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Editor’s summary: Anti-social punishment, where non-cooperators punish cooperators, is a puzzling 
empirical phenomenon excluded from most theoretical models. Here anti-social punishment is added to 
an optional public goods game, revealing that evolution favors anti-social punishment and punishment 
does not promote cooperation. 

 

Abstract 

Cooperation, where one individual incurs a cost to help another, is a fundamental building block 
of the natural world and of human society. It has been suggested that costly punishment can 
promote the evolution of cooperation, with the threat of punishment deterring free-riders. Recent 
experiments, however, have revealed the existence of ‘anti-social’ punishment, where non-
cooperators punish cooperators. While various theoretical models find that punishment can 
promote the evolution of cooperation, these models a priori exclude the possibility of anti-social 
punishment. Here we extend the standard theory of optional public goods games to include the 
full set of punishment strategies. We find that punishment no longer increases cooperation, and 
that selection favors substantial levels of anti-social punishment for a wide range of parameters. 
Furthermore, we conduct behavioral experiments, which lead to results that are consistent with 
our model predictions. As opposed to an altruistic act that promotes cooperation, punishment is 
mostly a self-interested tool for protecting oneself against potential competitors.  

 

Introduction 

Explaining the evolution of cooperation is a topic of importance to both biologists and social 
scientists, and significant progress has been made in this area1-6. Various mechanisms such as 
reciprocal altruism, spatial selection, kin selection and multi-level selection have been proposed 
to explain the evolution of cooperation. In addition to these mechanisms, the role of costly 
punishment in promoting cooperation has received much attention. Many behavioral experiments 
have demonstrated that people are willing to incur costs to punish others7-14. Complementing 
these empirical findings, several evolutionary models have been developed to explore the 
potential effect of punishment on promoting cooperation15-20. Many researchers have concluded 
that the propensity to punish can encourage cooperation, although this position has not gone 
unquestioned12,21-24.  
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The positive role of punishment has been challenged by recent experimental work that shows the 
existence of a more sinister form of punishment: sometimes non-cooperators punish 
cooperators14,24-31. In western countries, this ‘anti-social punishment’ is generally rare, except 
when it comes in the form of retaliation for punishment received in repeated games14,24-26,28. A 
series of cross-cultural experiments, however, finds substantial levels of anti-social punishment 
which cannot be explained by explicit retaliation27,30,31 (see Supplementary notes for further 
analysis). It is this phenomenon of punishment targeted at cooperators, rather than explicit 
retaliation, which is the focus of our paper. 

Anti-social punishment is puzzling, as it is inconsistent with both rational self-interest and the 
hypothesis that punishment facilitates cooperation. Social preference models of economic 
decision-making also predict that it should not occur32-35. Due to its seemingly illogical nature, 
anti-social punishment has been excluded a priori from most previous theoretical models for the 
evolution of cooperation, which only allow cooperators to punish defectors (exceptions include 
refs 22,23,36,37). Yet empirically, sometimes cooperators are punished, raising interesting 
evolutionary questions. What are the effects of anti-social punishment on the co-evolution of 
punishment and cooperation? And can the punishment of cooperators be explained in an 
evolutionary framework? 

In this paper, we extend the standard theory of optional Public Goods Games17-19,38 to explore 
anti-social punishment of cooperators. We study a finite population of N individuals. In each 
round of the game, groups of size n are randomly drawn from the population to play a one-shot 
optional public goods game followed by punishment. Each player chooses whether to participate 
in the public goods game as a cooperator (C) or defector (D), or to abstain from the public goods 
game and operate as a loner (L). Each cooperator pays a cost c to contribute to the public good, 
which is multiplied by a factor r > 1, and split evenly among all participating players in the 
group. Loners pay no cost and receive no share of the public good, but instead receive a fixed 
payoff σ. This loner’s payoff is less than the (r-1)c payoff earned in a group of all cooperators, 
but greater than the 0 payoff earned in a group of all defectors. If only one group member 
chooses to participate, then all group members receive the loner’s payoff σ. Following the public 
goods game, each player has the opportunity to punish any or all of the n-1 other members of the 
group. A given player pays a cost γ for each other player he chooses to punish, and incurs a cost 
β for each punishment that he receives (γ < β). 
 
Each of the N players has a strategy, which specifies her action in the public goods game (C, D 
or L). Each player also has a decision rule for the punishment round that specifies whether she 
punishes those members of her group who cooperated in the public goods game, those who 
defected, or those who opted out. For example, a C-NPN strategist cooperates in the public 
goods game, does not punish cooperators, punishes defectors, and does not punish loners; and an 
L-PNN strategist opts out of the public goods game, punishes cooperators, and does not punish 
defectors or loners. In total there are 24 strategies. We contrast this full strategy set with the 
limited strategy set that has been considered before17-19. The limited set has only four strategies: 
cooperators that never punish, defectors that never punish, loners that never punish, and 
cooperators that punish defectors.  
 
We study the transmission of strategies through an evolutionary process, which can be 
interpreted either as genetic evolution or as social learning. In both cases, strategies which earn 
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higher payoffs are more likely to spread in the population, while lower payoff strategies tend to 
die out. Novel strategies are introduced by mutation in the case of genetic evolution, or 
innovation and experimentation in the case of social learning. We use a frequency dependent 
Moran process39 with an exponential payoff function40. We perform exact numerical calculations 
in the limit of low mutation41,42, which characterizes genetic evolution and the long-term 
evolution of societal norms, as well as agent based simulations for higher mutation rates which 
may be more appropriate for short-term learning and exploration dynamics19,43 (see 
Supplementary Methods for details).  

In summary, we find that although punishment dramatically increases cooperation when only 
cooperators can punish defectors, this positive effect of punishment disappears almost entirely 
when the full set of punishment strategies is allowed. Just as punishment protects cooperators 
from invasion by defectors, it also protects defectors from invasion by loners, and loners from 
invasion by cooperators. Thus punishment is not ‘altruistic’ or particularly linked to cooperation. 
Instead natural selection favors substantial amounts of punishment targeted at all three public 
goods game actions, including cooperation. Furthermore, we find that the parameter sets which 
lead to high levels of cooperation (and little anti-social punishment) are those with efficient 
public goods (large r) and very weak punishment (small β).  Finally, we generate testable 
predictions using our evolutionary model, and present preliminary experimental evidence which 
is consistent with those predictions. 

Results 

Effect of allowing the full set of punishment strategies 

In the absence of punishment, defectors invade cooperators, loners invade defectors and 
cooperators invade loners44, as in a rock-paper-scissors cycle (Figure 1a). The system spends a 
similar amount of time in each of the three behavioral states, and cooperation is not the dominant 
outcome (although there is more cooperation than in the game without loners). If cooperators are 
allowed to punish defectors, however, the cooperator-defector-loner cycle is broken when the 
system reaches punishing cooperators (Figure 1b). For this limited strategy set, the population 
spends the vast majority of its time in a cooperative state17.  

But what happens when all punishment strategies are available? Now the cooperator-defector-
loner cycle can be broken as easily in the loner or defector states as in a cooperative state (Figure 
1c,d). Without punishment, loners are invaded by cooperators; but loners that punish cooperators 
are protected from such an invasion. Similarly, defectors are invaded by loners; but defectors 
who punish loners are protected. Thus, when all punishment strategies are available, the 
dynamics effectively revert back to the original cooperator-defector-loner cycle.  The salient 
difference is that now the most successful strategies use punishment against threatening invaders. 
We see that adding punishment does not provide much benefit to cooperators once the option to 
punish is available to all individuals, instead of being artificially restricted to cooperators 
punishing defectors. Furthermore, in this light non-cooperative strategies that pay to punish 
cooperators seem less surprising, and we see why natural selection can lead to the evolution of 
anti-social punishment. 

Robustness to parameter variation 
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These results are not particular to the parameter values used in Figure 1. We have examined the 
steady state frequency of each strategy averaged over 100,000 randomly sampled parameter sets 
(see Supplementary notes). The outcome is remarkably similar to what is observed in Figure 1. 
The average level of cooperation is 34% in the absence of punishment, jumps to 87% with 
restricted punishment, and falls back to 34% with the full punishment strategy set. Although 
restricted punishment makes cooperation the dominant outcome for the vast majority of 
parameter sets, the full punishment strategy set does not (Figure 2). For more than 98% of the 
randomly chosen parameter sets, the frequency of cooperation is below 0.5.  

We also find that the evolutionary success of anti-social punishment in the full strategy set is 
robust to variation in the payoff values. The frequencies of all three forms of punishment 
averaged over the 100,000 parameter sets are quite similar (punish cooperators, 40%; punish 
defectors, 41%, punish loners, 37%), and the frequency of each punishment type varies relatively 
little across parameter sets.  

Furthermore, these results are not unique to the low mutation limit. Agent based simulations for 
higher mutation rates show that (i) punishment does not increase the average frequency of 
cooperation in the full strategy set; and (ii) all three forms of punishment (anti-C, anti-D and 
anti-L) have similar average frequencies (see Supplementary notes for details). 

Discussion 

Here we have shown have evolution can lead to punishment targeted at cooperators. We find that 
in our framework, loners are largely responsible for this anti-social punishment, and that it 
protects them against invasion by cooperators. The concept of loners punishing cooperators may 
seem strange given that loners could be envisioned as trying to avoid interactions with others. 
However, we find strong selection pressure in favor of such behavior: loners who avoid others in 
the context of the public goods game, but subsequently seek out and punish cooperators, 
outcompete fully solitary loners.  

Our findings raise serious questions about the commonly held view that punishment promotes 
the evolution of cooperation. There is no reason to assume a priori that only cooperators punish 
others. In fact, there is substantial empirical evidence to the contrary24-31. As we have shown, 
using the full strategy set dramatically changes the evolutionary outcome, and punishment no 
longer increases cooperation. These results highlight the importance of not restricting analysis to 
a subset of strategies, and emphasize the need to reexamine other models of the co-evolution of 
punishment and cooperation while including all possible punishment strategies23,36.  

But if our framework suggests that the taste for punishment did not evolve to promote 
cooperation, then why do humans display the desire to punish? And why do many behavioral 
experiments find that punishment discourages free-riding in the lab7-12,14? As opposed to being 
particularly suited to protecting cooperators from free-riders, our model suggests that costly 
punishment is an effective tool for subduing potential invaders of any kind. This finding is 
reminiscent of early work on the ability of punishment to stabilize disadvantageous norms20, 
while adding the critical step of the emergence of punishing behavior. Our results are also 
suggestive of a type of in-group bias45-50, as our most successful strategists punish those who are 
different from themselves, while not punishing those who are the same.  
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Therefore we would expect the level of anti-social punishment to vary depending on the makeup 
of the population. In populations with a high frequency of cooperators, such as those societies in 
which most previous behavioral experiments have been conducted, we anticipate punishment to 
be largely directed towards defectors. In populations where cooperators are less common, 
however, we expect higher levels of punishment targeted at cooperators. Consistent with this 
intuition, we find a clear inverse relationship between steady state cooperation frequency and 
anti-social punishment across randomly sampled parameter sets (Figure 3a).  

Examining specific parameter sets we find that a larger cooperation multiplier, r, increases 
cooperation and decreases anti-social punishment (Figure 3b). The importance of r is further 
demonstrated by a sensitivity analysis calculating the marginal effect of each parameter (see 
Supplementary notes). In addition to having large r, we find that punishment must be largely 
ineffective in order to achieve a high level of cooperation. Among the parameter sets in Figure 
3a with steady state cooperation over 65%, the average effect of punishment is β = 0.11 
(compared to an overall average of β = 7.45). Systematic parameter variation gives further 
evidence of an interaction between r and β (see Supplementary notes). When punishment is 
weak, a wide range of outcomes is possible, including high levels of cooperation if r is large. 
When punishment is strong, however, all strategies can effectively protect against invasion. Thus 
neutral drift between punishing and non-punishing strategies dominates the dynamics, and the 
range of outcomes is tightly constrained. These relationships between cooperation, anti-social 
punishment and the payoff parameters r and β are consistent with cross-cultural sociological 
evidence (see Supplementary notes). Exploring the connection between model parameters, 
sociological variation and play in experimental games is an important direction for future 
research across societies. 

