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The electron spin is a natural two level system that allows a qubit to be encoded. When localized
in a gate defined quantum dot, the electron spin provides a promising platform for a future functional
quantum computer. The essential ingredient of any quantum computer is entanglement—between
electron spin qubits—commonly achieved via the exchange interaction. Nevertheless, there is an
immense challenge as to how to scale the system up to include many qubits. Here we propose a novel
architecture of a large scale quantum computer based on a realization of long-distance quantum gates
between electron spins localized in quantum dots. The crucial ingredients of such a long-distance
coupling are floating metallic gates that mediate electrostatic coupling over large distances. We
show, both analytically and numerically, that distant electron spins in an array of quantum dots
can be coupled selectively, with coupling strengths that are larger than the electron spin decay and
with switching times on the order of nanoseconds.

I. INTRODUCTION

Spins of electrons confined to quantum dots provide
one of the most promising platforms for the implementa-
tion of a quantum computer in solid state systems. The
last decade has seen steady and remarkable experimental
progress in the quantum control and manipulation of sin-
gle spins in such nanostructures on very fast time scales
down1 to 200 ps and with coherence times of 270 µs.2

A large-scale quantum computer must be capable of
reaching a system size of thousands of qubits, in particu-
lar to accommodate the overhead for quantum error cor-
rection.3 This poses serious architectural challenges for
the exchange-based quantum dot scheme,4 since—with
present day technology—there is hardly enough space to
place the large amount of metallic gates and wires needed
to define and to address the spin qubits. A promising
strategy to meet this challenge is to implement long-
range interactions between the qubits which allows the
quantum dots to be moved apart and to create space
for the wirings. Based on such a design we propose a
quantum computer architecture that consists of a two-
dimensional lattice of spin-qubits, with nearest neighbor
(and beyond) qubit-qubit interaction. Such an archi-
tecture provides the platform to implement the surface
code–the most powerful fault-tolerant quantum error cor-
rection scheme known with an exceptionally large error
threshold of 1.1%.5,6

To achieve such long-range interactions we propose a
mechanism for entangling spin qubits in quantum dots
(QDs) based on floating gates and spin-orbit interaction.
The actual system we analyze is composed of two double-
QDs which are not tunnel coupled. The number of elec-
trons in each double-QD can be controlled efficiently by
tuning the potential on the nearby gates. Moreover, the
electrons can be moved from the left to the right dot
within each double-QD by applying strong bias voltage.
Thus, full control over the double-QD is possible by only
electrical means. The double-QDs are separated by a

large distance compared to the their own size so that
they can interact only capacitively. This interaction can
be enhanced by using a ’classical’ electromagnetic cav-
ity, i.e., a metallic floating gate suspended over the two
double-QDs, or a shared 2DEG lead between the qubits.
The strength of the coupling mediated by this gate de-
pends on its geometry, as well as on the position and
orientation of the double-QDs underneath the gate. Fi-
nally, we show that spin-qubits based on spins-1/24 and
on singlet-triplet states7 can be coupled, and thus hybrid
systems can be formed that combine the advantages of
both spin-qubit types.

II. ELECTROSTATICS OF THE FLOATING
GATE

The Coulomb interaction and spin-orbit interaction
(SOI) enable coupling between spin-qubits of different
QD systems in the complete absence of tunneling.8–11

However, the Coulomb interaction is screened at large
distances by electrons of the 2DEG and of the metal
gates. Thus, the long-distance coupling between two
spin-qubits is not feasible via direct Coulomb interaction.
However, by exploiting long-range electrostatic forces, it
was demonstrated experimentally12,13 that QDs can be
coupled and controlled capacitively via floating metallic
gates over long distances. The optimal geometric design
of such floating gates should be such that the induced
charge stays as close as possible to the nearest QDs, and
does not spread out uniformly over the entire gate sur-
face. In other words, the dominant contributions to the
total gate-capacitance should come from the gate-regions
that are near the QDs. To achieve a strong qubit-qubit
coupling there is one more requirement: the electric field
induced on one QD needs to be sensitive to the changes
of the charge distribution of the other QD. Thus, the
charge gradient, (∂qind/∂r)r=0, needs to be large, where
r is the position-vector of the point charge with the re-
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FIG. 1. Model system consisting of two identical double-QDs
in the xy-plane and the floating gate between them. The gate
consists of two metallic discs of radius R connected by a thin
wire of length L. Each double-QD can accommodate one or
two electrons, defining the corresponding qubit. Absence of
tunneling between the separate double-QD is assumed; the
purely electrostatic interaction between the electrons in the
double-QDs leads to an effective qubit-qubit coupling. For
the spin-1/2 qubit the coupling depends sensitively on the
orientation of the magnetic field B. Here a0 is the in-plane
distance between a QD and the corresponding disc center,
while d is vertical distance between the QD and the gate.

spect to the center of the respective QD. To fulfill these
requirements we assume the floating gates consist of two
metallic discs of radius R joined by a thin wire of length
L.

Let us now investigate the optimal design by model-
ing the electrostatics of the floating gates. The electron
charge in the QD induces an image charge of opposite
sign on the nearby disc (ellipsoid), see Fig. 1. By virtue
of the gate voltage being floating with respect to the
ground, the excess charge is predominantly distributed
on the distant metallic ellipsoid, thus producing an elec-
tric field acting on the second QD. In order to carry out
the quantitative analysis of the electrostatic coupling,
we make us of the expression for an induced charge on
the grounded ellipsoidal conductor in the field of a point
charge.14 Electrostatic considerations imply that the cou-
pling (gradient) is enhanced by implementing a flat-disc
design of the gate. Thus, in what follows, we set the disc
height to zero; to reach this regime in practice one only
has to ensure that the disc height be much smaller than
its radius. The expression for the induced charge (in the
units of the electron charge) is then given by14

qind(r) =
2

π
arcsin(R/ξr), (1)

where R is the radius of the disc, and a0 is the distance
between the QD and the ellipsoid centers (see Fig. 1).
The ellipsoidal coordinate ξr is given by

2ξ2r = R2 + d2 + |a0 + r|2 (2)

+
√

(R2 + d2 + |a0 + r|2)2 − 4R2|a0 + r|2.

