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Vibrational eigenfunctions are calculated on-the-fly using semiclassical methods in conjunction with
ab initio density functional theory classical trajectories. Various semiclassical approximations based
on the time-dependent representation of the eigenfunctions are tested on an analytical potential
describing the chemisorption of CO on Cu(100). Then, first principles semiclassical vibrational
eigenfunctions are calculated for the CO2 molecule and its accuracy evaluated. The multiple
coherent states initial value representations semiclassical method recently developed by us has
shown with only six ab initio trajectories to evaluate eigenvalues and eigenfunctions at the accuracy
level of thousands trajectory semiclassical initial value representation simulations. © 2011 American
Institute of Physics. [doi:10.1063/1.3599469]

I. INTRODUCTION

Quantum properties of molecular systems are encoded in
the eigenvalues and eigenfunctions of the molecular Hamil-
tonian. Many fundamental properties of molecules can be in-
ferred from features such as their eigenfunctions’ nodes and
their eigenvalue spectra. For example, the nodal shapes for
higher vibrational eigenstates in a normal mode set of co-
ordinates reveal whether and how the modes are coupled,
i.e., if the coupling is resonant. Furthermore, by comparing
the nodes of the wave function to the histories of ensem-
bles of classical trajectories, one can understand the differ-
ent types of resonances between eigenmodes and gain in-
sight about the nature of these resonances, for example, how
“classical” these resonances are. Unfortunately exact quan-
tum mechanical methods for computing eigenfunctions and
eigenvalues are limited to systems comprising a few degrees
of freedom and most of the methods rely on having a pre-
computed analytical potential energy surface (PES).1–4 The
computation of PES is usually a trade-off between human ef-
fort and accuracy. This is especially true when one is deal-
ing with complex or floppy systems or bond-breaking pro-
cesses. On the other hand, while one can employ classical
methods to study large many-particle systems, these meth-
ods are unable to reproduce intrinsically quantum features:
for example, they cannot predict the form of the quantum
eigenfunctions. For these reasons, a desirable method should
not depend on the analytical development of PES but nev-
ertheless provide access to quantum properties,5–7 such as the
vibrational eigenfunctions. First-principles molecular dynam-
ics (FPMD) approaches have evolved as an alternative to the
pre-computation of PES and these allow for the inclusion of

a)Electronic mail: michele.ceotto@unimi.it.

quantum effects in the nuclear dynamics.8–17 Although there
has been great development in this field, to our knowledge,
calculations of molecular eigenfunctions using on-the-fly ap-
proaches have not been explored.

In order to reach this goal, several semiclassical ap-
proximations to quantum nuclear dynamics will be adopted.
An appealing semiclassical method for the computation of
eigenfunctions should be able to provide accurate quantized
solutions for polyatomic systems and be easy to apply,
preferably in a black-box fashion. Furthermore, as mentioned
before, if the method can be cast into an FPMD approach,
one can avoid the explicit construction of the PES. Some
of the original semiclassical methods were based on the
Einstein-Brillouin-Keller (EBK) theorem.18 According to
these methods an eigentrajectory with specific EBK quanti-
zation conditions is searched and a uniform approximation
to be corrected with the Maslov phase at the caustic point
discontinuity is used.19 This is equivalent to a static Jeffreys-
Wentzel–Kramers–Brillouin (JWKB)-like formalism,20 in
which the task of finding the multidimensional eigentrajecto-
ries seems to be quite involved.

As an alternative to EBK and JWKB approaches, as we
expose below, the spectral quantum features can be better
understood in terms of the underlying dynamics, in particular
within the semiclassical approximation, since periodic orbits
set a correspondence between stationary states and their cor-
responding dynamics. For example, Heller and co-workers
have shown strong evidence of this correspondence between
classical motion and quantum effects even for spacings of
combinations of overtones.21 In particular, in studies also
pioneered by Heller, the vibrational eigenfunctions have
been calculated on a model potential using a single classical
trajectory.22 These calculations used Gaussian wavepackets of
frozen width, which is generally, a computationally desirable
feature: The Fourier transform of a simple Gaussian integrand
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following a quasi-periodic trajectory leads directly to an ap-
proximation to the eigenfunctions of the system of study. In
short, semiclassical methods are based on a linear superposi-
tion of Gaussian coherent states that lie along the quantized
classical trajectories. Such approach is free of any caustic
problems and the agreement with the exact calculations is
good in the tunneling region. In principle, one can use any
classical trajectory to calculate eigenfunctions. However as
will be shown below, this will affect the eigenfunctions’ accu-
racy. Analytical considerations have shown that semiclassical
methods can reproduce eigenfunctions of the two dimensional
rigid rotor23 and of a particle in a box24 exactly, while for the
Morse potential eigenstates, the agreement is accurate.25 Still
analytically, the three-dimensional isotropic harmonic oscil-
lator eigenfunctions are calculated by representing the eigen-
functions as the integral of a semiclassical wavepacket over
the Lagrangian manifold corresponding to the desired state. In
this formulation, a parametric dependence of the wavepacket
on the variable describing the Lagrangian manifold corre-
sponding semiclassically to the state of interest is used instead
of a time dependence.26 This formulation is uniform, i.e, it is
free of caustic singularities, and it is semiclassical since it ap-
proaches the exact wave function uniformly for small ¯ values
(¯→ 0). Exact eigenstates have been derived for several sys-
tems, including the hydrogen atom, where the semiclassical
expression reproduced exactly a given electronic orbital state
by integrating over the radial and angular parameters.27–29

Nevertheless, one should keep in mind that semiclassical
theories remain an approximation to the full quantum
mechanical picture and in general, only yield approximate
eigenfunctions. To our knowledge, the only general procedure
to estimate the error arising from semiclassical approxima-
tions other than a direct comparison with the exact quantum
eigenfunctions, is a perturbative series correction of the
propagator.30–33

In this paper, a set of semiclassical molecular dynamics
methods will be employed to calculate vibrational eigenfunc-
tions. First, the methods will be tested on analytical poten-
tials where exact calculations can be performed, and then cou-
pled with a first principles approach, in which the potential
energy surfaces are computed on-the-fly using density func-
tional theory (DFT). We employ a recent implementation 34, 35

of the original time-averaging filtering of the semiclassical
initial value representation method (SC-IVR) (Ref. 36) and
extend it for the purpose of calculating vibrational eigenfunc-
tions. This method uses a suitable set of delocalized coherent
states that resembles a linear combination of the eigenfunc-
tions of the system to reproduce quantum spectral features. In
this way, the multiple coherent states SC-IVR (MC-SC-IVR)
mimics the multiple vibrational components and success-
fully reproduce well-defined spectra for the several systems
which have been tested.34, 35, 37 The major advantages of the
method are that very few trajectories can accurately reproduce
SC-IVR spectra obtained with thousands of trajectories and
further that it can easily be implemented into a first principles
molecular dynamics calculation. More recently Roy et al.38

also used such delocalization of coherent states for the cal-
culation of the vibrational power spectrum of formaldehyde.
This is another example of first-principles SC-IVR, as well as

it is the work of Pollak and Tatchen on the absorption spec-
trum of the same molecule.17

In Sec. II, we will review the expression for comput-
ing the eigenfunctions using wavepackets and semiclassical
approximations. In Sec. III, we discuss the computation of
eigenfunctions with different methods for an analytical poten-
tial. In Sec. IV, first principles semiclassical eigenfunctions
are calculated for the carbon dioxide molecule and, finally,
conclusions are drawn in Sec V.

