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Refined class number formulas and Kolyvagin systems

Barry Mazur and Karl Rubin

Abstract

We use the theory of Kolyvagin systems to prove (most of) a refined class number formula
conjectured by Darmon. We show that for every odd prime p, each side of Darmon’s
conjectured formula (indexed by positive integers n) is “almost” a p-adic Kolyvagin system
as n varies. Using the fact that the space of Kolyvagin systems is free of rank one over
Zp, we show that Darmon’s formula for arbitrary n follows from the case n = 1, which in
turn follows from classical formulas.

1. Introduction

In this paper we use the theory of Kolyvagin systems to prove (most of) a conjecture of Darmon
from [1].

In [2, Conjecture 4.1], inspired by work of the first author and Tate [7], and of Hayes [4], Gross
conjectured a “refined class number formula” for abelian extensions K/k of global fields. Attached
to this extension (and some chosen auxiliary data) there is a generalized Stickelberger element
θK/k ∈ Z[G], where G := Gal(K/k), with the property that for every complex-valued character χ
of G, χ(θK/k) is essentially L(K/k, χ, 0) (modified by the chosen auxiliary data). Gross’ conjectural
formula is a congruence for θK/k, modulo a certain specified power of the augmentation ideal of
Z[G], in terms of a regulator that Gross defined.

In a very special case, Darmon formulated an analogue of Gross’ conjecture involving first
derivatives of L-functions at s = 0. Suppose F is a real quadratic field, and Kn := F (µn) is the
extension of F generated by n-th roots of unity, with n prime to the conductor of F/Q. Darmon
defined a Stickelberger-type element θ′n ∈ K×

n ⊗ Z[Gal(Kn/F )], interpolating the first derivatives
L′(χωF , 0), where ωF is the quadratic character attached to F/Q and χ runs through even Dirichlet
characters of conductor n. Darmon conjectured that θ′n is congruent, modulo a specified power of
the augmentation ideal, to a regulator that he defined. See §3 and Conjecture 3.8 below for a precise
statement.

Our main result is a proof of Darmon’s conjecture “away from the 2-part”. In other words,
we prove that the difference of the two sides of Darmon’s conjectured congruence is an element of
2-power order.

The idea of our proof is a simple application of the results proven in [5]. For every odd prime
p we show that although neither the left-hand side nor the right-hand of Darmon’s conjectured
congruence (as n varies) is a “Kolyvagin system” as defined in [5], each side is almost a Kolyvagin
system; moreover, both sides fail to be Kolyvagin systems in precisely the same way. That is, we show
that the left-hand side and right-hand side form what we call in this paper pre-Kolyvagin systems
in the sense that they each satisfy the specific set of local and global compatibility relations given in
Definition 6.2 below. It seems that pre-Kolyvagin systems are what tend to occur “in nature”, while
Kolyvagin systems satisfy a cleaner set of axioms. We show that the two concepts are equivalent,
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by constructing (see Proposition 6.5) a natural transformation T that turns pre-Kolyvagin systems
into Kolyvagin systems and has the properties that:

– T does not change the term associated to n = 1, and

– T is an isomorphism from the Zp-module of pre-Kolyvagin systems to the Zp-module of Koly-
vagin systems.

Since it was proved in [5] that (in this situation) the space of Kolyvagin systems is a free Zp-module
of rank one, it follows that if two pre-Kolyvagin systems agree when n = 1, then they agree for
every n. In the case n = 1, Darmon’s congruence follows from classical formulas for L′(ωF , 0), so we
deduce that (the p-part, for every odd prime p of) Darmon’s conjectured congruence formula holds
for all n.

Darmon’s conjecture begs for a generalization. A naive generalization, even just to the case where
F is a real abelian extension of Q, is unsuccessful because the definition of Darmon’s regulator does
not extend to the case where [F : Q] > 2. In a forthcoming paper we will use the ideas and
conjectures of [8] to show how both Gross’ and Darmon’s conjectures are special cases of a much
more general conjecture. In the current paper we treat only Darmon’s conjecture because it can be
presented and proved in a very concrete and explicit manner.

The paper is organized as follows. In §2 we describe our setting and notation, and in §3 we
state Darmon’s conjecture and our main result (Theorem 3.9). In §4 we recall some work of Hales
[3] on quotients of powers of augmentation ideals, that will enable us to translate the definition
of Kolyvagin system given in [5] into a form that will be more useful for our purposes here. In §5
we give the definition of a Kolyvagin system (for the Galois representation Zp(1) ⊗ ωF ). In §6 we
define pre-Kolyvagin system, and give an isomorphism between the space of pre-Kolyvagin systems
and the space of Kolyvagin systems. In §7 (resp., §8) we show that the “Stickelberger” side (resp.,
regulator side) of Darmon’s formula is a pre-Kolyvagin system as n varies. Finally, in §9 we combine
the results of the previous sections to prove Theorem 3.9.

2. Setting and notation

Fix once and for all a real quadratic field F , and let f be the conductor of F/Q. Let ω = ωF be
the quadratic Dirichlet character associated to F/Q, and τ the nontrivial element of Gal(F/Q). If
M is a Gal(F/Q)-module, we let M− be the subgroup of elements of M on which τ acts as −1.

Throughout this paper ℓ will always denote a prime number. Let N denote the set of squarefree
positive integers prime to f . If n ∈ N let n+ be the product of all primes dividing n that split in
F/Q, and r(n) ∈ Z>0 the number of prime divisors of n+:

n+ :=
∏

ℓ|n,ω(ℓ)=1

ℓ,

r(n) := #{ℓ : ℓ | n+} = #{ℓ : ℓ | n and ℓ splits in F}.
For every n ∈ N let µn be the Galois module of n-th roots of unity in Q̄, define

Γn := Gal(F (µn)/F ) ∼= Gal(Q(µn)/Q) ∼= (Z/nZ)×,

and let In denote the augmentation ideal of Z[Γn], which is generated over Z by {γ − 1 : γ ∈ Γn}.
There is a natural isomorphism

Γn
∼= In/I2

n (1)

defined by sending γ ∈ Γn to γ − 1 (mod I2
n). If m | n then we can view Γm either as the quotient

Gal(F (µm)/F ) of Γn, or as the subgroup Gal(F (µn)/F (µn/m)). With the latter identification we

2
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have

Γn =
∏

ℓ|n

Γℓ, In/I2
n =

⊕

ℓ|n

Iℓ/I
2
ℓ

the product and the sum taken over primes ℓ dividing n.

We will usually write the group operation in multiplicative groups such as F× with standard
multiplicative notation (for example, with identity element 1). However, when dealing with “mixed”
groups such as F×⊗Ir

n/Ir+1
n , we will write the operation additively and use 0 for the identity element.

Fix an embedding Q̄ →֒ C.

3. Statement of the conjecture

In this section we state our modified version of Darmon’s conjecture (mostly following [1]) and our
main result (Theorem 3.9).

If n ∈ N , let ζn ∈ µn be the inverse image of e2πi/n under the chosen embedding Q̄ →֒ C, and
define the cyclotomic unit

αn :=
∏

γ∈Gal(Q(µnf )/Q(µn))

γ(ζnf − 1)ωF (γ) ∈ F (µn)×

and the “first derivative θ-element”

θ′n =
∑

γ∈Γn

γ(αn) ⊗ γ ∈ F (µn)× ⊗ Z[Γn].

Remark 3.1. The element θ′n is an “L-function derivative evaluator” in the sense that for every
even character χ : Γn → C×, classical formulas give

(log | · | ⊗ χ)(θ′n) :=
∑

γ∈Γn

χ(γ) log |γ(αn)| = −2L′
n(0, ωF χ)

where Ln(s, ωF χ) is the Dirichlet L-function with Euler factors at primes dividing n removed, and
| · | is the absolute value corresponding to our chosen embedding Q̄ →֒ C.

Suppose n ∈ N . Let Xn be the group of divisors of F supported above n∞, and let En :=
OF [1/n]×, the group of n-units of F . We will write the action of Z[Γn] on En additively, so in
particular (1 − τ)En = {ǫ/ǫτ : ǫ ∈ En}.