We emphasize that the induced charge depends only on
the coordinate ξr of the external charge, as is readily
seen from Eq. (1). This is one of the crucial points for
the experimental realization of the qubit-qubit coupling.
Thus, positioning the QD below the gate as in previous

setups12 is not useful for the qubit-qubit proposed con-
sidered here, since ∂qind/∂r ≈ 0. This fact, however, can
be exploited to turn on and off the effective coupling be-
tween the qubits. Alternatively, one can use a switch
that interrupts the charge displacement current through
the floating gate and thus disables the build-up of charge
gradients at the other disc.

Figure 2 depicts both the induced charged qind, as well
as the charge variation ∂qind/∂r as a function of the hor-
izontal distance a0 between the center of the QD and the
center of the gate. We see that for very small vertical dis-
tances d � R the variation of the induced charge peaks
at a0 ≈ R, reaching values as high as unity for d = 0.1R,
and falls down quickly for a0 larger or smaller than R.
As mentioned above, this could be used as an efficient
switching mechanism. However, as d increases to higher
values, comparable to the disc radius R, the charge vari-
ation ∂qind/∂r flattens out over a wide range of in-plane
distances a0. This means that for larger depths d & λ
of the quantum dot the switching mechanism turns out
to be rather inefficient, even though the magnitude of
the coupling is only weakly reduced (∂qind/∂r ≈ 0.3 for
r ≈ R and d = 0.5R). Nevertheless, the gates confining
the QDs, as well as the 2DEG itself could lead to screen-
ing of the interaction between the QD and the floating
gate, allowing for an improved switching even in this case.

Finally, by utilizing the expression for the electrostatic
potential of a charged thin disc14 we arrive at the expres-
sion for the electrostatic coupling

V (r1, r2) =
παq
κ

e2qind(r1)qind(r2)

R
, (3)

where κ is the dielectric constant, αq = Cd

Cw+2Cd
is the

charge distribution factor of the gate, and Cd and Cw
are the capacitances of the discs and wire, respectively
(see Appendix A). We mention that Eq. (3) is derived
in the limit when the floating gate is immersed in the
dielectric, and it provides a lower bound for V (r1, r2) in
the realistic case when the floating gate sits on top of the
dielectric.

III. QUBIT-QUBIT COUPLING

Next, we consider the coupling between qubits. These
can be for either single- or double-QDs. The two-qubit
system with the floating gate is well described by the
Hamiltonian

H = V +
∑
i=1,2

Hi
qubit , (4)

where V describes the electrostatic coupling between the
distant charges in the qubits and is given by Eq. (3),
and Hi

qubit stands for either the single-QD or double-QD

Hamiltonian9,15

HQD =H0 +HZ +HSO, (5)

HDQD =J S1 · S2 +H1
Z +H2

Z . (6)
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FIG. 2. (a) The dependence of the induced charge, qind, and
(b) of the derivative of the induced charge, ∂qind/∂r, on a0
at r = 0, i.e. the in-plane distance from the center of the
cylindrical gate to the center of the QD. We plot these two
quantities for several vertical distances d between the QD and
the gate: d/R = 0.1, 0.5, 1, corresponding to the full, dashed
and dotted lines, resp..

Here, H0 = p2i /2m
∗+m∗(ω2

xx
2
i +ω2

yy
2
i )/2 is the energy of

an electron in dot i described by a harmonic confinement
potential, m∗ being the effective mass and ~ωx,y the cor-
responding single-particle level spacings. For a single-QD
HZ = gµBB ·σ/2, stands for the Zeeman coupling, with
σ the Pauli matrix for the spin-1/2, and both Rashba
and Dresselhaus spin-orbit interactions

HSO = α(pxσy − pyσx) + β(−pxσx + pyσy), (7)

where α (β) is the Rashba (Dresselhauss) spin-orbit in-
teraction strength. The double-QD is described by an
effective Heisenberg model,15 Eq. (6), with Si being the
spin in the double-QD. In what follows we assume the
floating gate to be aligned along the x-axis, see Fig. 1.

A. Singly occupied double-QDs

We start by considering two single-QD qubits. Let us
first give a physical description of the qubit-qubit cou-
pling. The purely electrostatic coupling between the QDs

involves only the charge degrees of freedom of the elec-
trons. Within each QD the spin degree of freedom is then
coupled to the one of the charge via spin-orbit interac-
tion. Hence, we expect the effective spin-spin coupling to
be second order in the SOI and first order in the electro-
static interaction. In fact, one has also to assume Zeeman
splitting to be present on at least one QD in order to re-
move the van Vleck cancellation.16,17

Proceeding to a quantitative description, we assume
the spin-orbit strength to be small compared to the QD
confinement energies ~ωx,y. Following Refs. 9 and 17,
we apply a unitary Schrieffer-Wolff transformation to re-
move the first order SOI terms. The resulting Hamilto-
nian has decoupled spin and orbital degrees of freedom
(to second order in SOI), with the effective qubit-qubit
coupling (see Appendix A), with

HS−S = J12(σ1 · γ)(σ2 · γ) (8)

J12 =
m∗ω2

x,12E
2
Z

2(ω2
x − E2

Z)2
, (9)

where γ = (β cos 2γ,−α − β sin 2γ, 0); γ being the an-
gle between the crystallographic axes of the 2DEG and
the xyz-coordinate system defined in Fig. 1. Here we
assumed for simplicity that the magnetic field is perpen-
dicular to the 2DEG substrate, with EZ = gµBB the
corresponding Zeeman energy (assumed also the same for
both dots). However, neither the orientation nor the pos-
sible difference in the Zeeman splittings in the two dots
affect the functionality of our scheme (see Appendix A
for the most general coupling case). We mention that the
spin-spin interaction in Eq. (8) is of Ising type, which,
together with single qubit gates forms a set of universal
gates (see below).