II. SEMICLASSICAL APPROXIMATION FOR
EIGENFUNCTION CALCULATIONS

A. Time-dependent formulation for eigenfunctions
calculation

Usually, the time-independent approaches to eigen-
function and eigenvalue calculation are based on the
diagonalization of the Hamiltonian, which is represented in
a suitable basis set. The computational cost of these types
of approaches grows exponentially with the dimensionality
of the system. A time-dependent representation could be
a valid alternative, since it opens new avenues to quantum
approximation methods.22 Following, we review the basics
of the time-dependent method for computing eigenfunctions.
Consider a general non-stationary state represented by the
wavepacket �(x, t) with Schroedinger dynamics,

i¯
∂

∂t
�(x, t) = Ĥ�(x, t), (1)

the time-evolved wavepacket can be expressed in terms of a
superposition of eigenstates ψn(x),

�(x, t) =
∑

n

cn(t)ψn(x) =
∑

n

〈ψn(x)|�(x, t)〉ψn(x).

(2)
By combining Eq. (2) with Eq. (1), the time-evolution can be
described by the expansion coefficients cn(t),∑

n

d

dt
cn(t)ψn(x) =

∑
n

cn(t)Enψn(x). (3)

By multiplying from the left by 〈ψm(x)|, one obtains the
dynamical equations for the coefficients cm(t),

dcm(t)

dt
= Emcm(t) (4)

or, equivalently,

cm(t) = e−i Em t/¯cm(0). (5)

By substituting Eq. (5) into Eq. (2), the formulation of a
generic non-stationary state as the evolution in terms of
(stationary) eigenstates is obtained,

�(x, t) =
∑

n

e−i En t/¯〈ψn(x)|�(x, 0)〉ψn(x). (6)

Equation (6) is inverted by applying a Fourier transform to
both sides and using the Fourier representation for Dirac’s
delta function in the energy domain. This results in the
time-dependent representation of the nth eigenfunction,

ψn(x) = 1

〈ψn(x)|�(x, 0)〉
1

T

∫ +T

−T
ei Ent/¯�(x, t)dt, (7)
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where En are the eigenfunction energies, and T is the total
time the wavepacket is propagated for. By using time inver-
sion symmetry, Eq. (7) can be computed more conveniently
since it can be written as

ψn(x; T ) ∝ 2

T

∫ T

0
dt �e(�(x, t)ei Ent ). (8)

By either guessing or having the eigenvalue En , and in-
tegrating the time-dependent wave function, the value at x of
the eigenfunction for that given eigenvalue can be retrieved.39

As one integrates up to larger T , the global eigenfunction is
increasingly refined. If the trajectory is quasiperiodic, it is
possible to obtain sufficiently converged eigenfunctions for
a reasonable value of T.

Equation (8) expresses that any eigenstate can be ob-
tained from a superposition of wavepackets, i.e., the same
wavepacket at different times, when integrated using a Fourier
phase corresponding to its eigenvalue. The Fourier phase is
essential, as it interferes with the phase of the wavepacket
to project out the vibrational eigenfunction. In other words,
Fourier transforming the wavepacket at peak frequencies of
the power spectrum leads to constructive interference of the
wavepacket with itself. Instead, if the Fourier transform is at
an off-peak frequency, “the wavepacket would interfere with
itself haphazardly and generally destructively.”40

B. De Leon-Heller semiclassical eigenfunctions

The original semiclassical quantization of vibrational
Hamiltonians has been expressed in terms of action quanti-
zation. The Einstein-Brillouin-Keller quantization (EBK) cor-
rected by a Maslov index is one of the seminal approaches.18

The EBK method implies searching for a trajectory whose
action integrals are properly quantized. The energy of such a
trajectory is the semiclassical eigenvalue. However, this ap-
proach results to be too cumbersome when a multidimen-
sional trajectory search is needed.

The time-dependent formulation presented in Eq. (8) is
suitable for implementation into a semiclassical molecular dy-
namics perspective. As shown by Heller and Davis,41 it is
convenient to replace a trajectory that quantizes the system
with a linear superposition of Gaussian coherent states that
are generated from that trajectory. This strategy is suggested
by Eq. (8) itself, where the eigenfunction is a convolution of a
time evolved wavepacket. In our simulations, the wavepacket
is composed of a coherent state part,

〈x|p(t), q(t)〉 =
F∏

j=1

(γ j

π

)1/4
exp

[
−γ j

2
(x j − q j (t))

2

+ i p j (t)(x j − q j (t))

]
, (9)

where F is the number of degrees of freedom, q j (t) and p j (t)
are the position and momentum of the classical trajectory
for the j th dimension, and γ j are the coherent state widths
usually chosen to match the widths of the harmonic oscilla-
tor approximation to the wave function at the global mini-
mum. The term in Eq. (9) is multiplied by a time-dependent

phase term eiγ (t)/¯ to give the semiclassical representation of
the wavepacket. The phase term is crucial for the coherent
buildup of the eigenfunction and it has the following form: 41

γ (t) =
∫ q(t)

0
p · dq − E · t + T

2

F∑
j=1

ω j , (10)

where the first two terms are the classical action, a common
ingredient in every semiclassical approximation. The time-
evolved wavepacket is easily obtained by generating the phase
space Gaussian center’s coordinates (p(t), q(t)) according to
Newton’s equations, the classical action and the phase γ (t)
as in Eq. (10). Initial conditions are taken from the harmonic
approximation. The frequency terms in Eq. (10) resemble the
semiclassical Maslov phase correction. The frequency values
ω j were estimated by taking a multidimensional trajectory
long enough to close on itself in a time Tc and by counting
the total number of cycles (M j ) that this trajectory makes for
each degree of freedom, as originally suggested by Heller and
co-workers.41 Then, the expression for the frequency is

ω j = 2π

Tc
M j . (11)

The criteria for trajectory closure was set so strict that it closes
only once within the total simulation time. The frequencies
obtained were comparable to the harmonic estimate coming
from the Hessian diagonalization at the global minimum. A
suitable simulation time and trajectory closure criteria are
very important since the correct phase calculation is crucial
for the coherent superposition. The trajectory used to generate
the coherent state should be taken long enough to adequately
explore the entire manifold on which it lies. We found this
semiclassical recipe for calculating the eigenfunctions sim-
ple and practical. It is, however, limited to a single classical
trajectory.

