the system increases. In
the general context of the theory of differential equations, this is known as the “curse of dimension-
ality.” In the present manuscript, we apply the recently-introduced multi-coherent states semiclassi-
cal initial value representation (MC-SC-IVR) approach to extend the applicability of first-principles
semiclassical calculations. The proposed strategy involves the use of non-local coherent states with
the goal of increasing accuracy in the Fourier transforms, and on the other hand, allows for the selec-
tion of peaks of different frequencies. The ability to filter desired peaks is important for analyzing the
power spectra of complex systems. The MC-SC-IVR approach allows us to solve a 19-dimensional
test system and to resolve on-the-fly the power spectra of the formaldehyde molecule with very few
classical trajectories. © 2011 American Institute of Physics. [doi:10.1063/1.3664731]

I. INTRODUCTION

The simulation of the quantum dynamics of molecular
vibrations is still mostly limited to systems with few de-
grees of freedom. In a few cases, by means of clever ap-
proximations, the dynamics of systems of a large number
of degrees of freedom have been simulated.1, 2 The limita-
tion to relatively low dimensionality is given not only by
issues related to the challenges of propagating the quan-
tum dynamics in many-dimensions, but also by the con-
struction of an electronic potential energy surface (PES).
For many-dimensional systems, due to computational limita-
tions, the PES fitting procedure results in a sometimes dras-
tic trade-off of computational efficiency vs accuracy of the
fit. Several techniques have been developed3 to ease these
difficulties. Nowadays, first principles molecular dynamics
(FPMD), or ab initio molecular dynamics (AIMD) is becom-
ing a more attractive and useful technique to avoid computing
PESs explicitly. During a FPMD simulation, the dynamics is
calculated at each time step on-the-fly, i.e., directly from
an electronic structure calculation. Examples of these ap-
proaches include the Born-Oppenheimer molecular dynam-
ics methods (BOMD),4–8 the extended Lagrangian molecular
dynamics approaches (ELMD),9–15 and the ab initio multiple
spawning (AIMS) algorithm.16

The fundamental limitation for simulating quantum dy-
namics on a classical computer is due to the “curse of
dimensionality”. To make progress, a finite set of basis func-
tion is usually employed to represent a wave function. A
suitable combination of these functions are used to repre-
sent at each time step the quantum wavefunction. However,
formally, the dimensionality of this set scales exponentially.

a)Electronic mail: michele.ceotto@unimi.it.

Quantum dynamical approaches that avoid this unfavorable
scaling have been developed,17 however these are still not
coupled with on-the-fly first principles approaches. Therefore,
current MCTDH simulations are restricted to the case of fitted
PES. It might seem like a futuristic alternative, but quantum
dynamics on quantum computers do not suffer from this expo-
nential curse,18 and have recently been successfully simulated
experimentally using an NMR approach.19

In order to approximately bypass the dimensionality re-
strictions mentioned above, semiclassical molecular dynam-
ics has been an attractive alternative.20–23 Regarding the first
limitation about the requirement of a fitted PES, semiclassi-
cal molecular dynamics has the advantage of relying on clas-
sical trajectories obtained from first-principles simulations of
nuclear dynamics. In order to bypass the second limitation
associated with the dimensionality of the basis set, the semi-
classical initial value representation (SC-IVR) (Ref. 24) us-
ing the Heller-Hermann-Kluk-Kay (HHKK) propagator has
been developed over the last 30 years.25–28 In HHKK SC-
IVR, the basis set is given by a combination of coherent states
and the propagator is estimated via Monte Carlo integration in
phase space. In this way, the scaling with the dimensionality
is greatly reduced.29

The main thrust of research in SC-IVR theories is that
of being able to simulate more and more complex molecular
systems. On-the-fly dynamical SCI-VR simulations are still
restricted to situations of few degrees of freedom. An obvious
possible route to take is to employ computational power by
brute force, using more and more trajectories as the dimen-
sionality of the system grows. This is not scalable in general
and computational challenging for a first principles approach,
where forces and other dynamical components are calculated
directly from electronic structure packages. In this paper, we
will present a method that allows SC-IVR to go to a larger

0021-9606/2011/135(21)/214108/11/$30.00 © 2011 American Institute of Physics135, 214108-1
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number of dimensions without requiring additional trajecto-
ries. Even this method eventually run out of steam.

For this work, the main application of the proposed first-
principles semiclassical initial value representation (FP-SC-
IVR) molecular dynamics will be the calculation of vibra-
tional spectral density obtained after propagating an initial
trial or reference state |χ〉,30

I (E) ≡ 〈χ |δ(Ĥ − E)|χ〉 =
∑

n

|〈χ |ψn〉|2δ(E − En).

(1)
Here, {|ψn〉} and {En} are the collections of exact eigen-
states and eigenvalues of the Hamiltonian Ĥ . The spectrum
of Eq. (1) contains a wealth of quantum mechanical informa-
tion about the simulated system: The peaks are located at the
positions of the eigenvalues and their intensity is proportional
to the square of the overlap between the trial state |χ〉 with
the eigenvectors of the PES. Replacing the Dirac delta func-
tion of Eq. (1) by its Fourier representation, one can more
conveniently achieve the same spectrum with the following
time dependent representation,31

I (E) = 1

2π¯

∫ +∞

−∞
〈χ |e−iĤ t/¯|χ〉eiEt/¯dt (2)

where the spectrum is written in terms of the Fourier trans-
form of the survival probability. As mentioned above, in the
SC-IVR formulation of the quantum propagator the bracket
in Eq. (2) can be cast as a Monte Carlo phase space inte-
gration. In this context, the brute force approach that we ref-
ereed to earlier, consists of sampling an increasing number
of trajectories as a function of the number of dimensions to
achieve an efficient Monte Carlo estimate. An alternative ap-
proach to gather statistics for the phase space integration is
that of taking longer time trajectories. This is computation-
ally much more convenient if one inserts a time averaging
filter before the phase space integration.32–34 We find this for-
mulation of the SC-IVR extremely useful, since the number
of phase space trajectories can be reduced to a set of very few.
At the same time, high resolution spectra (up to 1 cm−1) can
be achieved using such trajectories. So far, these simulations
have been restricted to very few dimensions.21–23

