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Abstract: We investigate degeneracies of BPS states of D-branes on compact Calabi-Yau

manifolds. We develop a factorization formula for BPS indices using attractor flow trees

associated to multicentered black hole bound states. This enables us to study background

dependence of the BPS spectrum, to compute explicitly exact indices of various nontrivial

D-brane systems, and to clarify the subtle relation of Donaldson-Thomas invariants to BPS

indices of stable D6-D2-D0 states, realized in supergravity as “hole halos.” We introduce

a convergent generating function for D4 indices in the large CY volume limit, and prove it

can be written as a modular average of its polar part, generalizing the fareytail expansion

of the elliptic genus. We show polar states are “split” D6-anti-D6 bound states, and

that the partition function factorizes accordingly, leading to a refined version of the OSV

conjecture. This differs from the original conjecture in several aspects. In particular we

obtain a nontrivial measure factor g−2
top e

−K and find factorization requires a cutoff. We

show that the main factor determining the cutoff and therefore the error is the existence of

“swing states” — D6 states which exist at large radius but do not form stable D6-anti-D6

bound states. We point out a likely breakdown of the OSV conjecture at small gtop (in the

large background CY volume limit), due to the surprising phenomenon that for sufficiently

large background Kähler moduli, a charge ΛΓ supporting single centered black holes of

entropy ∼ Λ2S(Γ) also admits two-centered BPS black hole realizations whose entropy

grows like Λ3 when Λ → ∞.

http://arXiv.org/abs/hep-th/0702146v2
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1. Introduction

String theory has been spectacularly successful in microscopically reproducing the entropy

of certain classes of black holes, in particular of supersymmetric charged black holes. What

made this possible is the fact that for these black holes, the entropy can be identified

with the logarithm of the Witten index of the system, which is independent of the string

coupling constant, enabling one to count states in the zero coupling limit where the D-brane

description becomes accurate [1]. Alternatively one can use the M-theory description,

as was done in [2] for four dimensional D4-D2-D0 BPS black holes in IIA Calabi-Yau

compactifications. In this case the relevant weak coupling limit is the limit of large Calabi-

Yau volume and large M-theory circle radius.

However, until recently all these derivations were limited to cases dual to systems in

regimes in which some form of the Cardy formula could be applied. For example the

computation of [2] was limited to zero D6-brane charge and large D0-charge N . The

restriction to large N followed from the use of the Cardy formula. The parallel derivation

in the D4-D0 picture in string theory [3] is restricted to the same large D0-charge regime.

Thus the standard treatments are in fact valid only in a very small subset of charge space.

In particular, in this regime none of the IIA worldsheet instanton contributions to the

supergravity entropy are visible.

Further significant progress on the microscopic accounting of entropy only came after

the supergravity prediction for the entropy, based on the attractor mechanism [4, 5], was

refined in [6, 7, 8, 9], leading in turn to the formulation of a famous conjecture by Ooguri,

Strominger and Vafa (OSV) [10]. The OSV conjecture predicts a far-reaching generalization

of the correspondence between supergravity and statistical entropies, refining it to all orders

in a 1/Q expansion, Q being some measure of the charge. One way of stating the original

conjecture is

Ω(p, q) ∼
∫
dφ e−2πφΛqΛ |Ztop(gtop, t)|2, (1.1)

where Ω(p, q) is a suitable index of BPS states of given charge Γ = (p, q), defined below

in (1.6), and Ztop(gtop, t) is the topological string partition function with certain (p, φ)

dependent substitutions for the topological string coupling gtop and Kähler moduli t, also

detailed below in section 1.3. By construction, the leading saddle point approximation to

(1.1) is eSBHW(p,q), where SBHW is the Bekenstein-Hawking-Wald entropy obtained from

the standard N = 2 low energy two derivative action plus F-term R2 corrections, governed

by topological string amplitudes.

A version of the conjecture counting BPS states on noncompact Calabi-Yau manifolds

was subsequently investigated in many examples. The reason for considering noncompact

Calabi-Yau manifolds is that much more is known about the D-brane systems they carry
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and the counting of their BPS states. On the other hand the immediate black hole in-

terpretation is lost, and one should be wary of drawing conclusions for the compact case

from the noncompact case. In this paper, we will strictly limit ourselves to the compact

case. Direct tests for this case have been more limited [11, 12, 13], mainly because little

is known about the behavior of various curve counting invariants at large degree in this

compact setting. However, more recently progress was made towards model independent

derivations of the conjecture [16, 17, 18, 19]. As a byproduct, these studies have opened the

window to extensions of microscopic derivations of black hole entropy beyond the “Cardy

regime,” and in particular to give an explanation for the appearance of IIA worldsheet

instanton corrections to the entropy.

Nevertheless, the situation is still far from being completely understood, and several

problems were left open in these recent studies, some explicitly, some only implicitly.

One of the problems in the first category is the fact that there is still no general

derivation for the case with nonzero D6-brane charge. Another one is the need to keep

the black hole attractor point within some sufficiently small neighborhood of the infinite

radius limit, requiring in particular the magnetic D4 charge P to lie within the Kähler cone

(excluding in particular the so-called “small” black holes). These limitations also hold for

the present work.

The more subtle problems on the other hand are related to the intrinsic ambiguities

present in (1.1), some of which were already pointed out in [10, 11, 12]. The most serious

ones are:

• The indices Ω(p, q) in fact depend on the boundary conditions of the scalar fields at

infinity. Denoting the background by t∞ we should, and henceforth will, denote the

indices by Ω(p, q; t∞). The t∞ dependence is due to jumps at walls of marginal sta-

bility. On the other hand the right hand side of (1.1) does not have this dependence.

This raises the question: For which value of t∞ is the conjecture is supposed to hold?

• Since Ztop is divergent and only makes sense as an asymptotic perturbative expansion,

it is clear that the conjecture can at most hold approximately. However, it is not

clear a priori what the regime of validity should be, nor what the order of the error

is, nor even how to define properly the integral (1.1). In other words, it is not clear

what “∼” means.

• It is not clear whether there should be an additional integration measure factor in

(1.1).

The first issue has been sidestepped in most studies of the OSV conjecture so far. Upon

closer inspection though, one sees that typically an implicit choice of t∞ is made. For

example if one counts states in a classical geometric brane picture, one is implicitly working

in the infinite radius limit, i.e. t∞ = i∞. This will also be the value of t∞ considered in this

paper. We should stress that this is different from working with local Calabi-Yau manifolds.

First, we are taking a well defined limit t∞ → i∞ of the full, compact degeneracies,

without making truncations of degrees of freedom as one does in local models. Moreover,
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by simultaneously tuning the IIA string coupling one could actually keep the M-theory CY

volume VM ∼ VIIA/g
2
IIA finite in this limit.1

The second issue has been largely ignored by keeping derivations formal and not wor-

rying about issues of convergence or how to define the right hand side of (1.1) such that

it makes sense as an integral. In [18] the need for a cutoff in Ztop and the existence of

corrections to the OSV formula were emphasized but the analysis was not sufficiently de-

tailed to provide a precise description of either one of those. For certain N ≥ 4 models

[11, 12, 13, 14, 15], where cutoffs are not needed due to the simplicity of the topological

string partition function, explicit exponential corrections were found.

Finally, the need for an additional measure factor was was pointed out in [12] for small

black holes, in [13] for T 6 and T 2 ×K3 compactifications, in [15] for N = 4 models, and

on general theoretical grounds in [20]. On the other hand, none of the derivations [17, 18]

detected an additional measure factor.

Our analysis will tackle all these problems head-on for arbitrary compact (proper)

Calabi-Yau manifolds, resulting in a refined, unambiguous version of the conjecture at

t∞ = i∞, with a precise cutoff prescription for Ztop. Moreover, we will in fact find a

nontrivial extra measure factor

µ ∼ g−2
top e

−K (1.2)

in agreement with previous special case studies [11, 12, 13, 14]. The presence of a similar

nontrivial measure factor has been previously discussed from a different point of view in

[15]. Finally we will formulate detailed constraints on (p, q) for the conjecture to hold to

exponential accuracy, and give a concrete error estimate within this domain of validity

somewhat larger than that found in previous special case studies [13].

A more or less self-contained technical summary of our final result — the refined OSV

formula — can be found in section 7.

The main challenge, to which much of the paper is devoted, is essentially controlling

the error and ensuring it does not swamp the effects of interest. We outline the issues

involved a bit further on in section 1.2, and discuss a number of unresolved problems in

this context.

1.1 Outline

Besides a precise version of the OSV conjecture as outlined above, we will obtain several

results of independent interest:

1. In section 2 we show that the “black hole partition function” of OSV for p0 = 0 may

be obtained from a well-defined, convergent (topologically twisted) D4 partition func-

tion ZD4 through a formal substitution of arguments. We then demonstrate, using

TST duality, that ZD4 transforms as a generalized multi-variable Jacobi form under

modular transformations. From this, we rigorously establish a “fareytail expansion”

1This indicates that M-theory is perhaps the most natural framework to consider this limit. We will

develop most of our picture in IIA, but the fundamental building blocks we will use, namely attractor flow

trees, are universal and can equally well be interpreted in IIA, IIB or M-theory, or even microscopically, as

we will see.
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[26, 27] for the fareytail-transform ẐD4, as well as one for the original ZD4. This ex-

presses the D4D2D0 indices of arbitrary charges in terms of those of a distinguished,

finite set of “polar” charges, which have reduced D0-charge q̂0 > 0. The use of the

fareytail expansion in this problem was suggested in [11] and is dual to the M-theory

derivations of [18, 28, 47]. The result obtained here refines and extends these results.

This section is logically quite independent of the remainder of the paper, although

the final result (2.71) will be used in the derivation in section 6.4.2.

2. In section 3, we give a review of the four dimensional supergravity picture of BPS

bound states as multicentered black hole “molecules” and of the phenomenon of

decay at marginal stability in this setting. We emphasize the power of attractor flow

trees in establishing the existence of such solutions, and argue in general that these

flow trees give a useful partition of the classical BPS configuration moduli space and

quantum BPS Hilbert space. We give very concrete explicit examples of D6-anti-D6

two centered bound states, halos, Sun-Earth-Moon systems, and iterations of those.

Within the class of two-centered black hole examples, we encounter a rather surprising

phenomenon: when one uniformly scales up a generic (P > 0) D4-D2-D0 charge Γ

as Γ → ΛΓ, one finds that for Λ sufficiently large and in a background with Im t∞
sufficiently large, there always exist two-centered black hole BPS bound states whose

horizon entropy is parametrically larger than the single centered horizon entropy.

More precisely the horizon entropy of these two centered solutions grows as Λ3, while

the single centered entropy only grows as Λ2. Although this is easily seen to be

fully compatible with holography (as all distances scale as Λ3/2), it is still quite

unexpected, and appears at odds with the OSV formula (at t∞ → i∞) in this limit,

as that formula predicts log |Ω| ∼ Λ2. We refer to this phenomenon as the “entropy

enigma”.

We also demonstrate the existence of an interesting class of multiparticle “scaling”

solutions, which are characterized by a configuration scale modulus λ such that in the

limit λ→ 0, the solution becomes indistinguishable from a single centered black hole

to a distant observer, while a near observer keeps on seeing nontrivial microstructure.

Finally, we show that the polar states forming the basis of the fareytail expansion

correspond to charges which do not have a single centered black hole description.

Instead they are realized as BPS black hole configurations consisting of two (or more)

clusters of nonzero opposite D6 charges. In this sense polar states are “split states”.

This split nature will translate into approximately factorized degeneracies, which we

show in later sections to give rise eventually to the factorization ZBH ∼ ZtopZtop, i.e.

the OSV conjecture.

3. In section 4 we briefly review the microscopic counterparts of these multicentered

configurations in terms of stretched open strings and tachyon condensation. We also

exhibit how to a certain extent the split nature of polar states is mirrored even in

the large radius geometrical description of these D-brane states, by matching charges

and moduli spaces.
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4. In section 5, we get to the actual counting of BPS states and describe perhaps the

most important result in the paper. We give physical arguments for a wall crossing

formula giving the jump ∆Ω(Γ; t) of the index at a wall of marginal stability t = tms

corresponding to a decay Γ → Γ1 + Γ2. The index changes by

∆Ω(Γ; t) = (−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉| Ω(Γ1; tms) Ω(Γ2; tms) (1.3)

when Γ1 and Γ2 are primitive. Of course, for fixed Γ1,Γ2 this is also the wall of

marginal stability for other charges ΓN1,N2 → N1Γ1 + N2Γ2, N1, N2 > 0. We show

that the formula for N1 = 1 but arbtirary N2 is most conveniently given in terms of

a generating function:

∑

N2>0

∆Ω(Γ1 +N2Γ2) q
N = Ω(Γ1)

∏

k>0

(
1 − (−1)k〈Γ1,Γ2〉 qk

)k|〈Γ1,Γ2〉|Ω(kΓ2)

(1.4)

where all indices are understood to be evaluated at t = tms. These formulae in turn

give rise to a powerful factorization formula for BPS indices based on attractor flow

trees.

We verify these formulas explicitly for a number of nontrivial bound states of branes

described by quivers and/or large radius sheaves, including a three node quiver with

a closed loop and a generic cubic superpotential. For this case we find an intriguing

exact formula for the indices in terms of an integral of the product of three Laguerre

functions. This shows a phase transition (as a function of the charges) in the growth

of the degeneracies, going from polynomial to exponential exactly at the transition

point where the black hole-like scaling solutions mentioned above come into existence.

Moreover in this regime we find the rather suggestive asymptotics Ω ∼ 2I12 2I23 2I31 ,

where Iij denotes the number of arrows between the respective nodes in the quiver

(note that these grow quadratically with uniform charge scalings, making this a

macroscopic entropy).

5. In section 6 we turn to the counting of the BPS states specifically relevant for our

derivation of the OSV conjecture.

In section 6.1, we analyze the spectrum of D6-D2-D0 BPS bound states with unit

D6 charge and the generating function ZD6−D2−D0|t∞ for their indices in a given

background t∞ = B + iJ . We discuss the relation of these generating functions

with the Donaldson-Thomas(DT) / Gopakumar-Vafa (GV) partition functions. It

turns out that for D6D2D0 states realized in supergravity as D2D0 “halos” around a

core with nonzero D6 charge, there are walls of marginal stability which run all the

way out to infinite Kähler class, leading to jumps in ZD6−D2−D0 when the B-field

is varied, and hence to explicit deviations of physical stability from µ-stability even

in the infinite CY volume limit. Thus one can only potentially identify ZD6−D2−D0

with the DT partition function in certain limits of the background. This includes

particular limits B → ∞, for which we show that the contribution of all stable halo

states to ZD6−D2−D0 is given exactly by the genus r = 0 factor of the GV/DT infinite
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product. We argue that in such limits we can indeed identify ZDT = ZD6−D2−D0,

refining the arguments and result of [29]. Under this identification, the genus r > 0

part of the DT infinite product counts “core” states, which are stable for any value

of the B-field at infinite Kähler class.

Sections 6.2 and 6.3 contain the most subtle steps in our derivation of the OSV

conjecture. We will outline the origin of the complications and discuss the unresolved

issues that arose separately in section 1.2 below. In section 6.2 we analyze the D6-anti-

D6 type bound states giving rise to polar D4-D2-D0 states, and address in particular

the question of which D6 and anti-D6 states correspond to “extreme” polar states,

i.e. states whose reduced D0-charge q̂0 is near-extremal. Restriction to these states in

the generating function is necessary to obtain exact factorization, which we further

discuss in section 6.3. Finally, in section 6.4, by combining the results of the previous

sections, this leads to to a derivation of a refined version of the OSV formula.

6. In section 7, we give a thorough discussion of our final result.

7. The seven appendices contain numerous technical details and several additional re-

sults. In appendix A, we collect some definitions and conventions, and in appendix

B we summarize a number of results in algebraic geometry we use. In appendix C,

we prove a partial result regarding the finiteness of the number of split attractor

flows. In appendix D we outline an efficient algorithm for checking numerically the

existence of attractor flow trees. These algorithms helped in checking the extreme

polar state conjecture. In appendix E we give the details of the computation of the

closed loop three node quiver index mentioned above. In appendix F, we clarify some

confusion which existed in the literature regarding whether one should compare the

index or total degeneracy computed at zero string coupling to the black hole entropy

(in particular in five dimensions, where it seemed that the former gave wrong results),

and show it is in fact the index, if one uses the proper one. Finally, in G, we give an

independent derivation of our version of the OSV formula in the gtop → ∞ regime,

using techniques originally developed in [30, 31] to count closed string flux vacua.

1.2 Challenges for a complete proof and unresolved issues

Although the basic idea underlying our derivation of the OSV conjecture is quite simple,

turning it into a complete proof proved to be a rather complex task, and we have only

been partially successful. This is not a shortcoming of the IIA picture we work in — the

same would be true if one wanted to turn the ideas of [17, 18] into an actual proof, and

the complications outlined below have all direct equivalents in the M-theory picture used

there. We elaborate on this in section 7.3.

At the core of the complexity lies the fact that in order to obtain the factorized form

of the integrand in (1.1) it is necessary to introduce a cutoff. The factorization ultimately

comes from the fact that, through the fareytail series of section 2, all D4 indices can

be expressed in terms of the indices of a finite number of polar D4 states, which as we

mentioned above do not form single centered black holes but can be described as D6-anti-
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D6 bound states.2 In a suitable limit of the background, single D6-states are counted by

DT invariants, which determine Ztop. If there were a one-to-one map between all polar

D4 states and all possible pairs of single D6 and single anti-D6 states in the background

in which they are counted by DT invariants, we would thus get exact factorization and a

strong version of the OSV conjecture.3

Unfortunately, this is not the case. Not all polar states are single D6 - anti-D6 bound

states, and moreover the subset of single D6-anti-D6 pairs giving rise to actual bound states

is rather limited and complicated. In particular, even within the set of pairs which do form

bound states, the two elements of the pair cannot in general be chosen independently,

ruining exact factorization.

However, we will argue that for sufficiently polar states, i.e. D4 states with charges

sufficiently close to those of a pure D4, the desired one-to-one correspondence does indeed

hold. 4 “Sufficiently close” is measured by a parameter η ≥ 0, defined in section 6.2.2, with

η = 0 corresponding to the pure D4, which can be realized as a bound state of a pure D6

and a pure anti-D6 with suitable fluxes turned on on their worldvolumes. More precisely

η := q̂0−(q̂0)max

(q̂0)max
.

Dropping all polar states with η > η∗ with η∗ sufficiently small allows us to obtain an

approximate factorized formula. The error introduced in this way turns out to amount to

a multiplicative correction to the integrand in (1.1) of order

exp
[
O(e−η∗gtopP

3
)
]
. (1.5)

Now the essence of the OSV conjecture is that D-brane BPS degeneracies are expressed

in terms of the data of worldsheet instanton effects. These effects contribute factors

exp
[
O(e−gtopP )

]
to the integrand, where we used the relation Im t ∼ gtopP detailed below

in (1.10). Thus, to keep the error smaller than the effects of interest, we need to keep

η∗ ≫ 1/P 2.

Much of our work is aimed at investigating how large one can take η∗ without ruining

factorization. This requires getting sufficient control on the very difficult problem of stabil-

ity of BPS bound states. For this purpose, we spend some effort extending the development

of the theory of attractor flow trees [22, 21, 23, 24]. This framework gives in principle a

way to study systematically stability issues. We successfully used it to get large parts of

the problem under control, but regrettably a few gaps remain.

We make these gaps explicit by formulating a number of precise conjectures. The

first one is the “split attractor flow conjecture,” formulated in section 3.2.2. This states

essentially that we can classify BPS states by attractor flow trees, and that the number

of such trees of a given total charge is finite. There are very good physical arguments for

2Here and in the following, by D4 and D6 states, we mean states with arbitrary induced lower dimensional

charges.
3Actually there would still be a series of fareytail corrections, but these are under exact control, and

each of these corrections would again be factorized.
4By a “pure D4” we mean a D4-brane BPS state with N = 0,F = 0 in the notation of section 2.1 below.

It has charge Γ = P + (P 3 + c2 · P )/24. Similarly, by a “pure D6” we mean a rank 1 D6 brane with no

lower charges, i.e. Γ = 1. A “pure fluxed D6” means Γ = eS.
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this, and the analysis of this paper gives ample evidence for it. We have no reasons to

doubt it. The second one is the “extreme polar state conjecture,” formulated in section

6.2.2. This states that all polar states with η < η∗ sufficiently small can be realized as

single D6-anti-D6 bound states with the charges of the constituents being close to those

of the pure fluxed D6 and anti-D6 branes describing the pure D4. “Close” in this case is

measured by a parameter ǫ defined in section 6.2, eq. (6.51), with ǫ ∼ η∗. We give some

physical arguments and considerable numerical and analytical evidence for the extreme

polar state conjecture, and we strongly believe it to be true.

Modulo one assumption, these conjectures then allow us to show that we get the

required factorization for a sufficiently small but P -independent value of η∗, in which case

indeed η∗ ≫ 1/P 2 in the large P limit, making the error exponentially smaller than the

instanton contributions. That assumption is that the BPS indices of the D6 and anti-D6

charges restricted by the cutoff ǫ do not jump between the region in moduli space where

they equal DT invariants and the region in moduli space where the central charges of the

two constituents line up.

Unfortunately, this assumption turns out to be wrong at large P with fixed ǫ ! There

can be D6 or anti-D6 states within the ǫ bound which do decay between these loci in moduli

space. Such pairs cannot combine into D6-anti-D6 BPS bound states, again spoiling the

desired factorization, and moreover spoiling the identification of the D6 indices with DT

invariants and the topological string.

Such states, which we call “swing states,” in fact do exist, at least when η∗ ∼ ǫ >

O(1/P ), as we discuss in section 6.3.2. When ǫ < O(1/P 3), we can prove in general that

swing states are absent at sufficiently large P . Let ξcd be the minimal value of ξ such

that taking ǫ < δ/P ξ , swing states are absent at sufficiently large P for some fixed δ (for

reasons which will become clear in section 6.3.2, we call this the “core dump exponent”).

From what we just said, we know that 1 ≤ ξcd ≤ 3. But given the relation η∗ ∼ ǫ, we

need ξcd ≤ 2 for the error not to be parametrically larger than the instanton contributions.

We suspect that in fact ξcd = 1, and give some circumstantial evidence for this claim, but

are not fully confident, so we consider this to be an unresolved issue. Note that in this

case, the corrections are of order e−gtopP
2 ∼ e−(Im t)2/gtop , suggestive of D4/M5 corrections

to the topological free energy. Indeed, the D6D2D0 swing states we find are realized in

supergravity as two-centered D6-D4 bound states, which lift to M5 rings circling the center

of Taub-NUT in M-theory.

Assuming ξcd ≤ 2, there is no further obstacle to proving our refined OSV formula

for t∞ = i∞, at least for gtop > O(1), that is, at strong topological string coupling. The

restriction to strong coupling might seem odd at first, as this is opposite to the regime for

which the OSV conjecture was intended to be valid, but it becomes less so when one realizes

that all the old successes of microscopically reproducing the Bekenstein-Hawking entropy,

such as [2], in fact have saddle point values gtop ≫ 1, this being essentially equivalent to

being in the regime of applicability of the Cardy formula. Also, all of the other recent

studies based on reduction to a weakly coupled brane system [17, 18], although going

beyond the gtop ≫ 1 limit, are upon closer inspection implicitly equally limited to the

strong topological coupling regime gtop > O(1). Moreover, the checks for small black holes
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[11, 12] were in general only valid in the region of strong topological string coupling.

Technically, the reason for the restriction to gtop > O(1) comes from the fact that the

error estimate (1.5), which arises from dropping all polar states with η > η∗, is actually only

manifestly valid for gtop sufficiently large. In this case, the most important contributions

to the error come from polar states with η near the cutoff, as the ones with large values

of η are exponentially suppressed. However, when gtop becomes smaller, the exponential

suppression becomes weaker and at a certain point, the bulk of the polar terms (order 1

values of η) will start to dominate the original partition function and therefore the error

produced by dropping them, because they have more entropy than the extreme polar

ones. So something like a phase transition occurs, with gtop playing the role of inverse

temperature. Simple estimates suggest that the degeneracies of the polar states at fixed

η grow with P as eηP
3
, and the transition occurs at the value of gtop where this starts to

dominate over the suppression factor e−η gtopP
3
, hence at some O(1) value of gtop. If the

growth estimate is correct, then for values of gtop less than this, factorization breaks down.

This is not a failure of the derivation itself, but is in fact very closely related to the

entropy enigma mentioned earlier — indeed, the supergravity configurations dominating

the entropies of the polar states are precisely of the same kind as those giving rise to the

entropy enigma. Moreover, since the saddle point value of gtop in (1.1) scales as 1/Λ when

(p, q) → Λ(p, q), the large Λ regime is equivalent to the small gtop regime, and thus the

appearance of the enigmatic configurations with entropy scaling as Λ3 is consistent with the

potential failure of the conjecture at weak gtop (and t∞ = i∞), which predicts log |Ω| ∼ Λ2

We can only say there is a “potential failure” here because there is a possible loophole

which might still save the conjecture even in this large Λ regime. This loophole is discussed

in detail in section 7. It is based on the fact that since Ω(p, q; t∞) is an index, it receives

contributions of different signs from many multicentered black hole configurations, so there

might in principle be miraculous cancelations altering the exponential growth from ecΛ
3

down to ecΛ
2
. We argue this is very unlikely, but might still have a (remote) chance of

being true if a similar cancelation happens for the DT invariants approximately building

up our polar indices. The problem for DT invariants can be phrased in a mathematically

precise way. The upshot is that if NDT (β, n) is a DT invariant for curve class β with D0

charge n then we should study the large λ asymptotics of logNDT (λ2β, λ3n) ∼ λk. (See eq.

(7.26) for a more precise version.) The straightforward estimate based on the entropy of the

corresponding D6D2D0 black holes suggests k = 3, which would invalidate weak coupling

OSV at t∞ = i∞. If, due to miraculous cancelations between different contributions to the

DT invariants, we get k ≤ 2, this would be suggestive of cancelations between the related

actual indices, and perhaps the extension to weak coupling might still be possible (but this

is by no means guaranteed). Although such cancelations might seem like ludicrous wishful

thinking, we discuss a number of heuristic arguments pro (but also contra) this hypothesis.

Of course, it might also be that one should not take t∞ = i∞. Other natural prescrip-

tions might be to take t∞ to be at the attractor point t∗(p, q) in (1.1) or to take t finite

and fixed while sending P → ∞. Both of these turn out automatically to eliminate the

enigmatic Λ3 configurations when Λ → ∞, but would also spoil some of the interesting

interpretations of the conjecture as an example of large radius D-brane gauge theory - grav-
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ity duality. Moreover, they would also push direct microscopic verification into a quantum

geometric regime (due to the importance of α′ correction at finite values of Im t∞) which

so far has proven intractable. We again refer to section 7 for more details.

Note added in version 2:

1. After version 1 of this paper appeared on the arXiv, the paper [25] appeared, in

which the growth of DT invariants logNDT (λ2β, λ3n) ∼ λk was numerically studied,

based on available data sets of DT invariants of a number of compact CY manifolds.

Although these data sets are too limited to directly extract asymptotics, one can get

predictions for k by using Richardson transforms. Surprisingly, the results suggest

k = 2, exactly the critical value for the OSV conjecture at t = i∞ to have a chance of

being correct even at weak topological string coupling, and implying the “miraculous

cancelations” do indeed occur! Although as mentioned above and discussed at length

in section 7.4, such cancelations at the level of DT invariants are not quite enough

to make OSV work at weak coupling (for this one also needs cancelations at a more

detailed level of different contributions to the D6D4D2D0 indices), it is clear that

if the numerical results of [25] indeed correctly capture the λ → ∞ asymptotics

of the DT invariants, the unknown mechanism underlying these cancelations might

conceivably also imply the more general cancelations required for weak coupling OSV.

It would be extremely interesting to settle this issue.

2. We would like to stress that the implications of such miraculous cancelations could be

enormous, going well beyond the issue of the range of validity of the OSV conjecture.

In particular, if k = 2, then this raises the possibility that the Donaldson-Thomas

partition function (1.20) gives a convergent, nonperturbative completion of the topo-

logical string partition function, of which (1.17) is a divergent asymptotic expansion.

Indeed if k = 2 the sum over β will have a nonzero radius of convergence for fixed

n. However proper convergence would actually also require NDT (λ2β, λ3n) to vanish

identically at sufficiently large λ for all strictly negative n, which requires an even

more miraculous, exact cancelation to occur. Further work is needed to determine

whether this might be the case or not. It is perhaps also worth noting that our

equations (6.101)-(6.102) below in fact can be interpreted as defining a nonperturba-

tive completion of the norm squared |Ztop|2 of the topological string wave function,

starting from the polar part Z− of the D4 partition function, since when P → ∞,

Zǫ
DT becomes ZDT .

1.3 Preliminaries

Let us conclude this section by reviewing some basic definitions which will be used in the

text.

We will be studying type IIA D-branes wrapping cycles in a nonsingular compact

Calabi-Yau 3-fold X of generic holonomy. The Hilbert space of type IIA on R1,3 × X is

graded by RR charge Γ ∈ K0(X). We ignore possible torsion subgroups and identify the
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charge group with Heven(X; Z), modulo torsion. Near a large radius limit of X there is a

canonical electromagnetic decomposition Γ = (p, q) with magnetic charges p ∈ H0(X; R)⊕
H2(X; R) and electric charges q ∈ H4(X; R) ⊕ H6(X; R). Picking a basis {DA}A, A =

1, . . . , h := h1,1(X) of H2(X,Z), the charges can be written in components as p =: p0 +

PADA, QA :=
∫
X DA∧q, q0 :=

∫
X q. We also introduce an index Λ running over 0, 1, . . . , h,

and denote components of p by pΛ and q by qΛ. 5 The crucial boundary conditions on

the fields at spatial infinity are those for the vectormultiplet scalar fields of the effective

N = 2 supergravity defined on R1,3. For IIA compactifications these are the complexified

Kähler moduli t := tADA := B + iJ . In the superselection sector (p, q) there is a central

charge Z(p, q; t) of the N = 2 supersymmetry algebra and there is is a well-defined finite-

dimensional space of BPS states H(p, q; t). These are the states at rest transforming in

the small representations of the little N = 2 superalgebra. Alternatively, they are the

1-particle states satisfying the energy bound E = |Z(p, q; t)|.
As pointed out in [11] the appropriate index to use in this context is the second helicity

supertrace. We will denote it as:6

Ω(p, q; t) := −2TrH(p,q;t) (−1)2J3J2
3 . (1.6)

Here J3 is the 3-component of spatial angular momentum. Since every BPS particle in an

N = 2 theory has a universal half-hypermultiplet factor (0,0; 1

2
) obtained from quantizing

the fermionic degrees of freedom associated to its center of mass in R3, we can also write

H(p, q; t) = (0,0; 1

2
) ⊗H′(p, q; t) and

Ω(p, q; t) = −2TrH′(p,q;t)

(
2(J ′

3)
2 − (J ′

3 −
1

2
)2 − (J ′

3 +
1

2
)2
)

(−1)2J
′
3 = TrH′(p,q;t) (−1)2J

′
3 .

(1.7)

Here J ′
3 is the reduced angular momentum.

We include the t-dependence since even though Ω is an index, it does depend on

the background complexified Kähler moduli tA, through jumping phenomena at walls of

marginal stability. These are walls where the phases of the central charges of the con-

stituents of a bound state line up, so decay into them is no longer energetically obstructed.

As we will see this is not just a minor nuisance; it affects the regime of validity of the

OSV conjecture in a significant way and moreover associated wall crossing formulae for the

index will prove a powerful tool, central in our derivation.

With these indices one can define a (formal) partition sum at fixed magnetic charge p

by summing over electric charges q:7

ZBH(φ; t∞) :=
∑

q

Ω(p, q; t∞) e2πφ
ΛqΛ . (1.8)

In terms of this generating function the conjecture [10] states that in a suitable parameter

regime,

ZBH(φ; t∞) ∼ |Ztop(gtop, t)|2 (1.9)
5Sometimes q refers just to the D2 charge and not the total electric charge. In this case it should be

clear from context which one is meant.
6The normalization factor −2 is chosen such that one (half) hypermultiplet gives Ω = +1.
7Our normalization conventions differ from [10, 11, 12]: φ(here) = −φ([10])/2π = −φ([11, 12])/2.