All information about the floating gate coupling is em-
bodied in the quantity

ω2
x,12 = παqαC

(
∂qind
∂x̃

)2

r=0

ω2
x, (10)

where αC = e2/(κR~ωx), and x̃ = x/λ (λ is the QD
size). It is interesting to note that the derived coupling,
Eq. (10), is independent of the orbital states of the QDs,
and thus, insensitive to charge fluctuations in the dots.
More importantly, the coupling has only a weak depen-
dence on the wire length L—through the capacitance ra-
tio αq.

Next, we give estimates for the qubit-qubit coupling
for GaAs and InAs QDs. Taking the spin-orbit strength
for GaAs semiconductors λ/λSO ' 10−1, and assuming
EZ1 ' EZ2 ≡ EZ ' 0.5~ωx (B = 2T and ~ωx ' 1meV ),
we obtain Hs−s ' αqαC(∂qind/∂x̃)2r=0 × 10−7eV . The
electrostatic coupling strongly depends (like d−2) on the
vertical distance between the gate and the QDs. Typi-
cally, d ' λ, and one obtains using Eq. (1) maximal cou-
pling Hs−s ' 10−11−10−10eV (for R = 1.6λ, L = 10µm,
and Rw = 30nm leading to αq = 0.02; a0 = 1.9λ). Al-
though, it is experimentally challenging to decrease d to
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a value of about 10nm, the gain would be a significantly
stronger coupling 10−9 − 10−8eV (for R = 0.17λ and
a0 = 0.2λ). Moreover, if a semiconductor with larger
spin-orbit coupling is used—such as InAs (λ/λSO ' 1)—
the coupling is increased by two orders of magnitude
compared to GaAs, reaching the µeV -regime. Quite re-
markably, these values almost reach within the exchange
strengths range, Jexc ∼ 10 − 100µeV , occurring in typi-
cal GaAs double quantum dots.1,4 Actually, for realistic
devices—as presented in the Sec. VI—the coupling is al-
most two orders of magnitude larger then the estimates
presented herein. This discrepancy is not very surprising
and it is mainly due to our pessimistic treatment of the
dielectric, and the sensitivity of the electric field gradient
to geometry of the surrounding gates.

B. Hybrid spin-qubits

A number of different spin-based qubits in quantum
dots have been investigated over the years,18 each with
its own advantages and challenges. The most prominent
ones are spin-1/2 and singlet-triplet spin qubits. Here,
we show that these qubits can be cross-coupled to each
other and thus hybrid spin-qubits can be formed which
open up the possibility to take advantage of the ’best of
both worlds’.

We model the hybrid system by a single- and a double-
QD qubit, described by Eqs. (5) and (6), respectively.
The single-QD and the floating gate act as an elec-
tric field, leading to the change in the splitting be-
tween the logical states of the double-QD spin-qubit,
J → J + x̃eδJ̃ ,15 with xe = x̃eλ being the x-coordinate
of the electron in the single-QD and

δJ̃ =
3

sinh(2l̃)

ω2
x,12

l̃ω2
D

ε . (11)

Here, ωD is the confinement energy in the DQD, l̃ is
the distance between the double-QD minima measured
in units of a QD size λ. The previous formula is valid for
the regime ε & ωD.

In order to decouple spin and orbital degrees of free-
dom, we again employ a Schrieffer-Wolff transformation
and obtain the hybrid coupling in lowest order (see Ap-
pendix B)

Hhybrid =
3µg δJ̃(γ ×B) · σ

4(ω2
x − E2

Z1)λ
τz . (12)

Here, τz is a Pauli matrix acting in the pseudo-spin
space spanned by the logical states of the singlet-triplet
qubit. It should be noted that the sign of this coupling
can be manipulated by changing the sign of the detun-
ing voltage ε. As an estimate, we can write Hhybrid '(
ωx,12

ωx

)2
EZ

ωD

aB
λSO

ε. Assuming the parameters cited in the

previous section for the GaAs-QDs we obtain the esti-
mate HS−s ' 10−10 − 10−9eV . Reducing the distance d

or using InAs-QDs we can gain one order of magnitude
more in the coupling.

C. Doubly occupied double-QDs

To complete our discussion about the qubit-qubit cou-
plings, we now consider two double-QDs coupled via the
floating gate. As already noted, owing to the different
charge distributions of the logical states in the double-
QD, the SOI term is not needed for the qubit-qubit cou-
pling.10 Certainly, the SOI exists in double-QDs but its
effect on the ST splitting can be neglected. Below only
a rough estimate of the coupling is provided, while the
detailed analysis can be found in Ref. 10.

We assume both double-QDs to be strongly detuned,
thereupon the singlet logic state is almost entirely lo-
calized on the lower potential well of the double-QD.
The electrostatic energy difference between the singlet-
singlet and triplet-triplet system configurations gives the
rough estimate of the qubit-qubit coupling, HS−S '
V (R,R) − V (R + l, R + l). Taking the distance be-
tween the double-QD minima l ' R and the same
GaAs parameters as before, we finally obtain the esti-
mate HS−S ' 10−5 − 10−6eV . As can be seen from Fig.
2, reducing d to 10nm increases the coupling five times.

IV. SCALABLE ARCHITECTURE

One central issue in quantum computing is scalability,
meaning that the basic operations such as initialization,
readout, single- and two-qubit gates should not depend
on the total number of qubits. In particular, this enables
the implementation of fault-tolerant quantum error cor-
rection,3 such as surface codes where error thresholds are
as large as 1.1%.5,6

To this end, the architecture of the qubit system be-
comes of central importance.19 Making use of the electro-
static long-distance gates presented above, we now dis-
cuss two illustrative examples for such scalable architec-
tures.

A. Design with floating metal gates

In the first design we propose here, the metallic gates
above the 2DEG are utilized for qubit-qubit coupling,
while the switching of the coupling is achieved by mov-
ing the QDs (see Fig. 3). Only the coupling between
adjacent QDs is possible in this design. Without this
constraint, the induced charge due to nearby QDs would
be spread over the whole system, resulting in an insuffi-
cient qubit-qubit coupling.