In order to extend the applicability of the method, we
explore the development of improved reference states. The
reference state is usually defined as the direct product of the
harmonic ground state approximation of each degree of free-
dom, or more generally as a direct product of one-dimensional
wavefunctions,

|χ〉 = |ψ(x1)〉|ψ(x2)〉 . . . |ψ(xF )〉. (3)

To obtain a sharp and complete spectral density from Eq. (2) a
recurring overlap of the wavefunction with the reference func-
tion is essential in order to have an non-zero integrand to be
Fourier transformed, and obtain a signal. In other words, if
the trajectory does not return to regions of phase space with
large overlap with the initial wave packet, the spectral den-
sity obtained is either broadened or very noisy. As mentioned
above possible way to move forward is to use a more sophisti-
cated reference state that has larger overlap with the recurring
trajectory. As an informative example of a system with many

degrees of freedom one can think of a system with a separable
Hamiltonian. In this case, the integrand of Eq. (2) is the direct
product of the overlap in each dimension,

〈ψ(x1)|e−iĤ1t/¯|ψ(x1)〉 . . . 〈ψ(xF )|e−iĤF t/¯|ψ(xF )〉. (4)

The direct product in Eq. (4) is only significant for the Fourier
transform, when the multidimensional classical trajectory vis-
its a number of time points (x1(t), x2(t), . . . , xF(t)) that are
sufficiently near to the starting one (x1(0), x2(0), . . . , xF(0)).
Since in the semiclassical formulation, these are phase space
points and the basis set is given by the direct product of
one dimensional coherent states, i.e., with an exponentially-
decaying density, then the contributions to the Fourier integral
arise when the recurrence happens to be within the Gaussian
spreading of the coherent state. This short range overlap can
be partially tamed by using smaller Gaussian coefficients for
the propagating state, i.e., wider spreading.

Thus from Eq. (4), it is clear how the main issue is that
the coherent states should be significantly overlapped almost
simultaneously for all dimensions. This is a rare event when a
few-trajectory simulation is performed and the dimensionality
increases.

In Sec. II, we briefly review the time averaging SC-IVR
formulation for power spectra calculations. In Sec. III, im-
plementations of our recently developed Multiple Coherent
States SC-IVR method are presented for dealing better with
many dimensions and in Sec. IV these are applied to ana-
lytical models. Finally, in Sec. V the method is applied to
the first-principles simulation of the formaldehyde molecule.
Conclusions are drawn in Sec. VI.

II. REVIEW OF THE TIME-AVERAGING
SEMICLASSICAL INITIAL VALUE REPRESENTATIONS

For the time-dependent calculation of the power spec-
tra in Eq. (2) one can approximate the propagator semi-
classically. The initial value representation formulation (SC-
IVR) converts the semiclassical integration over all classi-
cal trajectories at given end positions into a more convenient
F −dimensional phase space integration as follows:

e−iĤ t/¯ = 1

(2π¯)F

∫
dp(0)

∫
dq(0) Ct (p(0), q(0))

× eiSt (p(0),q(0))/¯|p(t), q(t)〉〈p(0), q(0)|, (5)

where (p (t) , q (t)) are the set of classically-evolved phase
space coordinates, St is the classical action and Ct is a
pre-exponential factor.24, 35–46 In the Heller-Herman-Kluk-
Kay25, 47 version of the SC-IVR, the pre-exponential factor,

Ct (p (0) , q (0))

=
√

1

2

∣∣∣∣ ∂q (t)

∂q (0)
+ ∂p (t)

∂p (0)
− i¯γ

∂q (t)

∂p (0)
+ i

γ¯

∂p (t)

∂q (0)

∣∣∣∣
(6)

is given by the determinant of the combination of the four
F × F size blocks of the 2F × 2F symplectic (monodromy
or stability) matrix M (t) ≡ ∂ ((p (t) , q (t)) /∂ (p0, q0)). The
accuracy of the classical propagation can be monitored by
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checking the deviation of the monodromy matrix determi-
nant from unity. We adopted a restrict version of this check
by monitoring the determinant of the positive-definite matrix
MT M.48 In all simulations presented here, by adopting a time
step of 10 a.u., the deviation were of the order of 10−5 in
the worse case. Such a strict threshold will keep any spurious
noisy signal order of magnitudes smaller than the vibrational
peaks. The natural basis set representation of the semiclassi-
cal propagator in Eq. (5) is given by the direct product of one
dimensional coherent states

〈q|p(t), q(t)〉 =
∏

i

(γi/π )F/4 exp

[
− γi

2
· (qi − qi(t))

+ i

¯
pi(t) · (qi − qi(t))

]
, (7)

where γ i is fixed and equal to the width of the harmonic oscil-
lator approximation to the wave function for each mode at the
minimum of the PES where the dynamics will be carried out.
Thus, we are using a diagonal width parameters matrix. Previ-
ous calculations have found the spectra to be relatively insen-
sitive respect to significant changes in the width parameters,35

as shown in Fig. 4 of Ref. 20.
Thus, the SC-IVR approximation for the survival prob-

ability in Eq. (2) by the following Monte Carlo phase space
integration:

〈χ |e−iĤ t/¯|χ〉 = 1

(2π¯)F

∫
dp(0)

∫
dq(0)

×Ct (p(0), q(0))eiSt (p(0),q(0))/¯〈χ |p(t), q(t)〉
× 〈p(0), q(0)|χ〉, (8)

for any given reference state |χ〉 = |peq , qeq〉. In this paper,
we will examine the importance of the reference state choice
and how one can enhance the spectral features by carefully
choosing the reference state as a combination of coherent
states. Our goal is to deal with many degrees of freedom,
while keeping the computational effort low enough to allow
for first principles semiclassical simulations.