C. SC-IVR eigenfunctions

In the same spirit as the above discussion, one can for-
mulate the SC-IVR expression for eigenfunction calculation
by invoking the Heller-Herman-Kluk-Kay (HHKK) propaga-
tor. In the SC-IVR method,36, 42–49 the propagator in F dimen-
sions is approximated by the phase space integral,

e−i Ĥ t/¯ = 1

(2π¯)F

∫
dp(0)

∫
dq(0) Ct (p(0), q(0))

ei St (p(0),q(0))/¯|p(t), q(t)〉〈p(0), q(0)|, (12)

where (p(t), q(t)) are the set of classically evolved phase
space coordinates, St is the classical action,

St (p(0), q(0)) =
∫ t

0
dt ′

(
p2(t ′)
2m

− V (q(t ′))
)

, (13)

and Ct is a pre-exponential factor. In the Heller-Herman-
Kluk-Kay 50, 51 version of the SC-IVR, the prefactor is

Ct (p (0) , q (0))

=
√

1

2

∣∣∣∣ ∂q (t)

∂q (0)
+ ∂p (t)

∂p (0)
− i¯γ

∂q (t)

∂p (0)
+ i

γ¯

∂p (t)

∂q (0)

∣∣∣∣ (14)
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and the basis set is a product of F one-dimensional co-
herent states of Eq. (9). For bound systems, no sig-
nificant dependency on width variation was found.43 By
using a 2F × 2F symplectic (monodromy) matrix M (t)
≡ (∂ (pt , qt ) /∂ (p0, q0)), one can calculate the pre-factor of
Eq. (14) from F × F-sized blocks and we monitored the ac-
curacy of the classical approximate propagation by contain-
ing the deviation of its determinant from unity to be less than
10−6. Thus, the SC-IVR representation of the time evolved
wavepacket is

� (x, t) =
∫

dp (0)
∫

dq (0)(
2π¯

)F Ct (p (0) , q (0)) ei St (p(0),q(0))/¯

〈x |p (t) , q (t) 〉〈 p (0) , q (0)| p (0) , q (0)〉 .

(15)

Inserting Eq. (15) into Eq. (8), one finds the final SC-IVR
expression for the eigenfunction used in this paper. The zero-
time coherent-state overlap in Eq. (15) is the employed den-
sity for the Monte Carlo phase space integration. In order to
gain further numerical stability for the calculation of the pref-
actor in Eq. (14), one can introduce a phase approximation
along the lines of the separable approximation for the double
times prefactor used in the time-averaging filtering.34, 35, 54 In
this case, the prefactor at time evolution t is approximated in
the following manner:

Ct (p (0) , q (0)) ≈ eiφ(t)/¯, (16)

where φ (t) = phase[Ct (p (0) , q (0))]. This can be a mild ap-
proximation if the equations of motion are evolved using a
symplectic algorithm, since any deviation of the prefactor
from its unitary module is due to numerical errors. In our sim-
ulation on analytical potentials, a fourth-order simplectic al-
gorithm was employed.52 For the first-principles semiclassical
molecular dynamics calculations, the standard velocity Ver-
let algorithm as implemented in the Q-CHEM package53 was
used for the propagation. Note that for the case of employing
Eq. (15) this approximation does not result in any additional
savings of computational resources. Nevertheless, we will
investigate if there are any significant differences between
using the phase approximation and employing the original
prefactor.

If a single classical trajectory is employed instead of a
phase space integral and inserted into Eq. (8), one obtains

ψn (x; T ) ∝ 2�e

T

∫ T

0

ei St (p(0),q(0))/¯(
2π¯

)F ei Ent

× Ct (p (0) , q (0)) 〈x | p (0) , q (0)〉 dt,

(17)

which is much less computationally demanding and still dif-
ferent from the De Leon-Heller expression. However, both
methods avoid any divergence of the semiclassical propa-
gator at the caustic or turning point, which has been one
of the major problems of the application of the WKB
approximation.

D. Multiple coherent states semiclassical initial value
representation eigenfunctions

In a typical SC-IVR simulation, the Monte Carlo phase
space integration has been tested to converge with a num-
ber of trajectories of the order of thousands.43 If one re-
quires to propagate trajectories using first-principles dynam-
ics, this number of trajectories is prohibitive. Recently, we35

developed a method called multiple coherent states SC-IVR
(MC-SC-IVR) which reduces significantly the number of
classical trajectories to only a few while still preserving good
accuracy. The method was developed for power spectra cal-
culations and consists in a SC-IVR strategy that enhances
as much as possible the overlap between the reference state
(whose time-evolution is Fourier transformed into the power
spectrum) and the exact quantum eigenfunctions. In fact, one
can think of projecting the power spectrum into the phase
space portrait, where it is represented by a set of multidi-
mensional closed “eigen-trajectories” with energy equal to the
peaks of the spectrum (see Fig. 1 in Ref. 35). Then, it is clear
that a set of trajectories which somehow mimics this distribu-
tion is more representative than a single ground state trajec-
tory. For this method, it was found that it is not crucial to know
the exact location of the “eigen-trajectories” turning points at
the values of potential energy equal to the peaks of the power
spectrum. This is so because the Gaussian spreading of each
coherent states lying on the top of each “eigen-trajectory” is
generally wide enough to include the peaks’ energy shell. In
this way, with few trajectories we obtained accurate results
for the H2O molecule on a model potential and for the CO2

molecule using an on-the-fly approach.35 Additionally, we ob-
tained accurate spectra for the model potential describing the
chemisorption process of CO on Cu(100) copper surface that
will be used below. The agreement was excellent not only
when dimensionality was reduced to the two stretching mo-
tions of a single molecule, but also when a set of four dipole
coupled molecules were arranged in a monolayer fashion.37

Thus, the MC-SC-IVR method has proved to be really ad-
vantageous since the number of trajectories can be substan-
tially reduced,35 while preserving an accuracy comparable to
that obtainable with thousands of trajectory calculations. The
MC-SC-IVR formulation of the eigenfunction is

ψn (x) ∝ �e

T

∫ T

0
dt ei Ent/¯ 1(

2π¯
)F

Nstates−1∑
i=0

ei St (pi (0),qi (0))/¯

×Ct (pi (0) , qi (0)) 〈pi (0) , qi (0) |x〉 , (18)

where the initial phase space conditions are the equilibrium
geometry q (0) for the positions and the harmonic approxi-
mated momenta, namely, p2

j,i/2m = ¯ω j (i + 1/2) for each
j th degree of freedom of the th trajectory. Eq. (18) reduces the
phase space integral to a sum over a set of Nstates , which we
called “eigen-trajectories,” which are harmonically spaced in
the energy domain. An analogous expression holds when the
separable approximation is applied. In this way MC-SC-IVR
includes the quantum mechanical delocalization by using a
set of coherent states placed in a non-local fashion, while their
centers are kept fixed during the entire simulation time.
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III. MEASURING THE QUALITY OF THE
EIGENFUNCTIONS

The most straightforward metric for the accuracy of the
semiclassical eigenfunctions, is their overlap with numeri-
cally exact solutions,