The actual virtue of the setup is its experimental feasi-
bility, as suggested by recent experiments.12,13 However,
as explained in Sec. II, a minor but crucial difference
here is that the qubit-qubit coupling depends not on the



5

FIG. 3. Quantum computer architecture using metallic float-
ing gates on top of a 2DEG. The electrostatic long-range cou-
pling is confined to adjacent qubits. Turning on (off) the
qubit-qubit interaction is achieved by moving a qubit close to
(away from) the corresponding metal disc. This architecture
allows for parallel switching.

charge itself but rather on its gradient, in contrast to ear-
lier designs.12,13 This requires the dots to be positioned
off the disc-center.

In order to complete our quantum computer design, we
have to equip our system with a fast switch. The discus-
sion in Sec. II is relevant therefore, because the coupling
can be turned off (on) by moving a QD away (towards)
the corresponding floating gate, see Fig. 2. The spatial
change of the quantum dot induces an electric response
in the metallic floating gate on a time scale roughly given
by the elastic mean free time (at low temperatures). This
is the time it takes to reach the new electronic equilib-
rium configuration that minimizes the electrostatic en-
ergy. Since for a typical metal this time is on the order
of tens of femtoseconds, this response time poses no lim-
itations, being much faster than the effective switching
times obtained in the previous sections.

B. All-in-2DEG design

We now consider a setup where are all elements of the
qubit-network, including the floating connector gates, are
implemented in the 2DEG itself. This will allow us to
extend the above design in an essential way, namely to
implement a switching mechanism inside the connectors
themselves which is potentially fast and efficient (with
a large on/off ratio). There are two attractive features
coming with such a design. First, the qubit-qubit cou-
pling is now controlled by the connector switch only,
while the quantum dots with the spin-qubits can be left
fixed, thereby reducing the source of gate errors. Second,
this design allows for coupling beyond nearest neighbor

qubits, which is beneficial for the error threshold in fault-
tolerant quantum error correction schemes.19

The proposed network is shown in Fig. 4 where the
floating gates are formed within the 2DEG in form of
discs connected by quantum wires. The discs themselves
can be considered as large quantum dots containing many
electrons (∼ 50−100) so that (quantum) fluctuations are
negligibly small. Parts of the network are then connected
or disconnected by locally depleting these wires with the
help of a standard quantum point contact.1 This sup-
presses the displacement of charges very quickly and ef-
ficiently. The electrostatics of such semiconductor gates
is essentially the same as the previously discussed metal-
lic one. Indeed, the number of electrons in the 2DEG-
defined network can be fixed, thus the gate behaves as
floating. Again, the minimal switching time is limited
roughly by the elastic mean free time (at low tempera-
tures), which for a typical GaAs 2DEG is on the order of
tens of picoseconds.

The single spin control required for completing the uni-
versal set of gates in our proposal can be implemented
in both setups through ESR,20 or purely electrically via
EDSR,21–23 which is more convenient for our electrostatic
scheme. The time scales achieved are on the order of 50
ns, much shorter than the spin relaxation and decoher-
ence times.21–23

C. Design based on 1D nanowire quantum dots

The floating gate architecture efficiency is strongly de-
pendent on the strength of the SOI experienced by the
electrons in the QDs, which have to be large enough to
overcome the spin decoherence rates. InAs nanowires
are such such strong SOI materials, with strengths larger
by an order of magnitude than in GaAs 2DEG.24 More-
over, the electron spins in QDs created in these nanowires
show long coherence times23 and can be controlled (elec-
trically) on times scales comparable to those found for the
electron spin manipulation in GaAs gate defined QDs.23

In Fig. 5 we show a sketch of an architecture based
on nanowires containing single or double QDs. Typi-
cal examples for such wires are InAs23,24 or Ge/Si25,26

nanowires, Carbon nanotubes,27–30 etc. The default po-
sition of a QD is chosen so that the coupling to any of
the surrounding gates is minimal. Neighboring QDs in
the same nanowire are coupled by a vertical metal gate,
while QDs in adjacent nanowires by a horizontal metal
gate. The electron in a given QD can be selectively cou-
pled to only two of the surrounding gates by moving
it (via the gates that confine the electrons) in regions
where the electric field gradient for the induced charge is
maximum on these two ’active’ gates, while negligible for
the others two ’passive’ gates. The other QD partner in
the coupling is moved towards one of the ’active’ gates
thus resulting in a qubit-qubit coupling. Note that there
are in total three ’active’ gates, but only one of them is
shared by both QDs, thus allowing selective coupling of
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FIG. 4. All-in-2DEG design: the qubits and the floating con-
nector gates are all implemented within the same 2DEG. The
spin-qubits (green arrow) are confined to double quantum
dots (small yellow double circles) and are at a fixed position
with maximum coupling strength to the floating gate (big
disc) (see Fig. 2). The network consists of quantum chan-
nels (lines) that enable the electrostatic coupling between
discs (large circles) so that two individual qubits at or be-
yond nearest neighbor sites can be selectively coupled to each
other. In the figure shown are four pairs of particular discs
that are connected by quantum channels (full lines), while
the remaining discs (red) are disconnected from the network
(interrupted red lines) The discs can be considered as large
quantum dots containing many electrons. The quantum wires
can be efficiently disconnected (interrupted lines) by deplet-
ing the single-channel with a metallic top gate (not shown).
This architecture allows for parallel switching.

any nearest neighbor pair in the network.
The spin coupling mechanism as well as the 2D geome-

try are similar to the previous 2DEG GaAs QDs designs,
showing the great flexibility of the floating gate archi-
tecture. As before, the spin-qubits can be manipulated
purely electrically, via the same gates that confine the
QDs.23 We mention also that the gate geometry (dog-
bone like) shown in Fig. 5 is not optimized to achieve the
best switching ratio, more asymmetric gate geometries
possibly leading to better results.