Along this line, the time averaging filter was
introduced.32 In this SC-IVR implementation, the num-
ber of trajectories required for Monte Carlo integration are
reduced at the cost of longer simulation times.33, 34 The intro-
duction of a time averaging integral is not an approximation
per se: It does not imply any ergodicity property and it is
in principles exact, by virtue of Liouville’s theorem. The
TA (time-averaging) SC-IVR expression for the spectral
density is

I (E) = 1

(2π¯)F

∫
dp(0)

∫
dq(0)

Re

π¯T

∫ T

0
dt1

×
∫ T

t1

dt2 Ct2 (p(t1), q(t1))

×〈χ |p(t2), q(t2)〉ei(St2 (p(0),q(0))+Et2)/¯

× [〈χ |p(t1), q(t1)〉ei(St1 (p(0),q(0))+Et1)/¯]∗, (9)

where the sets (p (t1) , q (t1)) and (p (t2) , q (t2)) of position
and momentum variables are the evolution of the initial phase
space point (p0, q0) at time t1 and t2 respectively, and T is
the total simulation time. The first time integration acts as the
Fourier transform of Eq. (2) and the second is filtering the tra-
jectories. This double-time integration is made by running any
trajectory from time 0 to time T and considering all possible
intervals from t1 and t2. In this way, this integration consid-
ers all the trajectories that are generated as segments of time
length T − t1 out of a single long trajectory from time 0 to
time T.

The most computational intense part of Eq. (9) is
the calculation of the two times prefactor Ct2 (p (t1) , q (t1))
and its numerical stability greatly reduces during com-
plex system simulations. This behavior can be tamed by
adopting the separable approximation, where Ct2 (p(t1), q(t1))
≈ exp[i(φ(t2) − φ(t1))/¯] and φ(t) = phase[Ct (p(0), q(0))].
Then, Eq. (9) becomes

I (E) = 1

(2π¯)F
1

2π¯T

∫
dp(0)

∫
dq(0)

×
∣∣∣∣
∫ T

0
dt〈χ |p(t), q(t)〉

×ei(St (p(0),q(0))+Et+φt (p(0),q(0))/¯)

∣∣∣∣
2

, (10)

where now the double time integral is simplified to a single
and positive-definite time integral. We found this approxima-
tion accurate and an order of magnitude less computational
demanding.

III. IMPLEMENTATION OF THE MULTIPLE COHERENT
STATES SC-IVR FOR MOLECULAR VIBRATIONS

The Monte Carlo phase space integration in Eq. (8) is
usually performed with a number of trajectories of the order
of thousands.35 This computation is quite intensive for first
principles semiclassical dynamics calculations using state-of-
the-art ab initio methods. Recently, we developed the Multi-
ple Coherent States SC-IVR (MC-SC-IVR) method21 which
allowed us to significantly reduce the number of trajectories
requested for the phase space integration to only a few, while
still preserving good accuracy. The idea is pictorially repre-
sented in Fig. 1, where a schematic power spectrum is repre-
sented on panel (a) and the related potential on panel (b). On
panel (c) the “eigen-trajectories,” i.e., the classical trajecto-
ries with an energy corresponding to the location of the peaks,
are represented in closed, continuous red lines. Several coher-
ent states choices are reported with filled colored circles. The
least useful choice of reference is represented in gray, i.e.,
with |χ〉 = |peq = 0, qeq = 0〉. In this case, the Monte Carlo
sampling is centered at the origin and the reference states
will be mainly overlapped with trajectory points sampled in
the harmonic region of the potential. From the appendix of
Ref. 21 one can verify that for an harmonic oscillator of fre-
quency ω this choice will result a power spectrum with a sin-
gle ground-state peak I(E) = δ(E − ω/2). Eq. (1) suggests a
better choice for the reference state is the state in which the
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FIG. 1. Pictorial representation of several possible reference state represen-
tations for efficient multidimensional MC-SC-IVR simulation. On panel (a)
the power spectrum; on panel (b) the potential energy and on panel (c) the
phase space portrait where the classical trajectories (red closed lines) and the
coherent states (filled colored circles) are reported.

overlap between the eigenfunctions and the reference states
is maximum. This brought us to develop the Multiple Coher-
ent States implementation of the SC-IVR, where the reference
state is of the type

|χ〉 =
Nstates∑
i=1

∣∣pi
eq , qi

eq

〉
(11)

and the phase space location of the state are reported in red
and blue on Fig. 1, i.e., along the positive p-semi-axis. In
this approach the coherent states are placed in a non-local
fashion and kept fixed during the entire simulation. This is
different from other semiclassical implementations where the
coherent-state grid is updated to follow coherently the quan-
tum wavepacket.49 One can equally choose the negative p-
semi-axis (the magenta and cyan states) or either the positive
or the negative q-semi-axis (the green states). The location of
the coherent states along the p-semi-axis has been determined
in an harmonic fashion, namely, p2

eq/2m = ¯ω(n + 1/2). One
can run classical trajectories with these initial conditions, i.e.,(
peq , 0

)
, and by checking the turning points he will calculate

the location of the coherent state along the q-semi-axis. Such
multiple coherent states methodology is supported by analyt-
ical investigations about the harmonic oscillator case, where
for a generic reference state of the type |peq, qeq〉, the power
spectrum is fully determined by the sum over the integer
index k

I (E) = e−(p2
eq /¯mω+q2

eqmω/¯)
∑

k

1

2k

[
p2

eq

¯mω
+ mωq2

eq

¯

]

× δ

(
E − ¯ω

(
k + 1

2

))
, (12)

as one can deduce also from the Appendix of Ref. 21 by
choosing γ = mω/¯. For the MC-SC-IVR method it was
found that it is not crucial to know the exact location of the
“eigen-trajectories”. The Gaussian spreading of each coherent
state lying on a trajectory chosen with initial harmonic con-
ditions is generally wide enough to include the energy shells
associated with the different energy peaks. This method al-
lowed us to obtain accurate results for the H2O molecule on
a model potential and for the CO2 molecule using an on-the-
fly approach.21 Using this method, we could also calculate the
spectrum of a model potential describing the chemisorption
process of CO on Cu(100) copper surface and the dipole spec-
tra for a set of four dipole coupled CO molecules arranged in
a realistic monolayer fashion.50 Finally, accurate vibrational
eigenfunctions for the CO2 molecule were reproduced still
on-the-fly.51

As mentioned in the introduction, in this manuscript, we
strive to extend the MC-SC-IVR approach to deal with sys-
tem with several degrees of freedom. As stressed in the in-
troduction, useful simulations would be those where the re-
currence overlap occurs on all dimensions simultaneously.
This event is exponentially rare as the number of dimensions
increases. A look at the survival probability expression in
Eq. (8) in terms of positions and momenta for a single co-
herent state,

〈χ |p(t), q(t)〉〈p(0), q(0)|χ〉
= e−γ (qt−qeq )2/4e−γ (q0−qeq )2/4−(pt−peq )2/4¯2γ−(p0−peq )2/4¯2γ

× e−i(pt qt−p0q0)/2¯−ipeq (qt−q0)/2¯+iqeq (pt−p0)/2¯, (13)

shows that whenever the trajectory occurs to be next to the
(peq, qeq) coherent state center, the signal to be Fourier trans-
formed is significant. The multidimensional semiclassical sur-
viving probability of Eq. (4) is the product of several terms of
the type of Eq. (13). Thus, the overlaps significantly occur
only when, at the same time, each phase space set of coordi-
nates is near to the center of the coherent state.