– 13 –



where Ztop is the topological string partition function and the following substitutions are

understood:

gtop =
4πi

X0
=

4π

2I0
ΛφΛ + i p0

, tA =
2IAΛφ

Λ + i pA

2I0
ΛφΛ + i p0

. (1.10)

Here IΛ1
Λ2 is the inverse symplectic intersection form between magnetic and electric

charges, where intersection products are assumed to equal zero between magnetic charges

and between electric charges. The presence of this intersection form can be deduced for ex-

ample from the results of [24]. In a canonical symplectic charge basis (which was assumed

in [10]), one has IΛ1
Λ2 = δΛ1

Λ2
, but more generally it is sometimes more natural to work in a

basis with a different intersection form. For example, as we review in appendix A, in type

IIA at large radius, where RR charges are given by Γ = ch(F )∧
√
Â, the natural choice of

basis gives IΛ1
Λ2 = σΛ2 δ

Λ1
Λ2

where σ0 = 1, σA = −1. We trust the reader will not confuse

the background moduli t∞ with the tA substituted on the RHS of the OSV conjecture.

As mentioned already in the introduction, an alternative way of writing (1.9) is

Ω(p, q; t∞) ∼
∫
dφ e−2πφΛqΛ |Ztop|2, (1.11)

where again the substitutions (1.10) are understood on the right hand side.

In this text, we will define the topological string partition function Ztop associated to

a Calabi-Yau threefold X as follows:

Ztop(g, t) := Zpol(g, t)Z0
GW (g)Z ′

GW(g, t) (1.12)

Zpol(g, t) := exp

(
−(2πi)3

6g2
DABCt

AtBtC − 2πi

24
c2At

A

)
(1.13)

Z0
GW (g) :=

(∏

n

(1 − e−gn)n
)−χ(X)/2

(1.14)

Z ′
GW (g, t) := exp

(∑

β 6=0

∑

h

Nh,β (−g2)h−1 e2πiβAt
A

)
. (1.15)

Here DABC are the triple intersection numbers of the basis {DA}A, c2 is the second Chern

class of X, χ(X) is the Euler characteristic of X, and Nh,β are the Gromov-Witten in-

variants counting the “number” of holomorphic maps of genus h into class β ∈ H2(X,Z).

Henceforth we will usually drop the subscript on gtop and simply write g.

In (1.14), we resummed the contributions of the degree zero Gromov-Witten invariants

Nh,0 into the McMahon form (1.14). At small g, it is more suitable to use the asymptotic

expansion given by

Z0
GW (g) ≈ K

( g
2π

)χ(X)
24

exp

(
χ(X)

2

ζ(3)

g2
+

∞∑

h=1

Nh,0 (−g2)h−1

)
. (1.16)

where K is a constant. (See Appendix E of [12], or eq.(4.34) et. seq. of [41] for a careful

derivation.)
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Similarly, one can rewrite Z ′
GW (g, t) as an infinite product using M2 BPS invariants

8 [32, 33, 34]. Denoting the BPS invariants as nrq we have Z ′
GW (g, t) = Z ′

GV (e−g, e2πit),
where

Z ′
GV (e−g, e2πit) =

∏

q>0,k>0

(1 − e−gk+2πiq·t)kn
0
q (1.17)

×
∏

q>0,r>0

2r−2∏

ℓ=0

(
1 − e−g(r−ℓ−1)+2πiq·t

)(−1)r+ℓ(2r−2
ℓ )nr

q
. (1.18)

Finally, Ztop is conjecturally related [35, 36, 37, 29] to the Donaldson-Thomas partition

function for ideal sheaves, as

Z ′
DT (u, v) = Z ′

GV (−u, v). (1.19)

Here

ZDT (u, v) :=
∑

n,β

NDT (β, n)un vβ := Z0
DT (u)Z ′

DT (u, v) (1.20)

Z0
DT (u) :=

∏

n

(1 − (−u)n)−nχ(X) =
(
Z0

GW

)2
, (1.21)

where vβ :=
∏
A(vA)βA , and NDT (β, n) are the ideal sheaf DT invariants, defined in [38, 39,

40]. Physically they can be thought of as counting D6-D2-D0 BPS states with D0-charge

n and D2-charge −β, ignoring stability

(i.e. ignoring D-term constraints on the D6-D2-D0 moduli space).

The conjecture (1.19) has been confirmed by many case studies, partially proved, and

is physically well supported [35, 29]. We will assume it is true.

We conclude with two remarks:

1. Our definition of Ztop is slightly nonstandard because of the way we handled the

β = 0 invariants. From (1.16) we see that there is an extra summand χ
24 log g

2π in the

definition of Ftop. This is large for g both small and large, and has the important

property that the expansion of Ftop is not analytic in g.

2. For many Calabi-Yau manifolds one can use known asymptotic growth estimates of

the Gromov-Witten invariants following from the results of [116, 117] to show that

the first line of (1.17) indeed converges as an analytic product for sufficiently small u

and sufficiently large Kähler classes. It will, however, have interesting singularities.

On the other hand, it already follows from the results of [34] that Zr>0
DT has zero

radius of convergence, and must be considered a formal product. In section 6.1 we

will give a nice physical interpretation of this second product as a product over “core

states.”

8These are also known as Gopakumar-Vafa invariants.
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2. A fareytail expansion for the D4-D2-D0 partition function

In this section we will show that ZBH for p0 = 0 and t∞ = i∞ can in general be expressed

as a fareytail (or Rademacher-Jacobi) series built from its polar part, generalizing the

results of [26, 27]. The derivation given here is dual to the derivations [18, 28] which

appeared while this paper was being written. We include it nevertheless for completeness

and because we fill in some of the gaps in those proofs and clarify some issues which were

left open, e.g. how to define a fareytail series for the actual partition function instead of

for the fareytail transform of it.

2.1 D-brane model, physical interpretation, and S-duality

Consider a single D4-brane wrapped on a smooth holomorphic surface in X. This surface

will be in an ample divisor class P = PADA and we often (somewhat sloppily) refer to the

surface also as P . We assume the surface has N D0-branes9 bound to it and U(1) flux

F ∈ H2(P ) turned on.10

Defining electric charges as the quantities coupling to the RR-potentials, the D2-brane

charges are

qA = QA = DA · F. (2.1)

Here and in what follows the scalar product between two 2-forms in H2(P ) is the intersec-

tion product:

α1 · α2 :=

∫

P
α1 ∧ α2 (2.2)

If the 2-forms are pulled back from H2(X), i.e. αi = ι∗P α̂i, this can also be written as

α1 · α2 = P · α̂1 · α̂2 = DABC P
Aα̂B1 α̂

C
2 . (2.3)

To avoid cluttering, in the following we usually will not notationally distinguish between

α̂i and its pullback αi, hoping that this will not cause confusion.

The total D0-brane charge is

q0 = −N +
1

2
F 2 +

χ(P )

24
(2.4)

where

χ(P ) = P 3 + c2(X) · P := DABCP
APBPC + c2,AP

A (2.5)

is the Euler characteristic of P . The last term in (2.4) represents the curvature induced

D0-brane charge on the D4-brane.

To have a supersymmetric configuration, one needs F (2,0) = 0(= F (0,2)). (The B-field

does not appear here because it is always of (1, 1) type for flat B.) For generic fluxes at

generic points in the D4-brane moduli space, this condition will not be satisfied. Exceptions

are fluxes F which are pulled back fromH2(X) = H1,1(X): for these, F (2,0) = 0 identically.

9In our conventions, which follow [42] and are natural from a geometric point of view, D4 branes form

bound states with anti-D0 branes at large radius, and D6-branes with anti-D2 branes.
10H2(P ) and H2(X) will refer to the integral cohomology modulo its torsion subgroup.
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However, in general there will be (many) elements of H2(P ) which are not pulled back

from H2(X). For these, the condition F (2,0) = 0 imposes h2,0(P ) equations on the h2,0(P )

geometric moduli of P , which will generically restrict the divisor moduli to a set of isolated

points, and more generally to a subvariety of the original moduli space [43, 44]. The N

D0-branes bound to the D4 are pointlike11 and not obstructed by the fluxes.

Thus we can rewrite (1.8) as

ZBH(φ0,Φ) =
∑

F,N

d(F,N) e2πφ
0[−N+ 1

2
F 2+

χ(P )
24

]+2πΦ·F (2.6)

where the sum is over U(1) worldvolume fluxes F on P and the number N ≥ 0 of bound

pointlike anti-D0 branes. The flux lattice is L = σ/2 + H2(P ), with σ/2 := c1(P )/2 =

ι∗PP/2 mod 1, where ιP is the embedding map of the surface P . We will choose the natural

representative σ = ι∗PP , which we will also denote simply as P . The half-integral shift

follows from the K-theoretic formulation of RR charges and is needed to cancel anomalies,

both on the brane worldvolume [45] and on the fundamental string worldsheet [46].

The index d(F,N) is defined similarly to (1.6)-(1.7) but now with the trace in a sector

of fixed (F,N), for J → ∞. The angular momentum can be identified with the Lefshetz

SU(2) action on the moduli space, so in particular the 3-component of the spin of a p-

form is J ′
3 = (p− dim)/2, where dim is the complex dimension of moduli space [91]. This

identifies our index d(F,N) up to a sign with the Euler characteristic of the moduli space

MF,N of BPS configurations in the sector labeled by (F,N):

d(F,N) = (−1)dimMF,N χ(MF,N). (2.7)

Note that d(F,N) is independent of the B-field, because B does not appear in the (large

radius) BPS conditions for D4-D2-D0 bound states and does not affect the moduli spaces.

Typically MF,N has singularities, and as a result it is not directly clear what the

proper mathematical definition is of the Euler characteristic χ(MF,N ) to get the correct

physical index. It would be worthwhile to have a precise mathematical definition of the

invariants d(F,N). Quite possibly they are DT invariants for torsion sheaves [38, 39, 40].

Some discussion of the subtleties involved can be found in [47].

It was noted e.g. in section 6 of [12] that this partition function is everywhere divergent,

but that this can be cured in a natural way by adding a Boltzmann weight e−βH with H

the BPS energy of the state. The resulting partition sum is then naturally interpreted as

the BPS partition function12 of a single D4-brane wrapping P and a Euclidean time circle

of circumference β, in a background with flat RR potentials13

C3 =: C ∧ dt

β
, C1 =: C0 ∧

dt

β
. (2.8)

11When a suitable nonzero B-field is turned on, they can alternatively be considered to be smooth

noncommutative U(1) instantons.
12This should be given by the partition function of a suitably topologically twisted D4 DBI theory,

possibly the theory constructed in [48]. It would be interesting to make this precise.
13Flat RR potentials are properly described by the compact K-group K−1(X; R/Z). This determines the

proper periodicities for these fields. We will ignore such subtleties in this paper.
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Here C ∈ H2(X,C). The BPS partition function is roughly Tr (−1)2J
′
3 e−βH−2πiqΛ·CΛ

where

the trace sums over all D4 states including all sectors (F,N). More precisely (in units with

ℓs := 2π
√
α′ = 1):

ZD4(
β

gIIA
, C0, C;B + iJ) := Tr (−1)2J

′
3e−βH−2πi[−N+ 1

2
F2+

χ(P )
24

]C0−2πiF·(C+ P
2

) (2.9)

=
∑

F,N

d(F,N) e
− 2πβ

gIIA
|Z(F,N ;B+iJ)| ×

× e−2πi[−N+ 1
2
F2+ χ(P )

24
]C0−2πiF·(C+ P

2
) (2.10)

where F := F − B. The “extra” factor e−πiF·P must be there for S-duality to work

properly [49, 50, 51], as we will confirm below. The string coupling constant gIIA is the

physical IIA coupling, not to be confused with the topological string coupling. The quantity

Z(F,N ;B+ iJ) denotes the holomorphic central charge of the D4-D2-D0 system, which in

our conventions with charge Γ ∈ Heven(X) at large J is given by (A.8):

Z(F,N ;B + iJ) = −
∫

X
e−(B+iJ)Γ =

1

2
J2 + iF · J + [N − 1

2
F2 − χ(P )

24
]. (2.11)

Recall that J2/2 ≡
∫
P J

2/2 is the volume of P . The absolute value of Z is proportional

to the DBI energy evaluated on BPS configurations. Note that equation (2.9) does depend

on β and the background metric, but in a quasi-topological way, fixed by charges and

background Kähler moduli.

In the limit J → ∞ we have

|Z| =
1

2
J2 +

(F · J)2

J2
+ [N − 1

2
F2 − χ(P )

24
] +O(1/J2). (2.12)

Since F is of type (1, 1) on supersymmetric solutions, we can use the Hodge index theorem,

which states that the lattice of (1, 1) classes has Lorentzian signature, to decompose F in

self-dual and anti-selfdual parts as:

F = F+ + F−, F+ =
F · J
J2

J, F− · J = 0. (2.13)

We refer to appendix B for more details. With this we can redefine ZD4, dropping an

irrelevant (S-duality invariant) overall factor e−2πImτVol as:

ZD4(τ, C,B) :=
∑

F,N

d(F,N) e2πiτ [N− 1
2
F2

−−χ(P )
24

]−2πiτ̄ 1
2
F2

+−2πiF·(C+ P
2

), (2.14)

where

τ = C0 +
β

gIIA
i. (2.15)

Since F2
− < 0 and F2

+ > 0, the sum over fluxes is well behaved in (2.14).

Alternatively we can write (2.9) as

ZD4 = e−2πiτ
χ(P )
24

∑

F,N

d(F,N) e−2π[Imτ
R

1
2
F∧∗F+iReτ

R

1
2
F∧F−iτN+iF·(C+ P

2
)]. (2.16)
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Not surprisingly, part of the exponent has the form of a U(1) Yang-Mills energy with com-

plexified coupling constant τ . Nevertheless, the coefficients d(F,N) are nontrivial and the

expression is not proportional to the standard theta function of a U(1) gauge theory. The

reason for this is that the theory we are considering is more than just standard topolog-

ically twisted N = 4 U(1) Yang-Mills, since we consider arbitrarily large deformations of

the D4-brane, which are only properly described by the full DBI theory. Moreover, we in-

clude pointlike bound D0-branes, which do not correspond to standard smooth Yang-Mills

instantons. Note also that the curvature term proportional to χ(P ), which is crucial for

modular invariance, appears naturally here.

The OSV black hole partition function ZBH is obtained by making a formal substitution

of arguments in ZD4:
14

ZBH(φ0, φA) := ZD4(β = 0, B = 0, C0 = iφ0, C = iΦ − P

2
). (2.17)

We put B = 0 because we do not want to introduce explicit B-dependence in ZBH. Here

φ0,Φ are real.

Unlike the partition function ZD4, which from (2.14) and the large N asymptotics

d(F,N) ∼ ek
√
N [2, 3] is easily seen to converge for any β > 0, the partition function ZBH

diverges everywhere. We can nevertheless make sense of it and justify formal manipulations

by turning on β at intermediate steps. For example we can write

Ω(p, q) = lim
β→0

∮
dC0 dC ZD4(C0 + β

gIIA
i, C,B = 0) e2πiq0C0+2πiQ·(C+ P

2
). (2.18)

The integrals run over one period of all RR potentials. 15 They are well defined, and

produce Ω(p, q) e−β|Z|/g, which in the limit β → 0 reduces to Ω(p, q). Often however it is

not necessary to perform the regularization explicitly; for example if one is only interested

in a saddle point evaluation of the integral, one can proceed formally.

Besides providing a good regularization, this “physical” interpretation of the OSV

partition function also allows applying the usual T- and S-dualities one expects to be

symmetries of ZD4. In particular performing a TST duality transforms this into a form

getting significantly closer to what one needs to derive the conjecture.

The T-duality goes along the time circle, and trivially preserves Z but gives it the

interpretation of a partition sum over supersymmetric configurations of a Euclidean D3-

brane wrapped on P , with Euclidean time circumference 1/β, IIB coupling gIIB = gIIA/β

and RR potentials C0 and C.

Next, we S-dualize. The D3-brane is self-dual under S-duality [52], which maps τ =

C0 + i/gIIB to −1/τ while acting as electric-magnetic duality on the U(1) gauge fields. The

background fields transform as

τ ′ = −1/τ, C ′ = −B, B′ = C, J ′ =
√
C2

0 + gIIB−2 J. (2.19)

14This is sometimes referred to as the “OSV limit.” However it is not in any sense a well-defined limit.
15Again, the K-theoretic interpretation can modify the proper periods. This will at most result in a

modest numerical factor in 2.18. We will ignore this possibility.
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Note that the transformation of the Kähler form J leaves the background J = ∞ we are

considering invariant. The partition function must transform as a modular form with some

weights (w, w̄), that is

Z ′
D3 = ωS τ

w τ̄ w̄ZD3. (2.20)

where ωS is a phase and, for fractional w, w̄ we use the principal branch of the logarithm.

The sum over fluxes F in Z ′
D3 is now over the dual lattice, but since H2(P ) is self-dual on a

compact surface, this is the same as the original lattice. In examples which can be checked

explicitly this equality of partition sums essentially amounts to a Poisson resummation (see

also appendix G). Finally we can do another T-duality along the time circle to go back to

IIA, but this is again trivial.

We thus have

Z(τ, C) := ZD4(τ, C,B = 0) (2.21)

= ω−1
S τ−w τ̄−w̄ ZD4(−

1

τ
, 0, C) (2.22)

= ω−1
S τ−w τ̄−w̄

∑

F,N

d(F,N) e
2πi
τ

[−N+ 1
2
(F−−C−)2+ χ(P )

24
]+ πi

τ̄
(F+−C+)2−πiF ·P(2.23)

= ω−1
S τ−w τ̄−w̄ eπi(

1
τ
C2

−+ 1
τ̄
C2

+) (2.24)

×
∑

F,N

d(F,N) e
2πi
τ

[−N+ 1
2
F 2
−+ χ(P )

24
]+ πi

τ̄
F 2

+−2πi(F−·C
τ

+F+·C
τ̄

)−πiF ·P (2.25)

= ω−1
S τ−w τ̄−w̄ eπi(

1
τ
C2

−+ 1
τ̄
C2

+) ZD4(−
1

τ
,
C

τ
,B = 0) (2.26)

= ω−1
S τ−w τ̄−w̄ E[−C

2

2τ
]Z(−1

τ
,
C

τ
). (2.27)

In the last line we introduced the shorthand notation

E[f(τ)X · Y ] := e−2πi f(τ)X−·Y−−2πi f(τ̄ )X+·Y+, E[A+B] := E[A]E[B]. (2.28)

To summarize, if we define

Z(τ, C) :=
∑

F,N

d(F,N) e2πiτ [N− 1
2
(F−)2−χ(P )

24
]−2πiτ̄ 1

2
(F+)2−2πiF ·(C+ P

2
) (2.29)

with F ∈ H2(P ) + P/2 then we have the following modular representation. For A ∈ Γ :=

SL(2,Z) denote

A · (τ, C+, C−) := (
aτ + b

cτ + d
,
C+

cτ̄ + d
,
C−

cτ + d
) (2.30)

(Sometimes we will abbreviate this equation to A · (τ, C) = (aτ+bcτ+d ,
C

cτ+d). Also, note that

this action does not factor through PSL(2,Z), indeed, S2 · (τ, C) = (τ,−C).) Then

Z(A · (τ, C)) = ωA (cτ + d)w(cτ̄ + d)w̄ E[
c

cτ + d

C2

2
]Z(τ, C). (2.31)

Here ωA is a phase depending on the SL(2,Z) element. For

A = T =

(
1 1

0 1

)
(2.32)
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direct computation leads to

ωT = e−2πiP3

8
−2πi χ

24 = e2πi
c2·P
24 (2.33)

In the second equality we used the index theorem which says that

IP :=
P 3

6
+
c2 · P

12
(2.34)

is an integer. To verify consistency of the modular representation of

A = S =

(
0 −1

1 0

)
(2.35)

we need to use d(−F,N) = d(F,N). In this case consistency of the modular representation

and the theta function decomposition described below leads to

ωS = −eiπIP eiπ
2
(w̄−w)ei

π
2
P 2

(2.36)

We will find later that w̄ = 1/2 and, for b1(X) = 0, w = −3/2. Using this one checks that

indeed ω3
T = ω−1

S . We will not need an explicit formula for ωA for all A.

What we are ultimately interested in are saddle point evaluations of integrals like

(2.18). For saddle points at small τ , which arise for large Q0, the resummed expansion

(2.25) is particularly useful, since when τ → 0, the subleading terms in this expression are

exponentially suppressed. We will make this more precise in section 2.3.

2.2 Theta function decomposition

It it is useful and instructive to decompose Z as a sum of theta functions. To do this, we

decompose F in parts according to the distinction between fluxes which are pulled back

from X, and fluxes orthogonal to these. As before, let ιP be the embedding map for our

divisor P . Then LX := ι∗PH
2(X) is the lattice of fluxes pulled back from the ambient space

X, a basis of which is formed by ι∗PDA. This has metric DAB := DABCP
C . Because in

general detDAB 6= 1, the lattice is not unimodular, while H2(P ) is. This implies that the

lattice LX⊕L⊥
X is only a sublattice of H2(P ). The quotient D of the latter by the former is

a finite group, parametrized by “glue vectors” γ ∈ D. Taking into account the half-integral

shift P/2 of the flux mentioned earlier, we thus get the following decomposition for fluxes

F ∈ H2(P ):

F =
P

2
+ f‖ + γ + f⊥, (2.37)

where f‖ ∈ LX , f⊥ ∈ L⊥
X . We can further decompose γ along Q ⊗ LX and its orthogonal

complement Q ⊗ L⊥
X :

γ = γ‖ + γ⊥. (2.38)

Any nontrivial γ must have simultaneously γ‖ 6= 0 and γ⊥ 6= 0. That it must have a

nonzero γ‖ is clear: otherwise γ is an integral flux orthogonal to LX , which by definition

is in L⊥
X and hence trivial in D. That it must have nonzero γ⊥ as well is more subtle. If
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γ⊥ = 0, then we can write γ = rAι∗PDA. Now because P is very ample, by the Lefshetz

hyperplane theorem (see appendix B), the map ιP : H2(P,Z) → H2(X,Z) is surjective,

that is, every 2-cycle in X can be realized as a 2-cycle in P . Hence there is in particular a

set σA of 2-cycles on P such that ιP (σA) is a basis of H2(X,Z) dual to the DA. Because

γ is integral, we moreover have
∫
σA γ ∈ Z. But by construction, this equals rA. Therefore

γ ∈ LX , so it is trivial as an element of D.

We can also identify D with the discriminant group: D = L∗
X/LX . Since H2(P )

is unimodular, the embedding is specified by an isomorphism with (L⊥
X)∗/L⊥

X preserving

quadratic forms, by the Nikulin primitive embedding theorem [53] (the embedding is prim-

itive again because of the Lefshetz hyperplane theorem). Similarly, γ⊥ ∈ (L⊥
X)∗ represents

γ under this isomorphism.

Note that d(F,N) does not depend on the LX part of F , since this is automatically

of type (1, 1) and hence does not affect the BPS condition or the moduli space of su-

persymmetric configurations. Using this, the partition function (2.29) can be written as
16

Z(τ, C) =
∑

γ

Ψγ(τ, τ̄ , C)Hγ(τ). (2.39)

Here we defined, using the shorthand notation (2.28)

Ψγ(τ, τ̄ , C) :=
∑

f‖

E[
τ

2
(
P

2
+ γ‖ + f‖)2 + (

P

2
+ γ‖ + f‖) · (C +

P

2
)], (2.40)

which is a nonholomorphic Siegel-Narain theta function of signature (1, h−1), implicitly de-

pending on the Kähler form J because this determines the (C+, C−)-split. We furthermore

defined the holomorphic

Hγ(τ) :=
∑

f⊥,N

d(
P

2
+ γ + f⊥, N) e−2πiτ q̂0(F,N) (2.41)

where

q̂0(F,N) =
χ(P )

24
+

1

2
(f⊥ + γ⊥)2 −N = q0 −

1

2
(
P

2
+ γ‖ + f‖)2 = q0 −

Q2

2
(2.42)

Note that Hγ(τ) = H−γ(τ).

All nontrivial information about the degeneracies is captured by the holomorphic

Hγ(τ). For example we have for the degeneracies 17

Ω(P,Q, q0) =

∮
dτHγQ

(τ) e2πiτbq0 (2.43)

16This decomposition can be understood in the AdS/CFT correspondence as the decomposition of the

partition function obtained by factoring out the singleton modes, as in [54]. The analogous singleton

decomposition for the M5-brane partition function was used in [18]. The general singleton decomposition

of the M5-brane partition function was described in [122].
17We abbreviate Ω(0, P, Q, q0) by Ω(P, Q, q0), and of course t∞ = i∞ is understood.
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where γQ is uniquely determined by (γQ)A = QA − DABCP
BPC/2 mod DABCP

BnC ,

nC ∈ Z, and

q̂0 := q0 −
Q2

2
, Q2 := DABQAQB. (2.44)

The proof of (2.43) proceeds as follows: First, note that fixing the D2-charge QA fixes

DA · F , which puts P/2 + γ‖ + f‖ = Q. This determines γ (and f‖) uniquely as stated

above, because the difference of two different γ’s satisfying this equation would give a

nontrivial element of D with zero ‖-component, which as we saw does not exist. Put

differently, for each γ and q̂0 we have an equivalence class

[γ, q̂0] := {(0, P,Q, q0) | q0 −
Q2

2
= q̂0 and Q ∈ ιP,∗(LX +

P

2
+ γ)}. (2.45)

As noted above, shifts of F by elements of LX do not change the index of BPS states,

hence the index Ω([γ, q̂0]) := Ω(0, P,Q, q0) only depends on the equivalence class [γ, q̂0].

Another way of phrasing this is that the D4-D2-D0 BPS spectrum at J → ∞ is invariant

under integral B-shift monodromy, in accord with the absence of walls of marginal stability

running off to J = ∞ for this system.

Grouping terms in (2.41) with fixed q̂0 we can thus also write

Hγ(τ) :=
∑

q̂0

Ω([γ, q̂0]) e
−2πiτ q̂0 . (2.46)

Now, using the S-duality transformation (2.27) of Z and integrating both sides with

respect to C ranging over H2(X,R) one gets w̄ = 1/2 and

Hγ(τ) = |D|−1/2(−iτ)−w+ h−1
2 (−1)IP +1

∑

δ∈D
e2πiγ

‖·δ‖Hδ(−
1

τ
). (2.47)

where |D| = #D = det(DABCP
C). Furthermore,

Hγ(τ + n) = e−2πin(
(γ⊥)2

2
+ χ

24
)Hγ(τ). (2.48)

Thus we see that the Hγ form a modular vector. One can check consistency of the modular

representation using the Gauss-Milgram sum formula [55]

1√
|D|

∑

γ

e−2πi 1
2
(γ⊥)2 = e−2πi sig(L⊥

X)/8. (2.49)

2.3 τ → 0 limit

When q̂0 → −∞, the saddle point of (2.43) will be at τ → 0. To evaluate the integral,

it is therefore useful to perform first the modular transformation (2.47). Indeed, when

τ → 0, the only surviving term in the resummed series has γ = N = f⊥ = 0 since on

supersymmetric configurations (γ⊥ + f⊥)2 ≤ 0 with equality iff f⊥ = 0 and γ⊥ = 0, which

as we saw in section (2.2) implies γ = 0. Hence in this limit

Ω(P,Q, q0) = d(
P

2
, 0) |D|−1/2 (−1)IP +1

∮
dτ e2πibq0τ (−iτ)−w+ h−1

2 e2πi
χ

24 τ . (2.50)
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The saddle point of this integral lies at

τ∗ = i

√

−χ(P )

24q̂0
(2.51)

which is indeed small when −q̂0 ≫ χ(P ), and

ln Ω(P,Q, q0) =
4πiχ(P )

τ∗
= 2π

√
−1

6
q̂0 χ(P ). (2.52)

Since χ(P ) = P 3+c2 ·P , this reproduces the well-known result for the Bekenstein-Hawking-

Wald entropy in this limit [2, 6]. One can do better however. The τ -integral can be done

exactly, resulting in a Bessel function, as detailed in [11, 12]. This gives an explicit formula

for Ω(P,Q, q0) to all orders in a 1/q̂0 expansion, up to determination of w and d(P/2, 0).

In fact, comparison with an independent computation of ZBH in this regime using

techniques developed in [30, 31] for counting closed string flux vacua, which we give in

appendix G, fixes w = −3/2 for X a proper SU(3) holonomy Calabi-Yau manifold.18

Very roughly, the reason for this is that in the small φ0 regime, the OSV partition function

approximately factorizes in a factor 1/η(φ0)χ(P )/24 counting the Euler characteristics of the

D0-brane moduli spaces SymNP , and a factor of the form
∫
dF ecφ

0F 2 · · ·, approximately

counting flux vacua. The first factor gives a (φ0)χ(P )/2 after modular transformation, and

the second factor a (φ0)−b2(P )/2 from integrating out F . Since χ(P ) = b2(P ) + 2 on an

ample divisor in a proper Calabi-Yau, we thus get a net factor φ0, corresponding to having

w + w̄ = −1 in (2.27). We found in section 2.2 that w̄ = 1/2 (alternatively this can be

directly deduced from the modular transformation properties of the theta functions Ψγ),

hence w = −3/2 as claimed. We refer to appendix G for more details.

Furthermore, d(P/2, 0) is just the index of BPS states of the pure D4-brane without any

deformation obstructing fluxes, which by (2.7) equals (−1)dimMPχ(MP ) where MP is the

divisor deformation moduli space. It is not clear a priori what the physically relevant Euler

characteristic of the divisor moduli space is, since this space has singularities where the

divisor degenerates. It has an obvious compactification however, namely the corresponding

linear system, which is the projectivization of the space of sections of the line bundle

corresponding to P , which, because P is very ample, is just MP = CPIP−1. Using this

compactification, we thus have d(P/2, 0) = (−1)IP−1IP . Below we will give more evidence

that this is the correct definition of χ(MP ).

Rephrasing all of this in terms of the original OSV partition function, we conclude

that for the purpose of computing q̂0 → −∞ degeneracies, we can take

Z(τ, C) ≈ (−1)IP −1IP ω
−1
S τ3/2τ̄−1/2 e2πi

χ(P )
24τ E[−C

2

2τ
] Ψ0(−

1

τ
,
C

τ
). (2.53)

Making the OSV substitution τ = τ̄ = iφ0, and using (2.36), this formally becomes:

ZBH(φ0,Φ) ≈ i IP φ
0

∑

S∈H2(X,Z)

e
2π
φ0 [ χ(P )

24
− 1

2
(Φ+iS)2]+πiP ·S

. (2.54)

18More generally w = −3/2 + b1(X).
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This is in rough agreement with the OSV formula (1.9), restricted to the polynomial part

of the topological string partition function. The additional sum over shifts of Φ can be

seen to be necessary to give the right hand side of (1.9) the same periodicity as the left

hand side. In the integral formulation (1.11) of the conjecture, this sum can be traded for

an extension of the periodic integration contours to the entire imaginary axis. A similar

sum over shifts of φ0 is absent here, but this is consistent with the small φ0 approximation

as the shifted terms are exponentially suppressed. We also find an additional measure

factor iIPφ
0. Finally in this small φ0 limit, the nonpolynomial corrections to Ztop after the

OSV substitutions are all exponentially small. Hence the above formula is in satisfactory

agreement with the original OSV conjecture at small φ0 (and in perfect agreement with

our refinement of it which we will derive in the remainder of the paper).

2.4 A Rademacher-Jacobi formula

For larger values of τ , which is the regime relevant to the full OSV conjecture including

instanton corrections, it is no longer sufficient to do a τ → −1/τ modular transformation to

extract approximate expressions for the degeneracies, because the subleading terms in the

q-expansion are no longer sufficiently suppressed in this limit to justify throwing them away.

The key observation which will allow us to make progress is that because of its modular

properties, Z can be entirely expressed in terms of a some kind of “SL(2,Z) average” of a

finite subset of terms, analogous to the Rademacher-Jacobi or fareytail expansion of [26].