Let λ0 ∈ Xn be the archimedean place of F corresponding to our chosen embedding Q̄ →֒ C.

Lemma 3.2. Suppose n ∈ N , and let r = r(n).

(i) We have X−
n = X−

n+
, E−

n = E−
n+

, and (1 − τ)En = (1 − τ)En+
.

(ii) The group (1 − τ)En is a free abelian group of rank r + 1, and is a subgroup of finite index in
E−

n .

(iii) The group X−
n is a free abelian group of rank r + 1. If n+ =

∏r
i=1 ℓi, and ℓi = λiλ

τ
i , then

{λ0 − λτ
0 , λ1 − λτ

1 , . . . , λr − λτ
r , } is a basis of X−

n .

Proof. The only part that is not clear is that (1 − τ)En is torsion-free, i.e., −1 /∈ (1 − τ)En. Let
d > 1 be a squarefree integer such that F = Q(

√
d). If xτ = −x, then x/

√
d ∈ Q, so x is not a unit

at the primes dividing d. Since n is prime to d, we cannot have x ∈ En.

Definition 3.3. A standard Z-basis of X−
n is a basis of the form described in Lemma 3.2(iii). Given

a standard basis of X−
n , a Z-basis {ǫ0, . . . , ǫr} of (1 − τ)En will be called oriented if the (regulator)

3
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determinant of the logarithmic embedding

(1 − τ)En −→ X−
n ⊗ R, ǫ 7→

∑

λ|n+∞

log |ǫ|λ · λ

with respect to the two bases is positive. Concretely, this regulator is the determinant of the matrix
whose entry in row i and column j is log |ǫj |λi

.

Remark 3.4. Choosing a standard basis of X−
n is equivalent to ordering the prime divisors ℓi of

n+ and choosing one prime of F above each ℓi.

Any basis of (1 − τ)En can be oriented either by reordering the basis, or inverting one of the
basis elements.

Definition 3.5. Suppose n ∈ N and λ is a prime of F dividing n+. Define a homomorphism

[ · ]nλ : F× −→ In/I2
n

by

[x]nλ = [x, Fλ(µn)/Fλ] − 1 (mod I2
n)

where [x, Fλ(µn)/Fλ] ∈ Γn is the local Artin symbol. Note that if ordλ(x) = 0, then [x, Fλ(µn)/Fλ]

belongs to the inertia group Γℓ ⊂ Γn, so [x]nλ = [x]ℓλ ∈ Iℓ/I
2
ℓ and [x]

n/ℓ
λ = 0. In general, if d | n then

[x]nλ = [x]dλ + [x]
n/d
λ ∈ Id/I

2
d ⊕ In/d/I

2
n/d = In/I2

n.

Definition 3.6. (See [1, p. 308].) Suppose n ∈ N , and let r = r(n). Choose a standard basis
{λ0−λτ

0 , . . . , λr −λτ
r} of X−

n and an oriented basis {ǫ0, . . . , ǫr} of (1−τ)En, and define the regulator
Rn ∈ E−

n ⊗ Ir
n/Ir+1

n by

Rn :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 ǫ1 · · · ǫr

[ǫ0]
n
λ1

[ǫ1]
n
λ1

· · · [ǫr]
n
λ1

...
...

...
[ǫ0]

n
λr

[ǫ1]
n
λr

· · · [ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∈ (1 − τ)En ⊗ Ir
n/Ir+1

n .

This determinant, and the ones that follow below, are meant to be evaluated by expanding by
minors along the top row, i.e.,

Rn :=
r

∑

j=0

(−1)jǫj ⊗ det(A1j) (2)

where A1j is the r × r matrix (with entries in In/I2
n) obtained by removing the first row and j-th

column of the matrix above.

Note that this definition of Rn does not depend on the choice of Z-bases. The possible ambiguity
of ±1 is removed by requiring that the basis of (1 − τ)En be oriented.

Let hn denote the “n-class number” of F , i.e., the order of the ideal class group Pic(OF [1/n]).
For the rest of this section we write simply r instead of r(n).

Theorem 3.7 (Darmon [1, Theorem 4.2]). For every n ∈ N , we have

θ′n ∈ F (µn)× ⊗ Ir
n.

For n ∈ N , let θ̃′n denote the image of θ′n in F (µn)× ⊗ Ir
n/Ir+1

n . Let s be the number of prime
divisors of n/n+; we continue to denote by r the number of prime factors of n+.

The following is a slightly modified version of Darmon’s “leading term” conjecture [1, Conjecture
4.3].

4
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Conjecture 3.8. For every n ∈ N , we have

θ̃′n = −2shnRn in (F (µn)×/{±1}) ⊗ Ir
n/Ir+1

n .

The main theorem of this paper is the following.

Theorem 3.9. For every n ∈ N , we have

θ̃′n = −2shnRn in F (µn)× ⊗ Ir
n/Ir+1

n ⊗ Z[1/2].

In other words, the p-part of Conjecture 3.8 holds for every odd prime p; in still other words,
θ̃′n + 2shnRn has 2-power order in F (µn)× ⊗ Ir

n/Ir+1
n .

A key step in the proof of Theorem 3.9 is the following observation.

Proposition 3.10 (Darmon [1, Theorem 4.5(1)]). Conjecture 3.8 holds if n = 1.

Proof. When n = 1 we have r = 0, Ir
n/Ir+1

n = Z, θ̃′1 = θ′1 = α1 ∈ O×
F , and R1 = ǫ/ǫτ , where ǫ is a

generator of O×
F /{±1} and |ǫ/ǫτ | = |ǫ|2 > 1 at our specified archimedean place. Dirichlet’s analytic

class number formula shows that

−1

2
log |α1| = L′(0, ωF ) = hF log |ǫ| =

1

2
hF log |ǫ/ǫτ |

where hF = h1 is the class number of F . Hence α1 = ±(ǫ/ǫτ )−hF in O×
F .

Remarks 3.11. (i) In Darmon’s formulation [1, Conjecture 4.3], the regulator Rn was defined with
respect to a basis of E−

n /{±1} instead of (1 − τ)En, and there was an extra factor of 2 on the
right-hand side. This agrees with Conjecture 3.8 if and only if [E−

n : ±(1 − τ)En] = 2, i.e., if and
only if −1 /∈ NF/QEn.

(ii) The ambiguity of ±1 in Conjecture 3.8 is necessary. Namely, even when n = 1, we may only
have θ̃′1 = h1R1 in O×

F /{±1}. Since α1 is always positive (it is a norm from a CM field to F ), the

proof of Proposition 3.10 shows that θ̃′1 6= −h1R1 in F× when hF is odd and O×
F has a unit of norm

−1. Note that in this case θ̃′1 and −h1R1 differ (multiplicatively) by an element of order 2 in F×,
so the discrepancy disappears when we tensor with Z[1/2].

4. Augmentation quotients

Definition 4.1. Suppose n ∈ N , and let r = r(n). Let Inew
n ⊂ Ir

n/Ir+1
n be the (cyclic) subgroup

generated by monomials
∏

ℓ|n+
(γℓ − 1) with γℓ ∈ Γℓ. Let Iold

n ⊂ Ir
n/Ir+1

n be the subgroup generated

by monomials
∏r

i=1(γi−1) where each γi ∈ Γℓi
for some ℓi dividing n, and {ℓ1, . . . , ℓr} 6= {ℓ : ℓ | n+}

(i.e., either one of the ℓi divides n/n+, or ℓi = ℓj for some i 6= j). If n = d1d2 then there is a natural
identification Inew

n = Inew
d1

Inew
d2

⊂ Ir
n/Ir+1

n , and if n = ℓ is prime then Inew
ℓ = Iℓ/I

2
ℓ and Iold

ℓ = 0.

If d | n, let

πd : Z[Γn] ։ Z[Γd] →֒ Z[Γn]

denote the composition of the natural maps. We also write πd for the induced map on Ik
n/Ik+1

n for
k > 0.

The following proposition is based on work of Hales [3].