To improve the overlap for each trajectory, we suggest
the strategic placement of coherent states along the periodic
phase space trajectories, shown by the red continuous lines
shown on Fig. 1. In other words, the reference state is given
as an expression of the type of Eq. (11), where, for example,
the phase space coordinates

(
peq , qeq

)
are located at the in-

tersection of the eigen-trajectory with the phase space axes.
In order to explore this idea, let us consider the spectrum of
Eq. (9) where the reference state is a combination of the
coherent states,

I (E) = 1

(2π¯)F

∫
dp(0)

∫
dq(0)

Re

π¯T

∫ T

0
dt1

×
∫ T

t1

dt2 Ct2 (p(t1), q(t1))

〈∑
j

pj , qj |p(t2), q(t2)

〉

× ei(St2 (p(0),q(0))+Et2)/¯

[〈∑
i

pi , qi |p(t1), q(t1)

〉

× ei(St1 (p(0),q(0))+Et1)/¯

]∗
, (14)
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where i and j run independently over the combination in
Eq. (11). In the Appendix, we show that for an harmonic os-
cillator, Eq. (14) becomes

I (E) = Re
∑
i,j

e−mω(q2
i +q2

j )/4¯−(p2
i +p2

j )/4¯mω−i(piqi−pj qj )/2¯

×
∑

k

1

2k

[
pipj

¯mω
+ mωqiqj

¯
+ qjpi − qipj

¯

]k

× δ

(
E − ¯ω

(
k + 1

2

))
. (15)

If we consider for this case a reference state of the
type|χ〉p = |p, 0〉 + |−p, 0〉 (for example the red and ma-
genta states on Fig. 1), where the subscript p indicates that
the states are along the p-axes), the resulting power spectrum
will be

I (E) =2e−p2/2¯mω
∑

k EV EN

p2k

2k(¯mω)k
δ

(
E − ¯ω

(
k+1

2

))
,

(16)

and all the even peaks of the harmonic spectra will be
calculated. Instead, if the antisymmetric combination |χ〉p

= |p, 0〉 − |−p, 0〉 would have been chosen, one will ob-
tain a sum over all odd peaks. The same reasoning is valid
for the green coherent state along the q-axes in Fig. 1. In-
stead, mixed choices of the type |χ〉 = |p, 0〉 ± |0, ±q〉
will not be able to selectively produce odd or even power
spectra peaks, but the entire spectrum. Eventually, one can
cleverly choose the values of the phase space coordinates
of each coherent state in a way to select or project differ-
ent peaks. For example, in a multidimensional case, one can
selectively make antisymmetric just a single mode in order
to identify the peak corresponding to odd excitations of that
mode. We will show some examples below. At the same
time, we will obtain more recurring overlapping events be-
cause of the different product combinations between coherent
states.

Finally, we will show that also in the case of a reference
state of the type,

|χ〉pq = |p, 0〉 ± |0, q〉 ± |−p, 0〉 ± |0,−q〉 (17)

(where the pq subscript indicates the choice of 4 coherent
states, i.e., each one per semi-axes), there are suitable combi-
nations for the selection of peaks. Clearly, for a reference state
of the type of Eq. (17), the recurrence events are even more
frequent. For the harmonic oscillator, one will find that only
some combinations will allow the selection of peaks. These
results are reported in Table I. Such a tool for selecting power
spectrum peaks will result extremely convenient for multidi-
mensional spectra where the identification of peaks could be-
come an intractable problem by itself.

IV. THE MANY-DIMENSIONAL MORSE SYSTEM: AN
ANALYTICAL TEST OF THE PROPOSED APPROACH

In order to apply the idea introduced in the previous sec-
tion, we explore the example of two uncoupled Morse po-

TABLE I. Analytical power spectra for an harmonic oscillator using
Eq. (14) for a reference state of the type |χ〉 = |p, 0〉 + a|0, q〉
+ b| −p, 0〉 + c|0, −q〉. The results are expressed in terms of P = e−p2/2¯mω

× ∑
k p2kδ(E − ¯ω(k + 1/2))/(¯mω)k2k , Q = e−mωq2/2¯∑

k q2k(mω)kδ

× (E − ¯ω(k + 1/2))/(2¯)k and PQ = e−p2/4¯mω−mωq2/4¯∑
k(qp)kδ(E

− ¯ω(k + 1/2))/(2¯)k .

(a,b,c). I(E). Parity

(+1, +1, +1). 2(1 + (−1)k)(P + Q + 2PQ). even
(−1, +1, +1). 2P(1 + (−1)k) + 2Q(1 − (−1)k). none
(+1, −1, +1). 2P(1 − (−1)k) + 2Q(1 + (−1)k). none
(+1, +1, −1). 2P(1 + (−1)k) + 2Q(1 − (−1)k). none
(−1, −1, +1). 2(1 − (−1)k)(P + Q). odd
(+1, −1, −1). 2(1 − (−1)k)(P + Q). odd
(−1, +1, −1). 2(1 + (−1)k)(P + Q + 2PQ). even
(−1, −1, −1). 2P(1 − (−1)k) + 2Q(1 + (−1)k). none

tentials. The oscillator frequencies have been chosen in a
way to avoid degeneracy of the overtones. The standard pro-
cedure would be that one of using the reference state |χ〉
= |p1, q1〉|p2, q2〉 for Eq. (9). For the purposes of this ex-
ample, we have used the single-trajectory approximation of
3000 time-steps of 10 a.u. each, and the separable approxi-
mation in Eq. (10) to obtained the spectrum shown in black in
Fig. 2. This reference state has no symmetry restrictions and
all peaks are represented by the black line. Following, we em-
ployed the same trajectory but using the reference state |χ〉p