O =
∫

〈ψSC (x) | ψDV R (x)〉 dx, (19)

where ψSC (x) is the normalized semiclassical eigenfunction
calculated according to one of the approximations described
above, while ψDV R (x) is what we consider the numerically
exact quantum eigenfunction calculated with the discrete vari-
able representation method in the Sinc function basis.55 Thus,
the integral of Eq. (19) becomes a sum over all Discrete Vari-
able Representation (DVR) grid points NDV R ,

O =
NDV R∑
i=1

ψ	
SC (xi ) ψDV R (xi ) 
xi . (20)

However, in case of degeneracy the comparison between
eigenfunctions of the same eigenvalue calculated with differ-
ent methods is not so straightforward. In this case, any com-
bination of degenerate eigenfunctions is still an eigenfunction
and in principle one does not know how a set of degenerate
semiclassical eigenfunctions can be matched with the exact
ones. One is tempted to introduce a mixing angle that com-
bines the eigenfunctions with sine and cosine coefficients and
represent the semiclassical eigenfunctions as rotations of the
exact ones, however we found this procedure to be too cum-
bersome when dimensionality is increased. A simpler way to
overcome this impasse is on one hand, to measure to which
extent the semiclassical eigenfunction is an eigenfunction of
the DVR Hamiltonian matrix and on the other to measure the

completeness of the basis of each group of degenerate func-
tions within the degenerate subspace.

To reach the first goal, the following expression was in-
troduced:

ε1 = |ĤDV R|ψSC 〉 − EDV R|ψSC 〉|
EDV R

, (21)

where ĤDV R is the DVR matrix representation of the Hamil-
tonian operator, |ψSC 〉 is the semiclassical eigenfunction eval-
uated at the DVR grid points and EDV R is the exact quantum
eigenvalue. In Eq. (21) the norm of the vector measuring the
deviation of |ψSC 〉 from being the exact ket is calculated in the
numerator and weighed respect to the value of the eigenvalue.
If |ψSC 〉 is an eigenket, then ε1 = 0. Moreover, if |ψSC,1〉
and |ψSC,2〉 are two degenerate precise eigenfunctions, then
they should both have small values of ε1, even if their over-
lap with |ψDV R〉 is arbitrary. In order to appreciate how much
small ε1 should be for an eigenfunction to be accurate, one

can use Eqs. (21) together with Eq. (20) for the ground state
(which is not degenerate) and then compare this with the val-
ues of ε1 in the case of degenerate states on the same grid
points.

To reach the second goal, i.e., to prove that the set of de-
generate semiclassical eigenfunctions is complete within the
degenerate subspace, the following quantity was introduced:

ε2 =
√

〈ψSC |ĤDV R|ψSC 〉
EDV R

, (22)

where the notation is the same as in Eq. (21). Further com-
ments on the ε2 parameter for a given eigenfunction |ψSC,i 〉
are necessary to appreciate the meaning of Eq. (22) better.
One first notes that

ε2
2,i = 〈ψSC,i |ĤDV R|ψSC,i 〉

EDV R,i
(23)

=
∑

l,n〈ψSC,i |ψDV R,l〉〈ψDV R,l |ĤDV R|ψDV R,n〉〈ψDV R,n|ψSC,i 〉
EDV R, i

, (24)

where the identity in terms of DVR complete basis set
has been inserted twice. Then, by using the properties that
|ψDV R,i 〉 is the exact i th eigenfunction of ĤDV R of eigenvalue
EDV R,i , Eq. (24) is simplified to

ε2,i =
√∑

n |〈ψDV R,n|ψSC,i 〉|2 EDV R,n

EDV R,i
. (25)

For non-degenerate cases, Eq. (25) is equal to Eq. (19) plus
the contributions coming from the overlap of the i th semiclas-
sical eigenfunctions with the exact eigenfunctions orthonor-
mal to the i th one. Thus, if the semiclassical approximation
is really accurate, Eq. (25) should give the same value as
Eq. (19) does for non-degenerate eigenvalues.

Instead, when two states |ψDV R,1〉 and |ψDV R,2〉 are de-
generate, they can both give a significant overlap with the
semiclassical eigenfunction |ψSC,i 〉 which approximates one
of the degenerate eigenstate. In Eq. (25), let us assume that
|ψSC,i 〉 is good enough to be orthogonal to all exact eigenkets
which do not belong to the considered degenerate subspace.
In this case, if |ψDV R,1〉 and |ψDV R,2〉 are two eigenfunctions
that span the degenerate subspace then we can represent the
semiclassical eigenfunction as follows:

|ψSC,i 〉 ≈ cosω|ψDV R,1〉 + sinω|ψDV R,2〉, (26)

where ω is the mixing angle. By inserting this approxima-
tion for |ψSC,i 〉 into Eq. (25) and considering that EDV R,1

= EDV R,2 = EDV R,i , one obtains ε2,i = 1. Thus, the sum
of the squares of the overlaps with the semiclassical
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FIG. 1. Normalized vibrational eigenfunction contour plots for the (2,2)
eigenstate: (a) the exact DVR eigenfunction; (b) from a single ground tra-
jectory using the semiclassical single trajectory energy estimation; (c) using
De Leon-Heller method; (d) using an anharmonically corrected initial sin-
gle trajectory condition; (e) from MC-SC-IVR with the approximation of
Eq. (16) and eigenvalue from same level of energy calculation, i.e., MC-
SC-IVR with the separable approximation; (f) the same as (e) but without
invoking the approximation in Eq. (16). Dashed red lines are for negative
values.

eigenfunction is unitary only if the approximate eigenfunc-
tion can be written as a rotation of the exact eigenfunctions
and if it is orthonormal to all others exact eigenfunctions. In
other words, the closer ε2 is to unity, the better the semiclas-
sical eigenfunction describes that degenerate state.

A. A Test Case: CO on Cu(100) Vibrational
Eigenfunctions

When a CO molecule adsorbs on top of a copper atom
of a Cu(100) surface, besides the internal C-O stretch mode,
five other external modes are present. These are the two-fold
frustrated rotations, the two-fold degenerate frustrated trans-
lations and the external C-Cu stretching respect to the surface.
For a pictorial representation the reader can refer to Fig. 1 in
Ref. 37 for example. The analytical potential developed by
Tully and co-workers56–58 has been widely used to perform
theoretical and molecular dynamics simulations for this sys-
tem. The potential form is

V (rc, ro) =
Ncopper∑
i=1

Vi (rc, ro, ri ) + Vco(|rc − ro|), (27)

where rc and ro are, respectively, the carbon and the oxy-
gen position vectors and ri are those of the i th coordinate of
the copper atom. The intramolecular term Vco is a standard
Morse potential

Vco(|rc − ro|) = F{exp(−2γ (|rc − ro| − rco))

− 2exp(−γ (|rc − ro| − rco))}, (28)

where rco is the equilibrium distance, and the interaction of
CO with each copper atom is described by the following mod-
ified Morse C-Cu interaction potential:

Vi (rc, ro, ri ) = A exp(−α|ri − ro|)
+ B exp(−2β(|ri − rc| − req))

− 2B cosφ2 exp(−β(|ri − rc| − req)),

(29)

where req is a given equilibrium distance and

cos2φ = (ri − rc) · (rc − ro)

|ri − rc||rc − ro| . (30)

The first term in Eq. (29) describes the oxygen-copper repul-
sion. The remainder of the terms in Eq. (29) represent the
carbon-copper interaction. The molecule orientation is taken
into account by the angle φ between the C-O and the Cu-C
bonds. The metal is represented by three layers of 36 (6×6)
copper atoms arranged according to a fcc lattice structure. In
this work, the molecular axis is fixed perpendicular to the cop-
per surface and the resulting bidimensional molecular motion
describes the internal CO mode at 2084 cm−1 and the stretch-
ing mode perpendicular to the surface at 353 cm−1. Potential
parameters are reported in Ref. 37. In this system there is no
degeneracy induced by symmetry considerations. However,
given the small value of the external stretch mode, it can hap-
pen that overtones of different quanta are located very close
in energy space.

The De Leon-Heller method described in Sec. II is ap-
plied to the calculation of the overlap according to Eq. (20).
For each eigenfunction a classical trajectory is chosen with
initial conditions given by the positions at the equilibrium
geometry and momenta such that

∑
i p2

i /2m = E , where the
sum is over each dimension. Whether the set of values E of
the eigenvalues, used to calculate the initial momenta and the
phase of Eq. (10), were calculated using a SC-IVR with a sin-
gle trajectory or MC-SC-IVR, is indicated by the subscripts.
For EDV R the “exact” eigenvalues’ set was chosen, while for
E1tra j the single trajectory (without separable approximation)
spectra values were chosen.34 In Table I one can also find
the values of the frequencies evaluated for each trajectory us-
ing Eq. (11). These are comparable with the harmonic values
and they do not change significantly by changing the trajec-
tories’ initial velocities. If the potential had been harmonic,
the prefactor would indeed be the complex exponentiation of
the mode frequency over ¯. Finally, in Table I we report an
index labeled as “sum” which is indicative of the overall per-
formance of the method. A closer look at Table I shows how
the frequencies are the same within less than 1%, using both
the set E1tra j and EDV R as initial conditions. Instead, sig-
nificant differences can be observed for the overlap values.
Clearly, the exact set of energies gives more accurate results.
This shows that the De Leon-Heller method can be considered
accurate enough for most eigenfunction calculation purposes,
when accurate eigenvalues are known.

In Table II single-trajectory results are reported, using
Eq. (17). In the second column, the trajectory used for the
eigenfunction calculations for all states is the same, i.e.,
the ground state harmonic trajectory. It is evident that this
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TABLE I. Overlaps O between exact DVR eigenfunctions and De Leon-
Heller eigenfunctions for CO on Cu(100) analytic potential. In the first col-
umn the quantum state is labeled by the quantum numbers of the internal and
external mode, respectively. In the second and fourth columns the values of
the prefactor frequencies calculated with Eq. (11). In the third column the
overlap calculated using the eigenvalues En obtained from the power spec-
trum of a single classical trajectory (Refs. 34 and 35), while in the last column
using the DVR eigenvalues. The last row contains the sum of the overlaps in
the columns.

States ω1, ω2 O(E1tra j ) ω1, ω2 O(EDV R)

ZEP 2061.8, 335.6 0.99890 2061.8, 335.6 0.99921
(0,1) 2069.1, 324.6 0.98565 2064.2, 319.2 0.98565
(0,2) 2066.3, 304.5 0.29482 2067.3, 306.3 0.97162
(1,0) 2046.3, 341.1 0.99764 2046.7, 341.1 0.99073
(1,1) 2044.6, 322.8 0.97876 2044.8, 322.9 0.97976
(1,2) 2039.8, 302.2 0.96892 2031.2, 282.1 0.97596
(2,0) 2017.2, 320.9 0.99855 2015.0, 314.8 0.99022
(2,1) 2016.8, 359.4 0.97529 2015.7, 319.9 0.98323
(2,2) 2018.0, 299.0 0.85167 2019.1, 300.7 0.96297
Sum 8.05020 8.83935

crude approach gradually fails as higher vibrational levels are
reached, and already is quite inaccurate for the (2,2) state
where the overlap is 90% too small. This shows how the error
increases if one attempts to use a unique trajectory to calcu-
late states which are further apart from the energy shell of
the single trajectory (see Appendix A of Ref. 59). However,
this trajectory shows to be quite accurate for the first vibra-
tional eigenstates. In the following two columns, the overlaps
for trajectories with harmonic and anharmonically corrected
initial momenta at the energy eigenvalues are reported. For
all these columns as for the one labeled “ground,” the en-
ergy eigenvalues were taken from the single trajectory power
spectrum.34 From the second to the fourth column, the ac-
curacy gradually increases, as indicated by the index “sum.”
Nevertheless, for the (2,2) eigenstates the missed part of the
overlap decreases from 57% to 40% when using the anhar-
monic correction. This result is still not satisfying. In the last

TABLE II. Single trajectory SC-IVR methods’ eigenfunctions’ overlaps for
CO on Cu(100) potential. In the first column, the same notations as in Table I.
In the following three columns Eq. (17) is employed using, respectively, a
single ground harmonic trajectory for all eigenfunctions, eigen-trajectories
with harmonic and anharmonic corrected initial conditions, respectively. The
last column is the same as the previous one but using the approximation of
Eq. (16) and the energy levels En from the power spectrum calculated with
the separable approximation (Refs. 34 and 35).

O(E1tra j ) O(E1tra j ) O(E1tra j ) O(E1tra j−SE P )
States Ground Harmonic Anharm Anharm

ZEP 0.99566 0.99542 0.99550 0.99828
(0,1) 0.96518 0.99520 0.99528 0.99420
(0,2) 0.91580 0.97711 0.97885 0.84022
(1,0) 0.98305 0.98359 0.98387 0.99358
(1,1) 0.96189 0.98847 0.98865 0.99664
(1,2) 0.84182 0.94239 0.94004 0.80430
(2,0) 0.97670 0.96451 0.96570 0.98491
(2,1) 0.90516 0.93615 0.93480 0.85252
(2,2) 0.10385 0.43739 0.60409 0.39081
Sum 7.64911 8.22023 8.38678 7.85546

TABLE III. The same as in Table II but for MC-SC-IVR eigenfunctions
using a total of only six trajectories. In column 4 a 4000 trajectory SC-IVR
calculation is reported. The energy values are indicated as EMC−SE P when
the MC-SC-IVR with separable approximation eigenvalues are employed,
EMC when the ones without the separable approximation are used and EDV R

when the DVR ones are used.