Taken together with data from cross-cultural experiments27,30,31, our evolutionary model 
generates testable predictions about behavior in the laboratory. Most previous experiments on 
public goods have explored compulsory games, which do not offer the choice to abstain in favor 
of a fixed loner’s payoff (an exception is ref 38 where many people do take the loner’s payoff 
when offered). In the compulsory framework, cross-cultural experiments find evidence of low 
contributors who punish high contributors. Our model, which is based on an optional public 
goods game, finds that most punishment of cooperators comes from loners rather than defectors. 
Therefore, our evolutionary model makes two testable predictions about behavior in the lab: (i) 
that many low contributors in compulsory games will opt for the loner’s payoff if given the 
chance; and (ii) that players who take the loner’s payoff in an optional game will engage in more 
anti-social punishment in a compulsory game. 

To begin evaluating these predictions, we use the internet to recruit participants 51,52 for two 
incentivized behavioral experiments46,47 (see Methods for experimental details, and 
Supplementary notes for statistical analysis). In the first experiment, subjects engage in both an 
optional and a compulsory one-shot public goods game. Consistent with our first theoretical 
prediction, we find that subjects who choose the loner’s payoff in the optional game contribute 
significantly less in the compulsory game (Figure 4a). Thus many subjects who appear to be 
defectors in the compulsory game prefer to be loners, and may be bringing intuitions evolved as 
loners to bear in the experiment. To test our second theoretical prediction, the second experiment 
has subjects participate in two one-shot public goods games, an optional game followed by a 
compulsory game with costly punishment. The results are again in agreement with the model’s 
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prediction: subjects who opt out of the optional game engage in significantly more punishment of 
high contributors (Figure 4b). Thus these experiments provide preliminary empirical evidence in 
support of our theoretical framework, although intuitions evolved in optional games are not the 
only possible explanation for the data. Further experimental work exploring cooperation and 
punishment in optional games, as well as the relationship between play in optional and 
compulsory games, is an important direction for future research.  

We have also performed an evolutionary analysis of the compulsory game, where opting out is 
not possible (see Supplementary notes). Here we still find that anti-social punishment is favored 
by selection; that cooperation and anti-social punishment are inversely correlated; and that non-
negligible amounts of pro- and anti-social punishment co-occur in many parameter sets. In the 
compulsory game, however, cooperation is never favored over defection using the full strategy 
set, and anti-social defectors are always the most common strategy. Thus, modeling the game 
exactly as it is performed in the experiments cannot explain the behaviors that are often observed 
in such experiments. The preferences displayed by subjects in these experiments must have 
evolved under circumstances that are somewhat different from those encountered in the 
experiments (see Supplementary notes). Adding the possibility to abstain leads to a model which 
can describe the range of experimental behaviors.  

We have shown that although punishment does not increase cooperation or aggregate payoffs in 
our model, there is nonetheless an incentive to punish. Once punishment becomes available, it is 
essential for each strategy type to adopt it so as to protect against dominance by similarly armed 
others. As opposed to shifting the balance of strategies towards cooperation, punishment works 
to maintain the status quo. This maintenance, however, comes at a high price. Punishment is 
destructive for all parties and thus reduces the average payoff, without creating the benefit of 
increased cooperation. If all parties could agree to abandon punishment, everyone would benefit; 
but in a world without punishment, a strategy that switched to punishing potential invaders 
would dominate. Therefore choosing to punish is not altruistic in our framework, but rather self-
interested.  

Punishing leads to a tragedy of the commons where all individuals are forced to adopt 
punishment strategies. Abstaining from punishment becomes an act of cooperation, while using 
punishment is a form of second-order defection. The cooperative imperative is not the promotion 
of punishment, which is costly yet ineffective in our model, but instead the maintenance of 
cooperation through non-destructive means12,53,54. 

 

Methods 

Experimental overview 

Together with previous experiments on compulsory games27, our model makes testable 
predictions about the behavior of experimental subjects: loners are predicted to be lower 
contributors in compulsory games, and to be most likely to punish high contributors. To evaluate 
these predictions, we conducted two incentivized behavioral experiments. Experiment 1 
investigates the contribution behavior of loners in a compulsory game, while Experiment 2 
considers the degree of anti-social punishment exhibited by loners in a compulsory game.  
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Recruitment using Amazon Mechanical Turk 

Both experiments were conducted via the internet, using the online labor market Amazon 
Mechanical Turk (AMT) to recruit subjects. AMT is an online labor market in which employers 
contract workers to perform short tasks (typically less than 5 minutes) in exchange for small 
payments (typically less than $1). The amount paid can be conditioned on the outcome of the 
task, allowing for performance-dependent payments and incentive-compatible designs. AMT 
therefore offers an unprecedented tool for quickly and inexpensively recruiting subjects for 
economic game experiments. Although potential concerns exist regarding conducting 
experiments over the internet, numerous recent papers have demonstrated the reliability of data 
gathered using AMT across a range of domains51,52,55-58. Most relevant for our experiments are 
two studies using economic games. The first shows quantitative agreement in contribution 
behavior in a repeated public goods game between experiments conducted in the physical lab and 
those conducted using AMT with approximately 10-fold lower stakes58. The second replication 
again found quantitative agreement between the lab and AMT, this time in cooperation in a one-
shot Prisoner’s Dilemma51. It has also been shown that AMT subjects display a level of test-
retest reliability similar to what is seen in the traditional physical laboratory on measures of 
political beliefs, self-esteem, Social Dominance Orientation, and Big-Five personality traits56, as 
well as demographic variables such as belief in God, age, gender, education level and 
income52,57; that AMT subjects do not differ significantly from college undergraduates in terms 
of attentiveness or basic numeracy skills, and demonstrate similar effect sizes as undergraduates 
in tasks examining framing effects, the conjunction fallacy and outcome bias55; and are 
significantly more representative of the American population than undergraduates56. Thus there 
is ample reason to believe in the validity of experiments conducted using subjects recruited from 
AMT.  

Experiment 1 design 

In October 2010, 124 subjects were recruited through AMT to participate in Experiment 1, and 
assigned to either a treatment or control condition. Subjects received a $0.20 showup fee for 
participating, and earned on average an additional $0.63 based on decisions made in the 
experiment. First, subjects read a set of instructions for a one-shot public goods game, in which 
groups of 4 interact with a cooperation multiplier of r = 2, each choosing how much of a $0.40 
endowment to contribute (in increments of 2 cents to avoid fractional cent amounts). Subjects 
then answered two comprehension questions to ensure they understood the payoff structure, and 
only those who answered correctly were allowed to participate.  

The 73 subjects randomly assigned to the treatment group were then informed that the game was 
optional, and they could choose either to participate or to abstain in favor of a fixed payoff of 
$0.50. Those who chose to participate then indicated their level of contribution. Next, subjects 
were informed that they would play a second game with 3 new partners, which was a 
compulsory version of the first game. They were further informed that one of the two games 
(optional or compulsory) would be randomly selected to determine their payoff. This was done 
to keep the payoff range the same as in the control experiment described below, where subjects 
played only one game. In order to prevent between-game learning, subjects were not informed 
about the outcome of the optional game before making their decision in the compulsory game. 
To test if behavior in the compulsory game was affected by the preceding optional game, the 
remaining 51 subjects participated in a control condition in which they participated only in a 
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compulsory public goods game. Payoffs were determined exactly as described (no deception was 
used). 

Experiment 2 design 

In November 2010, 196 subjects were recruited through AMT to participate in Experiment 2. 
Subjects received a $0.40 showup fee for participating, and earned on average an additional 
$0.92 based on decisions made in the experiment. As in Experiment 1, subjects began by reading 
a set of instructions for a one-shot public goods game with groups of 4, a cooperation multiplier 
of r = 2, and a $0.40 endowment, and then answered two comprehension questions in order to 
participate. Subjects were then informed that the game was optional, and decided whether to 
participate or opt out for a fixed $0.50 payment. Subjects who chose to participate were given 5 
contribution levels to choose from: 0, 10, 20, 30 or 40. Thus the first game of Experiment 2 is 
identical to that of Experiment 1's treatment condition, except for a more limited set of 
contribution options to facilitate punishment decisions as described below.  

Subjects were then informed that they would play a second game with 3 new partners, which 
differed from the first game in two ways: it was compulsory, and it would be followed by a Stage 
2 in which participants could interact directly with each other group member. In Stage 2, subjects 
had three direct actions to pick from: choosing option A had no effect on either player; choosing 
option B caused them to lose 4 cents while the other player lost 12 cents; and choosing option C 
caused them to lose 8 cents while the other player lost 24 cents. Thus we offered mild (B) and 
severe (C) punishment options with a 1:3 punishment technology. Subjects were allowed to 
condition their Stage 2 choice on the other player's contribution in the compulsory public goods 
game. To do so, we employ the strategy method: subjects indicate which action (A, B, C) they 
would take towards group members choosing each possible contribution level (0, 10, 20, 30, 40). 
It has been shown that using the strategy method to elicit punishment decisions has a quantitative 
(although not qualitative) effect on the level of punishment targeted at defectors, but has little 
effect on punishment targeted at cooperators59. As anti-social punishment is our main focus, we 
therefore feel confident in our use of the strategy method. In order to prevent between-game 
learning, subjects were not informed about the outcome of the optional game before making their 
decision in the compulsory game. Payoffs were determined exactly as described (no deception 
was used). 

See Supplementary notes for further details of the experimental setup, sample instructions, and 
detailed analysis of the results. 
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Figure and Table legends 
 
Figure 1 – Using the full punishment strategy set, anti-social punishment is common and 
punishment does not promote cooperation. Time-averaged frequencies of each strategy and 
transition rates between homogeneous populations, (a) without punishment, (b) when 
cooperators can punish defectors, and (c,d) with the full set of punishment strategies. A strategy 
X-Y1Y2Y3 is defined by a public goods game action (X: C=cooperator, D=defector, L=loner), a 
punishment decision taken towards cooperators (Y1: N = no action, P = punish), defectors (Y2: N 
or P) and loners (Y3: N or P). Transition rates ρ are the probability that a new mutant goes to 
fixation multiplied by the population size. We indicate neutral drift (ρ = 1, dotted lines), slow 
transitions (ρ = 11.8, thin lines), intermediate transitions (ρ = 25.7, medium lines) and fast 
transitions (ρ = 38.7, thick lines). Transitions with rates less than 0.1 are not shown. Parameter 
values are N = 100, n = 5, r = 3, c = 1, γ = 0.3, β = 1 and σ = 1. In panels c and d, strategies 
which punish others taking the same public goods action are included in the analysis, but not 
pictured because they are strongly disfavored by selection and virtually non-existent in the 
steady state distribution. For clarity, transitions with ρ < 10 are not shown in panel d. 
 
Figure 2 – Robustness of results across parameter sets. Shown are the results of 100,000 
numerical calculations using N = 100, n = 5, c = 1 and randomly sampling from uniform 
distributions on the intervals 1 < r < 5, 0 < σ < (r-1)c, 0 < γ < 5, and γ < β < 5γ. Results are 
shown for (a) the no-punishment strategy set, (b) the restricted punishment strategy set where 
only cooperators can punish loners, and (c) the full punishment strategy set. 
 
Figure 3 – Inverse relationship between cooperation and anti-social punishment across 
parameters. (a) The steady state frequency of cooperation and anti-social punishment from 
5,000 random parameter sets is shown. An inverse relationship is clearly visible: when anti-
social punishment is rare, cooperation (and pro-social punishment) are common. (b) To explore 
this relationship, we vary r from (σ-c) to 5 for various values of σ, γ, and β, fixing N=100, n=5, 
and c=1. We see that increasing r always increases cooperation while decreasing anti-social 
punishment. We also see that when β is small, the range of cooperation and anti-social 
punishment values is large, whereas values are tightly constrained when β is larger. Achieving 
high levels of cooperation and low levels of anti-social punishment requires both large expected 
returns on public investment (large r) and symbolic punishments (small β). 
 