= (|p1, q1〉 + |−p1, q1〉) (|p2, q2〉 + |−p2, q2〉), where (p1,
q1) can be chosen at the location of the red coherent state on
Fig. 1 and (p2, q2) at the location of the magenta coherent
state. This results in two coherent states placed along the p-
axes but with opposite momenta. In this way, we were able to
select all the even peaks of both oscillators. This choice is rep-
resented with the red line shown in Fig. 2 and the peak labels
of (0, 0), (0, 2) and (2, 0). One can select the odd excitations
of the first Morse oscillator by choosing the combination |χ〉p

= (|p1, q1〉 − |−p1, q1〉) (|p2, q2〉 + |−p2, q2〉) and of the

FIG. 2. Power spectrum (black line) of two uncoupled Morse potentials with
the following parameters: dissociation energy De = 0.2 a.u., unitary masses,
ω1 = 3000 cm−1 and ω2 = 1700 cm−1. The red line represents all the even
peaks, blue represents the odd excitations on the first oscillator, while green
is used for the odd excitations on the second oscillator. Finally, cyan is em-
ployed for the simultaneous odd excitations on both oscillators.
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TABLE II. Frequencies values for the 19-dimensional Morse system. MO
stands for Morse Oscillator. ZPEH is the Harmonic Zero Point Energy, while
ZPE is the analytical one. All data in cm−1.

MO Freq. MO Freq. MO Freq.

1 3095 8 1297 15 969
2 3080 9 1183 16 843
3 3061 10 1162 17 701
4 3051 11 1036 18 607
5 1607 12 997 19 402
6 1483 13 996 ZPEH 13959
7 1365 14 983 ZPE 13880

second one with the combination |χ〉p = (|p1, q1〉 + |−p1,
q1〉) (|p2, q2〉 − |−p2, q2〉). These choices are represented re-
spectively by the green continuous line (the (1, 0) peak) and in
blue (the (0,1) peak). Finally, one can force both modes to be
antisymmetric at the same time with the reference state |χ〉p

= (|p1, q1〉 − |−p1, q1〉) (|p2, q2〉 − |−p2, q2〉). This choice is
reported by the cyan line in Fig. 2 and the (1, 1) label.

This example sets the stage for more realistic multidi-
mensional tests, where the advantages of this coherent-states
emerge. We considered a system of 19 Morse oscillators,
where the frequency of each oscillator is reported in Table II.
Such a set of frequency values are the benzene normal modes
ones after removing the redundant degeneracies. By using this
choice, the set of vibrations is quite realistic and ranges from
the high-energy stretching modes to the floppy ring torsional
modes. In order to show the full potential of the multiple co-
herent state approach, we consider a simulation employing a
single trajectory. On panel (a) of Fig. 3 the power spectrum
for a single coherent state is reported in a continuous black
line. This spectrum is very noisy and one cannot even un-

14000 14500 15000 15500 16000 16500 17000

E [cm
-1

]

I(E)

(a)

(b)

FIG. 3. Power spectrum of 19 uncoupled Morse oscillators of unitary masses
and dissociation energy De = 0.2 a.u.. Each oscillator frequency are reported
in Table II. All lines are obtained with a single trajectory simulation: Panel (a)
and black line for a single coherent state; Panel (b) and colored lines for the
two coherent states MC-SC-IVR implementation. The vertical dashed lines
represent the exact values of all possible single excitations.

equivocally identify the zero point energy (ZPE) peak. This is
problematic since from previous experience, we have always
found it on systems of smaller dimensionality by means of a
single trajectory.20, 32 We also find the counter-intuitive result
that the spectrum is more intense for the higher energy range.
This is in contradiction with the fact the reference state is lo-
cated at the harmonic ZPE position and the trajectory is also
within such energy shell. This requires further study.

A clear improvement is obtained when the multiple co-
herent state formulation of the reference state described above
is adopted. As an example, the reference state was set as the
combination of two coherent states located as the red and the
magenta points in Fig. 1. By taking the symmetrical combina-
tion and using the same classical trajectory of panel (a), we
obtained the spectrum on panel (b) with the ZPE peak shown
in red. Then, by imposing the antisymmetric combination to
each mode one by one, we generated the series of single-
excitation peaks reported with different colors on the same
panel of Fig. 3. The accuracy of these peaks is demonstrated
by the vertical dashed lines, which are the analytical values
of the vibrational energies of the 19-dimensional Morse sys-
tem. In the upper spectrum of Fig. 3 there are several noise-
peaks between the exact eigenvalues shown by vertical dashed
lines. These peaks are unphysical and they do not relate to any
eigenvalue. Instead, in the lower panel, the favorable statistics
generated by the combination of coherent states greatly re-
duced the intensity of these peaks and enhanced the eigenval-
ues peaks, that now are clearly distinguishable. Eventually, we
have not only reproduced the power spectrum of this Morse
system but also distinguished and determined each peak. This
is an important advantage for calculating less obvious spectra.
Finally, by using this uncoupled oscillators model, we didn’t
want to test the ability of the MC-SC-IVR to reproduce mode
couplings effects. Our purpose was to overcome the statistical
issue related exclusively to the increase of dimensionality. On
the other side, the MC-SC-IVR has already been successfully
tested on anharmonic and strongly coupled systems, such as
the CO2 and H2O molecules. In Sec. V, we extend the method
to the first-principles calculation of a molecule with dimen-
sions larger than those of H2O.