Proposition 4.2. Suppose n ∈ N , and r = r(n). Then:

(i) Ir
n/Ir+1

n = Inew
n ⊕ Iold

n .

(ii) If d | n+ and d > 1, then πn/d(Inew
n ) = 0 and πn/d(I

r
n/Ir+1

n ) ⊂ Iold
n .

(iii) Inew
n = {v ∈ Ir

n/Ir+1
n : πn/ℓ(v) = 0 for every ℓ dividing n+}.

5
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(iv) The map ⊗ℓ|n+
Γℓ → Inew

n defined by ⊗ℓ|n+
γℓ 7→

∏

ℓ|n+
(γℓ − 1) is an isomorphism.

Proof. Let An be the polynomial ring Z[Yℓ : ℓ | n] with one variable Yℓ for each prime ℓ dividing
n. Fix a generator σℓ of Γℓ for every ℓ dividing n, and define a map An → Z[Γn] by sending
Yℓ 7→ σℓ − 1. By Corollary 2 of [3], this map induces an isomorphism from the homogeneous degree-
r part of An/(Jn + J ′

n) to Ir
n/Ir+1

n , where Jn is the ideal of An generated by {(ℓ− 1)Yℓ : ℓ | n}, and
J ′

n is the ideal generated by certain other explicit homogeneous relations (see [3, Lemma 2]). The
only fact we need about these “extra” relations is:

if f ∈ J ′
n, then every monomial that occurs in f is divisible by the square of some Yℓ. (3)

Note that Inew
n is the image in Ir

n/Ir+1
n of the subgroup of An/(Jn + J ′

n) generated by Yn, where
Yn :=

∏

ℓ|n+
Yℓ. Similarly, Iold

n is the image of the subgroup generated by all other monomials of

degree r. By (3), Yn does not occur in any of the relations in J ′
n, and assertion (i) follows.

Assertion (ii) is clear, since πn/d kills those monomials that include (γ − 1) with γ ∈ Γℓ for ℓ
dividing d, and leaves the other monomials unchanged.

Fix v ∈ Ir
n/Ir+1

n . If v ∈ Inew
n and ℓ | n+, then πn/ℓ(v) = 0 by (ii). Conversely, suppose that

πn/ℓ(v) = 0 for every ℓ dividing n+. Choose f ∈ An homogeneous of degree r representing v, and
suppose f has the minimum number of monomials among all representatives of v. We will show
that Yn | f , and hence v ∈ Inew

n .

Fix a prime ℓ dividing n+. The map πn/ℓ : Z[Γn] ։ Z[Γn/ℓ] →֒ Z[Γn] corresponds to the map
An → An defined by setting Yℓ = 0. Since πn/ℓ(v) = 0, substituting Yℓ = 0 in f gives a relation
in Jn + J ′

n, i.e., f = Yℓ · g + h where g is homogeneous of degree r − 1, h ∈ Jn + J ′
n, and Yℓ does

not occur in h. But then Yℓ · g represents v, so the minimality assumption on f implies that h = 0.
Therefore Yℓ | f for every ℓ dividing n+, so Yn | f and v ∈ Inew

n . This proves (iii).

Let g := gcd({ℓ − 1 : ℓ | n+}). Then gYn ∈ Jn. It follows from (3) that the monomial Yn only
occurs in elements of Jn+J ′

n with coefficients divisible by g. Therefore Inew
n is cyclic of order g, and so

is ⊗ℓ|n+
Γℓ. Clearly the map ⊗ℓ|n+

Γℓ → Inew
n of (iv) is surjective, so it must be an isomorphism.

If v ∈ Ir
n/Ir+1

n , let 〈v〉new
n denote the projection of v to Inew

n under the splitting of Proposition
4.2(i). We will use the following lemma without explicit reference in some of our computations in
§6 and §8. Its proof is left as an exercise.

Lemma 4.3. Suppose d | n, v ∈ Inew
n/d , and w ∈ I

r(d)
n /I

r(d)+1
n . Then

〈vw〉new
n = 〈vπd(w)〉new

n = v〈πd(w)〉new
d .

5. Kolyvagin systems

Fix an odd prime p. To prove Theorem 3.9 we need to introduce Kolyvagin systems, as defined in
[5]. (See in particular [5, §6.1], and also [6], for the case of Kolyvagin systems associated to even
Dirichlet characters that we use here.)

Let F̂× denote the p-adic completion of F×. Similarly, for every rational prime ℓ let Fℓ := F⊗Qℓ,
Oℓ := OF⊗Zℓ, and define F̂×

ℓ and Ô×
ℓ to be their p-adic completions. We define the “finite subgroup”

F̂×
ℓ,f to be the “unit part” of F̂×

ℓ

F̂×
ℓ,f := Ô×

ℓ ⊂ F̂×
ℓ .

If ℓ = λλτ splits in F , define the “transverse subgroup” F̂×
ℓ,tr ⊂ F̂×

ℓ to be the (closed) subgroup

generated by (ℓ, 1) and (1, ℓ), where we identify F×
ℓ with F×

λ × F×
λτ

∼= Q×
ℓ × Q×

ℓ . Then we have a

6
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canonical splitting F̂×
ℓ = F̂×

ℓ,f × F̂×
ℓ,tr, and since p is odd

(F̂×
ℓ )− = (F̂×

ℓ,f)
− × (F̂×

ℓ,tr)
−. (4)

Definition 5.1. If ℓ 6= p splits in F , define the finite-singular isomorphism

φfs
ℓ : (F̂×

ℓ,f)
− ∼−→ (F̂×

ℓ,tr)
− ⊗ Iℓ/I

2
ℓ

by

φfs
ℓ (x) = (ℓ, 1) ⊗ ([xλ, Fλ(µℓ)/Fλ] − 1) + (1, ℓ) ⊗ ([xλτ , Fλτ (µℓ)/Fλτ ] − 1)

= (ℓ, ℓ−1) ⊗ ([xλ, Fλ(µℓ)/Fλ] − 1)

where x = (xλ, xλτ ) ∈ F̂×
λ × F̂×

λτ = Q̂×
ℓ × Q̂×

ℓ with xλτ = x−1
λ ∈ Ẑ×

ℓ , and [ · , Fλ(µℓ)/Fλ] is the local
Artin symbol. (Concretely, note that if u ∈ Z×

ℓ then [u, Fλ(µℓ)/Fλ] is the automorphism in Γℓ that

sends ζℓ to ζu−1

ℓ .) Then φfs
ℓ is a well-defined isomorphism (both the domain and range are free of

rank one over Zp/(ℓ − 1)Zp), independent of the choice of λ versus λτ .

Definition 5.2. Let Np := {n ∈ N : p ∤ n}. A Kolyvagin system κ (for the Galois representation
Zp(1) ⊗ ωF ) is a collection

{κn ∈ (F̂×)− ⊗ Inew
n : n ∈ Np}

satisfying the following properties for every rational prime ℓ. Let (κn)ℓ denote the image of κn in
(F̂×

ℓ )− ⊗ Inew
n .

(i) If ℓ ∤ n, then (κn)ℓ ∈ (F̂×
ℓ,f)

− ⊗ Inew
n .

(ii) If ℓ | n+, then (κn)ℓ = (φfs
ℓ ⊗ 1)(κn/ℓ,ℓ).

(iii) If ℓ | n/n+, then κn = κn/ℓ.

Let KS(F ) denote the Zp-module of Kolyvagin systems for Zp(1) ⊗ ωF .

Remark 5.3. Let N+
p := {n ∈ Np : all ℓ | n split in F/Q}. In [5], a Kolyvagin system was defined

to be a collection of classes {κn ∈ (F̂×
ℓ )−⊗ (⊗ℓ|nΓℓ) : n ∈ N+

p }, and φfs
ℓ took values in (F̂×

ℓ,tr)
− ⊗Γℓ.

We use Proposition 4.2(iv) to replace ⊗ℓ|n+
Γℓ by Inew

n and (1) to replace Γℓ by Iℓ/I
2
ℓ , which will be

more convenient for our purposes here. Also, a Kolyvagin system {κn : n ∈ N+
p } as in [5] extends

uniquely to {κn : n ∈ Np} simply by setting κn := κn+
for n ∈ Np −N+

p .