Figure 4 – Two behavioral experiments are consistent with model predictions. (a) In 
Experiment 1, subjects play an optional public goods game followed by a compulsory public 
goods game. The average fraction contributed in the compulsory game is significantly lower 
among subjects who opt out of the optional game (Rank-sum, N=73, p=0.006). Thus as 
predicted, loners contribute less in compulsory games. (b) In Experiment 2, subjects play an 
optional game followed by a compulsory game with costly punishment. Subjects indicate how 
much (0, 1 or 2) they would punish each possible contribution level in the compulsory game. 
Subjects who opt out of the optional game invest significantly more in punishing those that 
contribute the maximal amount (Rank-sum, N=196, p=0.003). Thus as predicted, loners engage 
in more anti-social punishment. All games are one-shot interactions among 4 players, with 
contributions to the public good multiplied by 2. Punishment technology is 3:1. Results are 
robust to various controls and alternate methods of analysis; see Supplementary notes for details. 











Supplementary information

The evolution of anti-social punishment in optional public goods games

David G. Rand1,2 & Martin A. Nowak1,3,4

1Program for Evolutionary Dynamics, Harvard University, Cambridge MA 02138, USA
2Department of Psychology, Harvard University, Cambridge, MA 02138, USA

3Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
4Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

Supplementary Figures 3

Supplementary Tables 9

Supplementary Methods 23

Payoff calculation 23

Description of the evolutionary dynamic 27

Low mutation limit calculation method 28

Supplementary Notes 30

Review of experimental evidence for anti-social punishment 30

Strategy frequencies averaged over 100,000 parameter sets 34

Higher mutation rate analysis using agent based simulation 34

1



Inverse relationship between cooperation and anti-social punishment: Sensitivity analysis 36

Connections between model results and sociological variables 39

Evolved intuitions versus in-game learning 41

Behavior of loners in compulsory games: evidence from two novel experiments 43

Compulsory public goods games without loners 60

Parameter sampling method 62

Second order punishment 63

Supplementary references 64

2



Supplementary Figures

Supplementary Figure S1. Probability of punishing those who contributed less than you (pro-social, con-

tribution difference between -20 and -1; blue) versus those who contributed as much or common than you

(anti-social, contribution differnce between 0 and 20; red) in the first round (A) and overall (B). Data from

Herrmann et al. 2008. Both panels are sorted by probability of punishing anti-socially in the first round.
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Supplementary Figure S2. (A) Probability of punishing those who contributed as much or common than

you (anti-social) versus average contribution in the game with punishment. (B) Probability of punishing

those who contributed less than you (pro-social) versus those who contributed as much or common than you

(anti-social). (C) Average contribution in the game without punishment (N-game) versus with punishment

(P-game). All data from Herrmann et al. 2008, considering only first round decisions.
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Supplementary Figure S3. Sensitivity analysis results. Across 10,000 random parameter sets sampled from

the intervals 1 < r < 5, c = 1, 0 < σ < (r − 1)c, 0 < γ < 5, and γ < β < 5γ , we calculate the marginal

effect of increasing each parameter by 0.01 (A) or multiplying each parameter be 1.01 (B) on the ratio of

cooperation to anti-social punishment. Though c, σ, γ , and β have some effect, r is the most influential

parameter in a large majority of parameter sets.
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Supplementary Figure S4. Ratio of cooperation to anti-social punishment as a function of each parameter.

For each data point the indicated parameter is fixed as shown, and the median of 500 parameter sets with

the other payoff parameters randomly sampled is shown.
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Supplementary Figure S5. Ratio of cooperation to anti-social punishment as a function of each parameter.

For each data point, the indicated parameter is fixed as shown, 500 parameter sets with the other payoff

parameters randomly sampled are generated, and the median of the subset obeying r > 4 (first column) or

r < 2 (second column) is shown.
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Supplementary Figure S6. Average frequency of each strategy in the low mutation limit, in a compulsory pub-

lic goods game without loners. Strategy frequencies are averaged over 10,000 randomly sampled parameter

sets.
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Supplementary Tables

Country Coeff P-value

Nottingham -5.09 < 0.001

Boston -4.03 < 0.001

Bonn -3.18 < 0.001

Seoul -2.65 < 0.001

Melbourne -3.14 < 0.001

Copenhagen -3.22 < 0.001

St. Gallen -2.76 < 0.001

Chengdu -2.22 < 0.001

Zurich -2.24 < 0.001

Athens -1.58 0.004

Istanbul -1.47 0.001

Riyadh -0.65 0.080

Dnipropetrovsk -0.66 0.064

Minsk 0.09 0.835

Samara -0.46 0.082

Muscat 0.38 0.353

Supplementary Table S1

Logistic regression results assessing the difference in probability of punishing those who contribute less

than you (pro-social punishment) versus those who contribute as much or more than you, using the data

of Herrmann et al. 2008. Values of p > 0.05 indicate no significant difference in probability to punish

pro-socially versus anti-socially.
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Public goods Punish Punish Punish No Limited Full

action C? D? L? punishment strategy set strategy set

C N N N 33.7% 9.2% 2.6%

C N N P 1.1%

C N P N 77.6% 21.3%

C N P P 8.6%

C P N N 0.0%

C P N P 0.0%

C P P N 0.0%

C P P P 0.0%

D N N N 18.4% 5.6% 1.5%

D N N P 20.0%

D N P N 0.0%

D N P P 0.0%

D P N N 0.6%

D P N P 7.5%

D P P N 0.0%

D P P P 0.0%

L N N N 47.9% 7.6% 3.6%

L N N P 0.0%

L N P N 1.7%

L N P P 0.0%

L P N N 21.8%

L P N P 0.0%

L P P N 9.6%

L P P P 0.0%

Supplementary Table S2
Steady state frequency of each strategy in the low mutation limit, averaged over 100,000 random parameter
sets.
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No punishment Limited strategy set Full strategy set

Cooperators 33.7% 86.8% 33.6%

Defectors 18.4% 5.6% 29.6%

Loners 47.9% 7.6% 36.8%

Punishment of Cooperators 39.6%

Punishment of Defectors 77.6% 41.3%

Punishment of Loners 37.2%

Supplementary Table S3

Frequencies of cooperation, defection and opting out, as well as each type of punishment, in the low mutation

limit averaged over 100,000 randomly sampled parameter sets.

.
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Public goods Punish Punish Punish

action C? D? L? u → 0 u = 0.001 u = 0.01

C N N N 2.6% 2.9% 10.7%

C N N P 1.1% 1.1% 1.9%

C N P N 21.3% 23.0% 19.4%

C N P P 8.6% 6.3% 1.6%

C P N N 0.0% 0.0% 0.1%

C P N P 0.0% 0.0% 0.1%

C P P N 0.0% 0.0% 0.1%

C P P P 0.0% 0.0% 0.1%

D N N N 1.5% 1.8% 6.8%

D N N P 20.0% 21.9% 17.9%

D N P N 0.0% 0.0% 0.1%

D N P P 0.0% 0.0% 0.1%

D P N N 0.6% 0.7% 1.3%

D P N P 7.5% 5.2% 1.1%

D P P N 0.0% 0.0% 0.1%

D P P P 0.0% 0.0% 0.1%

L N N N 3.6% 4.3% 14.1%

L N N P 0.0% 0.0% 0.1%

L N P N 1.7% 1.7% 2.1%

L N P P 0.0% 0.0% 0.1%

L P N N 21.8% 24.1% 20.7%

L P N P 0.0% 0.0% 0.1%

L P P N 9.6% 6.8% 1.8%

L P P P 0.0% 0.0% 0.1%

Supplementary Table S4
Average steady state frequencies of each strategy in the full punishment set, from low mutation limit calcu-
lation (100,000 random parameter sets) and agent based simulations using u = 0.001 and u = 0.01 (1000
random parameter sets each).
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u → 0 u = 0.001 u = 0.01

Cooperators 33.6% 33.4% 33.8%

Defectors 29.6% 29.6% 27.4%

Loners 36.8% 37.0% 38.9%

Punishment of Cooperators 39.6% 37.0% 25.3%

Punishment of Defectors 41.3% 38.0% 25.3%

Punishment of Loners 37.2% 34.6% 22.9%

Supplementary Table S5

Average frequencies of cooperation, defection and opting out, as well as average frequencies of each type of

punishment. Determined using low mutation limit calculation (100,000 random parameter sets) and agent

based simulations with u = 0.001 and u = 0.01 (1000 random parameter sets each).

.
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(1) (2) (3) (4) (5) (6)

OLS OLS OLS Tobit Tobit Tobit

Opt out -11.02*** -10.88*** -8.571** -34.76*** -34.70*** -25.57*

(3.884) (3.849) (4.230) (12.77) (12.44) (12.97)

Age 0.183 0.203* 0.838* 0.926*

(0.124) (0.116) (0.498) (0.492)

Female 3.204 4.685 11.28 19.58

(3.769) (3.726) (13.33) (13.72)

Risk-taking 1.228* 5.182*

(0.726) (2.718)

U. S. Resident 4.379 5.669 13.80 19.07

(3.929) (4.159) (13.39) (13.90)

Constant 30.76*** 21.20*** 11.73 57.55*** 18.54 -21.64

(2.149) (5.677) (7.484) (10.02) (19.06) (26.88)

Observations 73 73 73 73 73 73

R-squared 0.103 0.157 0.189

Supplementary Table S6

Compulsory game contribution as a function of choosing to opt out of the optional game, for the treatment

condition. Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5) (6)

OLS OLS OLS Tobit Tobit Tobit

Treatment 1.680 1.597 2.208 5.109 5.439 8.522

(3.044) (2.995) (2.799) (11.62) (11.25) (10.45)

Age 0.119 0.128 0.534 0.592

(0.131) (0.114) (0.531) (0.463)

Female 0.662 2.475 0.737 9.429

(3.072) (2.930) (11.53) (11.03)

Risk-taking 2.285*** 8.947***

(0.518) (2.394)

U. S. Resident 6.278* 8.735*** 23.61* 31.88**

(3.196) (3.187) (12.22) (12.30)

Constant 25.61*** 18.43*** 2.891 43.37*** 13.81 -48.25*

(2.394) (5.066) (5.681) (9.697) (19.71) (24.43)

Observations 124 124 124 124 124 124

R-squared 0.003 0.055 0.166

Supplementary Table S7

Compulsory game contribution in treatment versus control conditions. Robust standard errors shown in

parentheses. *** p<0.01, ** p<0.05, * p<0.1.

15



Treatment Control

Observations 73 51

Age 33 33

Female 41% 43%

U.S. Resident 48% 47%

Risk-taking 5.7 5.8

Fraction opting out 32% N/A

Optional PGG contribution 30.2 N/A

Compulsory PGG contribution 27.3 25.6

Supplementary Table S8

Summary statistics for Experiment 1.
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Experiment 2

Observations 196

Age 33

Female 48%

U.S. Resident 57%

Risk-taking 5.2

Fraction opting out 25%

Optional PGG contribution 30.0

Compulsory PGG contribution 19.9

Punishment of:

0 contributors 0.62

10 contributors 0.65

20 contributors 0.51

30 contributors 0.43

40 contributors 0.36

Supplementary Table S9

Summary statistics for Experiment 2. Punishment amounts indicate average amount spent on punishing

(A=0, B=1, C=2).
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Punishment of (1) (2) (3) (4) (5) (6)

those that contribute: 0 0 0 40 40 40

Compulsory contribution 0.0181*** 0.0187*** 0.0179*** -0.0135** -0.0137** -0.0134**

(0.00521) (0.00534) (0.00540) (0.00611) (0.00613) (0.00617)

Age -0.0123 -0.0109 -0.000906 -0.00132

(0.00977) (0.00987) (0.0110) (0.0110)

Female -0.0793 -0.0411 -0.0208 -0.0404

(0.182) (0.185) (0.222) (0.225)

U. S. Resident -0.240 -0.177 -0.0781 -0.104

(0.186) (0.187) (0.228) (0.230)

Risk-taking 0.0748** -0.0296

(0.0379) (0.0409)

Constant cut 1 0.684*** 0.141 0.618 0.581*** 0.486 0.306

(0.138) (0.328) (0.404) (0.148) (0.382) (0.455)

Constant cut 2 1.081*** 0.533* 1.016** 0.782*** 0.688* 0.508

(0.141) (0.319) (0.398) (0.149) (0.381) (0.449)

Observations 196 194 194 196 194 194

Supplementary Table S10

Punishment of those that contribute 0 (regressions 1-3) and those that contribute 40 (regressions 4-6) versus

compulsory game contribution. Ordinal probit regression. Robust standard errors shown in parentheses.

*** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4)

Opt out 0.633*** 0.661*** 0.647*** 0.579**

(0.220) (0.223) (0.235) (0.246)

Age -0.00545 -0.00552 -0.00530

(0.0106) (0.0107) (0.0109)

Female 0.0963 0.0859 0.0739

(0.224) (0.229) (0.232)

U. S. Resident -0.0915 -0.103 -0.0998

(0.227) (0.226) (0.230)

Risk-taking -0.0122 -0.00849

(0.0434) (0.0430)

Compulsory contribution -0.0111*

(0.00640)

Constant cut 1 1.014*** 0.835** 0.755 0.558

(0.125) (0.343) (0.462) (0.480)

Constant cut 2 1.219*** 1.041*** 0.961** 0.767

(0.131) (0.344) (0.459) (0.475)

Observations 196 194 194 194

Supplementary Table S11

Punishment of those that contribute the maximal amount (40) versus opting out of the optional game. Ordinal

probit regression. Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5) (6)

OLS OLS OLS Tobit Tobit Tobit

Opt out 0.286** 0.282** 0.239* 0.971*** 0.943*** 0.762**

(0.115) (0.121) (0.130) (0.335) (0.353) (0.380)

Age -0.00266 -0.00246 -0.00884 -0.00787

(0.00467) (0.00467) (0.0159) (0.0161)

Female -0.0201 -0.0227 0.0276 0.00127

(0.101) (0.102) (0.357) (0.360)

U. S. Resident -0.0806 -0.0789 -0.434 -0.437

(0.102) (0.102) (0.353) (0.357)

Risk-taking -0.00445 -0.00233 -0.0388 -0.0256

(0.0193) (0.0190) (0.0647) (0.0634)

Compulsory contribution -0.00536* -0.0286***

(0.00281) (0.00922)

Constant 0.303*** 0.473** 0.573*** -0.985*** -0.244 0.238

(0.0480) (0.204) (0.212) (0.250) (0.662) (0.670)

Observations 196 194 194 196 194 194

R-squared 0.039 0.045 0.065

Supplementary Table S12

Average punishment of those that contribute as much or more the punisher versus opting out of the optional

game. Robust standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Punishment of (1) (2) (3) (4) (5)

those contributing: 0 10 20 30 40

Opt out 0.107 0.304 0.310 0.591*** 0.647***

(0.223) (0.190) (0.197) (0.204) (0.235)

Age -0.0111 -0.0120 -0.00280 -0.00784 -0.00552

(0.00992) (0.00856) (0.00787) (0.00817) (0.0107)

Female -0.0238 -0.342* -0.241 -0.250 0.0859

(0.189) (0.180) (0.194) (0.208) (0.229)

U. S. Resident -0.147 -0.126 0.0444 -0.0726 -0.103

(0.188) (0.178) (0.193) (0.202) (0.226)

Risk-taking 0.0884** 0.0640 0.0290 -0.000489 -0.0122

(0.0379) (0.0392) (0.0385) (0.0402) (0.0434)

Constant cut 1 0.362 -0.180 0.395 0.267 0.755

(0.402) (0.392) (0.369) (0.392) (0.462)

Constant cut 2 0.743* 0.772** 1.106*** 0.921** 0.961**

(0.398) (0.393) (0.379) (0.413) (0.459)

Observations 194 194 194 194 194

Supplementary Table S13

Punishment of those that contribute each possible contribution level. Ordinal probit regression. Robust

standard errors shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Public goods Punish Punish Punish

action C? D? L? Method 1 Method 2 Method 3

C N N N 2.6% 2.6% 2.0%

C N N P 1.1% 1.1% 0.8%

C N P N 21.3% 21.3% 20.0%

C N P P 8.6% 8.3% 7.7%

C P N N 0.0% 0.0% 0.0%

C P N P 0.0% 0.0% 0.0%

C P P N 0.0% 0.0% 0.0%

C P P P 0.0% 0.0% 0.0%

D N N N 1.5% 1.5% 2.1%

D N N P 20.0% 20.5% 19.9%

D N P N 0.0% 0.0% 0.0%

D N P P 0.0% 0.0% 0.0%

D P N N 0.6% 0.6% 1.1%

D P N P 7.5% 7.6% 7.8%

D P P N 0.0% 0.0% 0.0%

D P P P 0.0% 0.0% 0.0%

L N N N 3.6% 3.7% 4.5%

L N N P 0.0% 0.0% 0.0%

L N P N 1.7% 1.6% 2.2%

L N P P 0.0% 0.0% 0.0%

L P N N 21.8% 22.1% 21.9%

L P N P 0.0% 0.0% 0.0%

L P P N 9.6% 9.2% 10.0%

L P P P 0.0% 0.0% 0.0%

Supplementary Table S14

Average steady state frequencies of each strategy in the low mutation limit, using three different parameter

sampling methods (100,000 random parameter sets each).
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Supplementary Methods

Payoff calculation

To calculate the payoff of each strategy in a given state of the population X, we extend the formula-

tion of Traulsen et al. (2009) to include all 24 possible strategies19. Note that we are not increasing

the complexity of available strategies, or making structural changes to the game such as adding

a retaliation stage22. Instead we simply consider the complete strategy set. There are 24 possible

strategies, specified by a 4 digit strategy name [a1-a2a3a4] where a1 ∈ [C, D, L] indicates a deci-

sion in the public goods game, a2 ∈ [P, N ] indicates whether to punish cooperators, a3 ∈ [P, N ]

indicates whether to punish defectors and a4 ∈ [P, N ] indicates whether to punish loners.

First we consider the payoff of a given strategy, s, in a single public goods game with n other

players. Although there are 24 total strategies, it is useful to aggregate them along each strategy

component: in the group of n players, let iC be the number of players that cooperate (8 different

strategies, C-***), iD be the number of players who defect (8 different strategies, D-***), iL be

the number of players that opt out (8 different strategies, L-***), ipC be the number of players that

punish cooperators (12 strategies, *-P**), ipD be the number of players that punish defectors (12

strategies, *-*P*) and ipL be the number of players that punish loners (12 strategies, *-**P).

We also define 6 variables which describe the strategy of player s. Let sC = 1 if strategy s is a

cooperator and sC = 0 otherwise; let sD = 1 if strategy s is a defector and sD = 0 otherwise; let

sL = 1 if strategy s is a loner and sL = 0 otherwise; let spC = 1 if strategy s punishes cooperators

and spC = 0 otherwise; let spD = 1 if strategy s punishes defectors and spD = 0 otherwise; and
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let spL = 1 if strategy s punishes loners and spL = 0 otherwise.

The payoff of strategy s in this group of n is the sum of (i) the payoff from the public goods game

δ1, which depends on iC and iD if sL = 0, (ii) the payoff from being punished δ2, which depends

on ipC if sC = 1, ipD if sD = 1, or ipL if sL = 1, and (iii) the payoff from choosing to punish δ3,

which depends on iC if spC = 1, iD if spD = 1, and iL if spL = 1. Note that we assume players

never punish themselves.

The payoff of strategy s in the public goods game δ1 is determined as follows. If iC + iD < 1 then

there are not enough non-loners for the public goods game to occur, and so δ1 = σ regardless of

the strategy of player s. Otherwise,

δ1 = rc
iC

iC + iD
− csC (S1)

The payoff of strategy s from being punished δ2 is given by

δ2 = −β

(

sC(ipC − spC) + sD(ipD − spD) + sL(ipL − spL)

)

(S2)

The payoff of strategy s from paying to punish others δ3 is given by

δ3 = −γ

(

spC(iC − sC) + spD(iD − sD) + spL(iL − sL)

)

(S3)

The total payoff of strategy s is then given by

Ps = δ1 + δ2 + δ3 (S4)
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Thus far we have calculated the payoff of a particular strategy playing the public goods game

with punishment in a group with a particular set of n − 1 other players. To calculate the expected

(average) payoff of a strategy s in a population of size N , we must now consider the average group

composition. Let Xi be the total number of players in the population of size N using strategy i, i ∈

[1, 24]. A randomly sampled group of size n has a specific composition given by the multivariate

hypergeometric distribution,

H(I, X) =

(

X1

i1

)(

X2

i2

)

. . .
(

X24

i24

)

(

N

n

) (S5)

where I = (i1, i2, . . . , i24) and X = (X1, X2, . . . , X24). The average payoff πs for strategy s is then

Σi1Σi2 . . .Σi24H(. . .)Ps.

Substituting for each of the 24 strategies and simplifying gives
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πD−NNN =B(X) − XpDβD(N, n) (S6)

πD−NNP =B(X) − (XpDβ + XLγ)D(N, n) (S7)

πD−NPN =B(X) − ((XD − 1)γ + (XpD − 1)β)D(N, n) (S8)

πD−NPP =B(X) − ((XD − 1 + XL)γ + (XpD − 1)β)D(N, n) (S9)

πD−PNN =B(X) − (XpDβ + XCγ)D(N, n) (S10)

πD−PNP =B(X) − ((XC + XL)γ + XpDβ)D(N, n) (S11)

πD−PPN =B(X) − ((XC + XD − 1)γ + (XpD − 1)β)D(N, n) (S12)

πD−PPP =B(X) − ((XC + XD − 1 + XL)γ + (XpD − 1)β)D(N, n) (S13)

πC−NNN =B(X) − F (XL)c − XpCβD(N, n) (S14)

πC−NNP =B(X) − F (XL)c − (XpCβ + XLγ)D(N, n) (S15)

πC−NPN =B(X) − F (XL)c − (XpCβ + XDγ)D(N, n) (S16)

πC−NPP =B(X) − F (XL)c − ((XD + XL)γ + XpCβ)D(N, n) (S17)

πC−PNN =B(X) − F (XL)c − ((XC − 1)γ + (XpC − 1)β)D(N, n) (S18)

πC−PNP =B(X) − F (XL)c − ((XC − 1 + XL)γ + (XpC − 1)β)D(N, n) (S19)

πC−PPN =B(X) − F (XL)c − ((XC − 1 + XD)γ + (XpC − 1)β)D(N, n) (S20)

πC−PPP =B(X) − F (XL)c − ((XC − 1 + XD + XL)γ + (XpC − 1)β)D(N, n) (S21)

πL−NNN =σ − XpLβD(N, n) (S22)

πL−NNP =σ − ((XL − 1)γ + (XpL − 1)β)D(N, n) (S23)

πL−NPN =σ − (XpLβ + XDγ)D(N, n) (S24)

πL−NPP =σ − ((XD + XL − 1)γ + (XpL − 1)β)D(N, n) (S25)

πL−PNN =σ − (XpLβ + XCγ)D(N, n) (S26)

πL−PNP =σ − ((XC + XL − 1)γ + (XpL − 1)β)D(N, n) (S27)

πL−PPN =σ − ((XC + XD)γ + XpLβ)D(N, n) (S28)

πL−PPP =σ − ((XC + XD + XL − 1)γ + (XpL − 1)β)D(N, n) (S29)

where XC is the total number of players in the population that cooperate, XD is the total number

of players that defect, XL is the total number of players that are loners, XpC is the total number

of players that punish cooperators, XpD is the total number of players that punish defectors, XpL

is the total number of players that punish loners, B(X) is the payoff from the public goods game,

F (XL) is the effective cost of contributing to the public good, and D(N, n) = n−1

N−1
.