V. FIRST PRINCIPLES SEMICLASSICAL MOLECULAR
DYNAMICS OF FORMALDEHYDE

In a very recent paper Roy et al.23 performed
ab initio semiclassical simulation of the formaldehyde
molecule, using SC-IVR methodology.44 This simulation
provides a good benchmark for different first-principles
semiclassical molecular dynamics approaches. The formalde-
hyde molecule is a well tested system, in particular, at the
semiclassical and vibrational configuration interaction (VCI)
level.32, 44 In the VCI method, a variational self consistent
field (VSCF) procedure is adopted to find the solution of
the vibrational Schroedinger equation.52, 53 The ansatz for the
vibrational wavefunction is given by the direct product of
unidimensional functions. The application of the variational
principle to the eigenstates equation for this ansatz brings
a set of equations coupled through a mean-field poten-
tial for each unidimensional eigenfunction. The correlated
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FIG. 4. First principles MC-TA-SC-IVR spectrum calculations for formalde-
hyde using the separable approximation of Eq. (10). Data have been separated
according to the irreducible representations of the C2V point group of the
molecule. On panel A1 all coherent state coefficients λ are set to 1. On panel
B2, the red (black) line corresponds to the combination λ2 = −1 (λ6 = −1)
and all others set to 1. On panel B1, λ1 = −1 and on panel A2 the red (black)
line corresponds to λ1 = λ2 = −1 (λ1 = λ6 = −1) and all others set to 1.

vibrational eigenstates are calculated by diagonalizing the full
Hamiltonian in a virtual VSCF basis.54–56

In order to have a full comparison with the previously
reported simulations, we have performed electronic structure
calculations at the same (quite modest) HF/3-21G level of the-
ory. The equilibrium geometry and the vibrational frequen-
cies of Ref. 23 were faithfully reproduced using the Q-Chem
electronic structure package.57 We ran a set of 5,000 time-
steps (of 10 a.u. time step) trajectories. The power spectra us-
ing the MC-TA-SC-IVR method are reported in Fig. 4. These
have been divided into four panels according to the respective
C2V irreducible representations. In order to select the peaks in
this fashion, we implemented coherent state combination of
Eq. (11). The more comprehensive and general implementa-
tion includes first the coherent states with opposite momenta,
which are added to Eq. (11),

|χ〉 =
Nstates∑
k=1

∣∣pk
eq , qk

eq

〉 + εk

∣∣−pk
eq , qk

eq

〉
(18)

where, for each k, εk is a vector of F dimension (the number of
degrees of freedom) and its components are equal to ±1. This
set up for the reference states allowed us to take all the advan-
tages described for the Morse systems reported above. Then,
in order to restrict the peaks to a given symmetry space irre-
ducible representation, each state in each dimension is further
written in terms of a combination of the type∣∣p(k)

eq,i , q
(k)
eq,i

〉λk,i = (∣∣p(k)
eq,i , q

(k)
eq,i

〉 + λk,i

∣∣−peq,i ,−q
(k)
eq,i

〉)/√
2.

(19)

In this way, the i-th mode component can be made sym-
metric (λk = 1) or antisymmetric (λk = −1). In conclusion,
the reference state representation can be more concisely be

written as

|χ〉 =
Nstates∑
k=1

F∏
j=1

εk (j )
∣∣pk

eq,j , q
k
eq,j

〉
, (20)

where j runs over the degrees of freedom, and k over all
coherent states. The original number of MC-SC-IVR states
are therefore duplicated by changing the momenta sign as in
Eq. (18) and all these states further duplicated by changing
both the momenta and positions sign as in Eq. (19). The use
of symmetry by means of the describe strategy allows for a
substantial reduction of the Hilbert space sampled, and there-
fore results in an increase of the amplitudes of the desired
states.

To obtain the spectra in Fig. 4, we didn’t use terms of
the type of Eq. (18), but only of the type of Eq. (19). Instead,
the spectra in Fig. 5 have been calculated by using the com-
binations of the type in Eq. (18) and without symmetry re-
strictions. The results shown in Fig. 5 are neat and the peaks
are very well centered. Noise has been reduced and the peaks
were selected by using reference states of the type of Eq.
(18). The full spectrum is reported on the panels a and a′′.
On the left part, i.e., from spectrum b to g, the single exci-
tations spectra are calculated for each of the six vibrational
normal modes of the formaldehyde molecule. On the right
part, the double excitation peaks are reported: Spectrum b′′

is for the antisymmetric combination, i.e., ε = −1, on the first
and second mode; spectrum c′′ on the first and the third, spec-
trum d′′ on the first and the fourth; spectrum e′′ on the sec-
ond and the third; spectrum f′′ on the second and the fourth
and finally spectrum g′′ is obtained by placing the odd com-
bination on the third and the fourth mode. In these illustrative
calculations we always used the same ground state trajectory
but a different reference state set-up. Accuracy can be added
by varying the initial trajectory condition according to the

FIG. 5. First principles single trajectory power spectra of formaldehyde with
different reference state formulations. On panel (a) and (a

′′
) the full spectrum.

On the left part (b to g), single excitation peaks are reported, while on the
right (b

′′
to g

′′
) combinations of single excitations for the lower four modes.

See main text for each peak denomination.
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TABLE III. First principles MC-TA-SC-IVR A1 symmetry vibrational energy levels. In the first column, the state is denoted by the number of the excited
mode and its quanta of excitation as subscript. The second column the harmonic estimate are reported. On the following columns, the MC-TA-SC-IVR method
is employed (with or without the separable approximation indicated by “/S”) either with a single trajectory or with the eight trajectories corresponding to the
first eight excited stated.

State Harm. MC[1]/S MC[1] MC[8]/S MC[8] State Harm. MC[1]/S MC[1] MC[8]/S MC[8]

ZPE 6360 6256 6256 6258 6257 4151 11438 11202 11199 11163 11167a

31 8053 7915 7914 7911 7939 33 11438 11239 11238a 11203 11202
41 8276 8152 8153 8152 8161 3241 11661 11472 11473a 11451 11483
12 9034 8904 8903 8845 8847 3142 11884 11704 11708a 11673 11673
22 9116 8969 8969 8896 8885 43 12107 11951 11951 11905 11907
51 9522 9302 9303 9300 9303 2232 12502 12236 12231a 12293 12260
32 9745 9583 9584a 9598 9597 52 12685 12355 12350 12352 12355
3141 9968 9810 9808 9819 9819 62 12826 12523 12474 12419 12507
42 10191 10050 10054 10020 10020 3251 12908 12625 12618a 12599 12601
1231 10727 10556 10556 10537 10487 34 13131 12862 12861 12829 12830
2231 10809 10663 10649a 10629 10578 4251 13354 13102 13103 13041 13043
1241 10950 10719 10708a 10730 10732 3152 14377 14014 14013 13925 13919
2161 10971 10795 10795 10775 10797a 4152 14600 14246 14247 14181 14180
3151 11215 10962 10965 10942 10944 3252 16070 15401 15401 15401 15404

aUncertain peak.