The following theorem is the key to our proof of Theorem 3.9.

Theorem 5.4. Suppose κ,κ′ ∈ KS(F ). If κ1 = κ′
1, then κn = κ′

n for every n ∈ Np.

Proof. We follow §6.1 of [5], with R = Zp, ρ = ωF , T = Zp(1)⊗ ωF , and with the Selmer structure
denoted F in [5]. By Lemma 6.1.5 and Proposition 6.1.6 of [5], the hypotheses needed to apply the
results of §5.2 of [5] all hold, and the core rank of T is 1.

By Theorem 5.2.10(ii) of [5], KS(F ) is a free Zp-module of rank one. Therefore (switching κ

and κ
′ if necessary) there is an a ∈ Zp such that κ

′ = aκ, i.e., κ′
n = aκn for every n ∈ Np. If κ is

identically zero, then so is κ
′ and we are done. If κ is not identically zero, then (since the ideal class

group of F is finite) Theorem 5.2.12(v) of [5] shows that κ1 6= 0. Since κ′
1 = κ1 in the torsion-free

Zp-module (F̂×)− (in fact property (i) above shows that κ1 ∈ (O×
F ⊗Zp)

−), we must have a = 1.

6. Pre-Kolyvagin systems

Keep the fixed odd prime p. The right-hand and left-hand sides of Conjecture 3.8 are “almost”
Kolyvagin systems. If they were Kolyvagin systems, then since they agree when n = 1 (Proposition
3.10), they would agree for all n by Theorem 5.4, and Theorem 3.9 would be proved.

7
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In this section we define what we call “pre-Kolyvagin systems”, and show that a pre-Kolyvagin
system can be transformed into a Kolyvagin system. Using Theorem 5.4, we deduce (Corollary 6.6
below) that if two pre-Kolyvagin systems agree when n = 1, then they agree for every n. In §7 and
§8, respectively, we will show that the left- and right-hand sides of Conjecture 3.8 are pre-Kolyvagin
systems. Then Theorem 3.9 will follow from Corollary 6.6 and Proposition 3.10.

If x ∈ (F̂×)−⊗ Ir
n/Ir+1

n , let xℓ denote the image of x in (F̂×
ℓ )−⊗ Ir

n/Ir+1
n , and if ℓ ∈ Np splits in

F/Q, let xℓ,f ∈ (F̂×
ℓ,f)

−⊗ Ir
n/Ir+1

n and xℓ,tr ∈ (F̂×
ℓ,tr)

−⊗ Ir
n/Ir+1

n denote the projections of xℓ induced

by the splitting (4). Let 〈x〉new
n ∈ (F̂×)− ⊗Inew

n denote the projection of x induced by the splitting
of Proposition 4.2(i), and similarly for 〈xℓ〉new

n and 〈xℓ,f〉new
n .

Definition 6.1. If n ∈ N and d =
∏t

i=1 ℓi divides n+, let Mn,d = (mij) be the t × t matrix with
entries in In/I2

n

mij =

{

πn/d(Frℓi
− 1) if i = j,

πℓj
(Frℓi

− 1) if i 6= j.

We let Md := Md,d, where π1(Frℓ − 1) is understood to be zero, so that all diagonal entries of Md

are zero. Define

Dn,d := det(Mn,d) ∈ It
n/It+1

n , Dd := det(Md) ∈ Inew
d ⊂ It

n/It+1
n .

By convention we let Dn,1 = D1 = 1. Note that Dn,d and Dd are independent of the ordering of the
prime factors of d.

Definition 6.2. A pre-Kolyvagin system κ (for Zp(1) ⊗ ωF ) is a collection

{κn ∈ (F̂×)− ⊗ Ir
n/Ir+1

n : n ∈ Np}
where r = r(n), satisfying the following properties for every rational prime ℓ:

(i) If ℓ ∤ n, then (κn)ℓ ∈ (F̂×
ℓ,f)

− ⊗ Ir
n/Ir+1

n .

(ii) If ℓ | n+, then (1 ⊗ πn/ℓ)κn = κn/ℓ πn/ℓ(1 − Frℓ).

(iii) If ℓ | n+, then 〈(κn)ℓ,tr〉new
n = (φfs

ℓ ⊗ 1)(〈(κn/ℓ)ℓ〉new
n/ℓ ).

(iv) If ℓ | n+, then
∑

d|n+
〈(κn/d)ℓ,f〉new

n/d Dd = 0.

(v) If ℓ | n/n+, then 〈κn〉new
n = 〈κn/ℓ〉new

n/ℓ .

Let PKS(F ) denote the Zp-module of pre-Kolyvagin systems for Zp(1) ⊗ ωF .

Definition 6.3. If κ = {κn : n ∈ Np} is a pre-Kolyvagin system, define κ̃ = {κ̃n : n ∈ Np} by

κ̃n :=
∑

d|n+

κn/d Dn,d.

Lemma 6.4. Suppose n ∈ Np and d | n.

(i) If ℓ | d then πn/ℓ(Dn,d) = πn/d(Frℓ − 1)Dn/ℓ,d/ℓ.

(ii) If ℓ ∤ d then πn/ℓ(Dn,d) = Dn/ℓ,d.

(iii) πd(Dn,d) = Dd ∈ Inew
d .

Proof. Suppose ℓ | d. The column of πn/ℓ(Mn,d) corresponding to ℓ consists of all zeros except for
πn/d(Frℓ − 1) on the diagonal. The first assertion follows from this, and (ii) and (iii) follow directly
from the definition.

Proposition 6.5. The map κ 7→ κ̃ of Definition 6.3 is a Zp-module isomorphism PKS(F )
∼−→

KS(F ) between free Zp-modules of rank one.

8
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Proof. The Zp-linearity is clear. The injectivity is clear as well, since it follows easily by induction
that if κ̃n = 0 for all n, then κn = 0 for all n.

We next show that if κ is a pre-Kolyvagin system, then κ̃ is a Kolyvagin system. In other words,
we need to show for every n ∈ Np that

(a) κ̃n ∈ (F̂×)− ⊗ Inew
n ,

(b) if ℓ ∤ n then (κ̃n)ℓ ∈ (F̂×
ℓ,f)

− ⊗ Inew
n ,

(c) if ℓ | n+ then (κ̃n)ℓ,tr = (φfs
ℓ ⊗ 1)((κn/ℓ)ℓ),

(d) if ℓ | n+ then (κ̃n)ℓ,f = 0,

(e) if ℓ | n/n+ then κ̃n = κ̃n/ℓ.

Fix n ∈ Np, and suppose that ℓ | n+. Then

(1 ⊗ πn/ℓ)(κ̃n) =
∑

d|n+,ℓ∤d

(1 ⊗ πn/ℓ)(κn/dDn,d) +
∑

d|n+,ℓ|d

(1 ⊗ πn/ℓ)(κn/dDn,d)

=
∑

d|(n+/ℓ)

κn/(dℓ) πn/ℓ(Dn,dℓ) + (1 ⊗ πn/(dℓ))(κn/d)πn/ℓ(Dn,d).

Fix a divisor d of n+/ℓ. By Lemma 6.4(i),

κn/(dℓ) πn/ℓ(Dn,dℓ) = κn/(dℓ) πn/(dℓ)(Frℓ − 1)Dn/ℓ,d.

Also, (1 ⊗ πn/(dℓ))(κn/d) = κn/(dℓ) πn/(dℓ)(1 − Frℓ) by Definition 6.2(ii), so by Lemma 6.4(ii)

(1 ⊗ πn/(dℓ))(κn/d)πn/ℓ(Dn,d) = κn/(dℓ) πn/(dℓ)(1 − Frℓ)Dn/ℓ,d.

Thus (1 ⊗ πn/ℓ)(κ̃n) = 0 for every ℓ dividing n. Since (F̂×)− is a free Zp-module, it follows from

Proposition 4.2(iii) that κ̃n ∈ (F̂×)− ⊗ Inew
n . This is property (a) above.