At the end of section 2.2 we saw that Hγ transforms as a modular vector with weight19

wH := w − h− 1

2
(2.55)

The theta function vector Ψγ transforms in a conjugate way to ensure the transformation

(2.31) of Z. This can also verified directly using general properties of theta functions or by

Poisson resummation. Thus, under general SL(2,Z) transformations A, using the notation

introduced above (2.31):

Z(A · (τ, C)) = ωA (cτ + d)w(cτ̄ + d)
1
2 E[

c

cτ + d

C2

2
]Z(τ, C) (2.56)

Ψγ(A · (τ, C)) = (cτ + d)
h−1

2 (cτ̄ + d)
1
2 E[

c

cτ + d

C2

2
]M(A)γδ Ψδ(τ, C) (2.57)

Hγ(A · τ) = ωA (cτ + d)wH M(A)−1
δγ Hδ(τ) (2.58)

where ω−1
A M(A) is a representation of SL(2,Z) generated by

M(T )γδ = δγ,δ e
−iπ(γ‖+ P

2
)2 (2.59)

M(S)γδ = |D|−1/2e−2πi(γ‖·δ‖+ P3

4
)e−i

π
4
(h−2) (2.60)

The phases ωT , ωS are given in (2.33), (2.36) above. It is worth noting that it is crucial to

have the extra phase eiπP ·F in the partition function in order for the vector of functions

Ψγ to transform into themselves.

19We noted in section 2.3 that w = −3/2 for proper Calabi-Yau manifolds but the following works for

any value of w, so we will leave this an arbitrary parameter for now.
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Now we would like to write a Poincaré series for Hγ . Since the modular weight wH =

w − h−1
2 = −1 − h/2 is negative we should in fact first define the “dual” modular vector

H̃γ(τ) := L1−wHHγ(τ), where Lf(τ) :=
1

2πi

∂

∂τ
f(τ), (2.61)

which transforms according to (2.58) but with modular weight wH → 2 − wH > 2. The

reason for this is the following nontrivial identity, which can be verified by elementary

means and holds for any differentiable function f :

Ln
[
(cτ + d)−1+nf

(
aτ + b

cτ + d

)]
= (cτ + d)−1−n(Lnf)

(
aτ + b

cτ + d

)
. (2.62)

Next, it is convenient to define j(A, τ) := cτ + d so that

j(A1A2, τ) = j(A1, A2τ)j(A2, τ). (2.63)

Finally, let Γ∞ be the subgroup of Γ generated by τ → τ + 1. Then we claim

H̃γ(τ) =
∑

A∈Γ∞\Γ
(j(A, τ))wH−2 ω−1

A M(A)δγH̃
−
δ (A · τ) (2.64)

Here H−
γ (τ) is the polar part of Hγ(τ), namely, the terms in the sum (2.41) with negative

powers of e2πiτ .20 Equivalently, because of (2.41), these are the terms with positive q̂0.

Note that there is a finite number of such terms. Their physical interpretation will be

given in the next section. The quotient by Γ∞ is necessary because the factor ω−1
A M(A)δγ

(2.64) cancels the transformation law of H̃−
γ (τ) for any A = τ → τ + b, b ∈ Z. The proof

of (2.64) proceeds by noting that it is in the orthogonal complement of cusp forms, since it

is in the image of the operator (2.61), but then it is completely determined by its Poincaré

series. See [26, 27] for more details.

Again using (2.62), one can formally pull out the L1−wH operation on the right hand

side so, formally at least, we have for the original Hγ :

Hγ(τ) = hγ +
∑

A∈Γ∞\Γ
(j(A, τ))−wH ω−1

A M(A)δγH
−
δ (A · τ) (2.65)

where hγ(τ) is some function such that L1−wHhγ(τ) = 0, i.e., hγ is a polynomial in τ

of order at most |wH |. (We assume here that |wH | is integral. The case where |wH | is

half-integral is more complicated and we do not fully understand it.)

Since wH < 0 the series (2.65) is in fact not convergent. We can regularize it as follows.

Using Aτ = a
c − 1

c(cτ+d) we define the notation:

[
e2πikAτ

]
N

:= e2πik
a
c


e−2πik 1

c(cτ+d) −
N∑

j=0

1

j!

( −2πik

c(cτ + d)

)j

 (2.66)

20Note that L commutes with taking the polar part, so the notation eH− is unambiguous.

– 26 –



and then, writing

Hγ(τ) :=
∑

k

Ĥγ(k)e
2πikτ (2.67)

where k runs over 1
MZ for some integer M , we replace the formal expression (2.65) by

Hγ(τ) = hγ +
∑

A∈Γ∞\Γ
(j(A, τ))−wH ω−1

A M(A)δγ
∑

k<0

Ĥδ(k)
[
e2πikAτ

]
|wH |

(2.68)

where hγ is a polynomial of order |wH |. We claim (2.68) transforms like a form of weight

wH , and extracting the degeneracies from the contour integral proceeds as in the case where

we use the formal expression (2.65).

The Poincaré series representation of Hγ(τ) can be lifted to a Poincaré series repre-

sentation of the partition sum Z(τ, C) itself. Define the polar part of Z as

Z−(τ, C) :=
∑

γ

Ψγ(τ, C)H−
γ (τ). (2.69)

Equivalently, this is Z truncated to the terms for which q̂0 > 0. We can now substitute

(2.68) into (2.39) and use (2.57) to get a Poincaré series for Z. Introducing the slash

operator

f |Aν,ν̄(τ, C) := (j(A, τ))−ν (j(A, τ̄ ))−ν̄ ω−1
A E[− c

cτ + d

C2

2
] f(A · (τ, C)), (2.70)

on arbitrary function f(τ, C), where E[. . .] was defined in (2.28), this can be written as

Z =
∑

A∈Γ∞\Γ
Z−|Aν,ν̄ (2.71)

where ν = w = −3/2 and ν̄ = w̄ = 1/2, and we dropped the divergent q̂0 = 0 “countert-

erms” lifted from the hγ , which are not important for the purpose of extracting q̂0 6= 0

degeneracies.

While (2.71) will be our main formula it is perhaps worth remarking that one could

define a convergent Poincaré series for the quantity Z̃ analogous to H̃γ . To define Z̃, let

us extend L as

L− :=
1

2πi

∂

∂τ
− 1

8π2

∂2

∂C2
−

(2.72)

L+ :=
1

2πi

∂

∂τ̄
− 1

8π2

∂2

∂C2
+

(2.73)

L := L− + L+ =
1

2πi

∂

∂C0
− 1

8π2

∂2

∂C2
. (2.74)

Plainly, L± annihilate Ψγ and hence

Z̃ := L1−wHZ =
∑

γ

Ψγ(τ, C)H̃γ(τ). (2.75)

Repeating the same steps as before, but now using (2.64), we get

Z̃ =
∑

A∈Γ∞\Γ
Z̃−|Aν,ν̄ (2.76)

with ν = 2 − wH + h−1
2 = −w + h+ 1 = h+ 5/2 and ν̄ = 1/2.

– 27 –



3. BPS bound states in supergravity

3.1 Basic idea

In this section we will argue that the BPS states corresponding to the polar part of the

partition function, i.e. D4-D2-D0 states with q̂0 > 0, can be concretely thought of as bound

states of D6 and anti-D6 branes (each with lower degree charges turned on), which moreover

can be made to split into those two constituents by moving the background moduli t∞ to

a wall of marginal stability, implying in particular that the degeneracies of these states

factorize accordingly. In a suitable asymptotic regime, this factorization of degeneracies

translates in a factorization of the partition function roughly of the form

Z ∼ Ztop Ztop, (3.1)

in other words, to the OSV conjecture.

The starting point to derive this factorization is the observation, detailed below, that

the polar charges do not have single centered black hole realizations in four dimensions, but

instead are realized as two (or more) centered “molecular” bound states with nonparallel

charges at the centers. This structure is mirrored to a certain extent in the microscopic

D-brane description of these states, which we will develop in section 4.

Even without getting into any of the detailed descriptions, there is a simple physical

argument for why polar states always “split,” in the sense that they can be made to decay

in constituents at some wall of marginal stability. This goes as follows.

The holomorphic central charge of the D4-D2-D0 system in the large radius approxi-

mation is given by (2.11):

Z = −1

2
PADABC(B + iJ)B(B + iJ)C +QA(B + iJ)A − q0. (3.2)

We claim that this has a zero in the interior of moduli space if and only if q̂0 := q0 −
DABQAQB > 0, where we recall that DAB := DABCP

C , DABDBC := δAC . To see this, first

make the change of variables B → B̃:

B = B̃ +DABQB. (3.3)

Then

Z = −1

2
DAB(B̃ + iJ)A(B̃ + iJ)B − q̂0. (3.4)

Requiring Z = 0, leads to

B̃ · J = 0,
1

2
(J2 − B̃2) = q̂0, (3.5)

where as before the dot product is defined using the metric DAB . Recall that J has positive

norm squared and all vectors (in LX) perpendicular to J have negative norm squared.

Because of the first equation, B̃ is of this kind, hence the left hand side of the second

equation is strictly positive in the interior of moduli space, so we need q̂0 > 0. Conversely,

when q̂0 > 0, we can take for example B̃ = 0, J0 =
√

2q̂0/P 3 P and obtain Z = 0. This
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proves our claim. Note that at large P , this result is guaranteed to be robust under adding

instanton corrections as long as JA0 ≫ 1. In particular this is true for the “most polar”

states, that is states with q̂0 near (P 3 + c2P )/24, which will be of main interest in the

derivation of the OSV conjecture.

Now when the background moduli are at the zero locus at sufficiently large J , a BPS

state of the given charge Γ = (p, q) cannot exist; if it did, the charge would correspond

to a massless BPS particle at this locus, which would cause a singularity of the moduli

space metric [56, 57, 59]. Such singularities exist at conifold points of the mirror complex

structure moduli space, but are (more or less by definition) absent in the large J region.

Since by assumption the state does exist when J → ∞, there must be a wall of marginal

stability separating the zero locus from J = ∞. When crossing this wall of marginal

stability coming from J = ∞, the state decays in two BPS states with charges Γ1 and

Γ2, Γ = Γ1 + Γ2, whose central charges are aligned on the wall: α1 ≡ argZ(Γ1) = α2 ≡
argZ(Γ2) = α ≡ argZ(Γ).21

As we will review below, decay at marginal stability is realized in the supergravity

picture by two (clusters of) centers moving infinitely far away from each other. In this

infinite separation limit, one physically expects the degeneracies to factorize. In particular

the Witten index Ω of this configuration, which is independent of the background moduli

as long as the wall of marginal stability is not crossed, can be expected to have a fac-

torized form Ω(Γ) = Ω(Γ2)Ω(Γ2). There is a slight subtlety however, in that quantizing

the position degrees of freedom of the two parts produces an additional lowest Landau

level degeneracy |〈Γ1,Γ2〉|, where 〈Γ1,Γ2〉 is the Dirac-Schwinger-Zwanziger symplectic in-

tersection product (A.2) on charge space. As we review under (3.24), this is most easily

understood by noting that a 2-centered BPS bound state carries an intrinsic angular mo-

mentum J = 1
2(|〈Γ1,Γ2〉| − 1), leading to an additional degeneracy 2J + 1. Moreover, this

intrinsic spin changes the fermion parity by a factor (−1)2J = (−1)〈Γ1,Γ2〉−1, which appears

in the index Ω, defined as in (1.6)-(1.7). Thus, summing over different possible splits of Γ,

we arrive at a factorization formula for polar states of the form

Ω(Γ) =
∑

Γ1,Γ2

(−1)〈Γ1,Γ2〉−1 |〈Γ1,Γ2〉|Ω(Γ1)Ω(Γ2) (3.6)

where the sum runs over allowed charge splits (p, q) ≡ Γ = Γ1 +Γ2 (with Γ1,Γ2 primitive).

We have been sloppy here in the sense that we did not specify at which t the indices should

be evaluated. We will make this precise in section 5.1.

Precisely which splits can be realized by decays of actual bound states and therefore

have to be summed over is a highly nontrivial question, and analyzing this as well as to

what extent it leads to the factorization (3.1) will in fact take up much of the remainder

of this paper. As a byproduct of this analysis however, we will obtain several new insights

in the structure of BPS states which are of independent interest.

21Recall that because of the BPS condition, decay is only energetically possible when the phases of the

constituents align.
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3.2 Review of BPS black hole bound states and attractor flow trees

In many cases, BPS D-brane states at gs|Γ| ≪ 1 correspond to single centered black holes

in four dimensional supergravity at gs|Γ| ≫ 1. However, this is not always the case [58, 21].

It might even happen that a single centered BPS solution of the given charge does not exist

at all. This is the case when the attractor flow corresponding to this charge terminates

on a zero of the central charge Z at a regular point in moduli space [59, 60]. In such

cases, it is necessary to consider more general multicentered BPS black hole bound states

[21, 22, 23, 24]. These are stationary but in general non-static BPS solutions of supergravity

[61, 62], with non-parallel charges at the centers. The distances between the centers are

constrained by equations depending on the charges and the moduli at spatial infinity, and

there is a potential energy exceeding the BPS bound when going off the constraint locus.

Hence unlike the usual parallel charge multicentered BPS solutions, these are genuine bound

states. Moreover, although time independent, they carry an intrinsic, quantized angular

momentum, due to the Poynting vector field produced by the simultaneous presence of

electric and magnetic charges.

As we saw above, the BPS states corresponding to the polar part of Z have regular

zeros and therefore are of this type: they do not have single centered solutions, so they

must have realizations as multicentered bound states. On the other hand D4-D2-D0 states

with q̂0 < 0 do have single centered solutions, but here we will find a surprise (described in

section 3.5): when all charges are linearly scaled up by some sufficiently large Λ, in addition

to the usual single centered solutions, there are always two-centered BPS configurations

whose Bekenstein-Hawking entropy is parametrically larger than that of the single centered

solution, growing as Λ3 instead of the single centered growth Λ2. Clearly, this creates

some tension with the OSV conjecture, which predicts to leading order the single centered

entropy growth log Ω(ΛΓ) ∼ Λ2. To what extent this is a problem for the conjecture will

be discussed in detail in section 7.

3.2.1 General stationary BPS solutions

Let us now review the description of these solutions in more detail. The metric of a BPS

solution is always of the form

ds2 = −e2U (dt + ω)2 + e−2Ud~x2 (3.7)

satisfying the BPS equations of motion22:

2 e−U Im(e−iαΩnrm) = −H (3.8)

∗3 dω = 〈dH,H〉. (3.9)

where ∗3 is the Hodge star on flat R3, Ωnrm and 〈·, ·〉 are defined in appendix A, and eiα

is the phase of Z(Γ; t). The function H : R3 → Heven(X,R) is harmonic with poles at the

centers. For an n-centered configuration with charges Γi in asymptotically flat space:

H(~x) =
∑

i

Γi
|~x− ~xi|

− 2 Im(e−iαΩnrm)|r=∞. (3.10)

22We neglect R2 corrections [62], which is justified in the large charge limit
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The phase field α(~x) satisfies the boundary condition α|r=∞ = argZ(Γ)|r=∞, with Z given

by (A.8).

In this subsection the period vector and central charge will always be the normalized

versions, so to avoid cluttering the formulae we will henceforth not explicitly write the

subscripts indicating this.

For a single center (3.8) reduces to the attractor flow equation

2 e−U Im(e−iαΩ) = −Γ τ + const., τ ≡ 1/r. (3.11)

The moduli at the horizon τ = ∞ are fixed by the attractor equation

2 Im(Z(Γ; t∗(Γ))Ω) = −Γ, (3.12)

and the Bekenstein-Hawking entropy is given by

S(Γ) = π|Z(Γ; t∗(Γ))|2 (3.13)

evaluated at the attractor point. Attractor flows are gradient flows of log |Z|2 [59, 60], hence

the right hand side of this expression is minimized at the attractor point [63]. Equations

(3.12)-(3.13) hold in the multicentered case for each center separately; in particular the

attractor point and horizon area for each constituent black hole is not affected by the

presence of the other centers.

Under the substitutions (1.10) and identifying Γ = (p, q), the attractor equations can

alternatively be written as [10]

2πqΛ =
∂

∂φΛ
F0(p, φ). (3.14)

where F0 = log |Z(h=0)
top |2 is the genus zero23 free energy [10], again with the substitutions

(1.10). The entropy is then obtained as the Legendre transform of the free energy:

S(p, q) = F0(p, φ) − 2πqΛφ
Λ. (3.15)

It was shown in [24] that (3.8)-(3.9) (as well as the equations giving the electromagnetic

field) can be solved completely explicitly given just this entropy function. For example,

e−2U(~x) = S(H(~x))/π, (3.16)

while the moduli fields tA(~x) in our conventions are obtained as

tA(~x) =

∂S
∂qA

+ πipA

∂S
∂q0

− πip0

∣∣∣∣∣
(p,q)=H(~x)

. (3.17)

Depending on the model and the charges, (approximate) expressions for S may or may not

be obtainable analytically. In the large radius approximation, the general attractor solution

23The restriction to genus zero is due to the fact that we are neglecting R2 corrections.
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was derived in [64] (see also [59], sec. 9). Parametrizing a general charge Γ ∈ Heven(X,R)

as

Γ = reS(1 − β + nω) (3.18)

where r ∈ R, S ∈ H2(X,R), β ∈ H4(X,R), nω ∈ H6(X,R) (with
∫
X ω ≡ 1), the condition

to have an attractor point is:

D := 8(Y 3)2 − 9n2 ≥ 0, Y 2 := β, Y ∈ Kähler cone, (3.19)

with entropy

S =
π

3
r2
√
D. (3.20)

In this case, the region in H3(X,R) for which S is real and positive is the region for which

the discriminant D is positive; we denote this region in general by domS.

Returning to the general multicentered case, we note that equation (3.9) has nonsin-

gular solutions if and only if the following integrability condition, obtained by acting with

d∗3 on both sides, is satisfied for all centers i:

N∑

j=1(6=i)

〈Γi,Γj〉
|~xi − ~xj|

= 2 Im
(
e−iαZ(Γi)

)
∞ . (3.21)

In the case of just two charges Γ1 and Γ2, this simplifies to

|~x1 − ~x2| =
〈Γ1,Γ2〉

2 Im(e−iαZ1)∞
=

〈Γ1,Γ2〉
2

|Z1 + Z2|
Im(Z1Z̄2)

∣∣∣∣
∞
. (3.22)

Since distances are positive, a necessary condition for existence in this case is

〈Γ1,Γ2〉Im(Z1Z̄2)∞ > 0. (3.23)

From (3.22) it follows that the separation of the centers diverges when such a wall is

approached from the side where the above inequality is satisfied. Thus, this process is the

4d supergravity realization of decay at marginal stability.

A crucial property of these multicentered solutions is that despite being time-independent,

they carry intrinsic angular momentum [21], stored in the electromagnetic field, much as

for electron-monopole pairs. This is given by

~J =
∑

i<j

1

2
〈Γi,Γj〉

~xi − ~xj
|~xi − ~xj |

. (3.24)

In particular for a two centered configuration, the angular momentum stored in the elec-

tromagnetic field equals J = 1
2 |〈Γ1,Γ2〉|. The presence of this angular momentum implies

that quantizing this 2-particle “monopole-electron” system will give rise to a ground state

degeneracy. The quantization of this system was studied in great detail in [65], also for

more complicated multiparticle systems. One subtlety that was uncovered there was that

the position hypermultiplet degrees of freedom of the particles arrange themselves such

that the effective total angular momentum of the BPS ground state is lowered by 1/2, to
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a total of J = 1
2(|〈Γ1,Γ2〉| − 1). This was derived explicitly in [65] by constructing the

ground state wave functions, but if we think of the system as a light electron Γ1 moving in

the background field of a heavy monopole Γ2, this can physically be understood as follows.

If the electron Γ1 lived in empty space, it would have a half-hypermultiplet (0,0, 1

2
) of

BPS states associated to its position degrees of freedom in R3. However in the case at

hand it is moving in the magnetic field of the monopole Γ2, and the interaction between

this radial magnetic field and the hypermultiplet spin degrees of freedom in fact selects out

a single energy minimizing state in the hypermultiplet, essentially spin 1/2 down in the

radial direction. As a result, the total angular momentum is lowered by 1/2, as claimed,

and the total ground state degeneracy (factoring out the decoupled center of mass half-

hyper) equals 2J + 1 = |〈Γ1,Γ2〉|. This can also be interpreted as the lowest Landau level

degeneracy of an electron confined on a sphere surrounding a magnetic monopole.

3.2.2 Existence criteria and attractor flow trees

Whether or not multicentered BPS solutions of given charges Γi and positions ~xi actually

exist is in general a rather nontrivial problem. Necessary and sufficient conditions are:

1. The integrability conditions (3.21).

2. To keep the metric warp factor real in (3.16), H(~x) must have positive discriminant

D(H(~x)) > 0, that is, must lie in domS for all ~x ∈ R3.

3. The fields tA(~x) must remain within the physical moduli space for all ~x ∈ R3.

In particular, conditions such as Γi ∈ domS for all i, and (3.21) are necessary but, in

general not sufficient for existence of a BPS solution.

Now ideally, one would like to have

Γ

Γ

Γ
Γ

Γ
1

2

3

4

Figure 1: Sketch of an attractor flow tree. The dot-

ted lines are lines of marginal stability and the squares

are attractor points.

a local necessary and sufficient existence

criterion in terms of the charge and the

background moduli only. The first con-

dition above is local and easy to evalu-

ate, but not sufficient, and the second

and third conditions are not local, as

they require information about fields at

all ~x. Unfortunately, a local necessary

and sufficient existence criterion is not

known, and given the intrinsic math-

ematical complexity of stability condi-

tions in the theory of derived categories

(see e.g. [66, 67, 68]), this is probably

too much to hope for.

In [21], an existence criterion was proposed in terms of attractor flow trees, also called

split attractor flows: a solution exists iff an attractor flow tree exists in moduli space

starting at the background value of the moduli and terminating at the Γi attractor points.
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Each edge E of an attractor flow tree is given by a single charge attractor flow for some

charge ΓE, charge and energy is conserved at the vertices, i.e. for each vertex E → (E1, E2),

ΓE = ΓE1 + ΓE2 and |Z(ΓE)| = |Z(ΓE1)| + |Z(ΓE2)|. The last condition is equivalent to

requiring the vertices to lie on a line of marginal stability: argZ(ΓE1) = argZ(ΓE2). A

number of arguments in favor of the equivalence with the full existence problem were given

in [22], and a practical approach for computing split flows on the quintic was developed in

[23].

The split flow approach gives a reasonably practical criterion in sufficiently simple

examples, but it often requires case by case analysis, and is therefore perhaps not as

powerful as one would wish as a general systematic test. Nevertheless, it will be quite

useful in our analysis below. Note that it is not always necessary to construct the precise

flow tree to argue for its existence; for example to argue for existence of a split flow with

two endpoints, it is sufficient to establish the existence of the two attractor points and the

existence of a wall of marginal stability between the starting point and the endpoint of the

single flow with charge Γ (either a zero of Z or an attractor point).

In appendix D we outline an efficient algorithm for numerically checking existence of

flow trees.

The general uplift of arbitrary multicentered IIA/CY3 solutions to M-theory has been

discussed in [70, 71, 72, 73], generalizing [74, 75, 76, 77, 78, 79] and relating some of these

solutions in four dimensions to the multi-black hole/black ring and “bubbling” solutions in

five dimensions studied e.g. in [80, 78, 79]; see [81] for a recent review. In [76, 78, 79, 73] it

was pointed out that the 4d condition of having positive discriminant for H(~x) everywhere

is equivalent to the 5d condition of having no closed timelike curves, which is similarly

nontrivial to verify directly. Through the correspondence given in those works, the flow

tree picture reviewed here is thus directly applicable to existence and classification of 5d

solutions as well.

In any case, what emerges from examples is that existence of a certain Γ → ∑
i Γi

bound state realization is highly constrained; in particular, although a priori there is an

infinite number of ways of splitting up a given charge, only a finite number of those turn

out to correspond to a flow tree. Physically this is as expected, since an infinite number

would imply an infinite degeneracy of BPS states of a given charge. 24 Some more direct

general arguments, based on the monotonic decrease of |Z| along attractor flows, were

given in appendix A of [23]. Part of this argument is made more precise in appendix C.

To summarize: Throughout this paper we will assume the truth of the following split

attractor flow conjecture, which we consider to be very well-founded:

Split Attractor Flow Conjecture:

a) The components of the moduli spaces (in ~xi) of the multicentered BPS solutions

with constituent charges Γi and background t∞, are in 1-1 correspondence with the

attractor flow trees beginning at t∞ and terminating on attractor points for Γi.

24Even if some states associated with different flow trees mixed and were lifted quantum mechanically to

near-BPS states, the number of states below any finite energy scale should be finite.
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b) For a fixed t∞ and total charge Γ there are only a finite number of attractor flow

trees.

We note the following subtleties:

• Finiteness is of course only valid when charge quantization is imposed, and hence is

not strictly speaking a property of the classical theory.

• It is useful to distinguish between attractor flows terminating on regular points in

moduli space and those associated to pure electric or pure magnetic charges which

flow off to infinity. Since the latter case leads to (mildly) singular solutions, some

argument that transcends supergravity is strictly speaking required to establish the

existence of the corresponding BPS states.

• It is not true that a single flow only corresponds to a single centered solution. Indeed,

as we will see in section 3.8, there exist multicentered solutions which are in some

sense continuously connected to a single centered solution. These are the so-called

“scaling solutions”, first identified in [65], which develop a capped off AdS2 × S2

throat with a scale modulus λ parametrizing the depth of the throat, and which

asymptotically for λ→ 0 become indistinguishable from a single centered black hole

for a distant observer. Such configurations cannot be forced to decay at a wall of

marginal stability, and thus are not described by a split attractor flow (since a split

flow can always be made to decay by crossing the wall of marginal stability on which

the split occurs).

3.2.3 Attractor flow trees and the Hilbert space of quantum BPS states

So far we discussed the relation between attractor flow trees and classical BPS solutions of

four dimensional supergravity. However, the attractor flow criterion for existence of BPS

states can be argued to be valid beyond the classical four dimensional supergravity picture.

As we mentioned above, even for purely electric charges, which lead to singular 4d gravity

solutions and are better described as probe particles, the flow tree picture continues to

hold. Moreover, flow trees can be given a purely microscopic interpretation. This was done

for the IIB description of BPS D-brane as special Lagrangians in [69], and we will sketch a

more general argument based on tachyon condensation of open stretched strings in section

4.1. Finally, after quantization of the four dimensional BPS configuration moduli space of a

given charge Γ with moduli at infinity t∞, the partitioning of this moduli space by attractor

flow trees leads to a partitioning of the corresponding BPS Hilbert space H(Γ; t∞). This

suggests that attractor flow trees provide a classification of BPS states independent of any

particular picture, more refined than classification by total charge only, but coarser than

distinguishing individual states.

In fact a general physical argument for this idea can be given, as follows. The starting

point is the physical expectation that at an attractor point for charge Γi, (irreducible) BPS

states exist with that charge, while at a zero of the central charge at a nonsingular point

of the moduli space, there cannot be any BPS states (since zero mass BPS states lead to
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singularities). The crucial second ingredient is the observation that if a BPS state of some

charge Γ exists at a certain point in moduli space, it will continue to exist at all points

along the attractor flow for that charge Γ passing through this point, when one follows the

flow in the inverse direction, that is decreasing τ in (3.11). This can be seen as follows. A

BPS state can only disappear when it decays at a wall of marginal stability, when crossing

the wall from the side where the stability condition (3.23) is satisfied to the side where it

is not. However, an inverted attractor flow will always cross any such wall in the opposite

direction, i.e. from unstable to stable. Indeed, say we are near a wall of Γ → Γ1 + Γ2

marginal stability. By taking the intersection product of (3.11) with Γ1, it follows that

2 e−U Im(e−iαZ1) = −〈Γ1,Γ〉 τ + const., which can also be written as

2 e−U Im(Z1 Z̄2) = −〈Γ1,Γ2〉 |Z|τ + const. (3.25)

From this it is clear that 〈Γ1,Γ2〉Im(Z1 Z̄2) can only increase along an inverted attractor

flow, which proves our claim. Thus, if we have a split attractor tree, we can start with BPS

states of charge Γi at the attractor points, let them flow up along the tree edges, “glue” them

together (microscopically through tachyon condensation as will be reviewed in section 4.1,

macroscopically by creating multicentered configurations, initially with infinitely separated

centers) at the MS vertices, as described in section 3.1, and then continue to flow up with

this newly formed BPS state, all the way to the starting point of the tree, where we end

up with a BPS state of the required total charge Γ.

Conversely, we can start with a charge Γ and some point t in moduli space, and consider

the Hilbert space H(Γ; t) of BPS states with charge Γ at t. When flowing down along the

attractor flow starting at t, some states might decay by splitting in two BPS states at walls

of marginal stability, reducing the Hilbert space in size. Whenever such a decay occurs, we

can associate to this event a flow split in the obvious way. The procedure can be repeated

for each of the constituents separately starting from the split point, and so on, until each

flow branch terminates in an attractor point. This algorithm decomposes H(Γ; t) in sectors

labeled by different flow trees, according to the decay pattern under the procedure just

described.

Thus we arrive at the picture that flow trees label different sectors of the Hilbert space

of BPS states of a given charge in a given background, independent of the description of

these states.

We note the following subtleties:

• Although every flow tree is associated to a component of the moduli space of classical

BPS solutions, not all of these components survive quantization. The reason for this

is the Pauli exclusion principle; for example, even if classically we can form a bound

state of some charge Γ1 with an arbitrary number of charges Γ2, if the Γ2 particles

happen to be fermions and their number is larger than the number of available one-

particle BPS ground states, the exclusion principle forbids a BPS bound state. This

was discussed in detail in [65].

• The different sectors of H(Γ; t∞) labeled by different flow trees are not necessarily

superselection sectors, as quantum tunneling might occur between different configura-
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tions with the same charge. For the same reason, part of the BPS states obtained say

by quantizing different classical components of moduli space might in fact be lifted

due to quantum tunneling. Presumably these tunneling amplitudes are exponentially

small in some measure of the charges involved. Similarly, tunneling phenomena may

occur when starting from the microscopic D-brane picture of these states at zero

string coupling. In this case the suppression can be expected to be exponentially

small in the inverse string coupling. However, the index is of course not affected by

this, and can be computed in any semiclassical picture. It would be interesting to

investigate these tunneling phenomena in more detail.

3.3 Symmetries

Scaling symmetries will be a powerful tool in the following, so we describe these in detail

here.

The BPS equations of motion (neglecting R2 corrections) always have the following

scaling symmetry

Γ → µΓ, tA → tA, gtop → gtop/µ, ~x→ µ~x, (3.26)

with gtop defined as in (1.10), while the OSV potentials scale as φ → µφ. Under this

scaling, the leading order entropy (i.e. without R2 corrections governed by the higher

genus topological string amplitudes) scales as S → µ2S. Moreover in the large µ limit, R2

corrections can be consistently neglected, so this scaling becomes exact.

In the large radius regime, dropping all instanton corrections, there is a less trivial

additional scaling symmetry:

(p0, P,Q, q0) → (p0, λP, λ2Q,λ3q0), tA → λtA, gtop → gtop, ~x→ λ3/2~x,

(3.27)

with the OSV potentials remaining invariant. The corresponding leading order entropy

scales as S → λ3S. Moreover in the large λ limit, instanton corrections can be consistently

neglected, so this scaling becomes exact.

There are also two useful discrete symmetries. The first one is simply charge conju-

gation Γ → −Γ with everything else invariant. This is valid in all regimes. The second is

only valid in the large radius regime and given by

Γ → Γ∗, i.e. (p0, P,Q, q0) → (p0,−P,Q,−q0), B → −B. (3.28)

This leaves the entropy invariant but inverts intersection products: 〈Γ∗
1,Γ

∗
2〉 = −〈Γ1,Γ2〉.

Furthermore, the central charges transform according to

Z(Γ∗; t) = −Z(Γ;−t̄). (3.29)

Microscopically it corresponds to taking the dual of the object in the derived category.

