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Introduction: Recently, continuous progress has been made in 
the understanding and improvement of high-k/III-V interfaces. 
However, to realize III-V FETs beyond the 15nm technology 
node, emerging 3D device structures are necessary to suppress 
short-channel effects (SCE). III-V FinFETs [1-2] as well as 
multi-gate quantum-well FETs [3] have been shown to improve 
greatly the off-state performance of III-V FETs with deep 
submicron gate lengths. On the other hand, the gate-all-around 
(GAA) structure has been proven [4-6] on Si CMOS to be the 
most resistant to SCE, thanks to having the best gate 
electrostatic control. Therefore, a III-V GAA FET is the most 
promising candidate for the ultimate scaling of III-V FETs. In 
this abstract, we report the first experimental demonstration of 
inversion-mode In0.53Ga0.47As GAA FETs by a top-down 
approach with atomic-layer-deposited (ALD) Al2O3/WN gate 
stacks. Benefiting from the GAA structure, we have 
demonstrated the shortest gate length (LG = 50nm) III-V 
MOSFETs to date with well-behaved on-state and off-state 
characteristics. A systematic scaling metrics study has been 
carried out for In0.53Ga0.47As  GAA FETs with LG from 110nm 
down to 50nm, with fin widths (WFin) of 30nm and 50nm, fin 
height (HFin) of 30nm and wire lengths (LNW) = 150 to 200nm. 
Experiments: Fig. 1 shows a schematic view of a 
In0.53Ga0.47As GAA FET fabricated in this work. The starting 
material is 30nm p- In0.53Ga0.47As on p+ (100) InP substrate. 
Table 1 and Fig. 2 depict the key fabrication processes for 
In0.53Ga0.47As GAA FETs. Fig. 3 (a)-(b) demonstrates the novel 
InGaAs channel release process and Fig. 3(c) shows the SEM 
image of a finished device. Devices with different numbers of 
parallel channels (1 wire, 4 wires, 9 wires or 19 wires) were 
fabricated in this work. Fig. 4 shows the fin patterning 
direction (along [010] direction) and device alignment to the 
substrate for a successful release process. 
Results and discussion: Fig. 5 - 6 show the well-behaved 
output and transfer characteristics as well as Ig-Vg of a 
LG=50nm GAA FET. The current is normalized by the total 
perimeter of the In0.53Ga0.47As channel, i.e. WG = 
(2WFin+2HFin)×(No. of wires). A representative 50nm LG 
device shows on-current over 700µA/µm, transconductance 
over 500µS/µm and reasonable off-state characteristics with 
subthreshold swing (SS) of 150mV/dec and drain-induced 
barrier lowering (DIBL) of 210mV/V. Although operating in 
inversion-mode, the threshold voltage of the device is -0.68V 
from linear extrapolation at Vds=50mV due to the relatively 
small work function of ALD WN metal (~4.6eV). Due to the 
junction leakage current and a very large area ratio (>103) 
between implanted junction and GAA channels, the source 
current is used to obtain the intrinsic current in the channel. 
Gate leakage current is minimal in the entire gate voltage range, 
indicating 10nm Al2O3 is sufficient for GAA structure and 

further EOT scaling is achievable. Source current saturates at 
negative Vgs due to a leakage path underneath the bottom gate 
and limits the on-off ratio of the device.  Fig. 7 shows the 
extrinsic and intrinsic transconductance at Vds=1V for the same 
device. The source/drain resistance RSD is extracted to be 
around 1150Ω·µm. The maximum intrinsic transconductance is 
750µS/µm. Fig. 8 shows the ION and gm scaling metrics for 
LG=50-110nm and WFin=30nm. Fig. 9 – 11 show the VT, SS 
and DIBL scaling metrics for LG=50-110nm with WFin=30nm 
and 50nm. From Fig. 9, 30nm WFin devices show better VT 
roll-off properties when LG is shrinking. The SS for 30nm WFin 
devices are almost unchanged at around 150mV/dec when 
scaling LG down to 50nm, indicating excellent control of SCE 
and improved interface property considering the large EOT, 
whereas the 50nm WFin devices show larger SS, which 
increases with scaling of LG. Fig. 11 shows that 30nm WFin 
devices have smaller DIBL. Further DIBL reduction can be 
achieved by scaling down EOT. Fig. 12 shows the transfer 
characteristics for two GAA FETs with 1 wire and 4 wires in 
parallel, respectively. Fig. 13 – 14 shows a linear relationship 
of Is,max and gm,max with the number of wires in both the linear 
and saturation regimes. Each wire can deliver a Isat =90µA and 
gm =66µS at Vds=1V. Fig. 15 shows the output characteristic 
for a hero GAA FET with the ION=1.17mA/µm. Fig. 16 
benchmarks the gm·EOT product vs. LG of In0.53Ga0.47As GAA 
FETs in this work with surface channel InGaAs MOSFETs [1][7-

10]. Table 2 compares the device structure and performance of 
In0.53Ga0.47As GAA FETs in this work with all published non-
planar 3D III-V FETs [1-3][7]. Due to the excellent electrostatic 
control of the channel by GAA structure, LG has been pushed 
down to 50nm with excellent on- and off-state performance. 
Conclusions: We have demonstrated for the first time 
inversion-mode In0.53Ga0.47As GAA MOSFETs with ALD 
Al2O3/WN gate stacks. The highest saturation current reaches 
1.17mA/µm at Vds=1V. The SCE of III-V MOSFETs is greatly 
improved by the 3D structure design, making III-V GAA FET 
a very promising candidate for ultimately scaled III-V device 
technology. 
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