By (a), and using that πd(Dn,d) ∈ Inew
d , we have

κ̃n = 〈κ̃n〉new
n =

∑

d|n+

〈κn/d〉new
n/d πd(Dn,d).

If ℓ ∤ n, then property (i) of Definition 6.2 of a pre-Kolyvagin system shows that 〈(κn,d)ℓ〉new
n/d ∈

(F̂×
ℓ,f)

− ⊗ Inew
n/d for every d, so (κ̃n)ℓ ∈ (F̂×

ℓ,f)
− ⊗ Inew

n . This is (b).

Now suppose ℓ | n+. For (c), using property (i) of Definition 6.2 we have

(κ̃n)ℓ,tr =
∑

d|n+

(κn/d)ℓ,trDn,d =
∑

d|(n+/ℓ)

(κn/d)ℓ,trDn,d.

Projecting into Inew
n , and using (a), (ii) of Definition 6.2, and Lemma 6.4(ii), we have

(κ̃n)ℓ,tr = 〈(κ̃n)ℓ,tr〉new
n =

∑

d|(n+/ℓ)

〈(κn/d)ℓ,trDn,d〉new
n

=
∑

d|(n+/ℓ)

〈(φfs
ℓ ⊗ 1)((κn/(dℓ))ℓ)πn/ℓ(Dn,d)〉new

n

=
∑

d|(n+/ℓ)

〈(φfs
ℓ ⊗ 1)((κn/(dℓ))ℓ)Dn/ℓ,d〉new

n

= 〈(φfs
ℓ ⊗ 1)(κ̃n/ℓ)〉new

n = (φfs
ℓ ⊗ 1)(〈κ̃n/ℓ〉new

n/ℓ ) = (φfs
ℓ ⊗ 1)(κ̃n/ℓ).

This is (c). For (d), using (a), Lemma 6.4(iii), and (iv) of Definition 6.2 we have

(κ̃n)ℓ,f = 〈(κ̃n)ℓ,f〉new
n =

∑

d|n+

〈(κn/d)ℓ,f〉new
n/d 〈πd(Dn,d)〉new

d =
∑

d|n+

〈(κn/d)ℓ,f〉new
n/dDd = 0.

9
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Finally, suppose that ℓ | n/n+. Using Definition 6.2(v) and property (a) above,

κ̃n = 〈κ̃n〉new
n =

∑

d|n+

〈(κn/d)〉new
n/dDd =

∑

d|(n/ℓ)+

〈(κn/(dℓ))〉new
n/(dℓ)Dd = 〈κ̃n/ℓ〉new

n/ℓ = κ̃n/ℓ.

This completes the proof that κ̃ is a Kolyvagin system.

Since KS(F ) is a free Zp-module of rank one [5, Theorem 5.2.10(ii)], to complete the proof it
remains only to show that the map PKS(F ) → KS(F ) is surjective. If κ̃ ∈ KS(F ), then (since
Dn,1 = 1) we can define inductively a collection κ := {κn ∈ (F̂×)− ⊗ Ir

n/Ir+1
n : n ∈ Np} such that

∑

d|n+
κn/d Dn,d = κ̃n for every n. It is straightforward to check that κ is a pre-Kolyvagin system;

since we will not make use of this, we omit the proof. By Definition 6.3 the image of κ in KS(F )
is κ̃.

Corollary 6.6. Suppose κ,κ′ ∈ PKS(F ). If κ1 = κ′
1, then κn = κ′

n for every n ∈ Np.

Proof. Let κ̃ and κ̃
′ be the images of κ and κ

′, respectively, under the map of Definition 6.3. Then
κ̃ and κ̃

′ are Kolyvagin systems, and κ̃1 = κ1 = κ′
1 = κ̃′

1. Therefore κ̃ = κ̃
′ by Theorem 5.4, so by

the injectivity assertion of Proposition 6.5 we have κ = κ
′, i.e., κn = κ′

n for every n ∈ Np.

We will use the following definition and lemma to replace property (iv) in the definition of a
pre-Kolyvagin system by an equivalent property that will be easier to verify. See Remark 6.9 below.

Definition 6.7. If n ∈ N , let S(n) denote the set of permutations of the primes dividing n+, and
let S1(n) ⊂ S(n) be the subset

S1(n) := {σ ∈ S(n) : the primes not fixed by σ form a single σ-orbit}.
If σ ∈ S(n) let dσ :=

∏

ℓ|n+,σ(ℓ)6=ℓ ℓ, the product of the primes not fixed by σ, and define

Π(σ) :=
∏

q|dσ

πq(Frσ(q) − 1).

Lemma 6.8. Suppose that A is an abelian group, ℓ is a prime that splits in F/Q, and xn ∈ A⊗Inew
n

for every n ∈ Np. Then the following are equivalent:

(i) For every n divisible by ℓ,
∑

d|n+
xn/d Dd = 0.

(ii) For every n divisible by ℓ, xn = −
∑

σ∈S1(n)
σ(ℓ)6=ℓ

sign(σ)xn/dσ
Π(σ).

Proof. We show first that (ii) implies (i) (which is the implication we use later in this paper). Let
S′(d) ⊂ S(d) denote the derangements, i.e., the permutations with no fixed points. Then we can
evaluate the determinant Dd = det(Md) as follows. Let mq,q′ be the (q, q′)-entry in Md. Then

Dd =
∑

σ∈S(d)

sign(σ)
∏

q|d

mq,σ(q) =
∑

σ∈S′(d)

sign(σ)Π(σ), (5)

where the second equality holds since the diagonal entries of Md vanish.

Fix an n divisible by ℓ, and let

S1 =
∑

d|n+,ℓ∤d

xn/d Dd, S2 =
∑

d|n+,ℓ|d

xn/d Dd.

Using property (ii) we have

S1 = −
∑

d|n+

ℓ∤d

∑

σ∈S1(n/d)
σ(ℓ)6=ℓ

sign(σ)〈(xn/(ddσ ))ℓ〉new
n/(ddσ)Π(σ)Dd. (6)

10
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Fix a divisor δ of n+ that is divisible by ℓ. We will show that the coefficient of xn/δ in S1 in (6) is
−Dδ, which exactly cancels the coefficient of xn/δ in S2. Using (5), the coefficient of xn/δ in S1 in
(6) is

−
∑

d|(δ/ℓ)

∑

σ∈S1(n/d)
dσ=δ/d

(

sign(σ)Π(σ)
∑

η∈S′(d)

sign(η)Π(η)

)

= −
∑

d|(δ/ℓ)

∑

σ∈S1(n/d)
dσ=δ/d

∑

η∈S′(d)

sign(ση)Π(ση).

For every ρ ∈ S′(δ) there is a unique triple (d, σ, η) such that

d | δ/ℓ, σ ∈ S1(n/d), dσ = δ/d, η ∈ S′(d), and ρ = ση.

To see this, simply write ρ as a product of disjoint cycles, let σ be the cycle containing ℓ, and let
d = δ/dσ and η = σ−1ρ. Thus the coefficient of xn/δ in S1 in (6) is (using (5) again)

−
∑

ρ∈S′(δ)

sign(ρ)Π(ρ) = −Dδ.

Therefore
∑

d|n+
xn/d Dd = S1 + S2 = 0, so (i) holds.

Although we will not need it, here is a simple argument to show that (i) implies (ii). Suppose
that X := {xn ∈ A ⊗ Inew

n : n ∈ Np} satisfies (i). If ℓ | n, then (since D1 = 1) we can use (i)
recursively to express xn as a linear combination of xd with ℓ ∤ d. Thus X is uniquely determined
by the subset X ′ := {xn ∈ A ⊗ Inew

n : n ∈ Np, ℓ ∤ n}. Clearly X ′ determines a unique collection
Y := {yn ∈ A ⊗ Inew

n : n ∈ Np} satisfying (ii), with yn = xn if ℓ ∤ n. We showed above that (ii)
implies (i), so Y satisfies (i). Since (i) and X ′ uniquely determine both X and Y , we must have
X = Y , and so X satisfies (ii).

Remark 6.9. We will apply Lemma 6.8 as follows. Let A := (F̂×
ℓ,f)

−, and let xn := 〈(κn)ℓ,f〉new
n .