D. Spin qubit decoherence and relaxation

Decoherence and relaxation are ones of the main obsta-
cles to overcome in building a quantum computer. The
main source of qubit decay in typical GaAs quantum dots
comes from nuclear spins and phonons (via spin orbit
interaction), and has been studied in great detail the-
oretically and experimentally, see e.g. 31. The longest
relaxation and decoherence times measured are about
T1 ∼ 1s32 and T2 ∼ 270µs,2 respectively. Exactly the

FIG. 5. Architecture based on nanowire QDs coupled by
metallic gates. The spin qubits are confined to QDs (black
dots) on nanowires. The nanowires form a parallel array (ver-
tical black lines). The coupling between neighboring spin-
qubits is enabled by floating metal gates (white) positioned
either parallel to the wires thus coupling QDs created in the
same wire, or perpendicular to the wires thus coupling QDs
created in adjacent nanowires. By using external gates (not
shown) to move the dots along the nanowires (shaded colors)
it is then possible to selectively couple one particular QD to
only two surrounding gates (’active’ gates; green and yellow).
The other QD partner couple to one of these ’active’ gates also
(green), thus resulting in a selective coupling of the desired
nearest neighbor pair.

same qubit decay mechanisms also apply here, except
one new source coming from the Nyquist noise of the
floating metallic gates. However, this problem has been
studied in great detail in Ref. 33 and no major impact on
the decoherence time was found. Even if Nyquist noise
were a problem, it could be further reduced by using su-
perconducting gates in lieu of normal metal ones.

V. IMPLEMENTATION OF TWO-QUBIT
GATES

Since the Hamiltonian of Eq. (8) is entangling, it can
be used to implement two-qubit gates. Here we con-
sider the CNOT gate, widely used in schemes for quan-
tum computation.5,6 The Hamiltonian for two single-QD
qubits interacting via the floating gate is the sum of
HS−S and the Zeeman terms. The strength of the lat-
ter in comparison to the former allows us to approxi-
mate the Hamiltonian by H ′ = J12|γ|2(σ1

xσ
2
x+σ1

yσ
2
y)/2+

Ez(σ
1
z+σ2

z)/2, for which qubit-qubit interaction and Zee-
man terms commute. The CNOT gate, C, may then be
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realized with the following sequences,

C =
√
σ1
z

√
σ2
xH1ei(σ

1
z+σ

2
z)Ezte−iH

′t

σ1
x e

i(σ1
z+σ

2
z)Ezte−iH

′t σ1
xH1, (13)

C =
√
σ1
z

√
σ2
xH1 σ2

x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2

σ2
x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2H1 (14)

where t = π/(4J12|γ|2) and H denotes the single qubit
Hadamard rotation. These sequences require two and
four applications of the floating gate, respectively. More
details on their construction can be found in Appendix C.
Since H ′ is only an approximation of the total Hamil-
tonian, these sequences will yield approximate CNOTs.
Their success can be characterized by the fidelity, as de-
fined in Appendix C. For realistic parameters, with the
Zeeman terms an order of magnitude stronger than the
qubit-qubit coupling, the above sequences yield fidelities
of 99.33% and 99.91% respectively. For two orders of
magnitude between the Zeeman terms and qubit-qubit
coupling the approximation improves, giving fidelities of
99.993% and 99.998%, respectively. These are all well
above the fidelity of 99.17%, corresponding to the thresh-
old for noisy CNOTs in the surface code.6 Hence, despite
the difference in error models, we can be confident that
the gates of our scheme are equally useful for quantum
computation.

VI. NUMERIC MODELING OF REALISTIC
DEVICES

In the previous sections, a number of practical concerns
related to the construction of working devices were ne-
glected; most notably, the existence of the metallic gates
used to define the quantum dots themselves and the pres-
ence of undepleted 2DEG outside of the quantum dots.
These have finite capacitances to the coupler, shunting
away some of the charge that would otherwise contribute
to the inter-qubit interaction. To confirm that substan-
tial couplings can still be attained at large distances with
these limitations, we have performed numeric simulations
of devices with realistic geometries similar to currently
in-use ST spin qubits. A typical simulated geometry is
included in Fig. 6. The gate and heterostructure design
is identical to a functional device currently being charac-
terized, and the boundaries of the 2DEG and placement
of the electrons within the dot are estimates guided by
experimentally measured parameters. Each quantum dot
is modeled as a fixed charge metallic disc 50 nm in diame-
ter within the 2DEG. While unsophisticated, this suffices
to estimate the practicality of this scheme.

We define the coupling between two ST qubits as the
change in detuning in one ST qubit induced by the trans-
fer of a full electron from one dot to the other dot in a sec-
ond ST qubit. For our reference ST qubit design with the
two qubits physically adjacent to each other and no cou-
pler (680 nm center-to-center), we calculate a coupling

0
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FIG. 6. Numeric simulation confirm the efficacy of the de-
sign for S-T qubits; addition of a metallic coupler (crosses)
increases coupling more than 3-fold for closely spaced dots,
and greatly extends the range of the coupling. (a) The simu-
lated device with a separation of 1 µm and an etched coupler.
2DEG underneath the shaded region is treated as depleted,
while red circles show the locations of the individual quan-
tum dots within the simulation. (b) Coupling strength as a
function of separation for the ST qubits in free space (smooth
curve), qubits including leads and 2DEG but without a cou-
pler (red +), including a metallic coupler (black crosses), and
additionally etching a trench around the coupler to deplete
the 2DEG underneath (blue squares). Inset: Electrostatic
potential (color scale) at the sample surface shows the impact
of the coupler on a device with a 1 µm separation.

of 20µeV. As the qubits are separated, the coupling van-
ishes rapidly as the 2DEG in between the qubits screens
the electric field; it is reduced by an order of magnitude
if the dots are separated by an additional 250 nm. This
rapid falloff makes the gate density needed for large scale
integration of these qubits problematic.

Addition of a floating metallic coupler of the type de-
scribed herein increases the coupling at zero separation
to 70µeV and allows the qubits to be separated by more
than 6µm before the coupling drops to the level seen for
two directly adjacent qubits. We can further improve
upon this coupling by etching the device in the vicin-
ity of the coupler, reducing the shunt capacitance of the
coupler to the grounded 2DEG between the devices.