vibrational state energy shell of the selected peak. Otherwise,
one can use the MC-SC-IVR method where a set of trajecto-
ries, each one starting from each coherent state, is employed
at the same time. When these results are restricted to the A1

symmetry for the same vibrational states of Ref. 23, we ob-
tained the vibrational values reported in Table III. On the same
Table, the vibrational states are denoted by the excited mode
and the subscript indicates the number of quanta of that par-
ticular mode. For example, the notation 3241 means that the
third mode has been double excited, while the fourth single
excited. The modes are numbered starting from the lower fre-
quency one. On the second column the harmonic vibrational
energy levels are reported. In the following, two columns sin-
gle trajectories results are presented, with (denoted by “S”) or
without the separable approximation. In the last two columns,
MC-TA-SC-IVR results with or without the separable approx-
imation are reported. The multiple coherent states method em-
ployed the eight lower vibrational energy eigen-trajectories.
As a rule of thumb, we have noticed that MC-TA-SC-IVR
results are more anharmonic than single trajectory runs, espe-
cially for higher vibrational states. Then, no significant differ-
ence has been observed between the set of vibrational values
calculated using the separable approximation and without it,
even if this last type of spectra are more noisy.

Finally, the comparison between our calculations and the
previous ones on the same ab initio set up is reported in
Table IV. Here different VCI approaches results are also re-
ported directly from Ref. 23 in conjunction with their semi-
classical ones. We can denote an overall agreement between
the different methods. We have chosen to report in Table IV
the vibrational energies calculated at the level of MC[8]/S
theory, because this showed less uncertain peaks. Looking
at Table IV in more details, one can see how the MC[8]/S
is fairly in agreement with the correlation-corrected vibra-
tional self-consistent field/two-mode coupling representation

of a quartic force field (cc-VSCF/2MR-QFF) results, the di-
rect correlation corrected VSCF ones and the direct rectilinear
vibrational self-consistent field/vibrational configuration in-
teraction with perturbation selected interactions-second-order
perturbation theory (VSCF/VCIPSI-PT2) ones. At lower en-
ergy the MC-TA-SC-IVR method is including more anhar-
monic contributions than the VCI family of results, while at
higher energies is the opposite. On the other side, the semi-
classical results of Roy et al.23 agree better with the last VCI
column, i.e., the C-VSCF/VCIPSI-PT2. In their calculations
Roy et al.23 do not use the time-averaging filter and used the
Johnson multichannel WKB approximation58, 59 for the pref-
actor of Eq. (6). Then, they simulate directly in Cartesian co-
ordinates and not in normal mode ones, as we did. For these
reasons, better agreement of the MC-SC-IVR method with the
VSCF than VCI may be due to the choice of common normal
modes coordinates.60 The Cartesian coordinates allow them to
properly include kinetic cross terms.61–64 In their first princi-
ples simulations, 20 000 trajectories of 244 fs simulation time
each were employed. Even if a certain percentage of these tra-
jectories is discarded according to the spectra energy window
of interest, this is clearly an intensive calculation because the
Hessian must be evaluated at each time-step. In order to en-
hance the spectral accuracy, they changed the reference state
according to the energy window, i.e., to the vibrational state of
interested as introduced by us before.21 Their coherent states
are placed along the coordinates axes, while keeping the mo-
menta equal to zero, as suggested by the gray filled circles in
Fig. 1 of Ref. 21.

In conclusion, the two ab initio semiclassical simulations
compared in this work have several common features, but still
the semiclassical propagator is too different to ascribe any dis-
cordance in the results to a specific choice in the propagator
representation. Nevertheless, we consider the two simulations
in fair agreement.

Downloaded 02 Mar 2012 to 128.103.54.204. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



214108-9 Ab initio semiclassical molecular dynamics J. Chem. Phys. 135, 214108 (2011)

TABLE IV. Formaldehyde A1 symmetry power spectrum. Second column the harmonic approximation; on the third the correlation-corrected vibrational self-
consistent field/two-mode coupling representation of a quartic force field results; on the fourth the direct correlation corrected VSCF ones; on the fifth the direct
rectilinear vibrational self-consistent field/vibrational configuration interaction with perturbation selected interactions-second-order perturbation theory; on the
sixth the direct curvilinear; on the last the MC-SC-IVR.

cc-VSCF/ Direct VSCF/ C-VSCF MC8/
State Harm. 2MR-QFF44 cc-VSCF44 VCIPSI-PT244 VCIPSI-PT244 Wong et al.23 S

ZPE 6360 6271 6268 6268 6309 6311 6258
31 8053 7924 7922 7921 7980 8013 7911
41 8276 8155 8152 8152 8198 8208 8152
51 9522 9265 9254 9251 9320 9303 9300
32 9745 9574 9571 9571 9650 9587 9598
3141 9968 9801 9805 9794 9858 9858 9819
42 10191 10029 10024 10023 10074 10089 10020
3151 11215 10913 10885 10876 10981 10896 10942
4151 11438 11164 11133 11126 11211 11191 11163
33 11438 11164 11216 11216 11321 11269 11203
3241 11661 11439 11453 11432 11517 11562 11451
3141 11884 11665 11672 11653 11722 11690 11673
43 12107 11893 11885 11881 11936 11961 11905
52 12685 12183 12136 12259 12232 12297 12352
3251 12908 12525 12511 12498 12642 12488a 12599
34 13131 . . . 12851 12851 12986 12904 12829
4251 13354 13025 12997 12987 13088 13086 13041
3242 13576 . . . 13316 13279 13370 13544a 13344
44 14022 . . . 13735 13727 13787 13853 13767
3152 14377 13795 13735 13844 13884 14115 13925
4152 14600 14072 14006 14120 14126 14055a 14181
53 15847 15071 14955 15103 15254 15209 15271
3252 16070 . . . 15329 15430 15533 15591a 15401
4252 16516 . . . 15960 15967 16004 15952 15832a

aUncertain peaks.