Then Lemma 6.8 says that we can replace property (iv) in Definition 6.2 of a pre-Kolyvagin system
by the equivalent statement:

(iv)′ if ℓ | n+, then 〈(κn)ℓ,f〉new
n = −

∑

σ∈S1(n)
σ(ℓ)6=ℓ

sign(σ)〈(κn/dσ
)ℓ〉new

n/dσ
Π(σ).

7. The cyclotomic unit pre-Kolyvagin system

Fix an odd prime p. If n ∈ N , let s(n) be the number of prime factors of n/n+. In this section we
will show that the collection {2−s(n)θ̃′n : n ∈ Np} is a pre-Kolyvagin system. Recall that

N+
p := {n ∈ Np : all ℓ | n split in F/Q}.

Proposition 7.1 (Darmon). If n ∈ Np then
∑

d|n+

θ̃′n/d

∏

ℓ|d

πn/d(Frℓ − 1) = 2s(n)βn+
in (F̂×)− ⊗ Inew

n

where for n ∈ N+
p , βn ∈ (F̂×)− ⊗ Inew

n is the Kolyvagin derivative class denoted κ(n) in [1, §6], or
κn in [6, Appendix].

Proof. This is Proposition 9.4 of [1].1 (Note that κ(n) in [1, §6] and κn in [6, Appendix] are defined
to lie in (F̂×)− ⊗ (Z/ gcd(ℓ − 1 : ℓ|n)Z), after fixing generators of every Γℓ. Without fixing such
choices, the elements defined in [1] and [6] live naturally in (F̂×)− ⊗ Inew

n .)

1There is a typo in [1, Proposition 9.4]. The last two T ’s should be TQ, as in [1, Lemma 8.1].
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Theorem 7.2. The collection {2−s(n)θ̃′n : n ∈ Np} is a pre-Kolyvagin system.

Proof. We need to check the five properties of Definition 6.2. For n ∈ N+
p , let βn be as in Proposition

7.1.

Since βn+
∈ (F̂×)− ⊗ Inew

n for every n, it follows easily by induction from Proposition 7.1 that

θ̃′n ∈ (F̂×)−⊗Ir
n/Ir+1

n , where r is the number of prime factors of n+. This is property (i) of Definition
6.2.

Suppose ℓ | n+. A standard property of cyclotomic units shows that

NF (µn)/F (µn/ℓ)
αn = αn/ℓ/α

Fr−1

ℓ

n/ℓ
.

It follows from the definition of θ′n that

(1 ⊗ πn/ℓ)(θ
′
n) =

∑

γ∈Γn

γ(αn) ⊗ πn/ℓ(γ) =
∑

γ∈Γn/ℓ

γ(NF (µn)/F (µn/ℓ)
αn) ⊗ γ

=
∑

γ∈Γn/ℓ

γ
(

αn/ℓ/α
Fr−1

ℓ

n/ℓ

)

⊗ γ =
∑

γ∈Γn/ℓ

γ(αn/ℓ) ⊗ γ πn/ℓ(1 − Frℓ) = θ′n/ℓ πn/ℓ(1 − Frℓ).

Since ℓ | n+ we have s(n) = s(n/ℓ), so this verifies property (ii) of Definition 6.2.

Projecting each of the summands in Proposition 7.1 into (F̂×)− ⊗ Inew
n , one sees that all terms

with d > 1 vanish, yielding

〈2−s(n)θ̃′n〉new
n = 〈βn+

〉new
n = βn+

.

Properties (iii), (iv), and (v) of Definition 6.2 follow from the corresponding properties of the βn+
.

See [5, Proposition A.2] or [9, Theorem 4.5.4] for (iii), and [5, Theorem A.4] or [6, Proposition A.2]
for property (iv)′ of Remark 6.9. Property (v) is immediate, since βn+

depends only on n+.

8. The regulator pre-Kolyvagin system

In this section we study relations among the regulator elements Rn, to show that the collection
{hnRn : n ∈ Np} is a pre-Kolyvagin system.

Lemma 8.1. Suppose n ∈ N , ℓ | n+, and {λ0 − λτ
0 , . . . , λr − λτ

r} is a standard basis of X−
n with

λrλ
τ
r = ℓ. Then {λ0−λτ

0 , . . . , λr−1−λτ
r−1} is a standard basis of X−

n/ℓ, and we can choose an oriented

basis {ǫ0, . . . , ǫr} of (1 − τ)En such that {ǫ0, . . . , ǫr−1} is an oriented basis of (1 − τ)En/ℓ.

With any such bases, ordλr(ǫr) = −hn/ℓ/hn and

[ǫr]
n/ℓ
λr

=
hn/ℓ

hn
πn/ℓ(1 − Frℓ) ∈ In/ℓ/I

2
n/ℓ.

Proof. Everything except the final sentence is clear. Comparing the determinants of the logarithmic
embeddings

(1 − τ)En/ℓ

ξn/ℓ−−→ X−
n/ℓ, (1 − τ)En

ξn−→ X−
n

with respect to our given bases, we see that

det(ξn) = log |ǫr|λr det(ξn/ℓ)

because log |ǫi|λr = 0 for 0 6 i < r. Since our bases are oriented, both determinants are positive.
Hence

|ǫr|λr = ℓ−ordλr (ǫr) > 1

so ordλr(ǫr) < 0.
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The exact sequence

(1 − τ)En
ordλr−−−→ Z

·λr−−→ Pic(OF [ℓ/n]) −→ Pic(OF [1/n]) −→ 0

shows that

[Z : ordλr(ǫr)Z] = hn/ℓ/hn,

so ordλr(ǫr) = −hn/ℓ/hn as claimed. Since F (µn/ℓ)/F is unramified at λr,

[ǫr]
n/ℓ
λr

= (Fr
ordλr (ǫr)
ℓ ) − 1 = ordλr(ǫr)(Frℓ − 1) = −hn/ℓ/hn(Frℓ − 1)

in In/ℓ/I
2
n/ℓ.

Proposition 8.2. Suppose n ∈ N , ℓ | n+, and r = r(n). Then

(1 ⊗ πn/ℓ)(hnRn) = hn/ℓRn/ℓ πn/ℓ(1 − Frℓ) ∈ F× ⊗ Ir
n/Ir+1

n .

Proof. To compute Rn, fix bases for X−
n and E−

n as in Lemma 8.1. By definition

Rn :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 ǫ1 · · · ǫr

[ǫ0]
n
λ1

[ǫ1]
n
λ1

· · · [ǫr]
n
λ1

...
...

...
[ǫ0]

n
λr

[ǫ1]
n
λr

· · · [ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and then (1 ⊗ πn/ℓ)(Rn) is the determinant of the matrix obtained by applying πn/ℓ to rows 2
through r+1 of this matrix. For i < r, ǫi is a unit at λr, so the local Artin symbol [ǫi, F (µn)λr/Fλr ]

lies in the inertia group Γℓ. Hence πn/ℓ([ǫi]
n
λr

) = [ǫi]
n/ℓ
λr

= 0 for i < r, and so

(1 ⊗ πn/ℓ)(Rn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 · · · ǫr−1 ǫr

[ǫ0]
n/ℓ
λ1

· · · [ǫr−1]
n/ℓ
λ1

[ǫr]
n/ℓ
λ1

...
...

...

[ǫ0]
n/ℓ
λr−1

· · · [ǫr−1]
n/ℓ
λr−1

[ǫr]
n/ℓ
λr−1

0 · · · 0 [ǫr]
n/ℓ
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The upper left r × r determinant is the one used to define Rn/ℓ, so

(1 ⊗ πn/ℓ)(Rn) = Rn/ℓ[ǫr]
n/ℓ
λr

=
hn/ℓ

hn
Rn/ℓ πn/ℓ(1 − Frℓ)

by Lemma 8.1.

Fix an odd prime p as in §§5 and 6, and keep the rest of the notation of those sections as well.

Lemma 8.3. If n ∈ Np, ℓ is a prime not dividing n, and r = r(n), then

(Rn)ℓ ∈ (F̂×
ℓ,f)

− ⊗ Ir
n/Ir+1

n .