For the case of single spins this metallic coupler is mod-
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FIG. 7. Simulations of single-spin qubits show appreciable
coupling strengths, even over distances of several microns.
While the metallic coupler design of Fig. 6 modified to place
the quantum dots at the edges of the couplers is effective
(black crosses in b), an all-in-2DEG design where one of the
leads of the qubit acts as a coupler (red region in a) provides
dramatically enhanced coupling (solid red lines in b). The
coupler is deactivated by a metallic top gate (black hatched
region in a), modeled by removing the hatched section of the
coupler. Doing so reduces inter-qubit coupling by over an
order of magnitude (dashed red lines in b).

ified to place the quantum dots at the edges of the coupler
rather than under the discs. We define the coupling in
this case as the electric field in V/m induced on one qubit
in response to 1nm of motion of the electron on the other
qubit. We continue to find substantial couplings even at
large separations (Fig. 7). However, in this case we find
we can further improve couplings by moving to the all-
in-2DEG design where one of the leads of the quantum
dot is used as the coupler (Fig. 7 a). Using the lead in
this fashion should be harmless; no current is driven into
the lead during qubit manipulations. The lead (colored
region) is modeled as a metallic strip at the level of the
2DEG. Due to the close proximity of the lead to the qubit
as well as the sharp electric field gradients near the point
of the lead, we find strongly enhanced coupling for this
lead coupler over the floating metallic coupler for single
spin qubits. By depleting part of the lead coupler using
a metallic top gate (yellow region), it is possible to se-

lectively turn this coupling on and off. The reduction in
coupling in the off state is more than an order of magni-
tude, and can be further improved by increasing the size
of the depleted region.

VII. CONCLUSIONS

We proposed and analyzed an experimentally feasible
setup for implementing quantum gates in an array of spin
qubits localized in gate-defined quantum dots based on
the interplay of the Coulomb repulsion between the elec-
trons, SOI and externally applied magnetic fields. As op-
posed to the current schemes based on direct exchange,
here there is no need for electron tunneling between the
quantum dots, thus bringing the scheme within experi-
mental reach based only on current spin-qubit technol-
ogy.

We showed, both analytically and numerically, that
using either metallic floating gates in the shape of a
dog-bone, or the 2DEG itself acting as a metallic gate,
long-range spin-spin coupling is achieved, with coupling
strengths exceeding the spin decay rates. Moreover, the
coupling can be selectively switched on and off between
any pairs of qubits by only local qubit manipulation,
allowing entangling quantum gates such as the CNOT
to be performed accurately and efficiently. The two-
dimensional architecture based on the design provides a
platform for implementing the powerful surface code.

The electrostatic scheme proposed here is a step for-
ward towards an efficient implementation of gates also
between hybrid qubits, like ST qubit, hole-spin qubits, or
even superconducting qubits. This opens up new avenues
for a future working hybrid quantum computer based not
on one, but several types of qubits.
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nenko for helpful discussions and acknowledge support
from the Swiss NF, NCCRs Nanoscience and QSIT,
and DARPA. This research was partially supported by
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Office under Contract No. W911NF-11-1-0068. MT
acknowledges financial support from NSF under Grant
No. DMR-0840965.

Appendix A: SPIN-SPIN COUPLING - singly
occupied double-dots

In this section we derive explicitly the effective spin-
spin coupling. The spin-orbit interaction (SOI) Hamilto-
nian HSO is assumed to be small compared to both the
orbital Hamiltonian H0 + V and the Zeeman coupling
HZ , so that we can treat it in perturbation theory. The
method of choice for the perturbation theory is based
on the Schrieffer-Wolff (SW) transformation, following
Refs. 9 and 17. This method is very suitable for deriv-
ing effective Hamiltonians, as we aim at herein. We first
perform a unitary transformation on the full Hamilto-
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nian, i.e. H → eSHe−S ≡ HSW , with S an anti-unitary
operator so that we get

HSW = Hd +HSO + [S,Hd +HSO] (A1)

+
1

2
[S, [S,Hd +HSO]] + . . . ,

where Hd = H0 + V +HZ . We look for the transforma-
tion S so that this diagonalizes the full Hamiltonian H
in the basis of Hd. In leading order in HSO, we choose S
so that [S,H0 + V +HZ ] = −(1−P)HSO, with the pro-
jector operator P satisfying PA =

∑
En=Em

Anm|m〉〈n|,
∀A, i.e. it projects onto the diagonal part of the Hamil-
tonian Hd. Keeping the lowest order terms in α and β
in the SW transformation, we are left with the effective
interaction Hamiltonian HSW that contains the desired
spin-spin coupling in the basis of Hd

HSW = Hd −
1

2
P[S,HSO], (A2)

where S = (1−P)L−1d HSO, with Ld being the Liouvillian
superoperator (LdA = [Hd, A],∀A).

Next we find the explicit expression for the spin-spin
coupling due to the second-order term in SOI in Eq.
(A2), i.e. U ≡ 1

2 [S,HSO]. We make use of the explicit
time-dependent (integral) representation of the Liouvil-

lian L−1d = −i
∞∫
0

dtei(Ld+iη)t and arrive at

U = − i
2

∫ ∞
0

dte−ηt[HSO(t), HSO], (A3)

where HSO(t) = eiLdtHn = eiHdtHne
−iHdt, and η → 0+

ensures the convergence of the time integration. Heisen-
berg operators, σi(t) and pi(t), are needed in order to cal-

culate U . The former is easy to obtain σi(t) = Σ̂i(t)σi,

with Σ̂i(t) given by

(Σ̂i)mn(t) = δmnl
2
i cos

EZit

2~
+ 2(li)m(li)n sin2 EZit

4~

−εnmk(li)k sin
EZnt

2~
, (A4)

with li = Bi/B. The calculation of pi(t) consists of solv-
ing the system of ordinary differential equations (ODEs)

d

dt
pi(t) = −m∗ω2

0ri(t)−
∂

∂ri
V (r1(t), r2(t)), (A5)

d

dt
ri(t) = pi(t)/m

∗. (A6)

In order to solve this system we expand the electro-
static potential, given in Eq. (3), around the minima to
second order in ri(t). The system of ODEs now reads

d2

dt2

(
p1(t)
p2(t)

)
= −Ω̂

(
p1(t)
p2(t)

)
, (A7)

Ω̂ =


ω2
x 0

0 ω2
y

Ω̂12

Ω̂†12
ω2
x 0

0 ω2
y

 . (A8)

FLOATING GATE

QD

QD

FIG. 8. The misalignment angle α of the two QDs (yellow),
defined with respect to the metallic floating gate (orange).