6 traj.s-SEP 6 traj.s 4000 traj.s 6 traj.s-SEP 6 traj.s
States O(EMC−SE P ) O(EMC ) O(EMC ) O(EDV R) O(EDV R)

ZEP 0.99382 0.99485 0.99466 0.99371 0.98885
(0,1) 0.99703 0.99335 0.99025 0.99329 0.97528
(0,2) 0.94993 0.93663 0.98930 0.97879 0.96466
(1,0) 0.99423 0.81562 0.92798 0.95208 0.80860
(1,1) 0.97920 0.99255 0.95964 0.99397 0.99197
(1,2) 0.99344 0.98446 0.97919 0.99086 0.98850
(2,0) 0.97475 0.98746 0.98009 0.98401 0.98760
(2,1) 0.98489 0.98467 0.95010 0.97326 0.96496
(2,2) 0.98685 0.97912 0.91446 0.92457 0.98088
Sum 8.85414 8.66871 8.68567 8.78460 8.65130

column, the same calculations as in the fourth column are per-
formed, but using a consistent (i.e., with the eigenvalue at the
same semiclassical level of calculation) set of separable ap-
proximation results for the power spectra and eigenfunction
evaluation according to Eq. (16). The separable approxima-
tion clearly generate poorer results than the ones reported on
the fourth column, where this approximation was not invoked.

Finally Eqs. (18) and (16) are employed for eigenfunc-
tion calculations. The results are reported in Table III for
different sets of trajectories and for different levels of approx-
imation. These calculations are evidence of the substantial
increase of accuracy due to the use of multiple trajectories. In
the second column, we report the results of using the MC-SC-
IVR approach, where the separable approximation was used
both for the eigenfunctions and power spectrum calculations,
in order to have a set of consistent results. These results are
accurate for our purposes, as shown by the “sum” index. In
particular the higher vibrational state taken in this set of cal-
culation, i.e., the (2,2) state, is exact within 1% of accuracy.
Exactly the same considerations are valid for a second set of
MC-SC-IVR calculations reported on the following column.
Here the separable approximation is not employed and
the accuracy of the results is slightly less. In the column
labeled “4000 traj.s,” the fully converged semiclassical limit
is reached using a 4000-classical trajectory calculation for
Eq. (15) with 4000 time steps of 10 a.u. each. Here the
eigenvalues coming from MC-SC-IVR calculations35 are
used, i.e., the same ones as in the previous column. Thus, the
comparison between these two columns shows the accuracy
of our MC-SC-IVR method for eigenfunction calculations
respect to the original HHKK semiclassical formulation. Dif-
ferences between the two sets of overlaps are very small and
the MC-SC-IVR method, both with or without the separable
approximation, can be used with only few trajectories (six
in this case) as a good estimate of the actual semiclassical
calculation for vibrational eigenfunctions. These results
confirm the previous power spectra calculation ones,35

showing that the MC-SC-IVR can properly mimic quantum
properties for this kind of bound states at the fully converged
SC-IVR level of calculation, with much less effort. In the
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FIG. 2. Normalized vibrational eigenfunction contour plots for the (2,2)
eigenstate at the exact DVR energy for different methods: (a) the exact DVR
eigenfunction; (b) using De Leon-Heller method; (c) from MC-SC-IVR with
the approximation of Eq. (16); (d) without invoking the approximation in
Eq. (16). Dashed red lines are for negative values.

last two columns of Table III the same calculations as in
the second and third columns are, respectively, reported, but
using the exact eigenvalues En in Eq. (18). Once again, one
can observe that the overlaps are not significantly different
from those in the second and third columns and they are all
very accurate, up to the (2,2) vibrational state.

A graphical comparison is even more striking than the
numerical one presented in the previous tables. In Fig. 1
the eigenfunction methods used for calculating the overlaps
reported previously are depicted. On panel (a)-(f) the (2,2)
eigenfunctions are represented on contour plots, where the
dashed color lines are the negative contour of the eigen-
functions. Panel (a) is the exact DVR eigenfunction. Panel
(b) eigenfunction is calculated using the ground state tra-
jectory and one can observe how it completely misses the
correct nodal arrangement. On panel (c) the De Leon-Heller
method wave function is plotted using a single trajectory
eigenvalue, while on panel (d) Eq. (17) is used with the same
set of eigenvalues as for the previous panel. Finally on pan-
els (e) and (f) the MC-SC-IVR eigenfunctions are reported,
respectively, with and without the separable approximation.
These last plots of eigenfunctions are clearly more accurate

TABLE IV. Values of ε1 of Eq. (21) for different semiclassical methods.
The second row indicates the semiclassical method used for calculating the
energy in the Fourier transform, as described in previous tables.

1 traj.-SEP 1 traj. 6 traj.s-SEP 6 traj.s
States O(E1tra j−SE P ) O(E1tra j ) O(EMC−SE P ) O(EMC )

ZEP 1.104 × 10−1 1.152 × 10−1 9.8576 × 10−2 1.2162 × 10−1

(0,1) 8.784 × 10−2 9.095 × 10−2 6.7365 × 10−2 9.3723 × 10−2

(0,2) 8.028 × 10−2 8.668 × 10−2 1.2418 × 10−1 2.4030 × 10−1

(1,0) 7.240 × 10−2 7.966 × 10−2 4.4660 × 10−2 1.9413 × 10−1

(1,1) 3.018 × 10−2 5.722 × 10−2 4.0150 × 10−2 4.7557 × 10−2

(1,2) 8.621 × 10−2 9.182 × 10−2 2.4551 × 10−2 6.6439 × 10−2

(2,0) 7.291 × 10−2 7.334 × 10−2 5.2488 × 10−2 5.0164 × 10−2

(2,1) 6.986 × 10−2 7.080 × 10−2 4.5017 × 10−2 5.2962 × 10−2

(2,2) 8.935 × 10−2 9.281 × 10−2 4.0819 × 10−2 5.9060 × 10−2

Sum 69.94 × 10−2 75.85 × 10−2 42.60 × 10−2 53.50 × 10−2

TABLE V. The same as in Table IV but for ε2.

1 traj.-SEP 1 traj. 6 traj.s-SEP 6 traj.s
States O(E1tra j−SE P ) O(E1tra j ) O(EMC−SE P ) O(EMC )

ZEP 1.0141 1.0153 1.0127 1.0171
(0,1) 1.0112 1.0121 1.0070 1.0132
(0,2) 1.0144 1.0145 1.0291 1.1083
(1,0) 1.0160 1.0193 1.0061 1.1272
(1,1) 1.0022 1.0104 1.0057 1.0064
(1,2) 1.0270 1.0309 1.0014 1.0156
(2,0) 1.0243 1.0248 0.99244 1.0073
(2,1) 1.0223 1.0237 0.99563 1.0086
(2,2) 1.0460 1.0492 0.99810 1.0115

than other ones, showing that the MC-SC-IVR method of-
fers a consistent formulation for eigenvalue and eigenfunction
calculations.