Proof. Since ℓ ∤ n, if ǫ ∈ E−
n then ǫℓ ∈ (Ô×

ℓ )− = (F̂×
ℓ,f)

− ⊂ (F̂×
ℓ )−. Now the lemma is clear, since

Rn ∈ E−
n ⊗ Ir

n/Ir+1
n .

Proposition 8.4. Suppose n ∈ Np and ℓ | n+. Then

〈hn(Rn)ℓ,tr〉new
n = (φfs

ℓ ⊗ 1)(〈hn/ℓ(Rn/ℓ)ℓ〉new
n/ℓ ).

Proof. Note that (φfs
ℓ ⊗1)(〈hn/ℓ(Rn/ℓ)ℓ〉new

n/ℓ ) ∈ (F̂×
ℓ,tr)

−⊗Inew
n is well-defined, since Lemma 8.3 shows

that (Rn/ℓ)ℓ ∈ (F̂×
ℓ,f)

− ⊗ Ir−1
n/ℓ

/Ir
n/ℓ.
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As in the proof of Proposition 8.2, fix a basis {λ0 − λτ
0 , . . . , λr − λτ

r} of X−
n with ℓ = λrλ

τ
r , and

an oriented basis {ǫ0, . . . , ǫr} of (1 − τ)En as in Lemma 8.1. Then

(Rn)ℓ,tr =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ǫ0)ℓ,tr · · · (ǫr−1)ℓ,tr (ǫr)ℓ,tr
[ǫ0]

n
λ1

[ǫ1]
n
λ1

· · · [ǫr]
n
λ1

...
...

...
[ǫ0]

n
λr

[ǫ1]
n
λr

· · · [ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ordλr(ǫr)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1 (ℓ, ℓ−1)
[ǫ0]

n
λ1

[ǫ1]
n
λ1

· · · [ǫr]
n
λ1

...
...

...
[ǫ0]

n
λr

[ǫ1]
n
λr

· · · [ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

since (ǫr)ℓ,tr = (ℓ, ℓ−1)ordλr (ǫr), and (ǫi)ℓ,tr = 1 for i < r. (Recall that when we evaluate these

determinants using (2), the multiplicative notation in (F̂×
ℓ )tr changes to additive notation in the

tensor product (F̂×
ℓ )tr ⊗ Ir

ℓ /Ir+1
ℓ , so 1’s in the top row become 0’s, and (ℓ, ℓ−1)ordλr (ǫr) becomes

ordλr(ǫr) · (ℓ, ℓ−1).) We have ordλr(ǫr) = −hn/ℓ/hn by Lemma 8.1. For i < r we have ordλr(ǫi) = 0,

so [ǫi]
n
λr

= [ǫi]
ℓ
λr

∈ Iℓ/I
2
ℓ and

φfs
ℓ ((ǫi)ℓ) = (ℓ, ℓ−1) ⊗ [ǫi]

n
λr

∈ (F̂×
ℓ )tr ⊗ Iℓ/I

2
ℓ .

Thus

(Rn)ℓ,tr = −hn/ℓ

hn
(−1)r(−1)r−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

φfs
ℓ ((ǫ0)ℓ) · · · φfs

ℓ ((ǫr−1)ℓ)
[ǫ0]

n
λ1

· · · [ǫr−1]
n
λ1

...
...

...
[ǫ0]

n
λr−1

· · · [ǫr−1]
n
λr−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
hn/ℓ

hn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φfs
ℓ ((ǫ0)ℓ) · · · φfs

ℓ ((ǫr−1)ℓ)

[ǫ0]
n/ℓ
λ1

+ [ǫ0]
ℓ
λ1

· · · [ǫr−1]
n/ℓ
λ1

+ [ǫr−1]
ℓ
λ1

...
...

...

[ǫ0]
n/ℓ
λr−1

+ [ǫ0]
ℓ
λr−1

· · · [ǫr−1]
n/ℓ
λr−1

+ [ǫr−1]
ℓ
λr−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(the (−1)r because we moved column r + 1 to column 1, and the (−1)r−1 because we moved row

r+1 to row 2). When we expand the last determinant (including expanding the sums [ǫi]
n/ℓ
λj

+[ǫi]
ℓ
λj

),

each term that includes one of the [ǫi]
ℓ
λj

lies in I2
ℓ (since the top row also contributes one element

of Iℓ). Thus all such terms project to zero in Inew
n , and so

〈(Rn)ℓ,tr〉new
n =

hn/ℓ

hn
〈det(A)〉new

n

where

A =













φfs
ℓ ((ǫ0)ℓ) · · · φfs

ℓ ((ǫr−1)ℓ)

[ǫ0]
n/ℓ
λ1

· · · [ǫr−1]
n/ℓ
λ1

...
...

...

[ǫ0]
n/ℓ
λr−1

· · · [ǫr−1]
n/ℓ
λr−1













.

But then det(A) = (φfs
ℓ ⊗ 1)((Rn/ℓ)ℓ), so the proposition follows.

Suppose n, n′ ∈ N , n | n′, and r = r(n). Define

Sn,n′ :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 ǫ1 · · · ǫr

[ǫ0]
n′

λ1
[ǫ1]

n′

λ1
· · · [ǫr]

n′

λ1

...
...

...

[ǫ0]
n′

λr
[ǫ1]

n′

λr
· · · [ǫr]

n′

λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∈ E−
n ⊗ Ir

n′/Ir+1
n′ ,

using any standard basis of X−
n and oriented basis of (1 − τ)En. In particular Sn,n = Rn.
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Proposition 8.5. Suppose n ∈ N and ℓ ∤ n.

(i) If ℓ is inert in F/Q, then hnℓ〈Rnℓ〉new
n = hn〈Rn〉new

n .

(ii) If ℓ splits in F/Q and v ∈ In, then

hn〈Sn,nℓ v〉new
nℓ = 〈Rn〉new

n πℓ(v) −
∑

primes q|n+

hn/q〈Sn/q,n v〉new
n πℓ(Frq − 1)

in E−
n ⊗ Inew

nℓ .

Proof. Let r be the number of prime divisors of n+, so X−
n and (1 − τ)En are free Z-modules of

rank r +1. Choose a standard basis of X−
n and an oriented basis of (1− τ)En. For 1 6 i 6 r = r(n),

let

ai = ([ǫ0]
n
λi

, [ǫ1]
n
λi

, . . . , [ǫr]
n
λi

), bi = ([ǫ0]
ℓ
λi

, [ǫ1]
ℓ
λi

, . . . , [ǫr]
ℓ
λi

).

Then

Sn,nℓ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 · · · ǫr

a1 + b1
...

ar + br

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

T⊂{1,...,r}

det(AT ) (7)

where AT is the matrix whose top row is (ǫ0, . . . , ǫr) and whose (i + 1)-st row for 1 6 i 6 r is bi if
i ∈ T and ai if i /∈ T . Note that det(A∅) = Rn, and that the entries of each bi are in Iℓ/I

2
ℓ .

Suppose first that ℓ is inert in F/Q, so (nℓ)+ = n+. Then 〈det(AT )〉new
n = 0 if T is nonempty

(since Inew
n has no “ℓ component”), so (7) shows that

〈Sn,nℓ〉new
n = 〈det(A∅)〉new

n = 〈Rn〉new
n .

Further, since ℓ is inert in F/Q we have X−
nℓ = X−

n , (1 − τ)Enℓ = (1 − τ)En, and hnℓ = hn. Thus
Sn,nℓ = Rnℓ, and so

hnℓ〈Rnℓ〉new
(nℓ) = hn〈Sn,nℓ〉new

n = hn〈Rn〉new
n .

This is (i).