If XL ≥ (N − 1), then there is never more than 1 loner in a group, the public goods game is never

played, and B(X) = σ and F (XL) = 0.
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Otherwise,

B(X) =
rcXC

N − XL − 1

(

1 −
N

n(N − XL)

)

+

(

XL

n−1

)

(

N−1

n−1

)

(

σ +
rcXCXL − n + 1

n(N − XL − 1)(N − XL)

)

(S30)

and

F (XL) = 1 −
r

n

N − n

N − XL − 1
+

(

XL

n−1

)

(

N−1

n−1

)

(

r

n

XL + 1

N − XL − 1
+ r

N − XL − 2

N − XL − 1
− 1

)

(S31)

Description of the evolutionary dynamic

We study the transmission of strategies through an evolutionary process, which can be interpreted

either as genetic evolution or as social learning. In both cases, strategies which earn higher payoffs

are more likely to spread in the population, while lower payoff strategies tend to die out. Novel

strategies are introduced by mutation in the case of genetic evolution, or innovation and experi-

mentation in the case of social learning.

We use a frequency dependent Moran process39 with an exponential payoff function40. In each

round, agents interact at random. One agent is then randomly selected to change strategy. With

probability u, a mutation occurs and the agent picks a new strategy at random. With probability

1 − u, the agent adopts the strategy of another agent j, who is selected from the population with

probability proportional to eπj where πj is the payoff of agent j.

We begin by studying low mutation rates, which characterize both genetic evolution and the long-

term evolution of societal norms. Later, we explore higher mutation rates, which may be more
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appropriate for short-term learning and exploration dynamics19,43. For low mutation a mutant ei-

ther goes to fixation or dies out before another mutant appears41,42. Thus the population makes

transitions between homogeneous states, where all agents use the same strategy. Here the suc-

cess of a given strategy depends on its ability to invade other strategies, and to resist invasion by

other strategies. We use an exact numerical calculation to determine the average frequency of each

strategy in the stationary distribution (see below).

Low mutation limit calculation method

If viable mutants are very rare, the population spends almost all of its time in a homogeneous state.

When a mutant arises, it either goes to fixation or dies out before the next mutant arises, returning

the system to a homogeneous population. Let si be the frequency of strategy i, with a total of M

strategies. We can then assemble a transition matrix between homogeneous states of the system.

The transition probability from state i to state j is the product of the probability of a mutant of type

j arising ( 1

M−1
) and the fixation probability of a single mutant j in a population of i players, ρi,j .

The probability of staying in state i is thus 1 −
1

M−1
Σjρj,i, where ρi,i = 0. This transition matrix

can then be used to calculate the steady state frequency distribution s∗ of strategies:
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(S32)

The eigenvector corresponding to the largest eigenvalue (1) will give the steady state distribution

of the stochastic process.

Using the Moran process, the fixation probability ρB,A (the probability that a single A mutant in-

troduced into a population of B-players will take over) can be calculated as follows. When the full

set of punishment strategies are available, it is common for strategies to receive negative payoffs.

Therefore, we use an exponential fitness function as opposed to a linear fitness function17,19. This

allows us to maintain a strong intensity of selection using the full punishment set. In a population

of i A-players and N − i B-players, the average payoffs πA and πB can be calculated using Eq.

(S38) - (S29). The fitness of an A-player fi and B-player gi are then defined as

fi = eπA (S33)

gi = eπB (S34)

.

Note that the results in the main text Figure 1A and 1B do not exactly match those of Hauert et al.

2007 because they use the linear fitness function fi = 1 − w + wπA rather than the exponential
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payoff function described here.

The fixation probability of a single A-player in a population of B-players can then be calculated17,19,40

as follows:

ρB,A = 1/

(

1 + ΣN−1

k=1
Πk

i=1

gi

fi

)

(S35)

The calculations presented in the main text numerically evaluate Eq. (S35) for each strategy pair,

and then numerically solve Eq. (S32) to determine the steady state frequency of each strategy.

Supplementary Notes

Review of experimental evidence for anti-social punishment

The experimental literature shows that punishment is sometimes targeted at cooperators across a

range of different experimental designs. On one extreme are repeated games that allow for retalia-

tion (punishment in response to being punished) because identities are kept constant over repeated

interactions and subjects know who has punished them26,28,29,30. On the other extreme are one-shot

games where explicit retaliation is impossible, yet nonetheless considerable anti-social punishment

is observed in some cultures30,31. The landmark study of Herrmann et al 2008 is somewhere in be-

tween these two extremes27. The game is repeated, but identities are shuffled between rounds and

subjects are only informed of the total amount of punishment they received, not which particular

players have punished them. Thus explicit retaliation is impossible, although it is still possible
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for low contributors to assume that punishment came from high contributors, and to respond ac-

cordingly. However, the presence of anti-social punishment even in one-shot games shows that

anti-social punishment is not entirely motivated by explicit retaliation.

To provide further evidence for anti-social punishment that is not linked to retaliation, we have

reanalyzed the data from Herrmann et al 2008, focusing on punishment occurring in the very first

punishment round. Here subjects have played one round of public goods game, and are punishing

based on what has occurred in that first cooperation round. Retaliation is impossible, as no previous

punishment has occurred. Supplementary Figure S1A shows the frequency of punishment given

that the other person contributed less than you (pro-social punishment, shown in blue) and given

that the other person contributed as much or more than you (anti-social punishment, shown in red).

Supplementary Figure S1B shows the same analysis for all 10 rounds of play. In both panels, we

see a substantial level of anti-social punishment in many societies.

We now ask for each subject pool whether there is a significant difference in the frequency of

pro-social versus anti-social punishment in the first round. We do so using logistic regression with

robust standard errors, clustered on subject and group to account for the non-independence of

observations from a given subject and given group. The regression takes punishment decision in the

first round (0=no deduction points alloted, 1=1 or more deduction points alloted) as the dependent

variable, and other’s relative contribution in the first round (0=less than you, 1=as much or more

than you) as the independent variable. Regression results are shown in Supplementary Table S1.

We see that in 5 out of 16 countries, anti-social punishment is as common as pro-social punishment

in the first round (p > 0.05).
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In addition to demonstrating the existence of anti-social punishment, Herrmann et al. 2008 show

that anti-social punishment varies systematically across subject pools. Particularly, in Supplemen-

tary Figure 2A of their paper they show a significant negative correlation across subject pools

between contribution level average over all periods and the mean level of anti-social punishment

across all periods. We find the same effect when considering only contributions in the first period,

and frequency of anti-social punishment in the first period (linear regression with robust standard

errors, considering country-level averages; coeff = -11.65, p = 0.048). Additional analysis of the

Hermmann et al. 2008 data also shows a significant negative correlation across subject pools be-

tween the frequency of pro-social and anti-social punishment in the first period (coeff = -0.97, p

< 0.001); and a significant positive correlation between the level of first-round contribution in the

no-punishment and punishment games (coeff = 1.43, p < 0.001). All three of these relationships

are visualized in Supplementary Fig. S2.

We also note that the negative relationship between contribution level and anti-social punishment

holds at the level of the individual as well as the level of the subject pool. Analyzing data from all

subjects, a logistic regression with robust standard errors clustered on subject and group finds a sig-

nificant negative correlation between contribution and probability to punish if the other contributed

as much or more than you (1st round only: coeff = -0.097, p < 0.001; all rounds: coeff = -.0107, p

< 0.001). Similarly, a linear regression with robust standard errors clustered on subject and group

finds a significant negative relationship between contribution and amount spent on punishing if the

other contributed as much or more than you (1st round only: coeff = -0.031, p < 0.001; all rounds:

coeff = -.032, p < 0.001). These results are qualitatively unchanged by the addition of subject pool

dummy variables.
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It is important to keep in mind that the particular subject pools studied by Herrmann et al. 2008 do

not represent a random sampling of peoples and cultures. Therefore the distribution of pro-social

and anti-social punishment observed across these groups should not be considered representative.

Instead, these experiments provide evidence that a sizeable degree of anti-social punishment exists

(even absent explicit retaliatory motives), that the level of anti-social punishment varies across sub-

ject pools in systematic ways, and that in some subject pools anti-social punishment is as common,

or even more common, than pro-social punishment.

In summary, there is a large body of experimental evidence for punishment targeted at cooperators.

This basic phenomenon of anti-social punishment exists separately from retaliation in repeated

games, and cannot be neglected in models of the co-evolution of cooperation and punishment.

Moreover, anti-social punishment is an interesting behavior that is in need of an evolutionary ex-

planation of its own. Addressing that question is the focus of this paper.
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Strategy frequencies averaged over 100,000 parameter sets

To demonstrate that our results are not unique to the particular parameter values used in the main

text Figure 1, we calculate the steady state frequency of each strategy averaged over 100,000

parameter sets using N = 100, n = 5, c = 1 and randomly sampling from uniform distributions on

the intervals 1 < r < 5, 0 < σ < (r − 1)c, 0 < γ < 5, and γ < β < 5γ. In Supplementary Table

S2, the average frequency of each strategy is shown for each strategy set (No punishment, limited

strategy set, full strategy set). A strategy is defined by public goods game action (C=cooperator,

D=defector, L=loner), and punishment decision taken towards cooperators (N = no action, P =

punish), defectors (N or P) and loners (N or P). Supplementary Table S3 shows the aggregated

frequency of cooperators, defectors and loners, as well as of strategies which punish cooperators,

defectors and loners. Note that a single strategy can punish more than 1 public goods game move,

and thus punishment of cooperators defectors and loners does not sum to 100%. These averages

taken over 100,000 parameter sets are remarkably similar to the results in main text Figure 1,

demonstrating the robustness of our findings.

Higher mutation rate analysis using agent based simulation

The calculations presented in the main text assume a vanishingly small mutation rate u. We now

use agent based simulations to explore higher mutation rates. We simulate a Moran process with

an exponential fitness function40. Payoffs for each agent are calculated as described in the Sup-

plementary Methods, based on the frequency of each strategy in the population. Then in each

generation, (i) one agent i is randomly chosen to change strategy, and (ii) with probability 1 − u,
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agent i picks another agent j to imitate, proportional to exp[πj]; or with probability u, a ‘mutation’

occurs instead and agent i picks a new strategy at random.

For u = 0.001 and u = 0.01, we fix c = 1, N = 100 and n = 5, and randomly sample 1000

parameter sets from the region 1 < r < 5, 0 < σ < (r − 1)c, 0 < γ < 5 and γ < β < 5γ. For

each parameter set, we simulate for 108 generations, and calculate the time averaged frequency of

each strategy over the second half of the simulation (Supplementary Table S4). The results using

u = 0.001 are very similar to the low mutation limit calculation. At u = 0.01, the results are

qualitatively similar, except that the strategies which do not punish are somewhat more common

while the punishing strategies are correspondingly less common.

Supplementary Table S5 shows that the average frequency of cooperators, defectors and loners

are strikingly consistent across the three different mutation rates. At u = 0.001, the frequency of

cooperation is less than 0.5 in 95% of parameter sets. At u = 0.01, the frequency of cooperation

is less than 0.5 in 93% of parameter sets. We also see that although punishment is less common

when u = 0.01, it remains true that for a given mutation rate, the frequencies of all three types of

punishment are roughly equal. Thus the results presented in the main text are not unique to the low

mutation limit. Also here we find that punishment does not effectively promote cooperation when

using the full punishment strategy set, and anti-social punishment is approximately as common as

pro-social punishment.
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Inverse relationship between cooperation and anti-social punishment: Sensitivity analysis

In the main text, Figure 3A shows a strong negative relationship between cooperation and anti-

social punishment across parameter sets. Here we explore that relationship in more detail. We

define the frequency of cooperation fC to be the steady state frequency summed over all strategies

which cooperate in the public goods game (C-***); and the frequency of anti-social punishment

fAP to be the steady state frequency summed over all strategies which punish cooperators (*-P**).