In order to find the origin of the consistent accuracy of
the methods on panel (b) to (c), on Fig. 2, the eigenfunctions
of the MC-SC-IVR and De Leon-Heller semiclassical meth-
ods at the exact (2,2) vibrational energy level are reported, to-
gether with the exact one represented on panel (a). This time
all semiclassical methods faithfully reproduce the nodal be-
havior of the exact eigenfunction. This clearly shows that the
performance of the method depends mostly on the accuracy
of the calculation of the eigenvalues and that MC-SC-IVR in
Eq. (18) and De Leon-Heller method in Eqs. (9)–(11) are al-
most numerically equivalent.

Now, let us turn to the estimate of the eigenfunctions’
accuracy via the coefficients ε1 and ε2 presented in Sec. III.
Even if the CO on Cu(100) vibrational system is not degener-
ate, we can understand how accurate these parameters are by
comparing their values in this non-degenerate case to other
degenerate cases. In Table IV, the values of ε1 are calculated
for each vibrational state. Since ε1 is the sum of the absolute
value of the deviation of the approximate method from the ex-
act one at each DVR point, there are no error compensations
and it represents an upper bound for the error estimate. On the
second and third columns the single trajectory results are re-
ported, while on the following columns the multiple trajectory
results are presented. Once again the indicative index “sum”
shows that overall the multiple-trajectories perform best, with
an improvement of accuracy of almost 50%. This means that
the MC-SC-IVR eigenfunctions mimic the DVR ones better
than the single trajectory calculations. However, given such
small values of ε1 for all methods, one can consider the sin-

TABLE VI. Overlap of the ground state vibrational CO2 eigenfunc-
tions at different semiclassical levels of calculation with the exact DVR
eigenfunctions.

Method Overlap

1 traj.-SEP 0.99953
1traj 0.99893
De Leon-Heller 0.99663
MCSC-IVR-sep 0.99953a

MCSC-IVR 0.99669a

aThe first four eigenstates trajectories have been used.
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FIG. 3. Bidimensional vibrational eigenfunction contour plot cuts for the state (0, 31, 0) of CO2, i.e., the triple bending excitation. The nodes are significantly
tilted in the bending and symmetric stretch subspaces, while asymmetric stretch has a small coupling with the bending stretches subspace.

gle trajectory results to be quite accurate as well. A close
comparison of the multiple trajectory results reveals that the
MC-SC-IVR-SEP is slightly more accurate as found before in
the overlap calculation. However, this improvement is really
small and not significant.

In Table V the values of the coefficient ε2 are given for
each vibrational state. Since the CO on Cu(100) does not
present degeneracy,61 in this case ε2 is an estimate of the
ith semiclassical eigenfunction’s orthogonality to all the DVR
eigenfunctions except the ith one. In other words, these cal-
culations measure if there is significant overlap between the
i-esime semiclassical eigenfuction and the DVR eigenfunc-
tions of all other quantum states. Any deviation from unit
quantifies the amount of overlap. As one can see from
Table V, these deviations are really small and this shows
from a different perspective the results of the previous tables.
All methods are accurate within two digits and the multiple-
trajectory ones are still more accurate. The critical eigenstate
is the (2,2) state where a distinction can be made between the
single and the multiple trajectory methods. Since in this case
there is no degeneracy, the values of ε2 in Table V were not
necessary. However, these value will represent a term of com-
parison for degenerate cases of Sec. IV where the overlaps of
Eq. (20) are not always calculated.

IV. FIRST-PRINCIPLES CALCULATION OF
VIBRATIONAL EIGENFUNCTIONS

The full dimensional on-the-fly calculation of the vibra-
tional eigenfunctions of the CO2 molecule is a challenging

test for our semiclassical methods. The four vibrational modes
are strongly coupled and numerous Fermi resonances origi-
nate from the inter-play between the symmetric stretch and
the bending modes. In these cases, there is a specific link be-
tween classical trajectories and the corresponding quantum
phenomenology, as shown by Heller21 in model resonating
systems. In other words, there is a quantum to classical corre-
spondence that directly parallels the strong resonance effects
observed classically to the quantum properties. This suggests
that semiclassical methods are able to reproduce resonating
quantum features.

Previous on-the-fly calculations of the vibrational eigen-
values have proved to be very accurate if compared to exact
grid methods, even when few trajectories were employed.34, 35

In this section vibrational eigenfunctions will also be calcu-
lated using Born-Oppenheimer classical molecular trajecto-
ries, where all the semiclassical propagator components are
calculated directly from the electronic structure at the level of
DFT. For example, the Hessian matrix which is required at
each time step for the prefactor calculation of Eq. (14), is cal-
culated from the second derivative operator in the Kohn and
Sham formalism. In this way, the vibrational eigenfunction
depicted in Fig. 3 has been calculated.

This eigenfunction corresponds to a triple-bending ex-
cited state. The distortion of nodal planes and caustic en-
velopes (the outer edge of the wave functions) are clear signs
of non-linear strong couplings. The nodal line shapes are
equally tilted in the bending subspace, which reveals the de-
generacy between these two modes. Instead, in the bending
and symmetric stretch subspace, the three nodes are arranged
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FIG. 4. Bidimensional plots for the “eigen-trajectory” with initial conditions associated to the (0, 31, 0) vibrational state of CO2. The vibrational eigenfunctions
of Fig. 3 are visibly on correspondence with this classical trajectory.
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TABLE VII. Values of ε1 of Eq. (21) for different semiclassical methods. On the first row the name of the semiclassical method is reported.

EDV R

[cm−1] 1 traj.-SEP 1 traj. De Leon-Heller MCSC-IVR-sep MCSC-IVR

2504.6 7.77 × 10−4 1.09 × 10−3 1.28 × 10−3 9.63 × 10−4 1.46 × 10−3 a

3143.8 1.05 × 10−3 1.06 × 10−3 5.45 × 10−4 1.70 × 10−3 2.59 × 10−3

3752.0 1.73 × 10−3 9.72 × 10−4 8.15 × 10−4 6.75 × 10−4 2.42 × 10−3

3871.4 7.90 × 10−4 1.97 × 10−3 1.88 × 10−3 8.15 × 10−4 5.67 × 10−3

Sum 4.35 × 10−3 5.09 × 10−3 4.52 × 10−3 4.15 × 10−3 12.14 × 10−3

aTrajectories for the first four eigenstates were employed.

in order to be perpendicular to a U shaped line connecting the
maximum of the eigenfunction. In the bending versus asym-
metric stretch subspace the nodal lines are straight and per-
pendicular to the bending mode showing that no significant
coupling is present between the two modes.

As anticipated above, this inspection of nodal patterns
and their distortion can be explained in terms of classical
trajectories.59

By looking at the first panel on the left of Fig. 4, one can
see how this periodic trajectory is closing onto itself, an evi-
dence of the synchronization between the two bending modes.
An opposite behavior is reported on the last panel where the
subspace is almost entirely filled. More interesting is the cen-
tral panel where the hallmark of the Fermi resonance is given
by the U shape resulting from the convolution of the classi-
cal trajectory. By comparing the central panels of Figs. 3 and
4, one can see how the vibrational eigenfunction corresponds
to that of the classical trajectory convolution. Further, quan-
tum delocalization effects are indeed taken into account in our
semiclassical approximation. In fact, let us compare the right
panels of these figures: in Fig. 4 the classical trajectories range
from −10 to + 10 (in normal modes mass scaled units) along
the asymmetric subspace, while in Fig. 3 the eigenfunction is
delocalized to occupy almost double the interval.