In the case of objects described by vector bundles, this simply amounts to inverting the

curvature, F → −F .
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Finally, there is a gauge symmetry

Γ → eSΓ, B → B + S. (3.30)

If we neglect charge quantization, this is a continuous symmetry, otherwise S has to be

integral. This descends from the usual gauge symmetry which simultaneously shifts B and

the worldvolume flux F . Note that if there are no walls of marginal stability between B+iJ

and B + S + iJ , then B → B + S with fixed Γ is a symmetry of the BPS spectrum, and

hence because of the above gauge symmetry, likewise Γ → eSΓ with fixed B is a symmetry

of the BPS spectrum. This is the case for D4-D2-D0 systems in the large J limit. As we

will see though, this is not so in general for D6-D4-D2-D0 systems, not even at J → ∞.

3.4 A class of examples

We will now give a class of explicit examples relevant to our analysis below. Consider the

charges

Γ1 = r e
P
2r (1 − β̃

P 2

r2
− ñ

P 3

r3
) (3.31)

= r +
P

2
+ (

1

8
− β̃)

P 2

r
+ (

1

48
− β̃

2
− ñ)

P 3

r2
(3.32)

Γ2 = −r e− P
2r (1 − β̃

P 2

r2
+ ñ

P 3

r3
) (3.33)

= −r +
P

2
− (

1

8
− β̃)

P 2

r
+ (

1

48
− β̃

2
− ñ)

P 3

r2
(3.34)

Γ := Γ1 + Γ2 = P + (
1

24
− β̃ − 2ñ)

P 3

r2
. (3.35)

Here r > 0 is a D6-charge, P = PADA ∈ H2(X) a D4-charge which we take to be inside

the Kähler cone (i.e. P > 0), the terms proportional to P 2 = DABCP
APBD̃C ∈ H4(X) are

D2-charges and those proportional to P 3 are D0-charges.25 We will work in the large radius

and large charge approximation, i.e. we will retain only the cubic part of the prepotential.

We choose this parametrization such that β̃ and ñ are invariant under the rescalings

discussed in the previous subsection, and to simplify the entropy formulas of the two

constituents as much as possible. Note that Γ2 is the conjugate dual charge to Γ1 (i.e. the

Γ2 is the image of Γ1 under the combined action of the two discrete symmetries described

in the previous subsection). This makes this class of examples particulary symmetric. The

case β̃ = ñ = 0 corresponds to the bound state of a pure D6 with flux F = P
2r 1r and the

anti-brane of a pure D6 with flux F = − P
2r 1r.

26

In what follows it will also be convenient to use the variables

ν :=
1

24
− β̃ − 2ñ, µ :=

1

8
− β̃, (3.36)

which are proportional to the D0 resp. D2 charges of the constituents.

25We consider P 3 to be an element of H6(X) or a real number, depending on context.
26Since we work in the supergravity approximation in this subsection, we ignore flux quantization.
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When the total D0-charge is negative, i.e. ν < 0, there exists a regular attractor point

for the total charge Γ, at

B = 0, J =
√
−6ν

P

r
, gtop =

π
√
−48ν

r
with entropy S = 2π

√
−ν/6 P

3

r
. (3.37)

On the other hand, as we saw before, when ν > 0, Z(Γ) has a zero locus; for example

Z(Γ) = 0 at B = 0, J =
√

2ν Pr . Therefore the attractor flow associated to Γ will crash on

a regular zero, and no single centered BPS solution exists.
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Figure 2: Left: Bound state features of the z-plane for parametrization B+iJ = zP/r, for a polar

case β̃ = 1.25 × 10−3, ñ = 0, z∞ = 1.1 i. The green (upper) line is the line of marginal stability,

where the phases of Z1 and Z2 align. On the red (lower) line, the phases anti-align. The red cross

is the zero of Z(Γ). The fat split purple line is the attractor flow tree, and the black lines forming

a pair of pants around this skeleton are the image of the moduli field z(R3), following radial lines

(and a few r = constant lines) out of the midpoint between the centers ~x = 0. Right: Analogous

plot for a nonpolar case 24ν = −.01, 8µ ≈ 0.49 (β̃ ≈ 0.064, ñ ≈ −0.01). The blue square on the

imaginary axis is the attractor point of the single flow for Γ which exists for this value of ν.

Thus, to verify if Γ exists as a BPS bound state of Γ1 and Γ2 when ν > 0, we first need

to check if a wall of Γ → Γ1 + Γ2 marginal stability exists between the zero and the value

of the moduli at spatial infinity. Taking B = 0 at spatial infinity, we can follow a path

from the moduli there to the zero locus parametrized by B(y) = 0, J(y) = yP/r, where y

goes from y = y∞ (which we can think of as very large, since we are primarily interested

in BPS states in the large radius limit) to y =
√

2ν. Along this path

Z(Γ1) =

(
− iy

3

6
+
y2

4
+ iµy − ν

2

)
P 3

r2
, Z(Γ2) = Z(Γ1). (3.38)

Note that the phases of Z(Γ1) and Z(Γ2) align iff they are both real, which is the case at

y = yms =
√

6µ. (3.39)
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Thus for this to happen along the path when y∞ → ∞, we need

µ ≥ ν

3
(for ν ≥ 0), i.e. β̃ − ñ ≤ 1

6
(for β̃ + 2ñ ≤ 1

24). (3.40)

In the nonpolar case ν < 0, although there are single centered black hole solutions,

there might still be 2-centered solutions as well. In other words it might happen that

both a single flow and a split flow exists for a given charge. For this to happen, the wall

of marginal stability must separate the attractor point from the value of the moduli at

infinity. This leads to

µ ≥ −ν (for ν ≤ 0), i.e. β̃ + ñ ≤ 1

12
(for β̃ + 2ñ ≥ 1

24 ). (3.41)

It is instructive to evaluate the necessary condition for existence (3.23), which in the

case at hand gives

〈Γ1,Γ2〉 Im(Z1Z2)∞ ∼ (µ+ ν)(y2
∞ − 2ν)(y2

∞ − 6µ) > 0. (3.42)

Note that although this is always positive in the limit y∞ → ∞ when µ > −ν, this is

not enough to guarantee the flow splits, as we just saw. Although the stable side of the

marginal stability line y =
√

6µ near this line is characterized by a positive value of the

left hand side, the latter becomes also positive when we continue into the unstable side

and cross the line of anti -marginal stability y =
√

2ν, where the phases anti -align. To

guarantee that y∞ does not lie in this region, we need that the marginal stability line lies

above the anti-marginal stability line, i.e. 6µ > 2ν.

Finally, note that when the background moduli are chosen to be at the attractor point

for Γ, the stability condition (3.23) is not satisfied, so there will in any case be no 2-centered

bound state for this value of the moduli. This is true in general, being a direct consequence

of (3.25).

Of course, (3.40) or (3.41) are not sufficient to guarantee the existence of a 2-centered

black hole solution based on the split flow with two endpoints. In addition we need both

Γ1 and Γ2 to have attractor points, i.e. (3.19) needs to be satisfied. In the case at hand

this reduces for both centers to

D = 8β̃3 − 9ñ2 ≥ 0. (3.43)

The attractor point is then B + iJ = z∗(Γi)
P
r with

z∗(Γ1) =
1

2
+

3ñ+ i
√
D

2β̃
, z∗(Γ2) = −1

2
+

−3ñ+ i
√
D

2β̃
. (3.44)

The corresponding entropy is

S1 = S2 =
π

3

√
D P 3

r
. (3.45)

Note that when r = 1, the total charges in the limiting case β̃ = ñ = 0 are exactly

those of a pure D4-brane wrapped on P . In particular the D0 charge is q̂0 = q0 = P 3/24,
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Figure 3: Region in (ñ, β̃)-space supporting two-centered black hole bound states (yellow shaded

triangle). The red curved line is the black hole bound (3.43), the upper green line represents the split

bound (3.40) for the polar case and the lower blue line is the split bound (3.41) for the nonpolar case.

The purple dotted line, corresponding to ν = 0, separates polar from nonpolar charges; the polar

region lies below. The blue boundary corresponds to the limit in which the intersection product

and hence the separation between the two centers vanishes. The rightmost boundary vertex gives

the most negative value of the total D0-charge ν, νmin = (3 − 2
√

3)/8 ≈ −0.058. The origin gives

the most positive value, νmax = 1/24. The vertex on the left through which all lines pass has

(ñ, β̃) = (−1/24, 1/8), (µ, ν) = (0, 0).

which as we saw in section 2, eq. (2.42) is indeed the highest possible value of q̂0.
27 This

suggests that the pure D4 is in fact a bound state of a pure D6 plus flux and a pure anti-D6

plus flux. We will confirm this picture in detail in the next section, both microscopically

and macroscopically. The cases with β̃, ñ small then correspond to adding a “dilute gas”

of D2 and D0 branes to these D6 and anti-D6 branes.

For r > 1, the total D0-charge is not that of a single smooth D4-brane wrapping the

class P , but rather that of r D4-branes each wrapping the class P/r, as might have been

expected from a bound state of rank r D6 and anti-D6 branes. In particular the D0-charge

is r (P/r)3/24, which when P is very large has a large gap to the most polar charge P 3/24

obtained at r = 1. Hence such configurations enter far from the most polar terms in the

partition sum Z. This will be important for the derivation of the OSV conjecture later on.

3.5 The Entropy Enigma

The example of the previous section illustrates a remarkable phenomenon, namely, when

we scale up a nonpolar total charge Γ → ΛΓ, with Λ → ∞, the 2-centered BH entropy

27at least in the large charge supergravity approximation in which we are working in this subsection,

which drops the subleading c2P/24 correction. It is not hard to check that this correction is also correctly

reproduced after taking into account the c2 corrections to the Γi.
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dominates over the single centered BH entropy, scaling as Λ3 as opposed to the single

centered Λ2! Here we define the 2-centered Bekenstein-Hawking entropy as the sum of the

Bekenstein-Hawking entropies of the two individual constituent black holes.

First, let us recall from section 3.3 that in the large Λ limit, the single centered entropy

always scales as

S1 center(ΛΓ) = Λ2S(Γ). (3.46)

This is easily seen to be true for (3.37), but extends beyond the large radius approximation

in which that expression is valid.

Now let us compare this to the two centered case. To illustrate our point, consider

the case r = 1, ñ = 0, β̃ = 1/24, which is clearly inside the stability domain of fig. 3, and

corresponds to ν = 0, µ = 1/12. The total charge is then simply Γ = P , so we achieve

uniform scaling by P → ΛP . But then from (3.45)

S2 centers = S1 + S2 → π

36
√

3
Λ3P 3. (3.47)

Thus we get the claimed Λ3 scaling. Note that this is not the only configuration with total

charge Γ = P . Other configurations will have different numerical prefactors replacing π
36

√
3
.

This behavior is completely generic and valid for any D4-D2-D0 charge Γ which is

uniformly scaled up (if P > 0). To see this, first note that because of the shift symmetry

discussed at the end of section 3.3, we can assume the D2-charge to be zero without loss of

generality. Then we can as above split Γ = (0,ΛP, 0,Λq0) into Γ1,2 = ±r+ ΛP
2 ±Λ2µP

2

r +

Λ3 q0
2Λ2 for some suitably chosen µ. Because of the second scaling symmetry discussed in

section 3.3, this exists as a 2-centered solution iff the split into Γ1,2 = ±r+ P
2 ±µP

2

r + q0
2Λ2

exists. In the limit Λ → ∞, the last term (the D0-charge) can be neglected, so this boils

down to existence of a 2-centered configuration in the class of examples given above with

ν = 0. Obviously there are plenty of such configurations; the example given in the previous

paragraph is one possibility, but it is easy to see that there is a whole family of more general

choices of r, β̃ and ñ leading to a 2-centered configuration.

For any such choice, the total BH entropy is nonzero and scales as Λ3, because this is

how S scales under the second scaling symmetry of section 3.3.

This establishes the existence of 2-centered BPS black hole bound states at J∞ suffi-

ciently large (> O(Λ)) for any charge ΛΓ where Γ = (0, P > 0, Q, q0) and Λ → ∞, with

entropy scaling as Λ3 rather than the single centered scaling Λ2. Note however that when

J∞ is kept fixed at some finite, Λ-independent value, eventually, the 2 centered solutions

will cease to exist. The reason is that the wall of marginal stability for the configuration lies

at a value of J of order Λ, which when Λ → ∞ runs off to infinity, moving our background

point out of the stability domain.

Note also that this is not in contradiction with the microscopic computation of the

entropy of D4-D2-D0 systems in [2, 3] and its successful matching with the single centered

entropy, since the regime of validity of this computation is |q̂0| ≫ P 3, precisely the regime

in which there are no multicentered solutions, and a regime from which one automatically

exits when all charges are uniformly scaled up.
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Nevertheless, since this Λ3 scaling is surprising, to say the least, in the remainder

of this section we will justify carefully the validity of these solutions, and of the entropy

computed from them.

Let us fix a particular two centered solution and denote the fields and parameters

associated to this by a subscript 0, e.g. Γ0 is the total charge, B0 + iJ0 the moduli fields

and so on. For simplicity, let us more concretely consider some case with ν = 0 in our class

of examples (so that Γ0 = P0 and scaling P0 is equivalent to scaling Γ0), in some asymptotic

background (B0 + iJ0)|∞ = z0|∞ P
r with z0|∞ above the line of marginal stability. We can

scale up

r → ξ r0, P → ξ ΛP0 (3.48)

without affecting the split attractor flow in rescaled coordinates z defined by B + iJ =:

z Pr . Since Im z stays bounded away from zero, we thus see that when Λ → ∞, we have

J = J0Λ → ∞ and the large CY radius approximation (dropping instanton corrections) is

justified.

Note that the ξ-scaling implements the symmetry (3.26), while the Λ-scaling imple-

ments (3.27). Consequently all characteristic length scales L of the four dimensional solu-

tions can be expressed in the form

L = c0 ξ Λ3/2 ℓ4, (3.49)

where c0 depends only on r0, P0, ñ0, β̃0 and t0|∞. Hence all curvature radii in 4d Planck

units go to infinity when Λ → ∞. Note that this scaling also implies the Λ3 scaling of

the entropy is consistent with holography, since the area in Planck units of any surface

enclosing the centers will scale as Λ3.

To express L in string units, we use ℓ4 = g4dℓs where g4d is the four dimensional

IIA string coupling constant, related to the ten dimensional gIIA by g2
4d = g2

IIA/VIIA, with

VIIA = J3/6 the IIA CY volume in string units. Considered as a field, g4d(~x) sits in a

hypermultiplet and does not vary over space (so gIIA(~x) does vary, since J(~x) does). Hence,

keeping the asymptotic value of gIIA fixed at gIIA,0, we have the scaling

L =
c0 gIIA,0√
VIIA,0

ξ ℓs, (3.50)

where gIIA,0 and VIIA,0 should be thought of as asymptotic values at spatial infinity. Note

that equation (3.50) no longer scales with Λ, but we can still make it as large as we wish

by scaling up ξ, i.e. by considering large r, so at least in this regime higher order curvature

corrections are certainly under control, and we have no reason left to doubt our solutions.

Related to this, note that the effective topological string coupling constant as given by

(1.10), which controls F -term R2 corrections, does not scale with Λ though it does scale

as 1/ξ, according to (3.26) and (3.27).

One could worry about cases with small r, since in this case at small gIIA,0 the char-

acteristic distance scales are small in string units, so one might fear that R2 corrections

will get out of control and we cannot trust the entropy formula we found. However in

this case we can switch to the M-theory description using the 4d-5d correspondence of
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[70, 71, 76, 77] to get a reliable picture. To achieve this, instead of keeping the asymptotic

value of gIIA fixed, we let it scale with Λ to keep the M-theory CY volume in 11d Planck

units VM = g−1
4d fixed, which amounts to taking gIIA(Λ) = Λ3/2gIIA,0. Since gIIA = R

3/2
M

where RM is the radius of the M-theory circle in 11d Planck units, this means we have

RM = ΛRM,0, L =
c0√

RM,0VM,0

ξ Λ3/2 ℓ11 (3.51)

where we used gIIA,0ℓs = RM,0ℓ11. Hence we see that all characteristic length scales of the

solution (including RM ) go to infinity in 11d Planck units when Λ → ∞. Moreover the

M-theory CY volume VM = VM,0 = R−3
M,0J

3
0/6 is constant over space, remains constant

under the scalings and can be taken as large as we wish (as it is a hypermultiplet scalar).

Finally we can also take RM,0 as large as we wish, by taking the IIA asymptotic Kähler

class J0 large (although this changes a vector multiplet scalar, we saw this preserves the

2-centered solution).

The 4d solution near the D6D4D2D0 centers lifts up to a 5d BMPV spinning M2 black

hole with qM2 = ±β̃ P 2

r ∼ ξΛ2, J3
L = 1

2 ñ
P 3

r2 ∼ ξΛ3 located at the center of a Zr quotient

of Taub-NUT [70], which was shown in [70] to have exactly the same Bekenstein-Hawking

entropy as the corresponding 4d black hole, scaling as S ∼ ξ2Λ3 in the case at hand.

Thus we conclude that even for small r, the enigmatic Λ3 entropy growth we find is

reliable.

From the point of view of the topological string, this is perhaps more surprising.

Solving (3.14) for the Γ1 attractor point and substituting this in (1.10), we find

gtop =
4π

−3rñ√
D + ir

(3.52)

with D as in (3.43). This does not scale with Λ and is generically of order 1 for r of order

1. How can it be then that R2 corrections to the entropy (obtained by replacing the genus

zero F0 by the all genus F = log |Ztop|2 in (3.14) and (3.15)) can be neglected in our

Λ → ∞ scaling limit?

The puzzle is resolved by considering the product representation (1.17) of Ztop, and

noting that all contributions of curves with nonvanishing charge q are exponentially sup-

pressed as e−Λ since J ∼ Λ. This leaves only the MacMahon function (1.21), which since

gtop does not scale with Λ gives only a finite contribution to the entropy, independent of

Λ. Hence for Λ → ∞, this contribution can indeed be neglected.

Incidentally, the same kind of reasoning resolves the puzzle why the D4D2D0 entropy

in the large D0-charge limit does not receive enormous R2 corrections, despite the fact that

gtop → ∞ when |q0| → ∞. Again, this this system becomes weakly curved in the M-theory

description, and again all corrections are manifestly suppressed when using the product

formula for Ztop.

Now, having convinced ourselves that our solutions and the entropy computed from

them are reliable, we face a puzzle. The OSV conjecture is supposed to be valid precisely at

large Λ. But its prediction for the leading asymptotic of ln Ω is, by construction, the single
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centered black hole entropy, which scales as Λ2, not Λ3. So how can this be compatible

with what we find here?

Despite the obvious tension this creates, this does not immediately mean the OSV

conjecture is wrong. There are two important subtleties. The first one is that Ω(Γ) is

an index, the second is that the Λ3 scaling holds at J = i∞ but for example not at the

attractor point of Γ, where two centered solutions do not exist.

To address these subtleties, we need a better understanding of various types of com-

posite BPS states, as well as the computation of their contributions to the index, which

we do in the following sections. We postpone further discussion to section 7.

3.6 D6-D0 bound states

At large volume and zero B-field, D6 and D0 branes do not form BPS bound states.

However this can change when the B-field is sufficiently large [83, 84, 85], or equivalently

when a sufficiently large U(1) flux is turned on on the D6. Let

Γ1 = (p0, 0, 0, 0), Γ2 = (0, 0, 0, q0), Γ = Γ1 + Γ2. (3.53)

Then Zhol(Γ) = p0(B+ iJ)3/6− q0, which clearly has a zero locus in the interior of moduli

space, so no single centered BPS black hole solutions exist. To be more explicit, let us take

for example as in the previous subsection

B + iJ = zP/|p0| (3.54)

with z = x+iy ∈ C and P some positive class inH2(X,Z), and write q0 = ρP 3/(p0)2. Then

up to an overall constant positive factor P 3/(p0)2 we have Z1 = sign(p0) z3/6, Z2 = −ρ,
and Z = sign(p0) z3/6 − ρ, which has a zero in the upper half z-plane.
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Figure 4: Left: attractor flow tree in z-plane for p0 > 0, ρ = −1, z∞ = −0.5 + 0.3 i. The shaded

region on the left is the stable region, in which the BPS state exists. It is bounded by the marginal

stability line (green line). The light pink line on the right is the line of anti-marginal stability (where

the phases anti-align). The D0-attractor flow (Γ2) continues up to Im z = ∞. Right: Analogous

plot for Γ1 defined as for fig. 2a and Γ2 = (0, 0, 0,−1)P 3/r2 with P and r as for fig. 2.

To see if there is a bound state of Γ1 and Γ2 in some region of moduli space, it is

sufficient to check if a marginal stability wall exists, since we know that the constituents
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themselves, the D0 and the D6, exist everywhere in moduli space (at least in the large

volume region we are considering). It is easy to see that Im(Z1Z̄2) = 0 when y =
√

3|x|. To

have the phases align rather than anti-align on this line, we moreover need Re(Z1Z̄2) > 0,

i.e. sign(p0) ρ x > 0. To see which side of this line is stable, we can use (3.23), which gives

|x| > |y|/
√

3. Taking into account that only a true line of marginal stability can bound

a stability domain, we get as our final result for the zone in the upper half z-plane where

there exists a stable D6-D0 BPS bound state:

|Re z| > Im z/
√

3, sign(Re z) = sign(p0q0). (3.55)

This is illustrated in fig. 4a. Similar (but mathematically slightly more complicated) consid-

erations hold when the D6 is replaced by a more general D6-D4-D2-D0 brane; an example

is shown in fig. 4b. Note that when the D6-D4-D2-D0 has a nonzero entropy, it can also

“absorb” some of the D0 inside its horizon. The amount of D0-brane charge which can

be absorbed in this way is always bounded however, as can be seen for example from

(3.19), which always goes negative when n→ ∞. This is another example of multiple BPS

realizations of the same charge. Again, recall that according the the split attractor flow

conjecture the number of possibilities is bounded.

3.7 Sun-Earth-Moon systems
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Figure 5: Three-legged flow trees with Γ1 and Γ2 as for fig. 2a and Γ3 = (0, 0, 0,−0.01)P 3/r2. On

the left z∞ = −0.75 + i, on the right z∞ = 0.75 + i. Note that this choice affects the order of the

splittings: on the left we have Γ → (Γ2,Γ1 + Γ3) followed by Γ1 + Γ3 → (Γ1,Γ3), while on the right

Γ1 splits off first. The solid green line indicates the marginal stability line for the first split, the

dotted green line for the second. The light pink lines are the corresponding anti-marginal stability

lines. The red cross indicates a zero of the central charge of the intermediate charge (Γ1 + Γ3 on

the left), implying that this charge does not have a single centered realization.

We can also combine this sort of bound state with another state to produce a state

with overall D6 charge zero. For example we can dress the (Γ1,Γ2) solutions of section 3.4

with a D0-brane bound to one of the centers. The corresponding attractor flow trees are

illustrated in fig. 5. Note that the charge to which the D0 binds depends on the choice
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of B-field at infinity, i.e. Re z∞. The transition between the two occurs when the initial

attractor flow (for charge Γ) hits the point where all three phases of the Z(Γi) align, that

is at the intersection point of the dotted and solid green lines in the figure. In the case

at hand, this happens when z∞ crosses the imaginary axis. When z∞ is exactly on the

imaginary axis, Γ3 (a D0) is at most marginally bound: its phase lines up there with the

phase of Γ1 +Γ2 (a D4+D0), and there is no energetic obstruction to taking away Γ3 from

Γ1 + Γ2 as far as one wishes.

For positive D4-charge P , it is not possible to construct such bound states with Γ3 a

D0-brane rather than D0-brane; in the figure above, this would essentially flip the marginal

and anti-marginal stability lines involving Γ3, so after the first split one would be outside

of the stable region for the remaining bound state involving Γ3. This corresponds to the

fact that only D0-branes, not D0-branes, form bound states with D4-branes in our sign

conventions.

I21

I32I13

3

1 2

Figure 6: Left: Sketch of a BPS Sun - Earth - Moon configuration in space. Right: Quiver

diagram representing intersection products Iij = 〈Γi,Γj〉 between the centers. In the case at hand

I21, I13, I32 > 0. For the D6-D6-D0 system, the microscopic quiver would look identical except for

an additional multiplicity 3 arrow going from the D0 node to itself, representing the three moduli

corresponding to the D0 moving around in X .

The supergravity solutions representing these bound states are Sun-Earth-Moon con-

figurations, as shown in fig. 6a. The positions of the centers ~xi, i = 1, 2, 3 are constrained

by the integrability conditions (3.21):

I13
R13

− I21
R21

= θ1 + cycl. perm. (3.56)

where Iij = 〈Γi,Γj〉, Rij = |~xi − ~xj|, θi = 2Im(e−iαZi)∞. Note that θ1 + θ2 + θ3 = 0 and

the third equation is just the sum of the first two. More concretely in the case at hand we

can take say Γ1 to be a pure D6 with U(1) flux F = S1 turned on, Γ2 the anti-brane of a

pure D6 with flux F = S2 turned on, and Γ3 a charge −n anti-D0 brane, so according to

(A.3) we have

Γ1 = eS1(1 +
c2
24

), Γ2 = −eS2(1 +
c2
24

), Γ3 = −nω. (3.57)

In this case, I13 = n, I32 = n, and I21 = P 3

6 + c2·P
12 = IP , where P = S1 − S2 is the total

D4-brane charge. 28

28If we wanted to establish the existence of these multicentered solutions directly in supergravity without
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Note that depending on the sign of θ3 ∼ − sinα, which is determined by the value of

the B-field, R23 is smaller or larger than R31, corresponding to the anti-D0 binding to the

D6 or to the anti-D6. When θ3 = 0, the anti-D0 moves on a plane equidistant from the D6

and the anti-D6 center, so it can escape to infinity. Indeed, at this locus in moduli space

(which includes zero B-field in the case of zero total D2-charge), the bound state between

an anti-D0 and a D4 (=Γ1 + Γ2) is only marginal.

3.8 Scaling solutions

Considering the Rij as independent variables, the equations (3.56) always have a scaling

solution

Rij → λIij , λ→ 0, (3.58)

independent of the θi. In the limit λ = 0, the coordinates of the 3 centers coincide and

hence the solution becomes indistinguishable from a single centered black hole solution

to a distant observer. (However, for an observer remaining close to the centers, they

actually stay at finite distance: Within a coordinate distance of order λ from the centers

H(~x) ∼ λ−2 and hence e−2U(~x) ∼ λ−2, so the presence of the warp factor in (3.7) implies

that the observer remains at an order one geodesic distance. What is happening is that a

throat is developing and the observer disappears down the throat.)

However, the Rij are actually not quite independent: they equal the lengths of the

edges of a triangle in flat space, and as such must satisfy the triangle inequality. Thus a

necessary and sufficient condition for the scaling solution to (3.56) to exist is

I21 + I13 ≥ I32 + cycl. perm. (3.59)

In the case at hand this reduces to n ≥ 1
2IP = 1

12P
3 + 1

24c2P . In particular, this implies

that the total charge is necessarily nonpolar, since q̂0 = 1
24P

3 + 1
24c2P − n < 0. This is

compatible with general expectations, as only nonpolar states should be able to form black

holes.

Since the scaling solution is independent of the θi, the branch of the solution moduli

space to (3.56) continuously connected to the black hole in this way will never decay when

the θi (in other words the background Kähler moduli) are varied. It is therefore represented

by a single centered attractor flow rather than an attractor flow tree.

Conversely, if the triangle inequalities (3.59) are not satisfied, then the solutions can

always be forced to decay by varying the θi (so the solution is described by an attractor

flow tree).

To see this, let us assume that one of the triangle inequalities is violated. Without loss

of generality we can take I21 > I13 + I32. Then we claim that when θ3 > 0, taking θ1 to

zero will necessarily force ~x1 to separate infinitely far from ~x2 and ~x3, and when θ3 < 0,

invoking the split attractor flow conjecture, we would have to check that H(~x) lies in dom S for all ~x. This

is difficult. One can show (dropping c2 corrections) that when the integrability conditions are satisfied, the

discriminant of H(~x) goes to a positive constant at infinity and goes to +∞ near each of the three centers,

and therefore takes on its minimal value at some finite point in R3. If this point is on an axis of symmetry

then one can further show rigorously that D(H(~x)) is bounded below by a positive constant.
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taking θ2 to zero will similarly separate ~x2 from ~x1 and ~x3. Let us consider the θ3 > 0

case, the other case is analogous. When θ1 = 0, we then have θ2 = −θ1 − θ3 = −θ3 < 0

and the equilibrium conditions (3.56) imply either

R13 = R21 = ∞, R23 = −I32
θ2

(3.60)

which corresponds to the claimed infinite separation, or

R13 = λI13, R21 = λI21, R32 = λ′I32, where λ′ < λ <∞. (3.61)

However, since we must have R21 ≤ R13 + R32 to have an actual solution, the above

gives I21 < I13 + I32, contradicting the initial assumption. Hence (3.60) remains the only

possibility; the solution is forced to split at θ1 = 0 (with the stable side being θ1 < 0, as a

slight extension of the analysis shows).

All this is of course in perfect agreement with what we expect from the attractor flow

picture, as well as with general expectations for polar states.

In section 5, we will study similar bound states both in the spacetime picture and in

the microscopic quiver picture. We will see that the BPS index factorizes precisely when

the inequalities (3.59) are violated. Moreover, the BPS index undergoes some sort of phase

transition — no longer factorizing and starting to grow exponentially — as soon as (3.59)

are satisfied. Note this is exactly where the black hole branch opens up. Hence, this

qualitative change is physically expected from the spacetime picture, but highly nontrivial

from the microscopic point of view.
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Figure 7: Two more bound states with total D6-brane charge equal to 1. Left: Γ1 = D6,

Γ2 = −D2 + D0. Note that the line of marginal stability goes up along a vertical asymptote all

the way to infinite radius. Right: Γ1 and Γ2 chosen as in fig. 2 (carrying 1 resp. −1 unit of D6

charge), and Γ3 = D6.

3.9 Even more complicated multicentered bound states

One can imagine many other multicentered configurations involving various charges, for

example we can add more anti-D0 “moons”, or replace the D0 particles by D2-D0 particles.
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Some examples with net D6 charge 1 are shown in fig. 7. These can in turn be used as

building blocks for the D4-D2-D0 bound states of interest, and so on, even leading to

fractal-like flow-trees, as shown in fig. 8.

Enumerating this zoo and taking into

Figure 8: The D6 split flows of fig. 7b (and their

conjugates) can be iteratively combined to form

fractal-like flow trees with zero total D6 charge. An

example is shown with 14 pure (fluxed) D6 / anti-

D6 centers. It is possible to write compact analytic

formulae describing these fractal flow families.

account all existence conditions, let alone

computing their BPS ground state degen-

eracies, would appear very hard, to say

the least. However, to count degeneracies

of polar states, we can use the fact that

these are guaranteed to split in two clus-

ters at a wall of marginal stability some-

where in moduli space. The problem is

then reduced to computing the degenera-

cies of the two individual clusters. This

might still be complicated if one wants to

compute exact expression for the the de-

generacies based on enumerating all pos-

sible further splits corresponding to the

structure of the clusters (although one

could imagine working recursively), but

in suitable cases, it is possible to circumvent this problem. The idea is to go to a regime in

which the most significant contributions to the fareytail series come from the polar terms

corresponding to flow trees which initially split in branes with charges Γ1 and Γ2 with

D6-charge 1 resp. −1. The indices of BPS states for such branes turn out to be more or

less given by rank one DT invariants. (The precise relation is explained in section 6.1.2

and section 6.3.2.) This will allow us to express the BPS indices of the relevant polar terms

in the fareytail series in terms of the DT invariants, along the lines of section 3.1. There is

no need to consider further splits of the flow tree, since the DT invariants already count all

BPS states of the two initial brane constituents. Using the relation between DT and GW

invariants reviewed in section 1.3, we will thus be led to an expression of ZBH in terms of

the topological string partition function, and to the OSV conjecture.