Now suppose that ℓ splits in F/Q. Since the entries of each bi are in Iℓ, if #(T ) > 2 we have
〈det(AT )v〉new

nℓ = 0. Thus (7) gives

〈Sn,nℓ v〉new
nℓ = 〈det(A∅)v〉new

nℓ +
r

∑

i=1

〈det(A{i})v〉new
nℓ . (8)

By definition of Rn,

〈det(A∅)v〉new
nℓ = 〈Rn v〉new

nℓ = 〈Rn〉new
n πℓ(v). (9)

To compute det(A{i}), let q = λiλ
τ
i , and assume that our oriented basis of (1− τ)En was chosen

so that {ǫ0, . . . , ǫr−1} is an oriented basis of (1 − τ)En/q with respect to the standard basis of Xn/q

obtained by removing λi − λτ
i from {λ1 − λτ

1 , . . . , λr − λτ
r}. For 1 6 j 6 r − 1, ǫj is a unit at λi, so
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[ǫj]
ℓ
λi

= 0. Thus

det(A{i}) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 · · · ǫr−1 ǫr

[ǫ0]
n
λ1

· · · [ǫr−1]
n
λ1

[ǫr]
n
λ1

...
...

...
0 · · · 0 [ǫr]

ℓ
λi

...
...

...
[ǫ0]

n
λr

· · · [ǫr−1]
n
λr

[ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)r+i

∣

∣

∣

∣

∣

∣

∣

∣

∣

ǫ0 · · · ǫr−1

[ǫ0]
n
λ1

· · · [ǫr−1]
n
λ1

...
...

...
[ǫ0]

n
λr

· · · [ǫr−1]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

[ǫr]
ℓ
λi

= (−1)r+iSn/q,n [ǫr]
ℓ
λi

(where the second determinant has no λi row). Further, an argument identical to that of Lemma
8.1 shows that

[ǫr]
ℓ
λi

= (−1)r+i+1 hn/q

hn
πℓ(Frq − 1) ∈ Iℓ/I

2
ℓ .

Therefore

det(A{i}) = −hn/q

hn
Sn/q,n πℓ(Frq − 1).

Multiplying (8) by hn and using (9) gives

hn〈Sn,nℓ v〉new
nℓ = hn〈Rn〉new

n πℓ(v) −
∑

q|n+

hn/q〈Sn/q,n v πℓ(Frq − 1)〉new
nℓ .

Since Sn/q,n ∈ Ir
n/Ir+1

n , we have

〈Sn/q,n v πℓ(Frq − 1)〉new
nℓ = 〈Sn/q,n πn(v)〉new

n πℓ(Frq − 1).

This completes the proof of the proposition.

If n ∈ N , recall (Definition 6.7) that S(n) denotes the set of permutations of the primes dividing
n+, S1(n) ⊂ S(n) is the subset

S1(n) := {σ ∈ S(n) : the primes not fixed by σ form a single σ-orbit},
and if σ ∈ S(n) then dσ :=

∏

σ(ℓ)6=ℓ ℓ and Π(σ) :=
∏

q|dσ
πq(Frσ(q) − 1).

Theorem 8.6. If n ∈ Np and ℓ | n+, then

〈hn(Rn)ℓ,f〉new
n = −

∑

σ∈S1(n)
σ(ℓ)6=ℓ

sign(σ)〈hn/dσ
(Rn/dσ

)ℓ〉new
n/dσ

Π(σ).

Proof. As usual, fix a basis {λ0 − λτ
0 , . . . , λr − λτ

r} of X−
n with ℓ = λrλ

τ
r , and an oriented basis

{ǫ0, . . . , ǫr} of (1 − τ)En as in Lemma 8.1, so that {ǫ0, . . . , ǫr−1} is an oriented basis of (1 − τ)En/ℓ.
Then

(Rn)ℓ,f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ǫ0)ℓ,f · · · (ǫr−1)ℓ,f (ǫr)ℓ,f
[ǫ0]

n
λ1

· · · [ǫr−1]
n
λ1

[ǫr]
n
λ1

...
...

...
[ǫ0]

n
λr

· · · [ǫr−1]
n
λr

[ǫr]
n
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For each i, we have [ǫi]
n
λr

= [ǫi]
n/ℓ
λr

+ [ǫi]
ℓ
λr

. If i < r, then ǫi is a unit at λr so [ǫi]
n/ℓ
λr

= 0. Thus

(Rn)ℓ,f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ǫ0)ℓ,f · · · (ǫr)ℓ,f
[ǫ0]

n
λ1

· · · [ǫr]
n
λ1

...
...

[ǫ0]
ℓ
λr

· · · [ǫr]
ℓ
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ǫ0)ℓ,f · · · (ǫr−1)ℓ,f (ǫr)ℓ,f
[ǫ0]

n
λ1

· · · [ǫr−1]
n
λ1

[ǫr]
n
λ1

...
...

...

0 · · · 0 [ǫr]
n/ℓ
λr

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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The map ǫ 7→ [ǫ]ℓλr
= [ǫ, Fλr(µℓ)/Fλr ]− 1 is an isomorphism from (F̂×

ℓ,f)
− = (Ô×

ℓ )− to (Iℓ/I
2
ℓ )⊗Zp,

and is zero on (F̂×
ℓ,tr)

− because ℓ is a norm in the extension Fλr(µℓ)/Fλr = Qℓ(µℓ)/Qℓ. Hence
the first determinant in the equation above is zero, because the top and bottom rows are linearly
dependent. Also, if i < r then ǫi is a unit at λr, so (ǫi)ℓ,f = (ǫi)ℓ and

(Rn)ℓ,f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(ǫ0)ℓ · · · (ǫr−1)ℓ
[ǫ0]

n
λ1

· · · [ǫr−1]
n
λ1

...
...

[ǫ0]
n
λr−1

· · · [ǫr−1]
n
λr−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

[ǫr]
n/ℓ
λr

= (Sn/ℓ,n)ℓ [ǫr]
n/ℓ
λr

.

By Lemma 8.1, [ǫr]
n/ℓ
λr

= −(hn/ℓ/hn)πn/ℓ(Frℓ − 1). Thus

hn〈(Rn)ℓ,f〉new
n = −hn/ℓ〈(Sn/ℓ,n)ℓ πn/ℓ(Frℓ − 1)〉new

n . (10)

We can now “simplify” (10) by inductively expanding the right-hand side using Proposition 8.5.
Specifically, expand 〈(Sn/ℓ,n πn/ℓ(Frℓ − 1)〉new

n using Proposition 8.5(ii). Then expand each of the
resulting 〈(Sn/(ℓq),n/ℓ πn/(qℓ)(Frq − 1)〉new

n/ℓ using Proposition 8.5(ii) again. Continue until no terms
Sm/q,m remain. The resulting sum consists of one term

(−1)k〈hn/(q1···qk)(Rn/(q1···qk))ℓ〉new
n/(q1···qk)

k
∏

i=1

πqi(Frqi+1
− 1)

for each sequence q1 = ℓ, q2, . . . , qk of distinct primes dividing n+ (with qk+1 = ℓ). Identifying
this sequence with the k-cycle σ := (ℓ, q2, . . . , qk) ∈ S1(n) gives the formula of the theorem, since
sign(σ) = (−1)k−1.

Theorem 8.7. The collection {hnRn : n ∈ Np} is a pre-Kolyvagin system.

Proof. We need to check the five properties of Definition 6.2. Property (i) is Lemma 8.3, (ii) is
Proposition 8.2, (iii) is Proposition 8.4, (iv) is Theorem 8.6 along with of Remark 6.9, and (v) is
Proposition 8.5(i).

9. Proof of Theorem 3.9

Proof of Theorem 3.9. Fix an odd prime p. By Theorems 7.2 and 8.7, we have pre-Kolyvagin systems

{2−s(n)θ̃n : n ∈ Np}, {−hnRn : n ∈ Np}.
By Proposition 3.10, θ̃′1 = −h1R1 in O×

F /{±1}. Hence by Corollary 6.6,

2−s(n)θ̃n = −hnRn in (F×)− ⊗ Inew
n ⊗ Zp for every n ∈ Np. (11)

If p | n ∈ N , then Proposition 4.2(iv) shows that (p−1)Inew
n = 0. Therefore (F×)−⊗Inew

n ⊗Zp = 0
and (11) holds vacuously in this case. Since (11) holds for every n ∈ N and every odd prime p, this
completes the proof of Theorem 3.9.
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