We begin by noting that almost all points in main text Figure 3A lie below the line fC + fAP = 1.

In the full strategy set, there are several strategies which both cooperate and engage in anti-social

punishment: C-PNN, C-PNP, C-PPN and C-PPP. Thus points in Figure 3A can in principle be

distributed anywhere in the unit square, and there is no a priori fC + fAP ≤ 1 constraint. The fact

that very few points lie above fC + fAP = 1 is a result of natural selection: cooperators who also

punish cooperators usually fare poorly and are strongly disfavored.

Moreover, the relationship between cooperation and anti-social punishment involves more than an

implicit fC + fAP ≤ 1 constraint. Randomly sampling points which satisfy this constraint and

regressing fC against fAP results in fC = 0.5 − 0.5fAP . Performing the same regression on the

data in Figure 3A, however, gives fC = 0.9 − 1.43fAP .

To explore the nature of this dependence, we perform a sensitivity analysis. We fix N = 100,

n = 5 and c = 1, and randomly sample 10,000 parameter sets from the intervals 1 < r < 5,

0 < σ < (r − 1)c, 0 < γ < 5, and γ < β < 5γ. For each parameter set, we calculate the steady

state frequency of each strategy in the low mutation limit and determine the ratio of cooperation to
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anti-social punishment fC/fAP . We then determine the marginal effect of each payoff parameter by

incrementing each parameter individually by 0.01 and recalculating fC/fAP . The most influential

parameter for a given parameter set is thus the parameter that when incremented results in the

largest change in fC/fAP relative to the baseline. As shown in Supplementary Figure S3A, we

find that r is the most influential parameter in a large majority of parameter sets. Multiplying each

parameter by 1.01 instead of adding 0.01 gives similar results, with r again being most influential

in a large majority of parameter sets (Supplementary Figure S3B).

To further visualize these findings, we systematically vary each parameter. We use N = 100 and

n = 5, and fix a given parameter to a particular value, and then sample the other parameters from

the intervals 1 < r < 5, 0 < c < 5, 0 < σ < (r − 1)c, 0 < γ < 5, and γ < β < 5γ. For each

parameter set, we calculate the steady state frequency of each strategy in the low mutation limit,

and from this determine the ratio of cooperation to anti-social punishment fC/fAP . The median

fC/fAP for each parameter value is shown in Supplementary Figure S4. We see that fC/fAP

steadily and consistently increases with r over the full parameter range (for the game to be a social

dilemma using n = 5, r is necessarily restricted to 1 < r < 5). Conversely, fC/fAP only varies

with c if c < 1, only varies with β when β is very small, and does not vary substantially with σ

or γ. Supplementary Figure S4 therefore suggests that overall, the cooperation multiplier r is the

most important parameter for determining the ratio of cooperation to anti-social punishment.

We also find important interactions between r and the other parameters. To illustrate this, we

replicate the previous analysis in Supplementary Figure S4, restricting to r > 4 and r < 2 (Sup-

plementary Figure S5). Most strikingly we see that decreasing β dramatically increases fC/fAP

when r is large, and dramatically reduces fC/fAP when r is small. A qualitatively similar pat-

37



tern, of markedly smaller magnitude, is seen for c. To summarize, we see that cooperation is most

successful when the returns on cooperation are large and punishment is weak.

In addition to these results on the relative frequency of cooperation and anti-social punishment,

our model also shows two other statistical regularities. We find a significant negative relationship

between the frequency of pro-social punishment fPP and anti-social punishment fAP across pa-

rameter sets (fPP = −0.31fAP + 0.54, p ¡ 0.001), and a significant positive relationship between

the frequency of cooperation with punishment fC and the frequency of cooperation without pun-

ishment fC−NP (fC = 0.31fC−NP + 0.23, p < 0.001).
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Connections between model results and sociological variables

As shown in Figure 3 of the main text, as well as the previous section of the SI, we find that across

parametert sets, cooperation and anti-social punishment levels are inversely related; pro-social and

anti-social punishment frequencies are inversely related; and cooperation in the punishment and

no-punishment conditions are positively related. We also find that higher levels of cooperation are

associated with more efficient public goods (larger values of cooperation multiplier r) and with

less severe costly punishments (smaller values of the punishment effectiveness β).

Each of these statistical regularities is present in the cross-cultural data of Herrmann et al. 2008.

While non-cooperators bear the brunt of the punishment in countries which achieve high levels of

cooperation, the opposite is true in less cooperative countries, where free-riders are more often will-

ing to pay to punish those who contribute more to than them to the public good. This relationship is

clearly demonstrated in Figure 2B and Table 1 of Herrmann et al. 2008, and in our Supplementary

Discussion above. Our analysis also shows a significant negative correlation between pro-social

and anti-social punishment in the data of Herrmann et al. 2008, as well as a positive correlation

between cooperation in the games with and without punishment opportunities (see Supplementary

Figure S2).

We now consider how our predictions about the role of the parameters r and β relate to socio-

logical variables that predict cooperation and anti-social punishment across societies. It has been

shown that that subjects from more affluent countries with stronger rule of law and higher GDP

tend to engage in less anti-social punishment than those from poorer counties with weaker legal

institutions27; and that societies with more market integration engage in more cooperation62. These
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results are consistent with our finding that the cooperation multiplier r, a measure of the efficiency

of cooperation and public goods, is a key factor in determining the level of cooperation versus

anti-social punishment. Weak rule of law and the associated corruption have been shown to reduce

the efficiency of public goods by inflating the cost of public projects63; and market integration

facilitates the specialization and division of labor64 that allow groups to achieve more than each in-

dividual would alone. Thus if people evolved their intuitions according to the process described in

our model, we would expect experimental subjects who developed their intuitions in high r settings

to be more cooperative and less likely to punish anti-socially. This is true even if the game they

play in the experiment is not identical to the setting in which their intuitions evolved, as discussed

at greater length below.

We also find empirical support for our prediction that more cooperative, productive societies en-

gage in less severe peer punishment. Legal scholars have shown that the majority of violent crimes

are moralistic in nature, ‘expression[s] of a grievance by unilateral aggression’65 that map directly

onto the type of vigilante justice represented by high-effectiveness (large β) peer punishment. Yet

cooperative, trusting societies which are more economically successful have lower rates of violent

crime66, instead relying on less destructive (more symbolic) forms of norm enforcement. This is

consistent with our result that successful cooperation requires relatively ineffectual punishments

(small β). Thus once again, differences in evolved intuitions caused by the societal variation de-

scribed here may lead subjects to behave differently across subject pools in economic game exper-

iments, even when participating in games with objectively identical payoff structures. Exploring

these connections between sociological variables and model parameters is an important area for

future research.
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Evolved intuitions versus in-game learning

The model we present makes predictions about the strategies, intuitions and heuristics that are

favored by natural selection. When comparing model predictions with laboratory experiments, it

is important to remember that human psychology did not evolve in the lab; instead, the lab gives

us a window into our psychology which has evolved outside of the lab. No experiment is a perfect

match to this reality: just as mathematical models are simplifications of complex scenarios, so too

are laboratory experiments. Therefore it takes subjects some time to adjust away from their real

world intuitions and acclimate to the details of the particular laboratory game they are playing. This

adjustment process is clearly demonstrated by the learning evident in virtually all experiments with

multiple trials. If we want to gain insight into evolved intuitions, rather than in-game learning and

adaptation to the exogenously imposed experimental setting, it is therefore necessary to focus on

behavior in the first trial or round (while keeping in mind that these intuitions involved in settings

which likely differ from the experimental setting at hand).

As shown earlier in this Supplementary Discussion, large cross-cultural differences exist in first-

round behavior, despite identical game setups. This variation in behavior reflects the variation in

evolved intuitions subjects bring into the lab. Conversely, relatively little variation in first-round be-

havior is often observed between different experimental designs applied to the same subject pool.

For example, consider two studies which vary the punishment technology β/γ in a compulsory

public goods game67,68. Both studies find that larger punishment technologies lead to higher con-

tribution levels, but only after several periods of learning. In the first period of both experiments,

there is no significant difference in contribution across treatments (Linear regression with robust
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standard errors clustered on subject, taking the no-punishment treatment as the baseline and adding

dummy variables for each punishment treatment; Egas & Riedl 2008: 1:1, coeff = 0.40, p = 0.53;

1:3, coeff = 0.73, p = 0.26; 3:1, coeff = -0.28, p = 0.65; 3:3, coeff = 0.65, p = 0.32; Nikiforakis

& Normann 2008: 1:1, coeff = -2.12, p = 0.288; 1:2, coeff = 0.50, p = 0.80; 1:3, coeff = 0.08, p

= 0.97; 1:4, coeff = 1.96,p = 0.33). Our model seeks to explain variation in first-round play re-

sulting from intuitions developed in daily life, rather than this in-game learning over the course

of the session. Therefore these results do not necessarily contradict our model. If instead we con-

sider cross-cultural variation in first round play27, we find sociological evidence supporting our

model prediction. As described in the previous section, high cooperation is achieved by subjects

from affluent societies who developed their intuitions with little violent peer norm enforcement66,

and the opposite is true of subjects from less affluent countries with more violent (truly costly)

enforcement. Exploring these connections more deeply is an important area for future research.

The observed cross cultural differences in behavior27,30,31 have important implications for all mod-

els of the evolution of cooperation and punishment. Successful models must explain the punish-

ment of both non-cooperators and cooperators. The evolution of anti-social punishment is par-

ticularly challenging for models based on multi-level selection15. Selection at the level of the

group would always favor cooperation and punishment of non-cooperators, and always disfavor

anti-social punishment. Therefore such models cannot explain the tendency to punish cooperators

exhibited in many societies. Our framework, however, supports the heterogeneity that has been

empirically observed.

While providing a potential ultimate evolutionary explanation for anti-social punishment, our

model does not address the proximate psychological mechanisms behind such behavior. The ex-
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tent to which punishment of cooperators is motivated by dislike of do-gooders, desire for revenge

against anticipated pro-social punishment, concern with absolute versus relative payoffs, or other

related thought processes merits further study. It is also important to note that although our model

considers discrete options (cooperation, defect or opt out, punish or do not punish), many exper-

iments present subjects with a continuous choice of how much to contribute, and how much to

punish.

Behavior of loners in compulsory games: evidence from two novel experiments

Almost all experiments studying punishment have used compulsory rather than optional public

goods games. That does not mean, however, that only compulsory games are important for the

evolution of human cooperation. Many important real-world situations involving cooperation are

optional, such as entrepreneurs choosing to start a business together, individuals choosing to move

into an apartment together or scientists choosing to collaborate with each other. Thus our instincts

and understandings of appropriate behavior are likely shaped by optional as well as compulsory

games. Consistent with this observation, many subjects choose to opt out in favor of a fixed lon-

ers payoff when given the chance38, and this stabilizes cooperation over a series of games in the

laboratory through the cooperator-defector-loner cycle predicted theoretically17,18,19,44.

In order to fully understand behavior in compulsory public goods games, therefore, it is necessary

to know how loners will play when not given the chance to abstain for a fixed payoff. Together

with previous experiments on compulsory games27, our model makes clear predictions about how

loners will behave: based on our theoretical results, loners are predicted to be lower contributors
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in compulsory games, and to be most likely to punish high contributors. To evaluate these pre-

dictions, we conducted two incentivized behavioral experiments. Experiment 1 investigates the

contribution behavior of loners in a compulsory game, while Experiment 2 considers the degree of

anti-social punishment exhibited by loners in a compulsory game. In both experiments, subjects

were recruited using the online labor market Amazon Mechanical Turk (AMT)51. On AMT, people

from around the world can be hired to perform short tasks (generally 5 minutes or less) for small

amounts of money (generally under $1). The amount paid can be conditioned on the outcome of

the task, allowing for performance-dependent payments and incentive-compatible designs. AMT

therefore offers an unprecedented tool to quickly and inexpensively recruit subjects for economic

game experiments. A variety of standard results have been successfully replicated on AMT by

scholars across the social science disciplines51,55,56. Most relevant to the current experiment is a

demonstration of quantitative agreement between the traditional laboratory public goods games of

Fehr & Gachter 20009 and low-stakes public goods games run on AMT with endowments of $0.10

or $0.0558; and between a one-shot Prisoner’s Dilemma run in the physical laboratory and one run

on AMT using identical instructions but 10-fold lower payoffs51. This relative insensitivity to stake

size in social dilemmas is consistent with previous research in the traditional laboratory (see69 for

a thorough review). We will now describe each experiment in detail.