Finally, we note here that although a priori we should also consider splits in two charges

both of which have p0 = 0, those are easily shown to be absent for flows coming from large

J . Consider a charge Γ = (0, P, 0, q0) and a candidate split in Γ1 = (0, P1, Q1, q0,1),

Γ2 = (0, P2,−Q1, q0,1), and let us take B∞ = 0, J∞ = y P , y → ∞. Then

〈Γ1,Γ2〉 Im(Z1Z̄2) = −(P ·Q1)

(
1

2
P 3(P ·Q1)y

3 +O(y)

)
≤ 0, (3.62)

so (3.23) is not satisfied. (When J is not proportional to P it is perfectly possible to have

a D4D2D0 split into a pair of D4D2D0 states at B∞ = 0 and large J∞.)

4. Microscopic description

States corresponding to flow trees have a microscopic description as well. This will be the
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subject of the present section.

4.1 D-brane picture at gs = 0

The microscopic D-brane picture is valid at gs|Γ| ≪ 1 with |Γ| some appropriate measure

of the “size” of the charge Γ. It describes the state as an object sitting at a single point in

the noncompact space. The macroscopic picture, valid in the opposite regime gs|Γ| ≫ 1,

at first sight looks very different, with bound states looking like atoms or molecules rather

than D-branes geometrically glued together. Nevertheless, the two pictures can be shown

to transform smoothly into each other when varying gs; for a detailed analysis see [65].

In the large radius limit, IIA D-branes are well described by holomorphic geometrical

objects wrapped around various even dimensional cycles. The F-term constraints deter-

mining the moduli spaces of these objects do not receive α′ corrections [42]. On the other

hand, the D-term constraints, which govern stability and decay, do receive important α′

corrections [42]. As a result, phenomena such as decay at marginal stability at some fi-

nite value of the Kähler moduli tend to be invisible in the IIA large radius geometrical

description. However, there is a simple universal microscopic picture which does capture

this phenomenon accurately. This is originally due to [83] and has been extended in many

works on the categorical description of D-branes (as reviewed in [66]).

This goes roughly as follows. Let us consider a

n+

n -

Γ1 Γ2

Figure 9: Bound state quiver

bound state of two D-branes with charges Γ1 and Γ2.

When near the wall of marginal stability (i.e. when the

phases αi of the central charges Z(Γi) are almost identi-

cal), there are light bosonic open string states stretching

between the D-branes corresponding to Γ1 and Γ2, whose

mass squared equals [86]

m2 ∼ q (α2 − α1), q = ±1. (4.1)

More precisely this is the tree level mass squared in the mirror intersecting D3-brane picture

when the D3-branes are at the same point in R3, the light strings corresponding to string

localized at the intersection points.29 In the low energy description of the D-branes as a

supersymmetric quantum mechanical system with 4 supercharges, the light strings appear

as chiral multiplets Φi (dimensionally reduced to d = 1), represented by the arrows of a

quiver30 with two nodes as in fig. 9, and (4.1) can be understood as being induced by a

D-term potential [83]

V (φ) =
1

2µ
D2, D =

∑

a

qa|φa|2 − µ(α2 − α1). (4.2)

where the qa = ±1 are charges with respect to the relative U(1) between the branes and

µ is some constant (specified below in section 4.2). The fermionic superpartners of the
29If the branes are not at the same point in R3 there is an additional mass term m2 ∼ |~x1 − ~x2|

2 and

supersymmetry is generically broken at gs = 0.
30This quiver should be interpreted in a loose sense in the present discussion. In particular we allow the

branes correspondng to the nodes to have nontrivial moduli spaces here, not necessarily realized by simple

adjoint fields as in the proper definition of a quiver. These moduli spaces might for example arise from

lumping together several standard quiver nodes into one.

– 51 –



φi remain massless at tree level, but when both positive and negative qi are present, disc

instantons ending on the D3-branes can produce a nontrivial superpotential depending on

the φi, lifting pairs of massless fermions of opposite charges, but leaving the difference of

q = ±1 massless fermions invariant. If we denote the number of stretched strings with

q = ±1 by n±, then we have for the the index

n+ − n− = 〈Γ1,Γ2〉 (4.3)

with 〈Γ1,Γ2〉 the symplectic intersection product between the charges. In type IIB this is

just the geometric intersection product between the D3-branes, n+ (n−) being the number

of positive (negative) intersection points. For IIA we define this product in appendix A.

From (4.1) we see that when we are close to the marginal stability wall, on the side

where

〈Γ1,Γ2〉(α1 − α2) > 0, (4.4)

there will always be tachyonic strings present stretching between the constituent branes.

Condensation of these tachyons produces a BPS bound state of total charge Γ. Since we

assumed the state decays when crossing the wall, no such tachyons exist on the other side

of the wall, where the above expression becomes negative. This will indeed be the case

when either n+ = 0 or n− = 0 (possibly effectively after lifting pairs by F-term masses).

Note that this stability condition is identical to the supergravity condition (3.23) for small

α1 − α2.

When we have two single D-branes, hence a gauge group U(1)×U(1), with respective

deformation moduli spaces M1 and M2, and if say n− = 0 over all of M1 ×M2, then the

moduli space M of the bound state will be a CP|〈Γ1,Γ2〉|−1 fibration over M1 ×M2, with

the CP|〈Γ1,Γ2〉|−1 fiber coming from solving the D-flatness condition D = 0 and modding

out by U(1). If the fiber does not degenerate anywhere, the Euler characteristic factorizes

as

χ(M) = χ(CP|〈Γ1,Γ2〉|−1)χ(M1)χ(M2) = |〈Γ1,Γ2〉|χ(M1)χ(M2). (4.5)

Identifying the Euler characteristic (up to a sign) with the index of supersymmetric states

Ω, this gives a corresponding factorization of Ω.

As described in section 3.2.3, attractor flow trees provide a useful canonical prescription

for an iterated assembly or decay process of multicentered configurations, in particular

because stability is guaranteed to be preserved when moving upstream along an attractor

flow, and decay, whenever possible, is guaranteed to occur at some point when flowing

down. Instead of splitting or joining (clusters of) centers in supergravity, we may equally

well think microscopically at gs = 0 and split or glue branes together through tachyon

condensation as described above, while following the same flow trees. This makes sense

since flow trees are determined entirely by central charges, which are universal, exact data,

independent of the picture in which one is working. In this way attractor flow trees continue

to be meaningful even microscopically.

Microscopic counterparts of (3.23) exist in the framework of the derived category as

well. For a nice discussion of how it appears for bound states of holomorphic vector bundles

and its relevance to the question of existence of stable vector bundles, see [100].
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4.2 Quiver description of bound states

Building on the reasoning outlined above, one finds that quivers give a low energy, weak

string coupling description of bound states of simple, rigid objects (such as D6 or anti-

D6 branes carrying U(1) flux), near a locus in moduli space where the central charges of

the objects all line up. Let us quickly review some useful facts about this representation,

referring to [65] for more details.

In a region where the phases almost line up, the objects are almost mutually super-

symmetric, and there will be open strings stretched between them whose lightest fermionic

modes are massless and whose lightest bosonic modes have squared masses proportional

to the phase differences of the central charges, along the lines sketched above (this is as-

suming the objects coincide in the noncompact space). The system can be modeled at

low energies by quiver quantum mechanics, obtained by dimensionally reducing the corre-

sponding N = 1, d = 4 quiver gauge theory. The multiplicities of the objects associated to

the nodes i are given by the dimension vector di. The degrees of freedom of the quantum

mechanics are the (possibly nonabelian) positions of the nodes in the noncompact space

and the U(di) × U(dj) complex bifundamental scalars φaij, a = 1, . . . ,Kij , associated to

the light open strings from node i to node j, plus their fermionic partners. When gs → 0

keeping other parameters fixed, the supersymmetric ground state wave functions live on

the Higgs branch, with all node positions coincident and the bifundamental vevs subject

to the D-term constraints

∑

j

∑

a

(φaij)
†φaij −

∑

j

∑

a

φaji(φ
a
ji)

† = ϑi 1di
∀i. (4.6)

The Fayet-Iliopoulos parameters ϑi are given by the background moduli as

ϑi = 2mi(αi − α0) (4.7)

where αi = argZi, mi = |Zi| and α0 =
∑

i dimiαi/
∑

i dimi, with Zi the normalized central

charge of the ith node. Note that
∑

i diϑi = 0, and that the condition for all the phases to

almost line up is ϑi ≪ 1. If closed oriented loops are present, there can be a superpotential

W (φ) as well. If there are no such closed loops, gauge invariance prohibits a nonzero W .

The quiver moduli space is thus given by

M = {φ | (4.6) satisfied, and ∂W = 0} /U(d1) × · · · × U(dn). (4.8)

So far we kept the branes at the same point in the noncompact space. However when

one takes the objects apart (including splitting the nodes with multiplicity di > 1 in di
separate branes, labeled by an index α = 1, . . . , di), the stretched strings become massive

and can be integrated out. At one loop this produces a potential on position moduli space,

with supersymmetric minima at

∑

j,β

Iij
|~xiα − ~xjβ|

= ϑi ∀i, (4.9)
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where Iij = Kij − Kji = 〈Γi,Γj〉. When the solutions to this equation have separations

|~xi − ~xj | which are sufficiently large, the procedure of integrating out the stretched strings

is self-consistent. Depending on the parameter regime, the supersymmetric ground state

wave functions will peak on the “Coulomb branch” (φ = 0, ∆~x 6= 0) or on the “Higgs

branch” (φ 6= 0, ∆~x = 0), thus interpolating between the two pictures of bound states [65].

Note that equation (4.9) is almost exactly the same as the supergravity position constraint

equations (3.21):
∑

j,β

Iij
|~xiα − ~xjβ|

= θi ∀i, (4.10)

where θi = 2 Im(e−iαZi) = 2mi sin(αi − α), α = arg(
∑

imie
iαi),

∑
i diθi = 0. The identity

of the form of these equations despite being in very different regimes is due to a non-

renormalization theorem. Note furthermore that in the strict physical domain of validity

of the quiver picture, we have ϑi ≪ 1, so α0 ≈ α and ϑi ≈ θi. When moving away from

the locus where all phases line up, ϑi and θi start to deviate; this should not come as a

surprise, since the value of constants on the right hand side of the one loop result (4.9) are

not protected and will receive corrections.

Thus we see that in the quiver description of bound states, the correspondence between

multicentered solutions and microscopic bound states is rather explicit.

4.3 Geometrical relations between D4 and D6-anti-D6 bound states

IIA D-brane bound states are rather well understood in the J → ∞, gIIA → 0 limit,

where they are essentially given by holomorphic vector bundles, or more generally coherent

sheaves. In this geometric description, F-term constraints do not receive α′ corrections, but

D-term constraints do. D-terms govern stability, and as a result many decay phenomena

are completely invisible at large radius from the microscopic point of view. This is not

universally true, since µ-stability can be seen at large radius. However, decays of the kind

we have investigated such as a D4 splitting into a D6 and anti-D6 are not detectable if one

limits one’s attention to holomorphic vector bundles on holomorphic 4-cycles.

In spite of all this, in this section we will nevertheless arrive at a picture for (sufficiently

polar) D4-D2-D0 brane states in the language of holomorphic sheaves which tantalizingly

hints at the “split” nature of the corresponding BPS states. In particular, although in the

geometrical regime we cannot literally see those states split in the D6 and anti-D6 branes

which are their building blocks according to the split flow picture, a lot of the structure of

their moduli spaces is suggestive of this structure.

The picture we develop here was first proposed in [44] and exploited further in [47]. We

review it here for completeness and add a number of observations. The picture we arrive

at is heuristic and will not be used in the proof of the OSV formula. It is nevertheless a

source of very useful intuition.

If the divisor Σ in the class P is frozen at Σ = Σ0, the moduli space of BPS configu-

rations reduces to HilbNΣ0 [87, 88, 89, 3, 90], i.e. the Hilbert scheme of N points on Σ0,

and by (2.7), since dimHilbNΣ0 = N dim Σ0 is always even,

dΣ0(F,N) = χ(HilbNΣ0). (4.11)
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The generating function for these Euler characteristics is given by Göttsche’s formula [92]

(see [90] for a pedagogical review)

∑

N

χ(HilbNΣ0) q
N =

∏

n≥1

(1 − qn)−χ(Σ0). (4.12)

However, in reality, the divisor Σ is not some fixed Σ0, but has a deformation moduli

space, and even when a sufficiently generic flux is turned on such that all deformation

degrees of freedom are frozen by the condition F 2,0 = 0, there might be several such

isolated points in the divisor moduli space. Moreover, we need to sum over different fluxes

giving the same total charge. In the limit N → ∞, all those extra degrees of freedom only

give subleading contributions to the entropy, but at smaller N , in particular for the polar

states, this is not the case.

One could try to correct this by considering the full moduli space, say for F a flux

pulled back from H2(X) (such that none of the deformation moduli of P are obstructed), as

a fibration over MP = CPIP−1 with fiber given by HilbNP . If the fibration has no singular

fibers, the orbifold Euler characteristic of the total space would just be the product of

χ(MP ) = IP and χ(HilbNP ), and the generating function would be obtained simply by

multiplying (4.12) by IP . A simple example shows this idea to be too naive: Consider

the moduli space with one pointlike instanton. This fibers over X with fiber CP IP−2, and

hence the Euler character is χ(X)(IP − 1). The reason for the discrepancy is the presence

of a complicated, self-intersecting locus in MP where the fiber P becomes singular, so the

simple factorization formula does not hold. Figuring out the correct formula in this picture

appears very hard.

Σ C

1

1

2 2'

' p

p

p
1

2

3

C
C C

Figure 10: Irreducible curves Ck, C′

k′ and points pi contained in divisor Σ.

An alternative way of thinking about the moduli space, at least for sufficiently large

P and sufficiently small N and F (i.e. sufficiently polar states) is as follows (see also

[44, 47]). Write as in (2.37) F = P
2 + f‖ + γ + f⊥. Recall that supersymmetry requires

F 0,2 = (γ + f⊥)0,2 = 0, which is equivalent to the statement that γ + f⊥ is Poincaré dual

to a collection of holomorphic 2-cycles on Σ. Note that this puts restrictions on the divisor

deformation moduli, since generically the divisor will not contain curves other than those

obtained by intersecting other divisors (which correspond to f‖). More precisely we have

F = ι∗ΣS + [C]Σ − [C ′]Σ (4.13)
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where S ∈ P
2 +H2(X,Z), ι∗ΣS = P

2 + f‖, C and C ′ are collections of holomorphic curves,

and [·]Σ denotes the corresponding (co)homology class on Σ. (Note that this formula suffers

from the ambiguity C → C+C ′′, C ′ → C ′+C ′′, which is one of the reasons why the picture

developed here is rather heuristic.) Hence we can build supersymmetric configurations by

first picking a set of points pi, i = 1, . . . , N , and a collections of holomorphic curves C, C ′

in X, and require our divisor Σ to contain all of those (see fig. 10). This is possible when

the number of points and curves (and their degrees) is sufficiently small compared to the

number of deformation moduli of Σ. For example for the hyperplane
∑

n anxn = 0 in the

Fermat Quintic Q :=
∑

n x
5
n = 0, requiring the curve x1 = −x2, x3 = −x4, x5 = 0 to lie in

the hyperplane puts a1 = a2, a3 = a4, reducing the moduli space from CP4 to CP2.

The adjunction formula for irreducible holomorphic curves C on Σ gives 2χh(C) =

−C2−KΣ ·C where χh is the holomorphic Euler characteristic, i.e. one minus the genus of

the curve. We can also write KΣ ·C =
∫
C P := P · [C] where the first intersection product

is on Σ and the last on X. By additivity of the Euler characteristic, this formula extends to

collections of holomorphic curves. Using this, the charges (2.1) and (2.4) can be computed

as

qA = DA · ([C] − [C ′] + P · S) (4.14)

q0 =
P 3 + c2 · P

24
−N +

1

2
PS2 + S · ([C] − [C ′]) (4.15)

−χh(C) − P

2
· [C] − χh(C

′) − P

2
· [C ′] − [C] · [C ′] (4.16)

All intersection products are on X, except for the last term, which is an intersection of two

curves within Σ.

Now let us compare this to the charges of a bound state of the kind described in the

previous sections.

Start with a single D6 brane containing a BPS “gas” of D2- and D0-branes, with D2-

charge −β1 ∈ H2(X,Z) where β1 is an effective curve class,31 and D0-charge n1 ∈ Z. Now

add D4-brane charge by turning on a flux S1, giving according to (A.3) a total charge

Γ1 = eS1(1 − β1 + n1 ω)(1 +
c2(X)

24
) (4.17)

=

(
1, S1,

S2
1

2
− β1 +

c2
24
,
S3

1

6
− β1S1 +

c2
24
S1 + n1

)
. (4.18)

Do the same for a second D6-brane and take its charge conjugate, so

Γ2 = −eS2(1 − β2 + n2 ω)(1 +
c2(X)

24
) (4.19)

=

(
−1, −S2, −

S2
2

2
+ β2 −

c2
24
, −S

3
2

6
+ β2S2 −

c2
24
S2 − n2

)
. (4.20)

Defining

P̃ := S1 − S2, S̃ :=
S1 + S2

2
, (4.21)

31In our conventions, D6-branes form BPS states with anti-D2 branes.
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the total charge Γ = Γ1 + Γ2 can be written as

Γ =

(
0, P̃ , β2 − β1 + P̃ S̃,

P̃ 3 + c2P̃

24
+

1

2
P̃ S̃2 + S̃(β2 − β1) − n2 −

P̃

2
β2 + n1 −

P̃

2
β1

)
.

(4.22)

So we see that if we identify

P̃ = P, S̃ = S, β2 = [C], β1 = [C ′], n2 = χh(C)+N2, n1 = −χh(C ′)−N1 (4.23)

with N = N1 +N2, this almost matches exactly with (4.16), including the correct quanti-

zation condition on S.

This match is so good that we expect that generically [C] · [C ′] = 0. This is certainly

true for two generic homology classes in X, and we will assume that for those classes sitting

inside a common holomorphic surface Σ it is still generically true. Granted this point, the

identifications are interpreted as follows:

At large volume, rank 1 D6-D2-D0 bound states are described by ideal sheaves I
[88, 36, 37, 35] or their duals I∗.32 More precisely I corresponds to a collection of curves

CI and points πI , where the D2-charge is given by −β + c2(X)/24 and the D0-charge by

n, where

β = −ch2(I) = [CI ], n = ch3(I) = χh(CI ∪ πI) = χh(CI) +NI , (4.24)

where NI is the number of points in πI (counted with multiplicities). Taking the dual

inverts the odd Chern characters, so the D2-charge of I∗ is given by −β+ c2(X)/24 where

β = [CI ] and the D0-charge is n = −χh(CI) − NI . Hence the above expressions for the

charges suggest we identify the Γ1 system with a D6-D4-D2-D0 bound state described as

the dual I∗
1 of an ideal sheaf I1 “shifted” by a U(1) flux S1, and Γ2 similarly as the anti-

brane of a D6-D4-D2-D0 bound state described as an ideal sheaf I2, shifted by S2. Under

this identification, we simply have

CI1 = C ′, CI2 = C, NI1 +NI2 = N. (4.25)

Since the NI are nonnegative note that n1 is bounded above, and not below, while n2 is

bounded below, and not above. This will be important in keeping certain signs straight in

the derivation of the OSV formula.

Thus we arrive at the following heuristic picture for polar BPS states: The curve

collections which are dual to γ+ f⊥ in Σ are the remnants of gases of D2-branes inside D6

and anti-D6 branes with fluxes turned on. The D6-antiD6 condense producing a D4 brane

which has captured a gas of D2 and D0 branes.

We can further strengthen this picture by computing moduli degrees of freedom. As

explained in section 4.1, a bound state of the two branes under consideration is expected

32We do not mean the sheaf-theoretic dual here. If we identify the objects in the category of topological

B-branes with the stable objects in the derived category of coherent sheaves then we should take the derived

dual. This will be a complex whose cohomology is not supported in a single degree, and hence will not be

a sheaf. We thank Paul Aspinwall for pointing this out to us.
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to be a cohomology class of a moduli space which is a CPk fibration over the product of the

moduli spaces of the two constituent branes. Here k+ 1 equals the intersection product of

the constituents

k + 1 = 〈Γ2,Γ1〉 =
P 3

6
+
P · c2(X)

12
− P · (β1 + β2) + n1 − n2. (4.26)

In particular in the case at hand, after freezing the curves and points in the D6 and anti-D6

branes representing the D2-D0 gases, we expect k residual degrees of freedom, coming from

light open string modes stretching between the branes.

If the proposed picture is correct, at large radius, these k residual degrees of freedom

should correspond to the divisor moduli that remain unfixed in the generic case after

requiring the curve collections C and C ′ and the set of N points pi to be contained in it.

To verify this, rewrite (4.26) using the above identifications as

k + 1 =
P 3

6
+
P · c2(X)

12
− P · C − χh(C) − P · C ′ − χh(C

′) −N (4.27)

=

∫

X
eP TdX −

∫

C
eP TdC −

∫

C′

eP TdC ′ −N. (4.28)

We claim that for P sufficiently large, this agrees exactly with the generic number of

deformations of a divisor constrained to contain N points and the curves C and C ′. As

a simple first check, note that when C = C ′ = 0, N = 0, i.e. the pure D4 with at most

flux pulled back from H2(X) turned on, this formula reproduces precisely the dimension

IP − 1 of the linear system P . Furthermore, if we think of the divisor for example as a

hypersurface given by some homogeneous polynomial equation, then it is clear that if we

fix N generic points in X and require the divisor to pass through it, this will give N linear

constraints on the polynomial coefficients and thus generically reduce the residual divisor

moduli space from CPIP−1 to CPIP−N−1.

We now give a proof for the general case for P sufficiently ample. The basic ideas

are (i) for P sufficiently ample, we can use index formulas to compute the actual number

of deformations, and (ii) the first term in (4.28) is the index counting the number of

holomorphic sections of the line bundle describing P , and the second and third terms are

the indices counting the number of those sections which when restricted to C resp. C ′ are

nontrivial. Subtracting these terms from the first one thus gives the number of sections

of the divisor line bundle which are zero on C and C ′, i.e. one plus the number of divisor

deformations fixing C and C ′.
More precisely, this goes as follows.33 Define the ideal sheaf:

0 → IC → OX → OC → 0 (4.29)

Our problem is to compute the dimension of H0(O(P ) ⊗ IC).

Tensor the exact sequence with O(P ). This preserves exact sequences since O(P ) is a

line bundle. We write the corresponding long exact sequence

0 → H0(IC⊗O(P )) → H0(OX⊗O(P )) → H0(OC⊗O(P )) → H1(IC⊗O(P )) → 0 (4.30)

33We thank E. Diaconescu and T. Pantev for helpful discussoins about this.
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For P sufficiently ample H1(IC ⊗ O(P )) = 0 and moreover h1(OC(P )) = 0, but now

we can use Riemann-Roch to compute

h0(OC(P )) − h1(OC(P )) = deg(P |C) − g(C) + 1 (4.31)

=

∫

C
ePTd(TC) (4.32)

Now compare with equation (4.27).

A closely related, but alternative argument proceeds as follows. For concreteness let us

take the example of the quintic in CP4. Let W be the space of homogeneous polynomials

in X0,X1,X2,X3,X4, and Wd those of degree d. The quintic Calabi-Yau is given by the

polynomial equation Q = 0, with Q ∈ W5. Let 〈Q〉 be the ideal generated by Q and

define W ′ := W/〈Q〉, and let W ′
d be the restriction of W ′ to degree d polynomials. Then

W ′
d (projectivized) can be identified with the moduli space of divisors of degree d on the

quintic.

Fix a curve C in the quintic described as the vanishing locus of some homogeneous

polynomial ideal I(C) (which includesQ). Then the moduli space of degree d divisors on the

quintic which contain C can be identified with the (projectivization of ) I ′(C)d, the degree

d part of I ′(C) := I(C)/〈Q〉. So we are interested in computing dim I ′(C)d. This is almost

directly given by the Hilbert polynomial of C. Define M(C) := W ′/I ′(C) = W/I(C), i.e.

the homogeneous polynomial module associated to C. Then the Hilbert function of C is

by definition fh(d) := dimM(C)d, and the Hilbert-Serre theorem says that this becomes

a polynomial ph(d) for sufficiently large d. Moreover, that polynomial can be computed

from the index theorem.

Since by construction dimM(C)d+dim I ′(C)d = dimW ′
d, this gives the expression for

dim I ′(C)d:

dim I ′(C)d = dimW ′
d − ph(d) (4.33)

for sufficiently large d. Now we have

ph(d) =

∫

C
edHTd(C) =

∫

C
(1+dH)(1+c1(C)/2) = dH ·C+χh(C) = P ·C+χh(C) (4.34)

where H is the hyperplane class and χh(C) the holomorphic Euler characteristic of C.

Therefore

dim I ′(C)d = IP − P · C − χh(C) (4.35)

in agreement with the above general proof.

These observations give rather strong evidence for the proposed correspondence, al-

though considerably more work would be needed to make things more precise. There is

some ambiguity in the identifications in the two pictures, and constructing an exact map

between moduli spaces is presumably too much to hope for. In particular we have not

analyzed situations in which points or curves coincide so the CPk fiber dimension jumps.

It appears that here the naive geometrical D4-D2-D0 picture and the D6-anti-D6 bound

state picture start to differ, with the latter apparently giving some sort of regularization

and stratification of these singular loci. Indeed the considerations of section 5 strongly
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suggest that in the D6-anti-D6 picture the relevant CPk fibrations are always regular for

polar states.

We will not attempt to make this map more precise here, but instead proceed by taking

the physical D6-anti-D6 picture as a starting point for computing the polar degeneracies.

The degree to which the heuristic picture sketched above is accurate will therefore not be

essential for the remainder of this paper.

5. Wall-crossing formulae and factorization of indices

In this section we derive wall crossing and factorization formulae for indices, which among

other applications will lead to (a refined version of) (3.6) and eventually in section 6 to the

factorization Ztop ∼ ZtopZtop.

5.1 Physical derivation

Let H′(Γ)t∞ be the (reduced) Hilbert space of BPS states of charge Γ for background

moduli t∞. Then 34

Ω(Γ)|t∞ := TrH′(Γ)t∞
(−1)2J

′
3 (5.1)

with J ′
3 the angular momentum with center of mass degrees of freedom factored out.

In the four dimensional supergravity picture, the index (5.1) can get contributions from

several distinct multicentered configurations, with different constituent charges summing

up to the same total charge Γ, or equivalently from several different topologically distinct

attractor flow trees. Apart from the trivial flow tree (i.e. the single flow), all of these will

decay when the initial flow tree point t∞ passes through the wall of marginal stability on

which the first split Γ → Γ1 + Γ2 of that tree occurs (this will be a different wall for every

tree in general). Therefore as soon as there are nontrivial tree contributions to the index,

the index can be expected to jump at these walls of marginal stability.

To derive the amount by which the index jumps at a Γ → Γ1 + Γ2 MS wall, we will

first assume Γ1 and Γ2 are both primitive. In that case all states decaying at this wall will

necessarily look like two clusters of bound particles of charge Γ1 resp. Γ2, which get infinitely

far separated from each other when the wall is approached (recall eq. (3.22)). Denote the

part of H′(Γ)t∞ corresponding to these nearly decaying states by H′(Γ → Γ1+Γ2)t∞ , where

we let t∞ → tms, tms being a point on the marginal stability wall under consideration. One

expects this Hilbert space to factorize as

H′(Γ → Γ1 + Γ2)tms =
(
|I12|−1

2

)
⊗H′(Γ1)tms ⊗H′(Γ2)tms . (5.2)

The first factor comes from the quantization of the centers of mass of the two clusters and

their associated fermionic degrees of freedom, which as reviewed in section 3.2 yields a spin

J ′
3 = |I12|−1

2 multiplet, where I12 ≡ 〈Γ1,Γ2〉. Thus, one expects a jump in the index given

by

∆Ω|tms = (−1)I12−1 |I12|Ω(Γ1)|tms Ω(Γ2)|tms (5.3)

34Elsewhere in the paper we also use the notation H′(Γ; t∞) and Ω(Γ; t∞).
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when going from the unstable to the stable side of the marginal stability wall.35

The main physical input that went into this derivation is the factorization of Hilbert

spaces (5.2) for infinitely separated clusters. Although plausible, this is not completely

obvious, since one could imagine interactions e.g. between the spin of one cluster and

the magnetic field produced by the other cluster, which could spoil supersymmetry by a

tiny but nonzero bit. The spin of the clusters depends on the relative positions of the

centers (see (3.24)), so translated to these degrees of freedom one should check if there

are non-infinitesimal effects on the relative BPS position constraints of the centers within

one cluster, coming from the presence of the second cluster. If the integrability constraints

admit solutions with a cluster of centers ~xα going to infinity, while other centers ~x′i remain

finite then clearly the effect on the remaining centers ~x′i in (3.21) is negligible and amounts

effectively merely to an infinitesimal shift of the constant term on the right hand side of the

constraint equations. (The cases where this constant term is zero are nongeneric and can

be eliminated by slightly perturbing t∞, which for the sake of this argument we are free to

choose anywhere as long as t∞ stays very near the wall of marginal stability on the stable

side). To strengthen our confidence in these arguments, we will give several mathematical

tests of the wall crossing formula in the following subsections.

The wall crossing formula can be used to derive a refined version of (3.6). Fix some

t∞ = ti and consider all splits Γ → Γ1 + Γ2 encountered along the single Γ attractor flow

starting at t = ti and ending at t = tf , where tf is either the attractor point or a zero

of Z(Γ). Note that by the time this endpoint is reached, all configurations contributing

to the index Ω(Γ; t∞) that could decay, have decayed; there are no nontrivial trees left at

this point. Repeating the wall crossing formula (5.3) for each jump encountered along the

attractor flow gives the formula

Ω(Γ)|ti = Ω(Γ)|tf +
∑

Γ→Γ1+Γ2

(−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉| Ω(Γ1)|tms(Γ1,Γ2,ti) Ω(Γ2)|tms(Γ1,Γ2,ti)

(5.4)

where the sum is over all Γ → Γ1 +Γ2 splittings along the attractor flow and tms(Γ1,Γ2, ti)

is the point where the flow crosses the corresponding Γ → Γ1 + Γ2 marginal stability wall.

When the final point corresponds to a zero, as is the case for polar D4-D2-D0 states, we

moreover have Ω(Γ)|tf = 0, and all contributions have a factorized form.

Iteratively repeating this for each of the Ω(Γi)|tms eventually gives the expression

Ω(Γ)|t∞ =
∑

T∈T (Γ,t∞)

∏

Γa→Γb+Γc∈Vert(T )

(−1)〈Γb,Γc〉−1|〈Γb,Γc〉|
∏

Γi∈Term(T )

Ω(Γi, t∗(Γi)) (5.5)

where T (Γ, t∞) is the set of all attractor flow trees of total charge Γ starting at t∞, Vert(T )

is the set of vertices of the flow tree T , characterized as splits Γa → Γb + Γc, Term(T ) is

the set of terminal charges of the flow tree T , and t∗(Γi) the attractor point of Γi. Thus

35Of course, (5.2) implies something stronger than (5.3). We could for example state an analogous wall-

crossing formula for the full character Try2J′

3 implying a wall-crossing formula for the Hodge polynomials

of the relevant moduli spaces.
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we see that flow trees give a canonical way of reducing indices in general backgrounds to

irreducible36 indices Ω(Γi, t∗(Γi)) associated to black holes or simple particles.