In this approximation only terms O(r2i ) are retained—
this is valid for low lying levels. We ignore the renormal-
ization of the frequencies (ωx and ωy) because it gives
higher order (in the Coulomb energy) contribution to
the effective spin-spin coupling. The coupling between
the QDs (Ω̂12) is given by

(Ω̂12)ij =παqαC

(
∂qind
∂r̃i

)(
∂qind
∂r̃j

)
ωiωj , (A9)

(∂qind/∂ri)r=0 =
2R
√
ξ20 −R2ai

πξ20(2ξ20 − a20 −R2 − d2)
, (A10)

where αq = Cd/(Cd + Cw), αC = e2/(κR~ωx), and
r̃i = ri/λi (λi is the QD size along the i-th direction). ai
are the vectors that define the position of the QDs with
respect to the nearby disc center, see Fig. 8. Note that
the expressions for the disc (Cd) and wire (Cw) capaci-
tances, resp. are given by

Cd = 2R/π, (A11)

Cw =
L

2 ln (L/Rw)
, (A12)

where R is the radius of the disk, Rw is the radius of the
wire and L is the length of the wire.

In order to obtain the solution of Eq. (A8),
we note that even a slight ellipticity (|ω2

x − ω2
y| �

max[(Ω̂12)2xy, (Ω̂12)2yx]) of the QDs causes the motion in
the x- and y-direction to be decoupled. Having in mind
that (Ω̂12)2yx,xy/ω

2
x,y ∼ 10−3 − 10−4, we conclude that

such a ellipticity is unavoidable in realistic experimental
devices. Thus, we put off-diagonal elements of the Ω̂12

matrix to zero and obtain the solutions

pi1,2(t) = ±pixa cos(ωi+t) + pixs cos(ωi−t)∓ (A13)

∓m∗riaωi+ sin(ωi+t)−m∗risωi− sin(ωi−t),

herein the notation rs,a = (r1 ± r2)/2, ps,a = (p1 ±

p2)/2 and ω± =

(√
ω2
x ± (Ω̂12)2xx,

√
ω2
y ± (Ω̂12)yy

)
has

been introduced. In the previous formula, a subscript
of a vector denotes the corresponding component of the
vector.

Next, the obtained solutions are inserted into Eq.
(A3). Finally, after performing the integration over time
one obtains the effective spin-spin coupling for arbitrary
orientation of the magnetic field

Hs−s =
∑
i=x,y

m∗ω2
i,12E

2
Z1(l1 × (l1 × γi)) · σ1(σ2 · γi)

4(ω2
x − E2

Z1)(ω2
x − E2

Z2)

+1↔ 2, (A14)
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where γx = (β cos 2γ,−α − β cos 2γ, 0), γy = (α −
β sin 2γ,−β cos 2γ, 0), and li = Bi/B. For simplicity of
notation, γx is referred to as γ in the main text.

Few remarks should be main herein for the result em-
bodied in the Eq. (A14). First of all, from Eq. (A10) we

see that Ω̂12 ∝ a1⊗a2, accordingly, the two terms in the
sum of Eq. (A14) are proportional to cosα1 cosα2 and
sinα1 sinα2—the angles αi are being depicted in Fig. 8.
When only Rashba SOI is present in the material, the
coefficients in front of the two terms are equal and the
coupling is proportional to a1 ·a2. This gives yet another
efficient switching mechanism thereby, when the QDs are
rotated in such a way that the two vectors are orthogonal
(a1 · a2 = 0)34.

Appendix B: SPIN-SPIN COUPLING - the hybrid
system

We start from the Hamiltonian of the system and then
apply the Schrieffer-Wolff transformation to remove the
first order SOI term (present only in the single QD). The
electrostatic potential V is again expanded around the
minimum

V (re, r1, r2) = V (re, r1) + V (re, r2) (B1)

≈ m∗
∑

i=e,1,2

(δω2
xx

2
i + δω2

yy
2
i )

+m∗ω2
x,12xe(x1 + x2),

where re, r1, and r2 are the coordinates with respect
to the local minima for the electron in the single QD,
and the two electrons in the DQD, respectively. The
terms under the sum only renormalize the frequencies,
we do not take them into account, they give only higher
order (in the Coulomb energy) contributions to the final
results. The last term acts as an electric field on the
DQD; as has been shown in the Ref. 15, this leads to a
change in the exchange splitting between the singlet and
triplet states in the DQD.

H = H0 +HZ +HSO + δJ̃x̃eS1 · S2, (B2)

where δJ̃ is given by

δJ̃ =
3

sinh(2l̃2)

ω2
x,12

l̃ω2
D

ε. (B3)

ωD is the confinement energy in the DQD, l̃ is the dis-
tance between the DQD minima measured in units of a
QD size. We assumed that the detuning ε is applied to
the DQD in order to get the coupling linear in electro-
static coupling.