In order to evaluate the accuracy of the semiclassical
eigenfunctions, a set of DVR calculations were performed. In
particular, the Hamiltonian operator was diagonalized in co-
ordinate space using a sparse matrix representation interfaced
with the ARPACK library diagonalization routines.60 Only the
first 20 eigenvalues and eigenfunctions of the matrix were
computed to reduce the computational memory request. To
obtain higher eigenvalues more grid points are needed and

hence more memory space is requested to store the matrix to
be diagonalized.

The Hamiltonian operator is expressed in the sinc-DVR
formalism in four dimensions (one for each mode).55 The po-
tential energy surface employed is that of the analytical po-
tential obtained by fitting the data on the fly.34 After vari-
ous tests the converged set of eigenvalues and eigenfunctions
were obtained with 52 000 points grid. A ten times denser
grid provided the same eigenvalues up to the fourth signifi-
cant figure and the error for the exact eigenfunctions (i.e., the
value of parameter ε1) is of the order of machine precision.
In the diagonalization routine employed, the accuracy of the
eigenvectors was checked to be less than 10−12 for the given
eigenvalues, i.e., once the eigenvalues have converged up to
the fourth decimal place the eigenfunctions corresponding to
such eigenvalues are correct to within machine precision.

Such exact eigenfunctions were used to determine the ac-
curacy of the semiclassical ones. The direct overlap compar-
ison was possible only for the ground state, because most of
the higher states are degenerate.

In Table VI the overlaps for different levels of semiclassi-
cal calculations are reported. One can conclude that all meth-
ods are accurate.

In order to have a complete picture of how all methods
perform for the first few vibrational states calculated by DVR,
a set of calculations for ε1 and ε2 are reported in Tables VII
and VIII.

On the first row the different semiclassical methods are
labeled and on the first column the exact eigenvalues of the
vibrational levels are given. We remember that an exact eigen-
function will have a value of ε1 = 0 and the values of ε1

reported in Table VII are all of the order of hundredths.
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FIG. 5. Bidimensional vibrational eigenfunction contour plot cuts for the CO2 vibrational state (1, 00, 0), i.e., the single symmetric stretch excitation. The nodal
line in the bending/symmetric subspace is U shaped, in correspondence with the 2:1 Fermi resonance. The asymmetric stretch has a small coupling with the
bending stretch.

Downloaded 02 Mar 2012 to 128.103.54.204. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234103-11 First principles semiclassical eigenfunctions J. Chem. Phys. 134, 234103 (2011)

-60 -40 -20 0 20 40 60
bending1

-60

-40

-20

0

20

40

60

b
en

d
in

g
2

-60 -40 -20 0 20 40 60
bending1

-560

-540

-520

-500

sy
m

m
et

ri
c 

st
re

tc
h

-60 -40 -20 0 20 40 60
bending1

-20

0

20

as
ym

m
et

ri
c 

st
re

tc
h

FIG. 6. Bidimensional vibrational eigenfunction contour plot cuts for the CO2 vibrational state (0, 20, 0), i.e., the double bending excitation. As in Fig. 5 the
nodal line in the bending/symmetric subspace is U shaped, but in a symmetric fashion. The asymmetric stretch has a small coupling with the bending stretch.

However, in order to quantify the overall accuracy of each
method on the last row of Table VII the sums of the values in
each column are reported. Even these sums are still of the or-
der of hundredths and any distinction between the semiclassi-
cal methods is quite superfluous. The same considerations are
valid for ε2, where the exact value is ε2 = 1.

From Table VIII, we note that all semiclassical methods
are very accurate. Instead, when calculating the overlap of a
single degenerate semiclassical eigenfunction with the DVR
eigenfunction we found errors even of the order of 50%. As
discussed previously, the introduction of the coefficients ε1

and ε2 is indeed necessary to evaluate accuracy of the degen-
erate eigenfunctions.

The most interesting vibrational states are the Fermi
resonating states. The states labeled by a single symmetric
stretch excitation and a double bending are represented, re-
spectively, in Figs. 5 and 6.

Since twice the bending frequency is about a single sym-
metric stretch excitation, these states resonate and split into
the Fermi states reported in Figs. 5 and 6. In these plots, the
bending subspaces are as usual synchronized as shown by
the tilted nodal lines. Instead, in the symmetric/asymmetric
(Fig. 5) and in the bending/asymmetric (Fig. 6) subspace the
nodal lines are perpendicular to the excited mode, showing
that no significant coupling is present between the asymmet-
ric stretch mode and the other ones. More interesting is the
bending/symmetric stretch subspace in both figures, where
the nodal line is U-shaped. In Fig. 5 the U shaped nodal line is
pointing upwards, while it points downwards in Fig. 6. This
shape is typical of a 2:1 Fermi resonance and one can also
detect it from the envelope of the corresponding classical tra-
jectories’ subspace.

TABLE VIII. Values of ε2 of Eq. (22) for different semiclassical methods.
On the first row the name of the semiclassical method is reported for the
same simulations as in Table VII.

EDV R De Leon- MCSC- MCSC-
[cm−1] 1 traj.-SEP 1 traj. Heller IVR-sep IVR

2504.6 1.0006 1.0012 1.0025 1.0012 1.0033a

3143.8 1.0018 1.0020 1.0007 1.0043 1.0114
3752.0 1.0084 1.0045 1.0033 1.0024 1.0183
3871.4 0.9991 1.0016 0.9932 0.9992 1.0602

aTrajectories for the first four eigenstates were employed.

V. CONCLUSIONS

In this paper a semiclassical initial value representation
method (MC-SC-IVR) has been implemented for the calcula-
tion of vibrational eigenfunctions. It has been compared with
other semiclassical methods and they all result equally good.
The fact that these methods, implemented using an on-the-fly
approach, are accurate enough to correctly describe a com-
plex quantum system such as the CO2 molecule is notewor-
thy. In conclusion, we have observed that none of the meth-
ods employed can be considered superior to the others and
that the accuracy of the semiclassical eigenfunction is mainly
dictated by the accuracy of the corresponding eigenvalue cal-
culation. To explore the role of the choice of trial eigenvalue,
we scanned the eigenvalue of Eq. (8) and observed how the
overlap of Eq. (20) changed as a function of the scanned
eigenvalue. The numerical results show that a resolution in
the spectrum better than 10 cm−1 is required to have a few
percent of eigenfunction overlap error. Finally, these eigen-
functions can be used as guiding functions for more accurate
Monte Carlo calculations. Work in this direction is in progress
in our groups.
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