Experiment 1

In October 2010, 124 subjects were recruited through AMT to participate in Experiment 1. Subjects

received a $0.20 showup fee for participating, and earned on average an additional $0.63 based on

decisions made in the experiment. First, subjects read a set of instructions for a one-shot public
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goods game, in which groups of 4 interact with a cooperation multiplier of r = 2, each choosing

how much of a $0.40 endowment to contribute (in increments of 2 cents to avoid fraction cent

amounts). Subjects then answered two comprehension questions to ensure they understood the

payoff structure, and only those who answered correctly were allowed to participate.

Treatment experiment

The 73 subjects randomly assigned to the treatment group were then informed that the game was

optional, and they could choose either to participate or to abstain in favor of a fixed payoff of

$0.50. Those who chose to participate then indicated their level of contribution. Next, subjects were

informed that they would play a second game with 3 new partners, which was a compulsory version

of the first game. They were further informed that one of the two games (optional or compulsory)

would be randomly selected to determine their payoff. This was done to keep the payoff range

the same as in the control experiment described below, where subjects played only one game. In

order to prevent between-game learning, subjects were not informed about the outcome of the

optional game before making their decision in the compulsory game. The instruction used are

included at the end of this section, and payoffs were determined exactly as described (no deception

was used). Throughout the analysis of all experiments, we present the results of linear regressions

with robust standard errors when considering non-binary dependent variables. If tobit regression

is instead used when considering contribution amount, to account for minimum and maximum

values, qualitatively equivalent results are found unless otherwise noted.

Using this experimental setup, we can (i) classify subjects as loners or non-loners based on their

decision in the first (optional) game, and then (ii) ask how loners versus non-loners behave in
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the second (compulsory) game. Comparing average contribution in compulsory game, we find

that those who opt out in the optional game contribute significantly less in the compulsory game

(Rank-sum, N=73, p=0.006; main text Figure 4a). This remains true when controlling for additional

sources of variation in a linear regression with robust standard errors (see Supplementary Table

S6). We regress contribution in the compulsory game as the dependent variable (0-40) against

decision in the optional game (0 = participate (non-loner), 1 = opt out (loner)), including controls

for age, gender (0 = male, 1 = female) and US residence (0 = non-US, 1 = US). We find a significant

negative relationship between contribution in the compulsory game and opting out (coeff = -10.880,

p = 0.006). Thus loners contribute significantly less in the compulsory game.

To explore the role that risk preferences play in our experiment, we assessed subjects’ appetite

for risk-taking with the question ‘Are you generally a person who is fully prepared to take risks

or do you try to avoid taking risks?’. Subjects responded using an 11-point Likert scale ranging

from ‘Unwilling to take risks’ to ‘Fully prepared to take risks’. This self-report risk question was

used by Dohmen et al. (forthcoming)76. In a representative sample of 450 individuals, they find

that this measure provides a good proxy of actual risk taking behaviors, such as traffic offenses,

portfolio choice, smoking, occupational choice, participation in sports and migration. We find that

the relationship between opting out and contribution in the compulsory game remains significant

(coeff = -8.570, p = 0.047) when controlling for risk-taking (although the relationship crosses the

5% significance threshold when using Tobit regression and controlling for risk, p = 0.053).

While our model considers a binary cooperation decision (cooperate or defect), our experiments

follow the typical experimental design of a continuous decision (in our case, contributing between

0 and 40 units). The maximum benefit is generated when individuals contribute their entire endow-
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ment. Thus any deviation below the maximum amount constitutes some level of free-riding. Our

data show that loners engage in substantially more free-riding than non-loners, as predicted by our

model. The relationship between compulsory contribution and opting out has a substantial effect

size as well as statistical significance, with non-loners contributing a 44% larger amount compared

to non-loners (non-loners: 29.4, loners: 20.4).

Control experiment

To demonstrate that behavior in the compulsory game discussed above was not affected by the

preceding optional game, the remaining 51 subjects participated in a control condition in which

they played only a compulsory game. We find no significant difference in compulsory contribution

levels between the treatment and the control (Rank-sum, p = 0.620). This result is robust to controls

for age, gender, risk-taking and US residence in a linear regression with robust standard errors

(Supplementary Table S7: coeff = 2.21, p = 0.432). Thus it does not seem that playing the optional

game first in the treatment condition changed how subjects subsequently played in the compulsory

game.

Summary statistics for both conditions of Experiment 1 are shown in Supplementary Table S8.

Experiment 2

In Experiment 1, we investigated contribution behavior of loners in a compulsory game without

punishment. We now turn our attention to how loners play in a compulsory game with punishment.

In November 2010, 196 subjects were recruited through AMT to participate in Experiment 2.

Subjects received a $0.40 showup fee for participating, and earned on average an additional $0.92
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based on decisions made in the experiment. As in Experiment 1, subjects began by reading a set of

instructions for a one-shot public goods game with groups of 4, a cooperation multiplier of r = 2,

and a $0.40 endowment, and then answered two comprehension questions in order to participate.

Subjects were then informed that the game was optional, and decided whether to participate or

opt out for a fixed $0.50 payment. Subjects who chose to participate were given 5 contribution

levels to choose from: 0, 10, 20, 30 or 40. Thus the first game of Experiment 2 is identical to that

of Experiment 1’s treatment condition, except for a more limited set of contribution options to

facilitate punishment decisions as described below.

Subjects were then informed that they would play a second game with 3 new partners, which

differed from the first game in two ways: it was compulsory, and it would be followed by a Stage

2 in which participants could interact directly with each other group member. In Stage 2, subjects

had three direct actions to pick from: choosing option A had no effect on either player; choosing

option B caused them to lose 4 cents while the other player lost 12 cents; and choosing option

C caused them to lose 8 cents while the other player lost 24 cents. Thus we offered mild (B)

and severe (C) punishment options with a 1:3 punishment technology. Subjects were allowed to

condition their Stage 2 choice on the other player’s contribution in the compulsory public goods

game. To do so, we employ the strategy method70: subjects indicate which action (A, B, C) they

would take towards group members choosing each possible contribution level (0, 10, 20, 30, 40).

It has been shown that using the strategy method to elicit punishment decisions has a quantitative

(although not qualitative) effect on the level of punishment targeted at defectors, but has little

effect on the punishment targeted at cooperators71. As anti-social punishment is our main focus,

we therefore feel confident in our use of the strategy method. In order to prevent between-game

48



learning, subjects were not informed about the outcome of the optional game before making their

decision in the compulsory game. The instructions used are included at the end of this section, and

payoffs were determined exactly as described (no deception was used).

Summary statistics are given in Supplementary Table S9.

Validation

We begin by showing that the compulsory game data from Experiment 2 displays expected sta-

tistical regularities based on past research. Consistent with our analysis of Herrmann et al. 2008

above, our AMT data show a negative relationship between contribution in the compulsory game

and anti-social punishment. Note that in the current analysis it is not necessary to cluster regres-

sions on either group or subject because of our use of the strategy method: subjects received no

information about the actual contribution decisions of others before making their punishment de-

cisions, and made only a single set of decisions.

An ordinal probit regression with robust standard errors (Supplementary Table S10) finds a sig-

nificant positive correlation between your contribution in the compulsory game and the amount

of punishment (A=0, B=1, C=2) you target at those who contribute nothing (coeff = 0.018, p =

0.001); and a significant negative correlation between your contribution in the compulsory game

and the amount spent punishing those who contribute the maximum amount of 40 (coeff = -0.014,

p = 0.027). Furthermore, consistent with the large body of experimental evidence on punishment in

public goods game, we see significantly more punishment targeted at those who contribute nothing

compared to those who contribute the maximum amount (Sign-rank, p=0.002). Thus pro-social

punishment is more common than anti-social punishment. These results give us confidence that
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our experimental design is sufficiently similar to that of previous experiments.

Next we compare behavior in the optional game of Experiment 2 to that of Experiment 1’s treat-

ment condition. We find no significant difference in the fraction of subjects who opt out (Chi2 test,

p = 0.680), or in contribution among those who participate (Rank-sum, p = 0.339). Experiment

2 also replicates the result from Experiment 1 that loners contribute less in the compulsory game

(linear regression with robust standard errors: coeff = -7.188, p = 0.005). A regression including

data from both experiments continues to find a significant negative relationship between compul-

sory contribution and opting out (coeff = -7.785, p < 0.001), and finds no significant interaction

between experiment and opting out (coeff = 1.76, p = 0.680). Thus the relationship between being

a loner and a low contributor in the compulsory game is the same in both studies. These results

demonstrate consistency across studies with similar designs on AMT.

Loners and anti-social punishment We now turn to our primary question of interest: are loners

more likely to punish high contributors? Because we use the strategy method, we can conducted

fine-grained analysis of anti-social punishment behavior. We begin by considering the most clear-

cut case, punishment that is directed at those who contribute the maximum amount (40 units).

This behavior is indisputably anti-social. We find that loners spend significantly more punishing

maximal contributors (Rank-sum, p = 0.003, main text Figure 4b; Supplementary Table S11), and

that this result is robust to controlling for age, gender, risk-taking and US residence in an ordinal

probit regression with robust standard errors (coeff = 0.647, p = 0.006). It might that loners are

more likely to punish high contributors merely because they themselves are lower contributors

on average. However, the relationship between opting out and punishing maximal contributors is

robust (coeff = 0.579, p = 0.019) to including an additional control for the punisher’s compulsory
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contribution, demonstrating that this is not the case.

We also find that loners spend significantly more punishing those who contributed as much or

more than themselves (amount spent on punishment averaged over all contribution levels equal

to or greater than the subject’s own contribution in the compulsory game; linear regression with

robust standard errors, Supplementary Table S12; coeff = 0.286, p = 0.013).

Furthermore, we find the same positive correlation between opting out and punishing those that

contribute 30, while conversely, no such correlations exist for punishment of lower contribution

amounts (Supplementary Table S13). Taken together, these results show that subjects who opt out

of optional games engage in more anti-social punishment than those who choose to participate.

Discussion

In the main text, we show that natural selection can favor punishment targeted at cooperators,

and that this punishment is dealt out largely by loners. We then argue that this model may help

understand cross-cultural experiments which show low contributors punishing high contributors in

compulsory games.

Central to this argument is the idea that in compulsory games, many low contributors may in fact

be loners who would opt out if given the chance. In Experiment 1, we provide empirical evi-

dence consistent this prediction. We find that subjects that opt out of optional games contribute

significantly less in compulsory games. These results are consistent with early experimental work

showing that in a 2 player Prisoner’s Dilemma games, giving the choice of not participating in-

creases cooperation in the games which occur because defectors are more likely to opt out72. Our
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model also predicts that in compulsory games with punishment, most of the punishment targeted

at cooperators comes from these defectors that would opt out if given the chance. The results of

Experiment 2 are consistent with this second prediction. We find that subjects who opt out of op-

tional games engage in significantly more punishment of high contributors, even when controlling

for contribution level in the compulsory game and self-reported risk preferences. Interestingly, we

find no difference in punishment of low contributors between those who do and do not choose to

participate in the optional game: while non-loners preferentially punish low contributors, loners

punish both low and high contributors. Extending our simple framework to include effects such

as repetition and reputation is an important area for future work, which may help explain these

features of the behavioral data. In sum, the results of these preliminary experiments highlight the

importance of studying optional games experimentally. Extending previous cross-cultural experi-

ments on anti-social punishment 27,30,31 to consider optional games is an important next step for

future research.