In the wall crossing formula (5.3) and the subsequent formulae we have assumed that

all splits Γ → Γ1 + Γ2 are primitive, i.e. no integral Γ′
1 and integer N1 > 1 exist such that

Γ1 = N1Γ
′
1, and similarly for Γ2. In general this need not be the case. It is possible to

extend the wall crossing formula (5.3) to some nonprimitive cases as well. This is done

most efficiently by using generating functions; examples will be analyzed in detail in the

section 6.1, but for completeness we give a more general wall crossing formula here already,

for arbitrary splits Γ → Γ1 +NΓ2, N ∈ Z+ (which is a nonprimitive split when N > 1):

Ω(Γ1)|tms +
∑

N>0

∆Ω(Γ1+NΓ2)|tms q
N = Ω(Γ1)|tms

∏

k>0

(
1−(−1)k〈Γ1,Γ2〉 qk

)k|〈Γ1,Γ2〉|Ω(kΓ2)|tms

(5.6)

where ∆Ω denotes the index jump at the appropriate marginal stability point tms(Γ1,Γ2, t∞),

going from unstable to stable side. These splits correspond to “halo” states, consisting of

N Γ2 particles moving on a sphere around Γ1. We will see several special cases in section

6.1, after which it will be clear that this formula is the correct generalization. Note that

it reduces to (5.3) for N = 1. It would be interesting to generalize this formula further to

splits Γ → N1Γ1 +N2Γ2, but we expect this to be significantly more complicated. In this

case the configuration space will be much more complicated. Moreover, from our argu-

ments above ∆Ω(N1Γ1 +N2Γ2) is related to the Euler character of a quiver with 2 nodes

with dimension vector (N1, N2) and k = 〈Γ1,Γ2〉 arrows. However, the known expressions

for these Euler characters are very complicated [93].

We will however primarily use (5.4) to factorize the polar part of the D4-partition

function, and will argue that for the purpose of deriving the OSV conjecture it is sufficient

to restrict to the contribution from splits in two clusters with a single D6 and a single

anti-D6 brane charge, which are of course automatically primitive.

Finally, note that we could have tried to derive the wall crossing formula microscopi-

cally from (4.5) (adding the proper signs obtained from the identification of J ′
3 with Lefshetz

spin as explained above (2.7)). However, at least to be able to use this in a straightfor-

ward fashion, this would have required us to assume that whenever a D-brane is close to

decaying into two branes, its connected moduli space component M has the structure of a

CP|〈Γ1,Γ2〉|−1 fibration over the product of the moduli spaces M1 and M2 of the consitutent

branes, without any degenerations of the fiber. The latter is not clear a priori. Turning

things around, the physical arguments given above give a prediction that the fibration will

indeed be regular in these cases, or at least that this can be effectively assumed for the

purpose of computing the jump of the index.

In the following we will test our wall-crossing formula microscopically, and we will see

that indeed this regular fibration structure arises in association to decaying states, often

in rather nontrivial ways.

36irreducible in the sense that they correspond to states which cannot be made to decay — there might

be more refined reductions which further factorize even these irreducible indices.
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5.2 Mathematical tests and applications

We have verified our wall crossing formulae, and the index factorizations derived from it,

both microscopically by comparing to large radius geometrical results as well as by studying

examples of quiver moduli spaces. The latter often are under good mathematical control

[93], and their relation to multicentered configurations is well understood in a number of

cases [65].

The simplest example is a pure (very ample) D4 of charge P , which as we saw in

the previous sections corresponds to a bound state of a D6 and an anti-D6 with suitable

fluxes turned on, with corresponding charges Γ1 = eS1(1 + c2/24), Γ2 = −eS2(1 + c2/24)

such that P = S1 − S2. The intersection product between the two constituents equals

IP = P 3/6 + c2 · P/12. For a single D6 brane with flux the attractor point lies on the

boundary of moduli space. However, the low energy gauge theory is free Maxwell theory

and hence, on a Calabi-Yau X with proper SU(3) holonomy, there is a unique ground state

of the Maxwell theory in a fixed flux sector. 37 Therefore, H′(Γ; t∗(Γ)) is one-dimensional,

and hence Ω(Γi; t∗(Γi)) = 1. We will assume Γ → Γ1 +Γ2 is the only flow tree (an assertion

very well supported by our numerical and analytical searches), and hence equation (5.5)

immediately gives Ω(P ; t∞) = (−1)IP−1IP . This is in exact agreement with the microscopic

index computed as the euler characteristic of the linear system corresponding to the divisor

P , which is CPIP−1. Note that this is also the moduli space of a two-node quiver with IP
arrows and dimension vector (1, 1), in accordance with the discussion in section 4.2, and

in particular (4.8).

Further tests along these lines can be extracted from the discussion towards the end

of section 4.3.

In the following subsections we will consider a number of more complicated examples,

some of which are of independent interest. Finally, the results for halo degeneracies we will

obtain in the next sections can also be considered as further tests of these ideas.

5.2.1 Four node quiver without closed loops

To verify our physical arguments for the absence of long distance spin-spin interactions

spoiling factorization, we consider a system described by the quiver of fig. 11, close to a

locus where the two nodes on the left hand side split off from those on the right hand side.

More precisely we will go to a locus of FI parameter space where the multicentered solutions

of (4.9) split in these two clusters and we thus expect the index to factorize accordingly.

We test this by showing that the quiver moduli space (4.8) is a CPI−1 fibration over the

product of the moduli spaces of the two subsectors, with I the intersection product between

the two clusters, and that its cohomology factorizes as physically expected. As discussed at

37In this paper we have ignored torsion in the cohomology groups. However, at this point torsion in

H2(X; Z) plays an interesting role. In this case one cannot simultaneously specify the electric and magnetic

flux sectors on the D6 brane, and in fact, the ground states of the theory form a representation of the

Heisenberg group extension of H2
tors(X; Z) × H5

tors(X; Z) defined by the torsion pairing [120, 121]. Thus,

it is more appropriate to take Ω(Γi; t∗(Γi)) = |H2
tors(X; Z)|. Since different attractor flow trees terminate

on different numbers of pure six branes the torsion effects will modify the indices in interesting ways. We

have not systematically investigated these consequences of nonzero torsion.
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Figure 11: Left: Four node quiver without closed loops. The indicated arrows are Iij -fold

degenerate, with Iij ≥ 0. The dimension vector is taken to be (1, 1, d3, d4), with d3, d4 ≥ 1. Right:

Corresponding splitting multicentered configuration when ϑ1 + d3ϑ3 is approaching zero.

the end of section 5.1, this is sufficient to reproduce the wall crossing formula for the index.

However establishing this regular fibration structure turns out to be rather nontrivial.

We will not try to give an actual physical or flow tree realization of this quiver, which

is not necessary for the kind of comparison we are trying to make here.

The morphisms (or bosonic stretched open string modes) are described by

φ21 ∈ CI21 (5.7)

φ31 ∈ Mat(1, d3) × CI31 (5.8)

φ23 ∈ Mat(d3, 1) × CI23 (5.9)

φ41 ∈ Mat(1, d4) × CI41 (5.10)

φ24 ∈ Mat(d4, 1) × CI24 (5.11)

denote φα,j31 with α = 1, . . . , d3, j = 1, . . . , I31 and φj,α23 with j = 1, . . . , I23, and similarly

for φ41, φ24. The D-term equations are given by (4.6):

−|φ21|2 − |φ31|2 − |φ41|2 = ϑ1 (5.12)

|φ21|2 + |φ23|2 + |φ24|2 = ϑ2 (5.13)
I31∑

j=1

φα,j31 (φβ,j31 )∗ −
I23∑

j=1

(φj,α23 )∗φj,β23 = ϑ3δ
α,β (5.14)

I41∑

j=1

φα,j41 (φβ,j41 )∗ −
I24∑

j=1

(φj,α24 )∗φj,β24 = ϑ4δ
α,β (5.15)

with ϑi as in (4.7) and as usual ϑ1+ϑ2+d3ϑ3+d4ϑ4 = 0. The corresponding supersymmetric

particle configuration constraints (4.9) are

− I21
|~x1 − ~x2|

−
d3∑

β=1

I31
|~x1 − ~x3β|

−
d4∑

β=1

I41
|~x1 − ~x4β |

= ϑ1 (5.16)

– 64 –



I21
|~x2 − ~x1|

+

d3∑

β=1

I23
|~x2 − ~x3β|

+

d4∑

β=1

I24
|~x2 − ~x4β |

= ϑ2 (5.17)

I31
|~x3α − ~x1|

− I23
|~x3 − ~x2α|

= ϑ3 (5.18)

I41
|~x4α − ~x1|

− I24
|~x4α − ~x2|

= ϑ4, (5.19)

which as mentioned in section (4.2) coincides with the supergravity position constraints

(4.10) in the regime of validity of the quiver quantum mechanics, θi ≪ 1, since θi ≈ ϑi in

this regime.

Now, we want ~x1, ~x3,α → ∞ with |~x1−~x3,α| held finite. Therefore, in the quiver picture

we should send ϑ1 + d3ϑ3 → 0, holding ϑ1, ϑ3, ϑ2, ϑ4 all nonzero. The system then splits in

two clusters with charges Γ1 + d3Γ3 and Γ2 + d4Γ4, respectively, with mutual intersection

product

I = 〈Γ2 + d4Γ4,Γ1 + d3Γ3〉 = I21 + d3I23 + d4I41. (5.20)

Clearly we must have ϑ1 < 0, and therefore ϑ3 > 0. Similarly, since ϑ1+d3ϑ3 = −(ϑ2+d4ϑ4)

and since ϑ2 > 0 we must have ϑ4 < 0.

It follows from the third and fourth D-term equations that there is a well-defined

projection to a product of Grassmannians: [φαj31 ] ∈ Gr(d3, I31) and [φjα24 ] ∈ Gr(d4, I24).

This leaves φ23 and φ41 undetermined, and the remaining equations determines the fiber

of the map to be a complex projective space so that the moduli space is a smooth fibration
38

CP I21+d3I23+d4I41−1 → M → Gr(d3, I31) ×Gr(d4, I24). (5.21)

Note that the Grassmannians are the moduli spaces M1, M2 of the two 2-node sub-quivers

in which our 4-node quiver splits. Restricting the gauge invariant form dφ21∧dφ21 +dφ23∧
dφ23 + dφ41 ∧ dφ41 to the fibers gives a generator of the cohomology of the fibers, so by the

Leray-Hirsch theorem the cohomology factorizes:

H∗(M) = H∗(CP I21+d3I23+d4I41−1) ⊗H∗(M1) ⊗H∗(M2) (5.22)

Comparing with (5.20) we see that the factorization (5.22) is precisely that predicted by

the physics, and rather nontrivially so.

5.2.2 A D6-D2-D0 as a 3 centered D6 −D6 −D6 bound state

Next we give a 3-centered example with an actual flow tree realization and a microscopic

description as a geometric D-brane in the IIA large radius limit. Consider a bound state

of the following three charges

Γ1 = eU (1 +
c2
24

), Γ2 = eV (1 +
c2
24

), Γ3 = −eU+V (1 +
c2
24

) (5.23)

with U, V, V − U positive divisors (i.e. inside the Kähler cone). The total charge is

Γ = 1 − UV +
c2
24

− 1

2
(UV 2 + U2V ) (5.24)

38We omit many details in the argument here.

– 65 –



1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

4

I21

I23I13

3

1 2

1
2

3

Figure 12: Left: Flow tree corresponding to the D6-D2-D0 system described in the text, in

the 1-modulus case with U = D1, V = 2D1. The attractor points of Γ1,Γ2,Γ3 are at x =

1, 2, 3 respectively. Up: Corresponding quiver formally associated to this system, but in fact

not describing the system. Right: Corresponding splitting multicentered Sun-Earth-Moon type

configuration when the MS wall argZ1 = arg(Z2 + Z3) is approached.

so this is a D6-D2-D0 bound state. Denoting Iij ≡ 〈Γi,Γj〉, we have

I21 =
(V − U)3

6
+
c2 · (V − U)

12
, I23 =

U3

6
+
c2 · U

12
, I13 =

V 3

6
+
c2 · V

12
. (5.25)

Because U , V and V −U are all positive, all of these intersection numbers are positive. An

example of a corresponding attractor flow tree in the one modulus case is shown in fig. 12, as

well as the quiver encoding the intersection products and the corresponding multicentered

configuration when approaching a (1, 2 + 3) line of marginal stability. Crucial is that the

sequence of splits is (123) → (1, 23) → (1, 2, 3). At least in the one modulus case, it can

be checked that this is the only possible flow tree for the given charges starting from large

Im t. Let us assume this is true in the general case as well.

Our factorization arguments immediately yield the following index of BPS states as-

sociated to this flow tree:

Ω = (−1)I21+I23+I13 |I13 − I21| I23 = (−1)IU +IV +IV −U |IV − IV−U |IU , (5.26)

where we used the notation IU ≡ U3

6 + c2·U
12 and so on, and the fact that for proper SU(3)

holonomy Calabi-Yau manifolds, the pure D6 has a unique ground state after factoring out

the center of mass hypermultiplet, i.e. Ω(eS Γ(0, 0))|t = 1.

Now let us compare this to the microscopic large radius geometrical picture of this

D6-D2-D0 as the ideal sheaf IC given by the curve C = U ∩ V . The charges are given by

(4.24), which yields, using the adjunction formula,

qD2 = −U · V +
c2
24
, q0 = χh(C) = −1

2

(
C2|V +C · V

)
= −1

2
(U2V + UV 2), (5.27)

in agreement with (5.24). We can parametrize the moduli space of this ideal sheaf as

follows. First recall that the moduli space of very ample divisors D (= U , V and V − U
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here) is parametrized by the vector space of holomorphic sections sD of the associated line

bundles LD, modulo overall rescaling of the section. That is,

MD = CPID−1. (5.28)

Now pick a divisor representative U0 in the class U , described by the vanishing locus of a

section sU0 of LU . Note that we can write any section of LV as

sV = sU0 sV−U + s̃V , (5.29)

where sV−U is some section of LV−U and s̃V a section of LV . Conversely, any such expres-

sion gives a holomorphic section of LV . Now changing sV−U in this expression will not

change C0 := U0 ∩ V = {sU0 = 0} ∩ {sV = 0}, and thus the moduli space of curves C0 is

described by the vector space of sections s̃V of LV modulo products of sections of LV−U
with sU0, and modulo overall rescalings, that is

MC0 = CPIV −IV −U−1. (5.30)

In conclusion, the sheaf moduli space MC is a regular CPIV −IV −U−1 fibration over CPIU−1.

Computing the Euler characteristic of this space immediately reproduces (5.26).

Note that for this example, there is no region in moduli space where all phases of the

constituents line up, as can be seen directly in fig. 12 since the two marginal stability lines

do not intersect. As a result, the quiver quantum mechanics picture as reviewed in section

4.2 is not reliable in this case. And indeed, if one tries to compute the index as the euler

characteristic of the moduli space M for the quiver of fig. 12 with dimension vector (1, 1, 1),

as given by (4.8) (with W = 0 since there is no closed loop), one finds the wrong result

Ω = (−1)I21+I23+I13 (I21 +I23) I13 or (−1)I21+I23+I13 (I13 +I23) I21, depending on the sign of

ϑ1. (This can be computed with the methods described in section 5.2.1.) This illustrates

that the split flow picture is more general than the quiver picture.

It can be shown that the correct index is that of the part of the quiver BPS Hilbert

space which jumps at the MS wall ϑ1 = 0, i.e. the difference of the Hilbert spaces for ϑ1 > 0

and ϑ1 < 0, suggesting an identification of the ideal sheaf cohomology with this part of the

quiver cohomology. It would be interesting to clarify this point further.

When we invert U → −U in (5.23) the situation changes significantly. In this case,

there is a region of moduli space where all phases line up, and the quiver description

becomes accurate. The relevant quiver now has a closed loop however, allowing a nontrivial

superpotential. We now turn to this case.

5.2.3 Three node quiver with closed loop

Our third nontrivial example is given by the quiver given in fig. 6b, which has a closed

loop. The latter brings in some qualitatively new features, such as the presence of a

superpotential and the possibility of scaling solutions.

For simplicity we take the dimension vector to be (1, 1, 1), and assume no internal

moduli associated to the vertices. This could correspond for instance to a bound state of
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Figure 13: Left: Three node quiver with closed loop. Right: Corresponding splitting multicen-

tered configuration when b > a+ c and θ1 approaches zero.

three single D6 or anti-D6 branes with suitable U(1) fluxes turned on on their worldvolumes.

In particular our previous example (5.23) with U inverted, i.e.,

Γ1 = e−U , Γ2 = eV , Γ3 = −eV−U (5.31)

realizes this, where we take U, V to be positive divisors and we are dropping c2 corrections

for simplicity. We have a = U3/6, b = (U + V )3/6, c = V 3/6. Since U, V are positive

divisors we have b > a+ c.

Fig. 14 shows a one modulus example of flows associated with (5.31) with U = D1,

V = 2D1 and three different initial points. No flow trees exist in the large radius regime.

In other regions, one or more of the three possible tree topologies (1, (2, 3)), (2, (3, 1)),

(3, (1, 2)) is realized. For initial point A, we have only (1, (2, 3)). When moving to point

B, we pass through the marginal stability line where Z3 and Z1 + Z2 line up, i.e. θ3 = 0.

The (1, (2, 3)) remains alive (B1), but a new tree, of topology (3, (1, 2)) (B2) comes into

existence. So in this case the total Hilbert space H(Γ; t∞) will be partitioned by two trees.

Finally, when moving to point C, we do not pass through any relevant marginal stability

line, but along the way a tree-topology-changing transition takes place: at some point,

both flow trees we had in B become degenerate (with one 4-valent vertex instead of two

3-valent) and identical, and going beyond that, we are left with one new tree, of topology

(2, (3, 1)).

According to our general framework, the index should jump between A and B, but

not between B and C. This is confirmed by the explicit expressions obtained from our

factorization formulae

Ω(A) = (−1)〈Γ1,Γ2+Γ3〉+〈Γ2,Γ3〉 |〈Γ1,Γ2 + Γ3〉||〈Γ2,Γ3〉| = (−1)a+b+c(b− c)a (5.32)

Ω(B) = Ω(B1) + Ω(B2) = (−1)a+b+c ((b− c)a+ (c− a)b) (5.33)

= (−1)a+b+c(b− a)c (5.34)

Ω(C) = (−1)a+b+c(b− a)c, (5.35)

where we used b > a + c and c > a. Note that the two B-trees indeed nicely combine to

give the same index of the single C-tree!

Let us now turn to the microscopic description. Since there are no flow trees starting

from the large radius regime, there won’t be a geometrical large radius D-brane realization.
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Figure 14: One modulus example of a realization of the quiver in fig. 13. The three terminal

charges Γi are given by (5.31) (dropping c2 corrections) with U = D1, V = 2D2, and the corre-

sponding terminal flows labeled by 1, 2 and 3. The green dotted lines are lines of marginal stability.

The ms line “2 = 3” corresponds to Z2 and Z3 lining up, “1 = 2 + 3” to Z1 and Z2 + Z3 lining

up, and so on. For each flow tree, we only show the ms lines on which the tree has vertices; this

is different for each tree. Three different initial points are considered, corresponding to the labels

A, B and C. We consider the three kinds of flow patterns (1(23)), (2(13)) and (3(12)) at each of

the initial points. The initial (yellow) point in case A only supports the flow (1(23)). The initial

point in case B supports the two flows (1(23)) and (3(12)), illustrated in B1 and B2. Finally, the

initial point in case C again supports only the flow (2(13)). There are also regions where no flow

tree exists, for example the large Im t region. Here the attractor flow is a single centered flow for

the total charge which crashes on a zero of Z(Γ; t).

Indeed, we now have a D6-D2-D0 charge with positive D2 charge, which never exists as a

BPS state in the large radius regime. Fortunately however, we see that there is a region

in moduli space where all phases of the nodes line up, so we can use quiver quantum

mechanics to verify our results.

As in section 5.2.1, we can actually verify our results independently of the split flow

picture by just comparing the results obtained from the 3-particle quantum mechanics to

those from the microscopic quiver moduli space.

We label the stretched open string scalars by zi, i = 1, . . . , I13 := c, xj , j = 1 . . . , I32 :=

a, yk, k = 1, . . . , I21 := b. The D-term constraints are

∑

i

|zi|2 −
∑

k

|yk|2 = ϑ1 (5.36)
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∑

k

|yk|2 −
∑

j

|xj |2 = ϑ2 (5.37)

∑

j

|xj |2 −
∑

i

|zi|2 = ϑ3, (5.38)

Since the quiver has a closed loop, a nontrivial gauge invariant superpotential is possible.

We assume this to have a generic cubic form

W (x, y, z) =
∑

ijk

cijkzixjyk. (5.39)

Higher order terms can self-consistently be neglected as long as the (x, y, z) are small. As

we will see, this can be enforced by making |ϑi| sufficiently small.

From the discussion in section 3.8 we expect factorization when at least one of the

triangle inequalities (3.59) is violated, say, as in our concrete realization described above,

b > a+ c. (5.40)

As we saw in section 3.8, for θ3 > 0, the configuration will split for θ1 approaching 0 (from

below) by separating ~x1 infinitely far from ~x2 and ~x3, so our general physical arguments

lead to an index for this particular system given by

Ωmacro = (−1)c−b−1 (b− c)Ω(1)Ω(2 + 3) = (−1)c+b+a (b− c) a. (5.41)

This corresponds to our case A.

From the point of view of the microscopic quiver moduli space

M := {(x, y, z)|(5.36) − (5.38) satisfied and ∂W = 0}/U(1)3 (5.42)

the result (5.41) is not at all obvious. For instance it appears rather mysterious why the

microscopic quiver description should care about triangle inequalities.

Let us therefore compute the index directly from the quiver moduli space, and check

if factorization holds when expected. The index of this system is given by

Ωmicro = (−1)dimMχ(M) = (−1)c+a+b χ(M). (5.43)

(Recall the origin of the sign factor is the identification of J ′
3 with Lefshetz spin, as explained

above (2.7).) For generic cijk, the solutions to ∂W = 0 split in three branches, one with

x = 0, one with y = 0 and one with z = 0. This can be seen as follows.39 Assume there are

other solutions, i.e. with x 6= 0, y 6= 0, z 6= 0. Relabeling indices we can assume say x1 6= 0,

y1 6= 0, z1 6= 0. Now note that the equations have scaling symmetries x → λ1x, y → λ2y,

z → λ3z, so without loss of generality we can assume x1 = y1 = z1 = 1. The equations

corresponding to partial derivatives with respect to the other variables are then a nice set S

of equations that can be solved with a finite set of solutions. The equations corresponding

to partial derivatives with respect to x1, y1, z1 are an extra set of constraints. From the

39We thank Davide Gaiotto for providing this argument.
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homogeneity of W (x, y, z) it follows that these three extra equations are satisfied iff the

superpotential evaluated on the solutions to S is zero. On the other hand the coefficient

c111 does not enter the first set of equations S. Picking different values for c111 one can get

any possible value for the superpotential. It follows that branches with x, y, z all different

from zero can exist only for a codimension one set of coefficients cijk, and are generically

absent, proving our claim.

Which of the three branches is turned on depends on the signs of the Fayet-Iliopoulos

parameters ϑi:

• xj = 0 corresponds to ϑ3 < 0, ϑ2 > 0, with ϑ1 of either sign

• yk = 0 corresponds to ϑ1 > 0, ϑ2 < 0, with ϑ3 of either sign.

• zi = 0 corresponds to ϑ3 > 0, ϑ1 < 0, with ϑ2 of either sign.

Note that on any branch, eqs. (5.36-5.38) show that the nonzero |xj |2, |yk|2, |zi|2 are

bounded by |ϑi| and hence can be made small, justifying our use of the cubic superpotential.

When (5.40) is satisfied, there is an even simpler argument for the absence of branches

with all x, y, z nonzero: in this case ∂yW = 0 imposes more equations than there are

unknowns xj , zi, so this equation will generically not have any solutions apart from the

trivial ones x = 0 or z = 0. Assuming ϑ3 > 0 (the case ϑ3 < 0 can be dealt with

analogously) then implies using (5.38) that x 6= 0, so we must put z = 0. From (5.38) it

then follows that there can only be solutions for ϑ1 < 0, decaying at marginal stability

ϑ1 = 0 by splitting off Γ1, in accordance with what we found in the spacetime picture in

section 3.8.

Since z = 0, the D- and F-constraints reduce to

M = {(x, y) ∈ CPa−1 × CPb−1 |
∑

j,k

cijkxjyk = 0, i = 1, . . . , c}, (5.44)

with x and y now interpreted as homogeneous coordinates. Now for any fixed x ∈ CPa−1,

the above equations cut out a CPb−c−1 in CPb−1. It is clear that this is true for generic

x, but when (5.40) is satisfied (and cijk is generic, as we assume throughout), it will

in fact be true for any x. This is easily seen for example by taking the cijk such that

Mik(x) ≡ ∑
j cijkxj ≡ xk−i+1 (with xj ≡ 0 if j is outside the range 1, . . . , a), and noting

that M(x) manifestly has always maximal rank on CPa−1.

Therefore in this regime M is a CPb−c−1 fibration over CPa−1, without any fibers

degenerating. Therefore

χ(M) = (b− c) a, (5.45)

which brings (5.43) in exact agreement with (5.41).

Note that this is again an explicit realization of the picture outlined in section 4.1,

and of the assumptions made there. In particular we see explicitly that the F-constraints

effectively put the net intersection product between the two custers 〈Γ2 + Γ3,Γ1〉 = b − c

equal to the total number of nonzero bifundamental scalars between theses two constituents,

and that the fibration is regular.
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It would be very interesting — even within the context of the present example — to

do a more systematic study of the various flow trees that can arise and in which regions

they do arise. It would also be interesting to compare more systematically with the quiver

picture. This picture will be accurate in an open region around the point where all three

charges Zi are aligned, but it is easy to see that it must fail at some distance of order one

from this point, because the lines ϑi = 0 and θi = 0 will not coincide. However, these

matters lie outside the scope of this short note, so we will leave them for future work.

5.3 Entropy of the three node quiver in the scaling regime

The analysis of the three node closed loop quiver changes significantly when all three

triangle inequalities are satisfied. For one thing, fiber jumps now become possible, with

the potential of drastically increasing the complexity and Euler characteristic of M. This

is expected physically: as we saw in section 3.8, in this case there is no obstruction to

letting the centers approach each other arbitrarily closely, asymptotically forming a black

hole. Such solutions can no longer be forced to split. Thus they are not described by a

flow tree but rather by a single flow, so our factorization arguments no longer apply, and

the emergence of a horizon in the asymptotic limit suggests instead an exponential black

hole type ground state degeneracy.

Note that our realization of the quiver described above and exemplified in figure 14 is

never in this regime, since it always violates the triangle inequalities by b > a+ c. It is not

extremely easy to find realizations of scaling solutions in terms of rigid constituents. How-

ever, we expect that a simple realization with rigid nodes satisfying the triangle inequalities

and corresponding to a scaling solution can be obtained by adding a rigid D2-brane to the

charge Γ3 in eq.(3.57). (We say “expect” because we have not verified that the discriminant

D(H(~x)) is everywhere positive.) We assume there are such realizations and proceed.

To compute the Euler characteristic in this case requires more sophisticated machinery.

According to the general formulae of [94] the Euler characteristic is given in the general

case by

χ(M) =
∂a−1
J1

(a− 1)!

∂b−1
J2

(b− 1)!

(1 + J1)
a(1 + J2)

b

(1 + J1 + J2)c
(J1 + J2)

c|J1=J2=0 (5.46)

=

∮
dJ1

∮
dJ2J

−a
1 J−b

2

(1 + J1)
a(1 + J2)

b

(1 + J1 + J2)c
(J1 + J2)

c. (5.47)

The contour integrals are on small contours Ji = ǫie
iθi and the relative sizes of ǫi do not

matter.

The evaluation of these integrals is nontrivial and given in appendix E. We find the

following elegant exact expression:

χ(M) = ab−
∫ ∞

0
ds e−s L1

a−1(s)L
1
b−1(s)L

1
c−1(s), (5.48)

where the L1
∗ are Laguerre polynomials. Amusingly, these kinds of integrals arise in atomic

physics, since the Laguerre polynomials are the radial eigenfunctions of an electron in
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a Coulomb potential. We don’t know if this is a coincidence or has a deeper physical

explanation. Recall that the small asymmetry between (a, b) and c arises from the fact

that we are considering the case θ1 < 0, θ3 > 0, putting us on the branch z = 0. The other

cases give rise to expressions with obvious modifications.

Equation (5.48) reproduces (5.45) when b+1 ≥ a+ c, so in particular also when (5.40)

is satisfied, as expected. More interestingly, when all triangle inequalities are satisfied, we

find that the degeneracies start increasing exponentially. This is in beautiful agreement

with the fact that in this regime, the state no longer splits and a black hole can be formed,

as we saw in section 3.8. More precisely, we find the remarkably simple and suggestive

result

χ(M) ∼ (abc)−1/3 2a+b+c (5.49)

in the regime in which (a, b, c) are not too different from each other. Note that this amounts

to a macroscopic entropy, since the intersection products (a, b, c) scale as Λ2 when scaling

up uniformly all charges by Λ, just like a large black hole.

The formula (5.49) suggests an interpretation in terms of fermionic degrees of freedom

stretched between the centers, one per unit of intersection product, at least at large a,

b, c. It is an interesting open problem to explain this result. Clearly, one would have

a hard time getting such exponential degeneracies from a simple three particle quantum

mechanics, unless new degrees of freedom appear in the scaling regime.

6. Counting BPS degeneracies

In this section we specialize the general tools developed so far to our actual problem of

counting D4-D2-D0 state degeneracies. The idea is roughly as follows. We use the fareytail

expansion to reduce the counting problem to computing polar D4-D2-D0 indices. We show,

using our index factorization formulae, that at least for the “extreme” polar states, these

indices factorize into D6 and anti-D6 indices. This leads to an approximate factorization

of the leading term of the fareytail series into a D6 and an anti-D6 partition function.

We argue that the latter can be identified with the topological string partition function.

Putting the pieces together, we obtain an expression of the form ZBH ∼ ZtopZtop.

In section 6.1, we explore the relation of D6-D4-D2-D0 indices and DT invariants.

This is nontrivial because of the background dependence of the former. We also show

how quantizing particle halos leads to MacMahon and Gopakumar-Vafa-type generating

functions. In section 6.2, we compute indices of D6-anti-D6 bound states using index

factorization, and in section 6.3 we show that this leads to a suitably factorized generating

function. In section 6.4 we show to what extent this can be used to compute polar D4-

D2-D0 indices, and based on this we give a derivation of a refined version of the OSV

conjecture (6.113).

6.1 D6-D4-D2-D0 degeneracies

We now turn more specifically to degeneracies of bound states of a single D6 with lower

dimensional branes. Donaldson-Thomas invariants, which “count” ideal sheaves, count in
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some sense BPS bound states of a single D6 with D2- and D0-branes. However, there

is an immediate problem with this interpretation: the actual BPS indices of such bound

states depends strongly on the background moduli, due to jumping phenomena at marginal

stability walls, while DT invariants are insensitive to the background. We saw examples

of the background dependence of such BPS states in sections 3.6 and 5. Examples of

supergravity realizations of such states with a limited domain of stability are halos of D0-

branes around some D6-D4-D2-D0 core. More general such halo-configurations exist, for

example replacing the D0-particles by D2-D0 particles, as shown in fig. 7a. The latter

have an even richer structure of marginal stability walls, and they extend all the way to

the infinite radius limit, so unlike for D4-D2-D0 systems, one cannot avoid these issues

by restricting to the large radius limit. Moreover, as is manifest e.g. in equation (5.4),

when these D6-D4-D2-D0 bound states are used as building blocks for more complicated

configurations or flow trees, the relevant moduli are determined by the split points of the

attractor flow trees, so we cannot just pick some values we happen to like.

6.1.1 D6 + D0-halos

Let us begin by considering the degree zero part Z0
DT of the DT partition function, intro-

duced in (1.21). This supposedly counts D6-D0 bound states, but we know that at B = 0

for example, there are no such bound states. On the other hand, for B sufficiently large,

these bound states do exist, and then Z0
DT correctly counts them.

A simple way to derive this is through the D0-halo picture in supergravity. The

following gives a sketch of how this is done, based on the detailed study of analogous

systems in [65], to which we refer for more details.

Since D0-branes can form bound states with each other of arbitrary charge, the par-

ticles in the halo can have arbitrary D0-charge. To have a BPS configuration, all charges

have to be of the same sign though, determined by the sign of the B-field, as in (3.55). Let

us assume this is positive.

As reviewed under (3.24), the contribution to the angular momentum of a particle

of D0-charge n moving in the magnetic field of a D6, arising from its position degrees

of freedom and the intrinsic monopole-electron type angular momentum stored in the

electromagnetic field, equals j = 1
2〈D6, nD0〉 − 1

2 = (n − 1)/2, hence the contribution

to the degeneracy of BPS ground states from quantizing these degrees of freedom equals

2j + 1 = n.