The Schrieffer-Wolff transformation is given by S =
(L0+LZ+LH)−1HSO. Similarly to the previous section,
in order to find the inverse Liouvillian we have to solve
the system of ODEs

d

dt
pe,x(t) = −m∗ω2

xxe(t)−m∗J̃S1 · S2, (B4)

d

dt
pe,y(t) = −m∗ω2

yye(t), (B5)

d

dt
re(t) = pe(t)/m

∗. (B6)

The solution is easily obtained

pxe (t) = pxe cos(ωxt) (B7)

−m∗
(
xeωx +

J̃

m∗ωxλ
S1 · S2

)
sin(ωxt),

pye(t) = pye cos(ωyt)−m∗yeωy sin(ωyt). (B8)

After integration over time, the S transformation is ob-
tained

− iS =
∑
i=x,y

m∗re,i
(
µ2g2(B · γi)(B · σ)− 4ω2

i γi · σ
)

8(ω2
i − E2

Z)

+
µg(B × σ) · γipe,i

4(ω2
i − E2

Z)
(B9)

+
µ2g2(B · γx)(B · σ)− 4ω2

xγx · σ
8ω2

x(ω2
x − E2

Z)λ
δJ̃S1 · S2,

The coupling is contained in the [S,HZ + δJ̃x̃eS1 · S2]
term

HS−s =
3µg δJ̃(γx ×B) · σ

4(ω2
x − E2

Z)λ
(S1 · S2). (B10)

By rewriting the last equation in the pseudo-spin space
the generalization for Eq. (12) for arbitrary magnetic
field orientation is obtained.

Appendix C: Implementation of two-qubit gates

Two qubits interacting via the floating gate evolve ac-
cording to the Hamiltonian H = HS−S + EZ(σ1

z + σ2
z),

the sum of the qubit-qubit coupling and Zeeman term.
In general these contributions do not commute, making
it difficult to use the evolution to implement standard
entangling gates. However, when the field is perpendic-
ular to the 2DEG substrate, HS−S takes the form of Eq.
(8) which can be decomposed into two terms as follows,

HS−S = J12(Γ1 − iΓ2σ
1
z)(σ1

xσ
2
x − σ1

yσ
2
y)/2

+ J12|γx|2(σ1
xσ

2
x + σ1

yσ
2
y)/2. (C1)

Here Γ1 = ((γx)2x−(γx)2y) and Γ2 = (γx)x(γx)y. The first
of these two terms anticommutes with the Zeeman term,
whereas the second commutes. As such, when EZ �
J12|γx|2, HS−S can be approximated by the second term
alone,

HS−S ≈ H ′S−S =
J12|γx|2

2
(σ1
xσ

2
x + σ1

yσ
2
y), (C2)

H ≈ H ′ = H ′S−S + Ez(σ
1
z + σ2

z)/2. (C3)
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With this approximation, the coupling and Zeeman terms
in H ′ now commute.

We consider the implementation of the gate
√
σxσx =

exp(−iσ1
xσ

2
xπ/4), which is locally equivalent to a CNOT.

The Hamiltonian H ′ already contains a σ1
xσ

2
x term, so

implementation of the
√
σxσx gate requires only that the

effects of the other terms be removed by appropriate local
rotations. Two possible sequences that can be used to
achieve this are,

√
σxσx =ei(σ

1
z+σ

2
z)Ezte−iH

′t

σ1
xe
i(σ1

z+σ
2
z)Ezte−iH

′tσ1
x, (C4)

√
σxσx =σ2

x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2

σ2
x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2, (C5)

where t = π/(4J12|γ|2). The first sequence requires two
applications of the qubit-qubit coupling, whereas the sec-
ond requires four. The main difference is that the former
removes the effects of the field through the application
of corresponding z-rotations after each application of H ′,
whereas the latter uses x-rotations to negate the sign of
the field terms and additional applications of H ′ to can-
cel them out. The former is therefore simpler to imple-
ment, however the latter method will also cancel terms
not taken into account in the approximation.

Once the
√
σxσx has been implemented using either of

the above sequences, the CNOT gate, C, may be applied
using the appropriate local rotations,

C =
√
σ1
z

√
σ2
xH1 √σxσx H1. (C6)

Here H denotes the single qubit Hadamard rotation.
Since H ′ is an approximation of H, the above se-

quences will yield approximate CNOTs, C ′, when used
with the full Hamiltonian. The success of the sequences
therefore depends on the fidelity of the gates, F (C ′).
Ideally this would be defined using a minimization over
all possible states of two qubits. However, to char-
acterize the fidelity of an imperfect CNOT it is suf-
ficient to consider the following four logical states of

two qubits: |+, 0〉 , |+, 1〉 , | −, 0〉 , and | −, 1〉. These
are product states which, when acted upon by a perfect
CNOT, become the four maximally entangled Bell states
|Φ+〉 , |Ψ+〉 , |Φ−〉 , and |Ψ−〉, respectively. As such, the
fidelity of an imperfect CNOT may be defined,

F (C ′) = min
i∈{+,−},j∈{0,1}

| 〈i, j |C†C ′ | i, j〉 |2. (C7)

The choice of basis used here ensures that F (C ′) gives a
good characterization of the properties of C ′ in compar-
ison to a perfect CNOT, especially for the required task
of generating entanglement.

In a realistic parameter regime it can be expected that
(γx)x and (γx)y will be of the same order, and the qubit-
qubit coupling will be a few orders of magnitude less than
the Zeeman terms. To get a rough idea of what fidelities
can be achieved in such cases using the schemes proposed,
we average over 104 samples for which (γx)y is randomly
assigned values between (γx)x/2 and 3(γx)x/2 accord-
ing to the uniform distribution, and J12(γx)x/EZ = 0.1.
This yields values of 99.33% and 99.91% for the se-
quences of Eq. (C4) and Eq. (C5), respectively. For
J12(γx)x/EZ = 0.01 these improve, becoming 99.993%
and 99.998%, respectively.

To compare these values to the thresholds found in
schemes for quantum computation, we must first note
that imperfect CNOTs in these cases are usually mod-
elled by the perfect implementation of the gate followed
by depolarizing noise at a certain probability. It is known
that such noisy CNOTs can be used for quantum com-
putation in the surface code if the depolarizing proba-
bility is less than 1.1%.6 This corresponds to a fidelity,
according to the definition above, of 99.17%. The fideli-
ties that may be achieved in the schemes proposed here
are well above this value and hence, though they do not
correspond to the same noise model, we can expect these
gates to be equally suitable for fault-tolerant quantum
computation.
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