VI. CONCLUSIONS

Complex systems are still out of reach for a first prin-
ciples approach of quantum dynamics. There can be several
factors that hamper semiclassical methods for this kind of
applications, since a system complexity is induced not only
by coupling, strong anharmonic effects or multiple local PES
minima, but also it is originated by the inherent “curse of di-
mensionality” associated with functional integration on clas-
sical computers. In this work, we focused on this last issue
and developed a strategy that allowed us to tackle this prob-
lem with a first principles semiclassical approach, i.e., using
only few classical trajectories. To reach such a goal, first the
dimensionality semiclassical limitations have been analyzed
analytically and by model systems. Then, our recently devel-
oped MC-SC-IVR method has been implemented in a way
to overcome these limitations, using the same spirit that ani-
mated its original developments. Multiple coherent states are
placed along the phase space trajectory. In this way, we ob-
tain a two-fold improvement: favorable statistic is enhanced
and peaks can be selected. Finally, first principles MC-SC-
IVR simulations have been presented for the formaldehyde
molecule and results are compared with recent studies per-
formed with similar methods.23

Then, the use of coherent states presented in Secs. III
and IV can easily be extended to thousands SC-IVR trajectory
simulations. Instead of writing the reference state as a single
ground coherent state of the type |χ〉 = |peq , qeq〉, one just

needs to represent it as a two states combination of the type
|χ〉 = |peq , qeq〉 ± | − peq , qeq〉. In this case, the peak intensi-
ties are still proportional to the transition probability from the
ground state population when, for example, a dipole absorp-
tion spectrum formulation is adopted, and the implementation
takes just few lines of code. As far as the Monte Carlo phase
space sampling is concerned, the Husimi distribution must be
accordingly modified.

In conclusion, we hope that in the future realistic higher
dimensional systems can be tackled on-the-fly with this MC-
SC-VR implementation.
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APPENDIX: NON-LOCAL REFERENCE STATES
SPECTRA FOR HARMONIC POTENTIALS

In this appendix, we derive the harmonic oscillator ex-
pression for the power spectrum intensity of Eq. (15), i.e., for

Downloaded 02 Mar 2012 to 128.103.54.204. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



214108-10 Ceotto, Tantardini, and Aspuru-Guzik J. Chem. Phys. 135, 214108 (2011)

a reference state given by the combination of coherent states.
To calculate the coherent states overlap in Eq. (14), one needs
to insert the space indentity twice, use Eq. (7) and perform the
space integration. For an i-th versus j-th coherent state overlap
we obtain the following expression (for ¯ = 1 ),

〈pj , qj |pt2 , qt2〉〈pt1 , qt1 |pi, qi〉
= exp

[
−γ

4
(qi − qt1 )2 − γ

4
(qj − qt2 )2

− 1

4γ
(pi−pt1 )2− 1

4γ
(pj − pt2 )2− i

2
(qi−qt1 )(pi−pt1 )

+ i

2
(qj − qt2 )(pj − pt2 ). (A1)

In the harmonic oscillator case, the following equation of mo-
tion in mass-scaled form can be employed:

q (t) = q (0) cos (ωt) + p (0)

ω
sin (ωt) , (A2)

p (t) = p (0) cos (ωt) − ωq (0) sin (ωt) , (A3)

and the difference of the corresponding actions to insert into
Eq. (14) is

S(t2) − S(t1) = p(0)q(0)(cos2(ωt2) − cos2(ωt1))

+
(

p2(0)

2ω
− ωq2(0)

2

)
(cos(ωt2)sin(ωt2)

− cos(ωt1)sin(ωt1)). (A4)

When setting γ = ω, substituting the harmonic equation of
motion Eqs. (A2) and (A3) into (A1), and considering that the
prefactor of Eq. (6) has the following expression for the har-
monic oscillator:

Ct2 (p (t1) , q (t1)) = eiω(t2−t1)/2, (A5)

then Eq. (14) becomes

I (E) =
∑
i,j,

e−ω(q2
j +q2

i )/4−(p2
i +p2

j )/4ω−i(piqi−pj qj )/2

× Re

πT

∫ T

0
dt1

∫ +∞

t1

dt2e
iE(t2−t1)−iω(t2−t1)/2

× 1

2π

∫ ∫
dp0dq0e

−ωq2
0 /2−p2

0/2ωexp

[
q0

2
(ωqicos(ωt1)

+ωqj cos(ωt2) − pisin(ωt1) − pj sin(ωt2))

+ p0

2
(qisin(ωt1) + qj sin(ωt2) + pi

ω
cos(ωt1)

+ pj

ω
cos(ωt2))

]
exp

[
i

2
q0(ωqisin(ωt1)

+picos(ωt1) − ωqj sin(ωt2) − pj cos(ωt2))

+ i

2
p0

(
pi

ω
sin(ωt1) − qicos(ωt1) − pj

ω
sin(ωt2)

+ qj cos(ωt2)

)]
. (A6)

By performing Guassian integrals in p0 and q0, Eq. (A6) is
left with the following double-time integration:

I (E) =
∑
i,j,

e−ω(q2
j +q2

i )/4−(p2
i +p2

j )/4ω−i(piqi−pj qj )/2

× Re
πT

∫ T

0
dt1

∫ +∞

t1

dt2e
iE(t2−t1)−iω(t2−t1)/2

× exp

[
1

2ω

(
ω2qiqj cos(ω(t2−t1))+ωqipj sin (ω (t2−t1))

−ωqjpisin (ω (t2 − t1)) + pipj cos (ω (t2 − t1)))

+ i

2ω
(−ω2qiqj sin (ω (t2−t1)) −pipj sin (ω (t2−t1))

−ωqipj cos (ω (t2 − t1)) + ωqjpicos (ω (t2 − t1)))

]
.

(A7)

After changing variables, τ = t2 − t1, and collecting the sine
and cosine terms, the time integration in Eq. (A7) becomes

I (E) =
∑
i,j,

e−ω(q2
j +q2

i )/4−(p2
i +p2

j )/4ω−i(piqi−pj qj )/2

×Re

π

∫ +∞

0
dτeiτ (E−ω/2)

×exp
[(ω

2
qiqj + pipj

2ω
− qiqj

2
+ qjpi

2

)
e−iωτ

]
.

(A8)

By expanding the squared brackets exponential part and per-
forming the time integration, one obtains Eq. (15) in the main
text.
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