In addition, the particle has a number of “internal” BPS ground states, obtained by

quantizing its position moduli (super)space inside the Calabi-Yau threefold X. These are

simply given in the usual way by the cohomology of X, and their spin is determined by the

Lefshetz SU(2) action on H∗(X); in particular a p-form has spin j3 = (p − 3)/2, which is

half-integral when p is even. Since as we saw, the R3 position hypermultiplet is forced by

the radial magnetic field to be in a spin 1/2 state, the even cohomology will thus correspond

to bosonic particles, and the odd cohomology to fermionic particles.40

40Here “bosonic” and “fermionic” refers to the nature of the individual particles (the electrons). Whether

the bound state with the D6 as a whole (the atom) will be fermionic or bosonic also depends on the spin

(n − 1)/2 coming from the quantization of the monopole-electron system as discussed above.
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To summarize, one particle ground states are labeled by their D0-charge n ≥ 1, an

integer m ∈ {0, . . . , n− 1} labeling the lowest Landau levels, and an element ω of H∗(X).

Since the particles in the halo are mutually BPS, classically they do not exert static forces

on each other, and hence in the ~ → 0 limit the multiparticle ground states are simply

labeled by occupation numbers of single particle states: |{kn,m,ω}n,m,ω〉, where ω runs over

a basis for the cohomology. Since we are considering a Fock space of D0 particles in a fixed

D6 background we form a Fock space of bosonic one particle states corresponding to even

degree cohomology classes and of fermionic one particle states corresponding to odd degree

cohomology classes. Thus we have bosonic occupation numbers kn,m,ωe ∈ N, where ωe runs

over a basis for the even-degree cohomology and fermionic occupation numbers kn,m,ωo ∈
{0, 1}, where ωo runs over a basis for odd-degree cohomology. While the fermi/bose nature

of the individual particles is governed by the degree of the cohomology class, the total spin

J ′
3 (as usual with the contribution of the center of mass degrees of freedom factored out) is

J ′
3 =

∑
kn,m,ω(m− n−1

2 + deg(ω)−3
2 ). Putting all this together, and letting be, bo denote the

dimension of the even, respectively odd cohomology, the generating function for the index

dN of D6-D0 BPS bound states of total D0-charge N (defined following (1.6)-(1.7)) is

∑

N

dN u
N = Tr (−1)2J

′
3 uN

=
∑

kn,m,ωe

∑

kn,m,ωo

(−1)
P

kn,m,ωo+
P

n(kn,m,ωe+kn,m,ωo ) u
P

n(kn,m,ωe+kn,m,ωo )

=

∞∏

n=1

( ∞∑

k=0

(−u)nk
)nbe ( 1∑

k=0

(−1)k(−u)nk
)nbo

=

∞∏

n=1

(1 − (−u)n)n(−be+bo) =

∞∏

n=1

(1 − (−u)n)−nχ(X) = M(−u)χ(X) (6.1)

where M is the MacMahon function. This exactly reproduces the expression (1.21) for

Z0
DT , including all signs.

If the value of the B field is such that the BPS condition requires negative D0 charge,

the generating function is obtained from the one above by substituting u→ u−1.

Incidentally, from the weak coupling expansion (1.16) of the MacMahon function —

in particular from the exp[χ(X)ζ(3)
2g2

] singularity — we can extract the n→ ∞ asymptotics

dn = NDT (0, n) ∼





exp[32(χζ(3)n2)1/3 + (1
2 − χ

72 ) log n] if χ(X) > 0

Re

[
eiφ exp[eiπ/3 3

2(|χ|ζ(3)n2)1/3 + (1
2 − χ

72) log n]

]
if χ(X) < 0

(6.2)

where φ is a real constant and we dropped the 1-loop prefactor. Hence the large n entropy

of the D0-halo goes roughly like S ∼ n2/3, but with large oscillatory fluctuations when

χ(X) < 0.

As we saw in section 3.7, D0-halos appear as part of multicentered D4D2D0 states,

and thus the MacMahon function naturally appears in generating functions determining

black hole entropies. In this way the above derivation resolves an old puzzle. It seemed
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mysterious how microstate counting could account for the strange term χ(X)ζ(3)/g2 in

the expansion of the topological free energy Ftop and therefore in the black hole entropy

formula. Now we see where it comes from: the MacMahon function arises from counting

D0-halo states, and this in turn gives rise to the term χ(X)ζ(3)/g2 from the small g

asymptotic expansion (1.16).

6.1.2 D6 + D2-D0-halos and relation between BPS indices and DT invariants

Before we get to counting bound states of D6-branes with D2-D0 halos around them, let

us briefly review the counting of D2-D0 BPS states and the definitions of BPS and DT

invariants.

At zero string coupling, single D2-D0 particle states of (D2,D0) charge (Q,n) are

given by cohomology classes of D2 moduli space. The (D2,D0) moduli space is a torus

fibration over the deformation moduli space of a holomorphic curve in homology class

Q in X. The curve represents the supersymmetric cycle on which D2 is wrapped while

the torus fiber accounts for Wilson line moduli. The cohomology can be decomposed

according to representations of the SU(2)L × SU(2)R Lefshetz action on moduli space

[32, 33, 95, 111] where roughly SU(2)R acts on the base cohomology while SU(2)L acts on

the fiber cohomology. After uplifting to M-theory, the SU(2)’s can be identified with the

factors of the 5d little group SO(4) = SU(2)L × SU(2)R [91].

Let NmL,mR
Q be the dimension of the cohomology group of the moduli space D2 of

branes of charge Q and (J3
L, J

3
R) = (mL,mR). One can construct a well-behaved index

from this by tracing over the SU(2)R factor:

NmL
Q :=

∑

mR

(−1)2mRNmL,mR
Q . (6.3)

The usual Witten index of all BPS states, which up to a sign is the Euler characteristic of

the moduli space, is obtained by tracing this index in turn over the SU(2)L factor:

NQ :=
∑

mL

(−1)2mLNmL
Q . (6.4)

These indices are related to the BPS invariants nrQ by [95]

NmL
Q =

∑

r≥|2mL|

(
2r

r + 2mL

)
nrQ , NQ = n0

Q. (6.5)

Note the interesting cancelation leading to the last expression, due to the binomial formula∑n
m=0(−1)m

(n
m

)
= (1 − 1)n = 0. More fundamentally this follows from the fact that a

D2-brane of genus greater than 0 comes with a moduli space containing a torus factor from

the Wilson lines, which has zero total Euler characteristic when excluding degeneration

limits. Only a complete degeneration to g = 0 components eliminates the torus fiber and

gives rise to a nonzero Euler characteristic.

With these invariants and using the GW-GV-DT correspondence outlined in section

1.3, one can build up a generating function for DT invariants, as follows

ZDT (u, v) :=
∑

β,n

NDT (β, n)un vβ =
∏

Q>0,mL,k>0

(1 − (−u)k+2mLvQ)k(−1)2mLN
mL
Q . (6.6)
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After some manipulations starting from (6.5) and involving binomial identities and chang-

ing product variables, this can also be written as [34]

ZDT (u, v) = Z0
DT (u, v)Z ′

DT (u, v) (6.7)

Z0
DT (u, v) =

∏

k>0

(1 − (−u)k)−kχ(X) (6.8)

Z ′
DT (u, v) = Z ′,r=0

DT (u, v)Z ′,r>0
DT (u, v) (6.9)

Z ′,r=0
DT (u, v) =

∏

Q>0,k>0

(1 − (−u)kvQ)kn
0
Q (6.10)

Z ′,r>0
DT (u, v) =

∏

Q>0,r>0

2r−2∏

ℓ=0

(
1 − (−u)r−ℓ−1vQ

)(−1)r+ℓ(2r−2
ℓ )nr

Q
. (6.11)

The DT invariants count in some sense D6-D2-D0 bound states, as we will make precise

below, but we can also use them to count more general D6-D4-D2-D0 bound states (with

p0 = 1), by parametrizing the charge Γ as in (4.17):

Γ = eS Γ(β, n) := eS(1 − β + nω)(1 + c2
24 ) = eS(1 − β + 1

24c2 + nω). (6.12)

Multiplying by eS amounts to tensoring by a line bundle with field strength F = S, or

gauge equivalently, to shifting B → B − S. The gauge invariant statement is that this

transformation turns on a nonzero F := F − B. It is well known that tensoring by a

line bundle this does not affect µ-stability. Essentially this argument was used in [44, 29]

to conclude that Ω(Γ)|t does not depend on S. However, µ-stability does not precisely

coincide with physical stability, not even at infinite radius,41 and indeed as we saw (and

are going to elaborate on in what follows) the large radius BPS spectrum of D6-D2-D0

bound states is in fact not invariant under arbitrary shifts of F , so the physical Ω(Γ)|t
will actually depend on S. Thus, the question arises then in which regime, if any, the DT

invariants do count physical D6-D2-D0 BPS states.

Another issue, already mentioned in section 4.3, is that not only ideal sheaves I are

suitable to model D6-D2-D0 bound states with p0 = 1, but their duals I∗ are as well. They

differ for example in that ideal sheaves have D0 charge bounded from below at any fixed

D2 charge, whereas their duals have D0 charge bounded above. This leads to the puzzle

which of the two we should consider.

Both of these conundrums are resolved if the DT invariants correspond to BPS invari-

ants only for suitable limits of the B field. In particular, we will consider limits in which

B is taken proportional to J and taken to plus or minus infinity. The dichotomy between

ideal sheaves and their (derived) duals then depends on the sign of the B-field.

To be specific, let us assume P is some arbitrary auxiliary class inside the Kähler cone,

and

B + iJ = (x+ iy)P, F = S = s P, F := F −B = (s− x)P =: f P. (6.13)

Then we claim that any ideal sheaf with fixed (β, n) specified as in (6.12) will become

stable for sufficiently large negative f , and their degeneracies Ω(Γ)|(x+iy)P counted by the

41Thus disproving a conjecture made in [59].
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DT invariants NDT (β, n), while for sufficiently large positive f , the duals of ideal sheaves

are stabilized, and their degeneracies counted by NDT (β,−n).

At the end of this subsection, we will outline an argument for the correctness of this

claim by uplifting to M-theory, refining the analysis of [29]. Before we get to this, we will

make our claim more precise and elaborate on its consequences in the IIA picture.

First note that from the discussion of D6-D0 bound states above, it follows immediately

that this proposal is correct for β = 0. When β 6= 0, there are in general various possible

configurations with the same charge, consisting of a core which could for example be a

simple D6-D4-D2-D0 black hole, surrounded by halos of D2-D0 particles at radii fixed by

the D2-D0 charges and the background Kähler moduli. The typical state will thus look

like an onion with many different layers of D2-D0 halos, as illustrated in fig. 15a.

G

Figure 15: Left: Sketch of a typical D6-D4-D2-D0 bound state in 4d, consisting of layers of D2-D0

halos around a D6-D4-D2-D0 core (e.g. a black hole). The larger F = F − B is, the more layers

can be added. Conversely, by decreasing F , layers get peeled off one by one, moving out to r = ∞.

Right: Uplift to 5d: M2 branes in Taub-NUT + flux (see below).

Halo configurations have walls of marginal stability and only exist for a certain range

of values of F . Applying the stability condition (3.23) to a two-particle system of total

charge Γ = eSΓ(β, n), consisting of a core of charge Γc = eSΓ(βc, nc) around which a D2-D0

halo of charge Γh = eS(−βh + nhω) is orbiting, with S, B and J as in (6.13), we find

− nh

(
2(P · βh)

(
f(f2 + y2) − 3n

P 3

)
+ nh

(
y2 − 3f2 +

6P · β
P 3

))
> 0. (6.14)

Asymptotically for y → ∞ this becomes

− nh (2(P · βh)f + nh) > 0, (6.15)

so there is a marginal stability line running all the way to infinity, at x = s+nh/2(P · βh).
Actually for this to be a true marginal stability line where the phases of the halo and core

central charges align, we also need βh ·P > 0, as can be seen by examining the asymptotic

behavior of the central charges for J → ∞.

Note in particular that (6.15) implies that at f = 0 (and y → ∞), there are never

such BPS states, while for f → −∞, all nh > 0 states become stable, while all nh < 0
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states become stable in the opposite regime f → +∞. In fact the latter is also true at

finite values of y, as is easily seen from (6.14).

When we add more D2-D0 particles, we should in principle use the more general

multicentered stability conditions (3.21). Since the mutual intersection products between

the D2-D0 particles are zero, this effectively boils down again to the 2-centered stability

condition we used to obtain (6.14) for each individual particle in the halo, with eS(−βh +

nhω) the halo particle charge considered and eSΓ(β, n) the total charge of the system.

Note though that for y → ∞ the (β, n) dependence in (6.15) drops out so the stability

conditions are given by a set of simple, independent constraints. Similarly, independent

of which halo particles are present, it will always remain true that for x → +∞, nh > 0

halos are stabilized, while for x→ −∞, nh < 0 halos are stabilized. Hence we see that the

large radius spectrum of D6-D2-D0 bound states has total D0-brane charge n unbounded

above at x → +∞, while n is unbounded below at x → −∞. The former is characteristic

for ideal sheaves, while the latter is characteristic for their duals. (Recall eq. 4.24.) This

supports our claim above.

One could ask how exactly the index of BPS states Ω(Γ)|B+iJ changes when we change

F . This is most easily described by considering the generating function

ZD6−D2−D0(u, v;B + iJ) :=
∑

β,n

Ω(Γ(β, n))|B+iJ u
n vβ (6.16)

where vβ ≡ ∏
A(vA)βA and we take Γ(β, n) as in (6.12) (so here F = −B). We will in

particular be interested in the case B + iJ = (x+ iy)P , with P at this point an arbitrary

auxiliary class inside the Kähler cone.

The generating function ZD6−D2−D0(u, v; (x + iy)P ) will jump whenever x + iy is

changed such that (6.14) goes from not being satisfied to being satisfied (or vice versa)

for some (βh, nh). This adds states consisting of an arbitrary42 number of D2-D0 particles

(consistent with the exclusion principle of course if the particles are fermions), leading,

following a reasoning similar to the derivation of the D0-halo degeneracy to a jump

ZD6−D2−D0 → (1 − (−u)nhvβh)|nh|Nβh ZD6−D2−D0, (6.17)

with Nβh
= n0

βh
as in (6.4) and (6.5). Analogous to the D6-D0 system, the factor |nh|

comes from the Landau degeneracy of the D2-D0 particle in the D6 background, since the

intersection product equals |nh|. Using this, and recalling that at x → +∞ all nh > 0

halos are stabilized, while at x = 0, y = ∞ none are, we can write

lim
x→+∞

lim
y→+∞

ZD6−D2−D0(u, v; (x + iy)P )

ZD6−D2−D0(u, v; iyP )
=

∏

βh>0,nh>0

(1 − (−u)nhvβh)
nhn

0
βh (6.18)

= Z ′,r=0
DT (u, v). (6.19)

When the limits are interchanged, there is an additional factor for βh = 0 given by (6.1),

corresponding to D0-halos.

42Note that (6.14) is invariant under (β, n) → (β, n) + k(βh, nh), as it should, so the number of particles

of charge (βh, nh) we add does not matter for stability.
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Comparing to (6.7)-(6.11), we see that our proposed identification of

lim
x→+∞

lim
y→+∞

ZD6−D2−D0(u, v; (x + iy)P )

with Z ′
DT (u, v) is valid provided

lim
y→∞

ZD6−D2−D0(u, v; iyP ) = Z ′,r>0
DT (u, v). (6.20)

Note that this is manifestly invariant under u→ u−1 (i.e. inversion of D0-charge) and has a

finite range of D0-charge for fixed βh. Similarly, if we require our proposed identification in

the opposite regime, namely limx→−∞ limy→+∞ZD6−D2−D0(u, v; (x+iy)P ) = Z ′
DT (u−1, v),

to hold, we find again (6.20).

In fact, for our analysis below, we will need to refine these statements. There are four

distinct ways of taking a limit to infinity, due to the fact that D6D0-type lines of marginal

stability go all the way to infinity, being asymptotically of the form z := x+ iy = λe2πi/3

and z = λeπi/3 with λ → +∞. Correspondingly, we distinguish the limits z → L+, along

a line infinitesimally above z = λe2πi/3, and z → L−, along a line infinitesimally below

z = λe2πi/3. Similarly, z → R± is the limit going infinitesimally above (below) the line

z = λeπi/3. Now we have

lim
z→L−

ZD6−D2−D0(u, v; zP ) = ZDT (u−1, v) (6.21)

lim
z→L+

ZD6−D2−D0(u, v; zP ) = Z ′
DT (u−1, v) (6.22)

lim
z→R−

ZD6−D2−D0(u, v; zP ) = ZDT (u, v) (6.23)

lim
z→R+

ZD6−D2−D0(u, v; zP ) = Z ′
DT (u, v) (6.24)

Finally, we sketch how to establish the proposed identification by uplifting to M-theory,

refining the analysis of [29]. The lift of D6-D4-D2-D0 bound states to M-theory is given by

M2 branes in Taub-NUT (deformed by the flux) times the Calabi-Yau, with the D0-charge

corresponding to the U(1)L isometry along the Taub-NUT circle. This is sketched in fig.

15b. Turning on wordvolume flux F = S = sP > 0 on the D6 corresponds to turning on

an M-theory 4-form flux G = sP ∧ ωTN , where ωTN is the harmonic self-dual 2-form on

Taub-NUT. In the absence of this flux, the M2 branes must sit at the center of Taub-NUT

to be BPS. This corrseponds to the core states. Now when we turn on the magnetic flux,

the M2 branes get access to a number of lowest Landau level states, carrying increasing

U(1)L charge. These will in general be localized at a nonzero distance from the center of

Taub-NUT, and thus correspond to the halo states in four dimensions. However, for a finite

total integrated flux, there is a bound on the number of lowest Landau levels that fit in the

Taub-NUT space — beyond this cutoff, the equilibrium location of the M2 branes runs off

to radial infinity. The number of lowest Landau levels that do fit in the Taub-NUT space is

proportional to the flux, and this leads to the dependence of the BPS spectrum on the flux

derived above in the IIA picture. The limit |s| → ∞ corresponds to infinite total integrated

flux, which removes the bound on allowed lowest Landau levels. If at the same time we

let the Taub-NUT radius go to infinity, we end up with a constant, arbitrarily small flux
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density G ∼ i(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) ∧ P on flat C2 ×X, which is indeed the background

implicitly used in [29] to show that M2 BPS states are counted by Ztop = ZGV = ZDT .

Therefore, in the |s| → ∞ regime — and only in this regime — the derivation of [29] goes

through, proving our claim.

6.1.3 Core states

In the previous section we were led to interpret the factor Z ′,r=0
DT (u, v) as counting halo

states. It is natural to wonder about the physical interpretation of the remaining, non-halo

states counted by Z ′,r>0
DT (u, v) in (6.20). We will refer to these states as core states. Core

states are characterized by the absence of marginal stability walls extending to infinite

radius.

One immediate consequence is that at sufficiently large background J , these states are

stable for all values of the B-field. Single centered black holes are of course the simplest

example, but multicentered configurations are also possible as we will show below. In this

case the centers can be squeezed arbitrarily close together (at least in coordinate distance)

by taking J sufficiently large. These states can subsequently be “dressed” with the D2-D0

halos described in the previous subsection, which even at infinite J can be given arbitrarily

large radius by tuning the B-field close to the wall of marginal stability. This justifies the

names core and halo states.

Another consequence is that core states, unlike halo states, have degeneracies at J → ∞
symmetric under inversion of D0-charge. This is a result of combining the Γ → Γ∗, B → −B
symmetry described in section 3.3 with the absence of walls of marginal stability for J → ∞.

This is in agreement with the fact that Z ′,r>0
DT is invariant under u → u−1, while Z ′,r=0

DT is

not.

Note that multicentered bound states of charges which all have nonzero magnetic (D4

or D6) charges are always core states. In other words halos with lines of marginal stability

extending to infinite radius can never contain magnetic charge. For halo particles with

nonzero D4 but zero D6 charge this follows from the fact that since the total charge Γ

must have D6-charge 1 (by assumption), at J = ∞ we have Z(Γ) ∼ −iJ3 imaginary while

Z(D4) ∼ P ·J2 is real, so there cannot possibly be a wall of marginal stability for splitting

off the D4 extending all the way to J = ∞. For halo particles with negative D6 charge

centers the reasoning is similar: now the central charges both are imaginary at infinity,

but with opposite phases. For halo particles with positive D6 charge the complement

has necessarily negative or zero D6 charge, so the previous reasoning can be applied to

the central charge of the complement. Only when the complement has nothing but D2-D0

charge (with P ·QD2 < 0) is there a wall of marginal stability which extends to infinity, but

in this case the original center of course corresponds again to a core state, the complement

being a D2-D0 particle or halo orbiting around it.

An example of a nontrivial core state was in fact already discussed above in section

5.2.2. We will now examine another class of core states, which we will use to construct

“swing states” in section 6.3.2. These will play an important role in delimiting the region

of validity of the OSV conjecture. For this reason, we will give a detailed stability analysis

of this class.
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We consider bound states of a pure fluxed D6 with a D4-D2-D0 black hole, such that

the total charge Γ has no D4 charge, that is we take (neglecting the c2/24 correction)

Γ = Γ(β1, n1) = 1 − β1 + n1 ω (6.25)

constructed as a bound state

Γ = Γ̃ + Γ̃′ (6.26)

with

Γ̃ = e−U−V (U + q0 ω) & Γ̃′ = e−U (6.27)

so

β1 = UV +
1

2
U2 & n1 =

1

2
U(U + V )2 − 1

6
U3 + q0 ω. (6.28)

To be more specific, we assume that U, V are positive divisors, which for simplicity

we take to be proportional to P . This allows us to restrict the moduli to the complex

plane B + iJ = z P , rendering the problem effectively one dimensional. It is furthermore

convenient to define the notation U = uP, V = vP, q0 = q̃0P
3. We will assume that Γ̃ is

realized as a single centered black hole, which amounts to taking q̃0 < 0. We will more

specifically be interested in cases with small u and v of order 1, with |q̃0| sufficiently small

so
1

2
uv2 + q̃0 > 0. (6.29)

An example is shown in fig. 16(a).
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Figure 16: Left: Plot in the z-plane of the split flow described in the text with u = 10−2, v = 1,

q0 = −10−4, z∞ = 3e2iπ/3. The green dotted line labeled C+ is the ms line, the pink dotted line

labeled C− the anti-ms line. Note that at z∞ = e2iπ/3 (yellow dot), the bound state does not

exist. Right: Split flow for dual charges obtained by setting u = −10−2, v = −1, q0 = 10−4, with

z∞ = e2πi/3. We do not analyze such negative u, v cases in detail in the text because unlike the

positive (u, v) cases, their stability for z∞ near e2iπ/3 is guaranteed, making them less of an issue

in the analysis in the following sections.

Let us analyze for what values of z∞ this state exists. Since Γ̃ is a single centered

black hole and Γ̃′ is just a pure D6 with flux, the two constituents are guaranteed to exist
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everywhere in moduli space. Therefore the stability analysis reduces to an analysis of the

existence and location of a line of marginal stability for the split flow Γ → Γ̃ + Γ̃′.
The total discriminant is

8u3(v + u/2)3 − 9(uv2/2 + u2v + u3/3 + q̃0)
2 (6.30)

up to a positive coefficient of proportionality. Hence, when v is of order 1 and u is small,

D(Γ) will be negative. This means there will be a zero of the central charge, which should

be reached by the Γ attractor flow only after crossing a marginal stability line if we want

the split flow to exist.

Now we consider the stability condition (3.23). Define ẑ := z + u so that the central

charges are:

Z(Γ̃;B + iJ) = −1

2
u((ẑ + v)2 +

2q̃0
u

)P 3 & Z(Γ̃′;B + iJ) =
ẑ3

6
P 3 (6.31)

so the stability condition becomes

− (
1

2
uv2 + q̃0) Im

[
(
1

2
u(ẑ + v)2 + q̃0)¯̂z

3
]
> 0 (6.32)

The marginal stability curve

Im

[
(
1

2
u(ẑ + v)2 + q̃0)¯̂z

3
]

= 0 (6.33)

can be written as:

(x2 + y2)2 + 4v(x2 + y2)x+ (v2 +
2q̃0
u

)(3x2 − y2) = 0

where ẑ =: x + iy. The solution is the x-axis together with two bounded components

roughly of the shape of a cardiode with the tip at the origin ẑ = 0. Writing ẑ = reiθ they

are given by

r = −2v cos(θ) ±
√
v2 +

2q̃0
u

(1 − 4 cos2(θ)) (6.34)

Call the plus branch C+ and the minus branch C−.

Under the condition (6.29) we find that (in the upper half plane) C+ is swept out
π
3 ≤ θ ≤ π and C− is swept out for 2π

3 ≤ θ ≤ π. Clearly C+ encloses C− and they only

intersect at the origin. The region at r → ∞ is a region of stability.

Under our conditions C+ is indeed a line of positive marginal stability and C− is a line

of anti-marginal stability, and in fact the entire inside region of C+ is a region of instability.

(To prove the above statement, we note that the lines ImZ(Γ̃)Z(Γ̃′) and ReZ(Γ̃)Z(Γ̃′)
can only intersect when the product of central charges is zero, that is, at ẑ = 0 or at

ẑ = −v ±
√

−2q̃0
u . However the curve ReZ(Γ̃)Z(Γ̃′) = 0 intersects the x axis only at

x = y = 0 and at ẑ = −v±
√

−2q̃0
u . Now C+ intersects the x axis at x+ = −2v−

√
v2 − 6q̃0

u

and since

x+ < −v −
√

−2q̃0
u

(6.35)
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it follows that the change of sign of ReZ(Γ̃)Z(Γ̃′) happens inside the region enclosed by

C+. Finally, note that up to a positive coefficient ReZ(Γ̃)Z(Γ̃′) is given by

−
[
(x2 + y2)2x+ 2v(x4 − y4) + (v2 +

2q̃0
u

)(x3 − 3xy2)

]
(6.36)

and hence equals

−1

2
ur5 cos(θ) + O(r4)

for large r, so clearly if θ > π/2, r → ∞ the quantity is positive.)

It follows that if z∞ is outside the compact region enclosed by C+ then the split

state does exist: The zero of Z(Γ; zP ) lies on the antimarginal stability curve C− which is

contained within C+. The attractor flow heads toward this zero, and splits on the line C+.

On the other hand, if z∞ is inside the curve C+ then the split state does not exist.

Note that the M-theory uplift of such a 2-centered configuration is a black ring orbiting

the center of a Taub-NUT space with flux, obtained from wrapping an M5 around a divisor

U and the Taub-NUT circle and giving it some momentum q0 around the Taub-NUT circle

[71, 76, 77]. The fact that the discriminant of the total charge is negative means that this

charge cannot be realized as a BMPV black hole in Taub-NUT.

6.2 D6-anti-D6 degeneracies

6.2.1 Spectrum and flow trees

We now turn to our main goal, namely computing degeneracies of polar D4-D2-D0 BPS

states represented as D6-anti-D6 bound states. The attractor flow trees corresponding to

those can be as simple as fig. 2a or as complex as fig. 8, but in any case, the first split

will be into a pair of charges with D6-charges r and −r with r > 0.43 The case r = 1

will turn out to be the most important one, so let us consider pairs of charges Γ1 and Γ2,

parametrized as in (4.17)-(4.19), i.e.

Γ1 = eS1Γ(β1, n1) = eS1(1 − β′1 + n1 ω), β′1 := β1 − c2
24 (6.37)

Γ2 = −eS2Γ(β2, n2) = −eS2(1 − β′2 + n2 ω), β′2 := β2 − c2
24 (6.38)

chosen such that the total magnetic charge P = S1 − S2 is fixed at some large value inside

the Kähler cone. The intersection product is 〈Γ2,Γ1〉 = P 3/6 − P · (β′1 + β′2) + n1 − n2 =

IP −P · (β1 +β2)+n1 −n2. In the large radius limit J → ∞, the stability condition (3.23)

simply amounts to

〈Γ2,Γ1〉 =
P 3

6
− P · (β′1 + β′2) + n1 − n2 > 0. (6.39)

In the limit P → ∞, ni, βi fixed, this is automatically satisfied. Recall however that this

is only a necessary, not a sufficient condition for existence.

When ni, β
′
i = 0, we have essentially the extremal case ñ = β̃ = 0 in the class of

examples studied section 3.4. Indeed we saw there that in this case these always exist as

43Recall that the case r = 0 was excluded by (3.62).
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bound states, and that this remains true for small perturbations away from ñ = β̃ = 0 as

long as the charges Γ1 and Γ2 support BPS states (see fig. 3).

Let us be more precise. To establish the existence of a D4-D2-D0 bound state at large

radius, it is sufficient to establish this at a conveniently chosen value of the B-field, since

we know the infinite radius limit of the D4-D2-D0 spectrum is invariant under shifts of B.

We will take this value to be B̃ = 0 after making the uniformizing change of variables

B → B̃ (3.3). In the case at hand

B =
S1 + S2

2
+DAD

AB∆βB + B̃, ∆β ≡ β2 − β1 (6.40)

which puts the total central charge in the form (3.4). Using this it is straightforward to

show that the attractor flow of the total charge Γ starting at B̃ = 0 will remain at B̃ = 0

and run straight down till it crashes on a zero of the central charge at J0 =
√

2q̂0/P 3 P ,

where

q̂0 := q0 −
1

2
DABqAqB =

P 3

24
− 1

2
P (β′1 + β′2) + n1 − n2 −

1

2
(∆β)2 > 0, (6.41)

and (∆β)2 is defined with the DAB metric. If we moreover take the initial point of the

flow at J∞ = y∞P , the flow will simply be given by J = y P , where y runs down from

y∞ to y0 =
√

2q̂0/P 3. Hence our choice of B̃ = 0 corresponds to a line to which attractor

flows coming in from large radius converge, thus making it a particularly natural choice to

make.

In order for the first split Γ → Γ1 + Γ2 of the flow tree to exist, a wall of marginal

stability must be met before the attractor flow hits y0. Since the total central charge is

real along the flow, this wall must be at a solution y of ImZ(Γ1)|y = ImZ(Γ2)|y = 0. Thus

the split point is given by

tms = (B + iJ)ms =
S1 + S2

2
+DAD

AB∆βB + iymsP. (6.42)

where we choose the unique positive root:

yms =
1√
P 3

√
3P 3

4
− 3P (β′1 + β′2) + 3(∆β)2. (6.43)

Note that the argument of the square root is positive. To have yms > y0, we thus need

3P 3

8
− 3

2
P (β′1 + β′2) +

3

2
(∆β)2 > q̂0. (6.44)

Note that this again automatically satisfied when P → ∞ at fixed ni, βi.

This condition is still not quite enough however, since it is not enough for the Z(Γi)

to be real to have a true marginal stability wall at y = yms — they must have the same

sign as well. In fact this sign must be positive since the total central charge Z is positive

in the limit y → ∞ and remains so till it hits zero. This gives the somewhat complicated
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conditions

Z1|ms =
P 3

6
+

3

2

P∆β

P 3

(
P (β′1 + β′2) − (∆β)2

)

−Pβ′2 + (∆β)2 − 1

2
(β′1 + β′2)∆β +

(∆β)3

6
− n1 > 0 (6.45)

Z2|ms =
P 3

6
− 3

2

P∆β

P 3

(
P (β′1 + β′2) − (∆β)2

)

−Pβ′1 + (∆β)2 +
1

2
(β′1 + β′2)∆β − (∆β)3

6
+ n2 > 0. (6.46)

Here (∆β)3 := DABC(∆β)A(∆β)B(∆β)C , with (∆β)A := DAB(∆β)B . Again, these con-

ditions are automatically satisfied when P → ∞ at fixed βi, ni.

In summary, when q̂0 > 0 the conditions for the split flow Γ → Γ1 + Γ2 to exist

are given by the inequalities (6.44), (6.45) and (6.46).44 To correspond to an actual BPS

bound state, we furthermore need that Γ1 and Γ2 each support BPS states at y = yms.