Experimental instructions

Experiment 1 Treatment instructions

Page 1:

You have been randomly assigned to interact with 3 other people. All of you receive this same set

of instructions. You cannot participate in this study more than once.

Each person in your group is given 40 cents for this interaction (in addition to the 20 cents you re-

ceived already for participating). You each decide how much of your 40 cents to keep for yourself,
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and how much (if any) to contribute to the groups common project (in increments of 2 units: 0, 2,

4, 6 etc).

All money contributed to the common project is doubled, and then split evenly among the 4 group

members. Thus, for every 2 cents contributed to the common project, each group member receives

1 cent.

If everyone contributes all of their 40 cents, everyones money will double: each of you will earn

80 cents.

But if everyone else contributes their 40 cents, while you keep your 40 cents, you will earn 100

cents, while the others will earn only 60 cents. That is because for every 2 cents you contribute,

you get only 1 cent back. Thus you personally lose money on contributing.

The other people are REAL and will really make a decision there is no deception in this study.

Page 2:

You MUST answer these two questions correctly to have your work accepted and to receive a

bonus!

1. What level of contribution is best for the group as a whole?

2. What level of contribution earns the highest payoff for you personally?

Page 3:

In this task, your bonus depends on both your decision and the decision of the others in your group.
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If all group members (including you) contributed the maximum amount, all group members earn

an $0.80 bonus. If all group members (including you) contributed nothing, all group members earn

a $0.40 bonus. You can now choose whether to (i) actually engage in this task, or (ii) opt out, and

instead receive a fixed bonus of $0.50 (regardless of what anyone else choses in the task). Which

do you choose?

Page 4 [Only appears for subjects who did not opt out]:

Please choose the amount of money you wish to contribute.

Page 5:

Now you will interact with 3 new people in a 2nd task. This task is exactly the same, except

that you do not have the option to opt out - you (and everyone else) must participate in the task.

There is a 50% chance that your bonus will be determined by your decision in the first task, and a

50% chance that your bonus will be determined by the decision you make now. Please choose the

amount of money you wish to contribute.

Experiment 1 Control instructions

Page 1:

You have been randomly assigned to interact with 3 other people. All of you receive this same set

of instructions. You cannot participate in this study more than once.

Each person in your group is given 40 cents for this interaction (in addition to the 20 cents you re-

ceived already for participating). You each decide how much of your 40 cents to keep for yourself,
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and how much (if any) to contribute to the groups common project (in increments of 2 units: 0, 2,

4, 6 etc).

All money contributed to the common project is doubled, and then split evenly among the 4 group

members. Thus, for every 2 cents contributed to the common project, each group member receives

1 cent.

If everyone contributes all of their 40 cents, everyones money will double: each of you will earn

80 cents.

But if everyone else contributes their 40 cents, while you keep your 40 cents, you will earn 100

cents, while the others will earn only 60 cents. That is because for every 2 cents you contribute,

you get only 1 cent back. Thus you personally lose money on contributing.

The other people are REAL and will really make a decision there is no deception in this study.

Page 2:

You MUST answer these two questions correctly to have your work accepted and to receive a

bonus!

1. What level of contribution is best for the group as a whole?

2. What level of contribution earns the highest payoff for you personally?

Page 3:

Please choose the amount of money you wish to contribute.
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Experiment 2 Treatment instructions

Page 1:

You have been randomly assigned to interact with 3 other people. All of you receive this same set

of instructions. You cannot participate in this study more than once.

Each person in your group is given 40 cents for this interaction (in addition to the 40 cents you

received already for participating).

You each decide how much of your 40 cents to keep for yourself, and how much (if any) to con-

tribute to the groups common project.

All money contributed to the common project is doubled, and then split evenly among the 4 group

members. Thus, for every 2 cents contributed to the common project, each group member receives

1 cent.

If everyone contributes all of their 40 cents, everyones money will double: each of you will earn

80 cents.

But if everyone else contributes their 40 cents, while you keep your 40 cents, you will earn 100

cents, while the others will earn only 60 cents. That is because for every 2 cents you contribute,

you get only 1 cent back. Thus you personally lose money on contributing.

The other people are REAL and will really make a decision there is no deception in this study.

Page 2:
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You MUST answer these two questions correctly to have your work accepted and to receive a

bonus!

1. What level of contribution is best for the group as a whole?

2. What level of contribution earns the highest payoff for you personally?

Page 3:

In this task, your bonus depends on both your decision and the decision of the others in your group.

If all group members (including you) contributed the maximum amount, all group members earn

an $0.80 bonus. If all group members (including you) contributed nothing, all group members earn

a $0.40 bonus. You can now choose whether to (i) actually engage in this task, or (ii) opt out, and

instead receive a fixed bonus of $0.50 (regardless of what anyone else chooses in the task).

Page 4 [Only appears for subjects who did not opt out]:

Please choose the amount of money you wish to contribute.

[0 10 20 30 40]

Page 5:

Now you will interact with 3 new people in a 2nd task. This task is the same as the interaction you

just participated in, with two important differences:

1) This interaction is compulsory. There is no choice to opt out, and instead everyone must partic-

ipate in the interaction.
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2) The decision about how much to contribute to the common project (Stage I) is followed by Stage

II. In Stage II, all group members receive an extra 50 cents, and then you interact with each of the

three other group members individually. You must decide between one of three possible actions, A

B or C, toward each of the three other players. Each other player will also choose an action towards

you.

If you choose A then you lose 0 cents, and the other player loses 0 cents.

If you choose B then you lose 4 cents, and the other player loses 12 cents.

If you choose C then you lose 8 cents, and the other player loses 24 cents.

You can base your Stage II decision on the amount the other group member contributed in Stage I.

——————-

Please choose the amount of money you wish to contribute in Stage I:

[0 10 20 30 40]

Page 6:

Now you must choose your Stage II actions.You must decide between one of three possible actions,

A B or C, toward each of the three other players. Each other player will also choose an action

towards you.

If you choose A then you lose 0 cents, and the other player loses 0 cents.

If you choose B then you lose 4 cents, and the other player loses 12 cents.
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If you choose C then you lose 8 cents, and the other player loses 24 cents.

Each other player will also choose an action towards you.

You (and the other players) can base your decision on each other group member’s contribution in

Stage I:

What action will you take towards group members who contribute 0? [A B C]

What action will you take towards group members who contribute 10? [A B C]

What action will you take towards group members who contribute 20? [A B C]

What action will you take towards group members who contribute 30? [A B C]

What action will you take towards group members who contribute 40? [A B C]
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Compulsory public goods games without loners

To explore the evolution of anti-social punishment in compulsory public goods games, we replicate

our analysis in a game without loners. Strategy definitions and payoffs are the same as in the game

with loners (Supplementary Methods), with two exceptions: (i) only two options are available for

the public goods game, cooperation or defection; and (ii) the 4th strategy parameter (whether to

punish loners) is irrelevant as there are no loners, and so we do not include it in our strategy

definitions. Thus we have 8 strategies total: D-NN, D-NP, D-PN, D-PP, C-NN, C-NP, C-PN and

C-PP, with payoffs as follows.

Simplifying Eq (S30) for XL = 0 gives

B(X) =
rcXC

n

n − 1

N − 1
(S36)

Simplifying Eq (S31) for XL = 0 gives

F = 1 − r
N − n

n(N − 1)
(S37)

The resulting payoffs are then given by
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πD−NN =B(X) − XpDβ
n − 1

N − 1
(S38)

πD−NP =B(X) − ((XD − 1)γ + (XpD − 1)β)
n − 1

N − 1
(S39)

πD−PN =B(X) − (XpDβ + XCγ)
n − 1

N − 1
(S40)

πD−PP =B(X) − ((XC + XD − 1)γ + (XpD − 1)β)
n − 1

N − 1
(S41)

πC−NN =B(X) − Fc− XpCβ
n − 1

N − 1
(S42)

πC−NP =B(X) − Fc− (XpCβ + XDγ)
n − 1

N − 1
(S43)

πC−PN =B(X) − Fc− ((XC − 1)γ + (XpC − 1)β)
n − 1

N − 1
(S44)

πC−PP =B(X) − Fc− ((XC − 1 + XD)γ + (XpC − 1)β)
n − 1

N − 1
(S45)

We now study the evolutionary dynamics of this game in the low mutation limit. We begin by

fixing c = 1, N = 100 and n = 5, and randomly sampling 10,000 parameter sets from the

intervals 1 < r < 5, 0 < σ < (r − 1)c, 0 < γ < 5 and γ < β < 5γ. For each parameter set we

calculate the steady state frequency of each of the 8 strategies. Averaging over the 10,000 parameter

sets gives D-NN=50.0% and D-PN=50.0%, and all other strategies with frequency < 0.1%. Thus

when selection is relatively strong, defection completely dominates cooperation, and anti-social

defectors are as common as defectors that do not punish.

For further insight into the game without loners, we next explore the effect of reducing the intensity

of selection. We modify the evolutionary dynamic such that player i’s fitness is given by fi = ewπi

(rather than fi = eπi), where w controls the intensity of selection. Setting w = 0 gives neutral

selection. Setting w → inf gives deterministic game dynamics. Our simulations up until this point

implicitly use a value of w = 1. Supplementary Fig S6 shows the steady state frequency of each

strategy averaged over 10,000 parameter sets for w between 10−4 and 1. We see that at intermedi-
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ate intensities of selection, the two most common strategies are defectors that punish cooperators

D-PN, and cooperators that punish defectors C-NP, although D-PN is always more common than

C-NP. Examining parameter sets individually shows that defection is always more common than

cooperation, and that anti-social punishment is always more common than cooperation, regard-

less of w or the payoff parameters. Furthermore, as in the game without loners, we find a strong

negative correlation when regressing cooperation level against anti-social punishment level across

parameter sets (w = 1, coeff=-0.41; w = 0.1, coeff=-0.45; w = 0.01, coeff=-0.20).

Thus we find that in the low mutation limit, loners are not needed for evolution to favor anti-social

punishment. Loners are, however essential for the success of cooperation in our framework, as

has been shown previously44. Other mechanisms for the evolution of cooperation1, such as spatial

structure73 or reputation74, may also produce interesting results in conjunction with anti-social

punishment, and are important topics for future research.

Parameter sampling method

Throughout our analysis, we present results aggregated over large sets of randomly sampled pa-

rameters. To do so, we randomly choose values of r ∈ [1, 5], c ∈ [0, 5], σ ∈ [0, 5], γ ∈ [0, 5] and

punishment technology β/γ ∈ [1, 5]. If we find that the constraint σ < (r− 1)c is not satisfied, we

resample until the constraint is met. Here we show that alternate sampling procedures yield equiv-

alent results. In Supplementary Table S14 we show the steady state frequencies of each strategy in

the low mutation limit averaged over 100,000 parameter sets sampled using the following methods:

(i) the procedure used in the main text (Method 1); (ii) sampling r ∈ [1, 5], c ∈ [0, 5], σ ∈ [0, 5],
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γ ∈ [0, 5] and β ∈ [0, 25], and then resampling if σ > (r − 1)c or β > 5γ (Method 2); and (iii)

sampling r ∈ [1, 5], c ∈ [0, 5], σ ∈ [0, (r−1)c], γ ∈ [0, 5] and punishment technology β/γ ∈ [1, 5]

(Method 3). As can be seen, the results are extremely similar across the three sampling methods.

Second order punishment

The issue of second-order punishment has received some attention in the literature17,75. Here pun-

ishers pay to punish both defectors and cooperators that do not punish (second order free-riders).

In our framework we do not consider second order punishment. Using our larger strategy set, it is

unclear which strategies should be the targets of second order punishment. We also question the

appropriateness of the second order free-rider concept in the context of our model (see main text

discussion).
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