This is straightforward if Γ1 and Γ2 are realized as single attractor flows, but becomes

again nontrivial when these charges themselves correspond to split flows: this is one of the

main technical difficulties we face.
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Figure 17: Left: The yellow shaded area is the projection of S[0, 1] into the (β̃1, β̃2)-plane. The

green outline is the projection of S[.9, 1], the (smaller) blue one of S[.4, .5] and the (smallest) red

one of S[0, .1]. Right: Projection of S[0, 1] into the (ñ1, ñ2)-plane.

To get a feeling for the implications of these conditions let us consider the simplest

example: We take a CY with one Kähler modulus (for example the quintic CY) and

suppose that Γ1 and Γ2 support single center attractor flows. Parametrizing β′i =: β̃iP
2,

niω =: ñiP
3, q̂0 =: (1 − η)P 3/24, the P -dependence scales out of all inequalities (6.39)-

(6.46), while the condition (3.19) for existence of the regular attractor points for Γi becomes

β̃i ≥ 0, 8β̃3
i − 9ñ2

i ≥ 0. (6.47)

44It can be checked easily that when bq0 > 0, (6.44) actually implies (6.39). Given the other two inequal-

ities, one can also replace bq0 by 0 on the right hand side of (6.44), since existence of yms and positivity of

Re Z there imply that yms > y0, as ReZ is positive at y = ∞ and changes sign at y = y0.
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Since the system of inequalities is rather complicated we scanned the solution spaces

S[a, b] := {(β̃1, β̃2, ñ1, ñ2)| 2-centered solution exists with a ≤ 1 − η ≤ b} (6.48)

numerically for various intervals [a, b] ⊆ [0, 1]. Fig. 17 shows the corresponding projections

to the (β̃1, β̃2)- and (ñ1, ñ2)-planes.

One thing that transpires from this analysis which is not immediately obvious from the

inequalities, although expected physically, is that, taking into account charge quantization,

the solution space is finite. It is furthermore clear from the plots that the solution space

does not factorize, in the sense that the choice of (β̃1, ñ1) influences the stability domain

of (β̃2, ñ2). Another distinct feature is the correlation between the size of (β̃i, ñi) and η:

the more polar the state is, i.e. the closer η approaches 0, the smaller β̃i and ñi are forced

to be. For β̃i, ñi ≪ 1 this is not hard to deduce analytically in the case at hand. When

β̃i, ñi ≪ 1, all the required inequalities are automatically satisfied, except (6.47), which

remains nontrivial. The relation between η and the (β̃i, ñi) is given by

η =
1

2
(β̃1 + β̃2) − ñ1 + ñ2 +

1

2
(β̃1 − β̃2)

2. (6.49)

When β̃i ≪ 1, the term quadratic in the β̃i is negligible compared the term linear in the

β̃i, and ñ1 − ñ2 as well because of (6.47). Thus we get the simple relation β̃1 + β̃2 = 2η,

β̃i > 0, 3ñi < (2β̃i)
3/2, making it obvious that β̃i and ñi get smaller when q̂0 approaches

its maximum, i.e. η → 0.45

In section 6.2.2 we will conjecture that the behavior exhibited in this example persists

in the general case as well, namely, that the most polar states correspond to βi, ni which

are in some sense small compared to the scales set by P .

We are thus interested in charges in which the βi, ni are “small” compared to the scales

set by P . In the language of [17, 18], these are “dilute gas” states, which in our setup can

be thought of microscopically as D2-D0 branes sparsely floating around inside the D6 and

the anti-D6 branes. Let us now make this notion of dilute gas more precise.

Define the scale of P by

|P | := (P 3)1/3. (6.50)

We will take it to be large, and in the OSV conjecture it will scale to infinity. Next, define

a set of “small” (β, n) as follows46

C(P, ǫ) := {(β, n) |β effective, β · P < ǫ|P | |P |3, |n| < ǫ|P | |P |3}. (6.51)

Note that because P is very ample and β effective, we have in components with respect

to a basis of the Kähler cone that βA ≥ 0, PA > 0, so the bound on β implies for each

component

βA < ǫ
|P |
PA

|P |2 ∼ O(ǫ|P |2), (6.52)

45Actually the maximal value of bq0 is (P 3 + c2 · P )/24, but in the P → ∞ supergravity regime we have

in mind here, the linear correction is negligible.
46By ǫ|P | we mean to indicate that ǫ can be taken to depend on |P |, e.g. ǫ|P | ∼ |P |−ξ, for |P | → ∞. We

will usually just write ǫ though.
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where we used that |P |
PA ∼ O(|P |0) when we scale up P uniformly. Using this, it is clear

that for sufficiently small ǫ we have

(β1, n1) & (β2, n2) ∈ C(P, ǫ) ⇒ (6.44), (6.45) and (6.46) are satisfied. (6.53)

and hence the split Γ → Γ1 + Γ2 exists.

6.2.2 The extreme polar state conjecture

In the previous section we have examined a particular class of examples in which a D4-D2-

D0 BPS state is accounted for as a D6-antiD6 split state. We are particularly, interested in

polar states. As we will see, the “more polar” a state is - that is, the larger the value of q̂0 -

the more important is the contribution of that polar state to the OSV formula. Clearly, the

polar states analyzed in the previous section do not account for all polar states, since they

only involve D6 branes with r = 1. In this section we will state a conjecture which claims

that nevertheless, if we restrict attention to sufficiently polar states, then the examples of

the previous section are indeed the most general examples. We will give some evidence for

this conjecture.

We know that any polar state splits into charges

Γ1 = reS1(1 − β1 + n1 ω), Γ2 = −reS2(1 − β2 + n2 ω), (6.54)

where r(S1 − S2) = P . Subsequent splits can also occur, but here we are only interested

in the first split. Splits in charges with zero D6 charge were excluded by (3.62).

For such a split, we have

q̂0 = r

(
P̂ 3

24
− 1

2
P̂ · (β1 + β2) + n1 − n2 −

1

2
(∆β)2

)
, P̂ :=

P

r
(6.55)

where (∆β)2 = (DABC P̂
C)−1 (β1,A − β2,A)(β1,B − β2,B).

We can introduce a measure of the degree of polarity of a D4-D2-D0 BPS state by

defining

η :=
(q̂0)max − q̂0

(q̂0)max
, (6.56)

where (q̂0)max = P 3+c2P
24 . Throughout, we will think of |P | as being very large, though

finite. Therefore to good approximation, we can drop c2 corrections, which for simplicity

we will do in what follows. We will define extreme polar states as those for which η ≪ 1.

Then, we conjecture that for sufficiently small η < 1 there exists an ǫ(η) sufficiently small

so that the restricted class of D6-anti-D6 bound states with charges drawn from the set

C(P ; ǫ(η)) defined in (6.51) indeed account for all such extremely polar D4-D2-D0 BPS

states.

It follows easily from the above formulae that r = 1 D6-anti-D6 bound states with

(βi, ni) ∈ C(P, ǫ) have η < O(ǫ), and hence are extreme polar for small ǫ. What we would

like to know is the converse, namely that extreme polar states are only realized by splits

with r = 1 and small βi, ni. More precisely, we would like to prove the:
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Extreme polar state conjecture:

a.) For any η∗ ≪ 1, there exists an ǫ(η∗) ≪ 1 such that every D4-D2-D0 BPS state

with η < η∗ corresponds to a split (Γ1,Γ2) as in (6.37)-(6.38), with (βi, ni) ∈ C(P, ǫ(η∗)) as

defined in (6.51).

b.) Moreover, there is a P -independent constant, µ so that we may take ǫ = µη∗.

Some heuristic intuition for the absence of “large” (βi, ni) contributions to extreme

polar state realizations is (i) the complexity and entropy of D4-D2-D0 states increases with

η, and (ii) the complexity and entropy of D6-D4-D2-D0 states increases with the scale of

(βi, ni), so for (βi, ni) too large, we would get a contribution with too much entropy. In

the one modulus examples in section 6.2, in particular the discussion around (6.49), we

saw this proportionality relation between η and the scale of βi, ni explicitly.

The absence of r > 1 splits from the extreme polar spectrum is perhaps more surprising

at first sight, but becomes less so when one notes that for βi = 0, ni = 0, q̂0 = P 3/(24r2),

so η = 1− 1/r2 ≥ 3/4 for r ≥ 2. We also conjecture that the latter is the maximal possible

value for q̂0 at any given value of r, reached iff βi = 0, ni = 0, i.e. for a bound state of a

pure U(1) fluxed stack of D6-branes and a stack of anti-D6 branes. The truth of this latter

conjecture is not necessary for our derivation of the OSV conjecture.

Unfortunately, we have not been able to find a full, general proof of the extreme

polar state conjecture. Within the class of r = 1 bound states, the main problem is to find

suitable bounds on the positive contributions to q̂0 in (6.41), such that cancelations between

“large” values of the βi, ni are avoided. It seems reasonable that such large cancelations

are absent, since just a slight change of such canceling large parameters would transform

an extreme polar state (0 < η ≪ 1) into a super-polar state (η < 0), which we know are

absent. However when looking in more detail, one finds that the bounds come from many

different existence criteria, and all of them, including complicated inequalities like (6.45)

and (6.46) as well as various stability conditions for constituent D6-D2-D0 bound states

must be taken into account to prevent such cancelations from happening.

Let us nevertheless have a closer look at the conjecture. First note that C(P, ǫ)

is defined such that at fixed ǫ and ignoring charge quantization, (β, n) ∈ C(P, ǫ) iff

(λ2β, λ3n) ∈ C(λP, ǫ), i.e. it respects the scaling symmetry (3.27), as it should for the

extreme polar state conjecture to make sense (since this relates ǫ to η∗ which similarly is

invariant under the above rescalings).

It is not hard to show that the conjecture is indeed nontrivially true for the important

special case of polar states splitting in two single centered black holes with charges

Γ1 = reS1(1 − β1 + n1 ω), Γ2 = −reS2(1 − β2 + n2 ω), (6.57)

where we take β1 = β2 =: β, such that we don’t have to worry about possible positive

contributions from the (∆β)2 term in (6.41). For simplicity we will also take −n1 = n2 =: n,

but this can be easily generalized to n1 6= n2.

We then get

q̂0 = r

(
P̂ 3

24
− P̂ · β − 2n

)
, P̂ :=

P

r
, (6.58)
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and

η = (1 − 1

r2
) +

24

r2
P̂ · β + 2n

P̂ 3
. (6.59)

Furthermore the split existence conditions (6.44), (6.45) and (6.46) reduce simply to47

P̂ 3

6
− P̂ · β + n > 0, (6.60)

while for the black hole constituents to exist, (3.19) must be satisfied, i.e.

8(Y 3)2 − 9n2 ≥ 0, Y 2 := β, Y > 0. (6.61)

Now a general inequality 48 for any triplet of divisors X,Y,Z inside the Kähler cone is [99]

(Theorem 1.6.1) X3 Y 3 Z3 ≤ (X · Y · Z)3, so in particular we have (Y 3)2P̂ 3 ≤ (Y 2P̂ )3 =

(β · P̂ )3, and from this

|n| ≤

√
8(β · P̂ )3

9 P̂ 3
. (6.62)

Denoting P̂ · β =: β̃P̂ 3, n =: ñP̂ 3, the above expressions become

η = 1 − 1

r2
+

24

r2
(β̃ + 2ñ),

1

6
− β̃ + ñ > 0, |ñ| ≤

√
8β̃3

9
. (6.63)

Note that the inequalities are of exactly the same form as the existence conditions in

our class of examples studied in section 3.4. From the analysis there, we can therefore

immediately conclude that β̃ + 2ñ ≥ 0. This implies η ≥ 1 − 1
r2

, which immediately

excludes all r > 1 configurations, since we are considering extreme polar states here, which

by definition have η ≪ 1. For r = 1, we have furthermore η = 1 − 24 ν in the notation of

section 3.4, and lines of constant η in fig. 3 are given by translations of the purple dotted

line, with η = 1 corresponding to the original line and η = 0 to its translation to the left

such that it contains the origin (β̃, ñ) = (0, 0). It is then clear from the plot that taking η

smaller and smaller will also cause β̃ and ñ to become smaller and smaller.

A precise bound is easily obtained by using β̃ ≤ 1
8 (as can be read off from fig. 3)

together with η = 24(β̃ + 2ñ) ≥ 24(β̃ − 4
√

2
3 β̃3/2), which gives β̃ ≤ η

8 , |ñ| ≤ η3/2

24 . This

shows that all extreme polar 2-centered configurations with charges given by (6.57) have

r = 1 and have (βi, ni) ∈ C(P, ǫ), where we can take ǫ = η
8 , thus establishing the extreme

polar state conjecture for this case. 49

It is relatively straightforward to extend this proof to the case where we add D2-

D0 halos around the black hole centers while still keeping β1 = β2 and −n1 = n2 = n.

The conditions for having a split point remain unchanged, since these do not care about

47Although we derived these stability inequalities only for the case r = 1, this is trivially extended to

general r by using the uniform scaling symmetry (3.26), under which r → µr, r(S1 − S2) = P → µP , and

β, n are invariant.
48Recently used in [100].
49Recently, E. Andriyash has extended the argument to allow β1 6= β2 and n1 6= n2.
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the composition of Γ1 and Γ2. Evaluating (6.14) leads to the simple stability condition

nh(1 + 6ñ − 6β̃) > 0 for halos around the second center, and the opposite inequality for

the first center. Now the quantity within brackets is actually positive because of the split

conditions given above, so the halo stability condition simply becomes nh > 0 for Γ2 and

nh < 0 for Γ1. This means that the only effect of adding these halos will be to remove the

red curved boundary on the right in fig. 3, extending the stable (=yellow shaded) region

to the downwards sloping blue line on the far right. It is then again clear from the plot

that the extreme polar state conjecture holds in this case.

Things become more complicated when we allow more general multicentered core con-

figurations (such as those described in section 6.1.3), or core configurations with β1 6= β2.

We analyzed in depth a number of examples, and always found the extreme polar state

conjecture to be true. However the detailed arguments we found vary from case to case,

tend to be messy, and are not particularly illuminating as to why the conjecture should be

true in general, so we will not report the details here.

On the other hand, it is possible to give a more general (albeit incomplete) scaling

argument for why only r = 1 splits contribute to the extreme polar states. Say we start

with a multicentered BPS configuration with initial split having r ≥ 2. Then we can

produce from this a multicentered BPS configuration with the same total P but r = 1

by applying the scaling symmetries of section 3.3 with µ = r−1, λ = r. This scales all

(p0, p, q, q0) → (p0/r, p, rq, r2q0) and in particular q̂0 → r2q̂0. However we know that the

maximal possible q̂0 equals (q̂0)max = P 3/24, so in particular we have r2q̂0 < (q̂0)max, hence

for our original configuration η > 1 − 1
r2

≥ 3
4 , implying it is not extreme polar.

Regrettably, this argument has a flaw: if some of the centers have D6-charge p0 not

divisible by r, the rescaled configuration violates charge quantization and is therefore un-

physical, so we cannot use the physical bound on q̂0 (if we allowed fractional p0 we could

produce super-polar states, so we should be strict as far as D6-charge quantization is con-

cerned here). One could therefore worry that, for example, by splitting up the p0 = ±r
centers of the class of 2-centered solutions analyzed below (6.57), we could make q̂0 greater

than the bound derived there, or equivalently η smaller than 1 − 1/r2.

A full analytical analysis of such multicentered configurations with smaller D6-charges

becomes rather cumbersome. Instead we performed a numerical analysis of the four cen-

tered D6 − D6 − D6 − D6, r = 2 case, searching through ensembles of flow trees by a

simple adaptive random walk optimization method, trying to maximize q̂0. The results we

obtained are fully consistent with the extreme polar state conjecture. We refer to appendix

D for more details.

In what follows we will assume the extreme polar state conjecture is true.

6.3 The dilute gas D6-anti-D6 partition function

6.3.1 Definition and factorization

Let us define the following generating function

Zǫ
D6−D6

(u, v,w) :=
∑

Γ1,Γ2

Ω(Γ1)ms Ω(Γ2)ms u
q0 vQw〈Γ2,Γ1〉, (6.64)
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where Γ1,Γ2 are parametrized as in (6.37)-(6.38) with P (but not S) fixed and with

(βi, ni) ∈ C(P, ǫ) as defined in (6.51). Here q0 and Q are the total D0- resp. D2-brane

charges (recall eqs. (4.22)):

Q = β2 − β1 + PS, S :=
S1 + S2

2
(6.65)

q0 =
P 3 + c2P

24
+

1

2
PS2 − Sβ1 −

P

2
β1 + n1 + Sβ2 −

P

2
β2 − n2, (6.66)

and the subscript “ms” as before means that the indices have to be evaluated at the split

point of the attractor flow Γ → Γ1 + Γ2, as given by (6.42).

Two remarks on this definition are in order:

1. Note that

∂

∂w
Zǫ
D6−D6

(u, v,w)

∣∣∣∣
w=−1

=
∑

Γ1,Γ2

(−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉|Ω(Γ1)ms Ω(Γ2)ms u
q0 vQ,

(6.67)

so, comparing to (5.4), we see that the coefficients of this derivative count the indices

of our D6-anti-D6 BPS bound states for given total charge (Q, q0).

2. The sum over βi, ni is (most likely) a finite sum, but the sum over S is definitely an

infinite sum. The sum on S is always divergent because the quadratic form defined

by PS2 (which appears through q0 ) has signature (1, h − 1). However (6.64) does

make good sense as a formal power series, in the sense that only a finite number of

terms contributes to the coefficient of any monomial unvβwℓ. This is true simply

because the map S → PS is invertible.

We now aim to write (6.64) as a sum over S of factorized expressions depending only

on (β1, n1) and (β2, n2), respectively. To this end let us evaluate the degeneracy factors

Ω. We are instructed by (5.4) to compute Ω(Γi) evaluated at the split point (6.42). It is

convenient at this point to use the gauge invariance under shifting the B-field to say:

Ω(Γ1; tms) = Ω(Γ(β1, n1); t
1
ms) (6.68)

Ω(Γ2; tms) = Ω(Γ(β2, n2); t
2
ms). (6.69)

If Γ1,Γ2 ∈ C(P, ǫ) then note that for the gauge invariant quantity Fi = Si−B we have, up

to O(ǫ|P |) corrections, F1 = P
2 , F2 = −P

2 . Accounting for the imaginary part we have:

t1ms = −1

2
P +DAD

AB∆βB + iymsP = e2πi/3P + O(ǫ|P |) (6.70)

t2ms =
1

2
P +DAD

AB∆βB + iymsP = eπi/3P + O(ǫ|P |). (6.71)

Thus the degeneracies are counted by the generating function (6.16) evaluated at B+ iJ =

(±1
2 + i

√
3

2 )P + O(ǫ|P |), so up to ǫ corrections the degeneracies are indeed independent of

each other!
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Using (6.39), (6.65) and (6.66), we can write

Zǫ
D6−D6

(u, v,w) =
∑

S,βi,ni

Ω(Γ(β1, n1); t
1
ms)Ω(Γ(β2, n2); t

2
ms)

×wIP −Pβ1−Pβ2+n1−n2

×u
P3+c2P

24
+ 1

2
PS2−Sβ1−P

2
β1+n1+Sβ2−P

2
β2−n2 vβ2−β1+PS (6.72)

= u
P3+c2P

24 wIP
∑

S

u
1
2
PS2

vPS
∑

β1,n1

∑

β2,n2

×Ω(Γ(β1, n1); t
1
ms) (wu)n1 (w−Pu−S−

P
2 v−1)β1

×Ω(Γ(β2, n2)); t
2
ms) (wu)−n2 (w−PuS−

P
2 v)β2 (6.73)

where the sums are over S ∈ P
2 +H2(X,Z), (βi, ni) ∈ C(P, ǫ), and t1,2ms refers to the shifted

marginal stability points (6.70),(6.71).

Note that the sum is almost factorized. For the next step we would like to rewrite

(6.73) as a sum of products of DT partition functions. We will eventually achieve this,

under suitable conditions, in equation (6.94) below, but first, in view of the identifications

(6.21)-(6.24), we need to compare

Ω(Γ(β1, n1); t
1
ms) (6.74)

with

lim
z→L±

Ω(Γ(β1, n1); zP ). (6.75)

where limz→L± indicates that z goes to infinity in the left-half plane as explained just above

eq. (6.21). Similarly we need to compare

Ω(Γ(β2, n2); t
2
ms) (6.76)

with

lim
z→R±

Ω(Γ(β2, n2); zP ). (6.77)

The relation between (6.74) and (6.75) and between (6.76) and (6.77) is not at all

trivial, and in fact they will differ in general, due to jumps at marginal stability. In the

next section we compare these two degeneracies.

Note that, roughly, the M-theory equivalent to this is that there can be BPS states

which exist in Taub-NUT when the Taub-NUT radius is taken to infinity, but not necessar-

ily at arbitrary finite radii, and similarly they do not necessarily exist when the Taub-NUT

is combined with an anti-Taub-NUT to produce the finite size AdS3 ×S2 setup of [17, 18].

In particular this implies that it is not true that BPS states in these finite size cases are

exactly counted by the GV / DT partition function (which counts BPS states in infinite

radius Taub-NUT). Figuring out to what extent the spectrum is truncated is a difficult

problem, and the absence of a systematic way to do this is what prevented [17, 18] from

arriving at any error estimates in their derivation of the OSV conjecture.

Happily, the tools we have developed in this paper are exactly designed to do this, so

let us now turn to this analysis.
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6.3.2 Harmless Halos and Catastrophic Cores

We now focus on the difference

∆Ω(β1, n1;β2, n2) = Ω(Γ(β1, n1); t
1
ms(β1, n1;β2, n2)) − lim

z→L±
Ω(Γ(β1, n1); zP ). (6.78)

Nonzero contributions to ∆Ω will lead to corrections in the OSV-like relation we wish to

derive. The reason ∆Ω can be nonzero is that there can be BPS states of charge Γ(β1, n1)

which are stable at t1ms but unstable at infinity and vice versa. States which make a nonzero

contribution to (6.78) will be called swing states.

To be more precise, we will call a D6-D2-D0 BPS state of charge Γ(β1, n1) a swing state

if (β1, n1) ∈ C(P, ǫ) and there exists (β2, n2) ∈ C(P, ǫ) such that either the state is contained

in H(Γ(β1, n1); t) with t = zP , z → L±, but decays along the way to t = t1ms(β1, n1;β2, n2),

or vice versa, i.e. it exists at t = t1ms but not at t→ L±P . Recall that t1ms = e2iπ/3P up to

order ǫ corrections, so the definition basically says that a D6-D2-D0 state is a swing state

when it exists at infinity but not in an order ǫ neighborhood of t = e2iπ/3P , or vice versa.

A very useful simplification in the analysis of swing states arises when we recall that

we are evaluating the stability condition at a special point, t1ms. Since Z(Γ1; tms) > 0 the

stability condition for

Γ(β1, n1) → Γ̃ + Γ̃′ (6.79)

simplifies to:

〈Γ̃,Γ(β1, n1)〉 ImZ(Γ̃; t1ms) > 0 (6.80)

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1
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Figure 18: Left: Flow tree corresponding to bound state of a fluxed D6 with three halos, and its

conjugate. The charges for the Γ1 half of the tree are Γ1,c = eP/2, Γ1,h,i = eP/2(q̃2,iP
2 + q̃0,iP

3 ω)

with q̃2 = (−10−3,−10−3,−10−3) and q̃0 = (−10−4,−10−3,−10−2). The larger the D0-charge (at

fixed D2), the sooner the D2D0 particles split off in the tree (so the first to split off is Γ1,h,3).

The charges for the Γ2 half are obtained by taking the conjugates Γ → −Γ∗. The dotted lines are

the MS lines corresponding to the various splits. Right: Sketch of a corresponding multicentered

configuration.

We will now show that halos do not cause configurations to become swing states. Halo

states have lines of MS going to infinity and hence one might imagine these wall crossings
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would make a significant contribution to the difference ∆Ω. But that turns out not to be the

case: The marginal stability curves for Γ(β1, n1) → Γ(βc, nc) + Γh with Γh = (−βh + nhω)

bend over quickly from a line of slope −
√

3 to a vertical line when βh ·P ≪ nh, comfortably

keeping t1ms on their stable side, while when βh · P ≫ nh, they come close to t1ms but still

bend over just in time. This behavior can be observed in fig. 18. There is an entirely

analogous story for Γ2 — one just reflects the picture in the y axis using the symmetry

(3.29). This special behavior translates into a particularly simple stability condition and

(6.80) becomes:

∓ nh βh · P > 0 (6.81)

where the minus sign is for Γ1 and the plus sign for Γ2. Hence for Γ2 all halos with nh
positive are stable and similarly for Γ1 all halos with nh negative are stable.

When the D2-charge of the halo particle vanishes, the situation is more subtle, since

in this case the split point lies exactly on the wall of marginal stability for the D0-halo,

making the indices ambiguous. To lift the ambiguity, it suffices to take B̃ (defined in (6.40))

slightly different from zero. Then we are essentially in the situation described in section

3.6: stability requires nh < 0, and depending on the chosen sign of B̃, either Γ1 or Γ2 can

support D0-halos, but not both at the same time. An important consequence of this is

that for counting D6-anti-D6 bound states, we should only include one MacMahon factor

(6.1) in the dilute gas partition function, and not two as one might have thought naively.

We will return to this point below (6.91).

Now let us consider the possibility that there are walls for splitting off other kinds of

constituents as we move t∞ from t1ms to infinity in the left-half plane. The first observation

to make is that if we consider any P -independent finite set of pairs {(β1, n1), (β2, n2)} then

for suffciently large P we have ∆Ω = 0. We can justify this as follows. According to the

split attractor flow conjecture, for any t, Γ(β1, n1) only supports a finite set of split flows.

These will begin with some splitting Γ(β1, n1) = Γ′
1 + Γ′′

1 . Now, we know that t1ms lies to

the left of all marginal stability lines where one of Γ′
1 or Γ′′

1 are halo charges. Thus, we

need only worry about the case where Γ′
1,Γ

′′
1 both have magnetic charge. However, in this

case the marginal stability lines, which are subvarieties of Im(Z(Γ′
1; t)Z(Γ′′

1 ; t)) = 0 lie in

bounded regions of moduli space. As long as we consider a set of charges that makes no

reference to P , by making P sufficiently large t1ms (which grows with P ) will always be

outside the union of the compact regions where splits are allowed. Now, by the argument

surrounding (6.81) we can freely take x to −∞ since t1ms is to the left of all the walls for

halo states. A similar argument applies to Ω(Γ2), where we must take x to +∞.

Regrettably, the above argument is not sufficient for our purposes because the charges

in C(P ; ǫ) can in fact grow with P . As a matter of fact, we will now exhibit a class of

examples which does give a nonzero contribution to ∆Ω. That is, we will show that swing

states do indeed exist.

To be concrete, we consider candidate bound states of

Γ1 = eP/2Γ(β1, n1) (6.82)

Γ2 = −[eP/2Γ(β1, n1)]
∗ = −e−P/2Γ(β1,−n1) (6.83)
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Figure 19: Left: Bound state of two D6-D4 core states as described in the text, with u = 10−3,

v = 0.4, q̃0 = −10−4, β1·P
P 3 ≈ 10−2, n1

P 3 ≈ 5 × 10−3. Right: Failure to form a similar bound state

with v = 0.6 instead and all other parameters the same. The bound state cannot form because the

initial Γ → Γ1 + Γ2 split point lies in the unstable region of the constituent core states themselves:

the green wide-dashed line is the Γ → Γ1 + Γ2 MS line and lies below the short-dotted lines which

are the MS lines for the states representing the Γi.

where Γ(β1, n1) is realized as one of the core states analyzed in section 6.1.3, equation

(6.26). Note that β2 = β1, n2 = −n1.

Recall that the split states for Γ(β1, n1) studied in section 6.1.3 are stable at infinity

and unstable within the curve C+ defined in (6.34). Therefore, such states will contribute

to ∆Ω if our stability condition is violated at t1ms. Using (6.80) this works out to be the

simple condition

u+ v > 1/2. (6.84)

Thus, swing states do exist. An example where this condition is not satisfied (so the bound

state does exist) is shown in fig. 19(a), and one where it is satisfied in fig. 19(b) (so the

bound state does not exist).

We are now in a position to understand why swing states are potentially problematic.

In our example we can compute

q̂0 =
P 3 + c2 · P

24
− P (UV +

1

2
U2) + [UV 2 + 2U2V +

2

3
U3 + q0] (6.85)

and hence

η = 24[uv +
1

2
u2 − (uv2 + 2u2v +

2

3
u3) − q̃0] (6.86)

Note that we can satisfy (6.84) by taking u→ 0 while letting v > 1/2−u be order one. But

then η → 0 and such states are arbitrarily extreme polar. Looking ahead to the impact

on our derivation of the OSV conjecture below, we see that such states will lead to large

corrections to the OSV formula arbitrarily close to the leading contribution, invalidating

the conjecture. How can we avoid this “coretastrophe”?

Fortunately we can combine a choice of a suitably small ǫ with charge quantization

to eliminate the contribution of this particular example of swing states to the dilute gas
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partition function. Suppose P = pP0 where P0 is primitive and p will go to infinity.

Charge quantization implies u = m/p with m positive and integral. Now, the condition

that (β1, n1) ∈ C(P, ǫ), together with (6.84) and charge quantization implies that

ǫ > uv +
1

2
u2 >

1

2
u(1 − u) >

1

2p
(1 − 1

p
) (6.87)

Since we will be taking p→ ∞, if we take ǫ = δ/p with δ a p-independent constant smaller

than 1/2 then (6.87) will eventually be violated, and hence these particular swing states

are eliminated from the ensemble defined by C(P, ǫ).

The above argument shows that our example of potentially catastrophic 50 swing states

can be eliminated by making a suitable (P -dependent) choice of ǫ. Sadly, we have no proof

that there are not other swing states which will create problems, so we proceed as follows.

Suppose ǫ = δ
|P |ξ where δ is a P -independent constant. We know that if we choose

ξ = 3 then the states in C(P, ǫ) consist of a finite set of P -independent charges (β1, n1).

Our argument above shows that for such states indeed ∆Ω = 0. Unfortunately, this is not

enough to prove the OSV conjecture. The reason is that, as we show in equation (6.121)

below, the error from the (necessary) restriction to extreme polar states is of order

O
(

exp[− π

12µ

ǫ|P |3
φ0

]

)
(6.88)

where µ is the constant ǫ = µη∗ introduced in the extreme polar state conjecture. On the

other hand, the worldsheet instanton effects which make the OSV conjecture nontrivial are

of order exp[−2πβ · P/φ0]. Therefore, if ξ > 2 the states contributing to ∆Ω make contri-

butions larger than those of worldsheet instantons, eventually dominating all worldsheet

instantons in the |P | → ∞ limit. If ξ = 2, they are of the same order, which still would

not be desirable, unless perhaps δ can be chosen to be arbitrarily large.

This discussion motivates the following definition of the core-dump exponent, denoted

ξcd:

Consider the set S of pairs {Γ(β1, n1),Γ(β2, n2)} which admit flow trees making a

nonzero contribution to ∆Ω. (Thus, the flow tree is based on core states stable at infinity,

but unstable at t1,2ms, or vice versa.) Let ξcd be the minimum of the set Ξ of numbers with

the following property: For ξ ∈ Ξ, there exists a constant δ which is independent of |P |
such that, if we choose ǫ = δ|P |−ξ then C(P, ǫ)×C(P ; ǫ) does not contain any of the states

in S.

From the argument given above, we know ξcd ≤ 3. From the example (6.26) discussed

above we also know that ξcd ≥ 1. Then, as we have just explained, if 1 ≤ ξcd ≤ 2 we will

see below that a version of the (strong coupling) OSV conjecture can be proven. On the

other hand, if it turns out that 2 < ξcd then the OSV conjecture (even at strong coupling)

is almost certainly not correct. We can only say “almost certainly” because we have not

excluded the possibility (however unlikely) that when we account for all swing states of a

fixed charge their contributions to ∆Ω magically sum to zero.

50catastrophic, that is, for the OSV conjecture
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An independent argument sheds more light on why we must take ξcd ≥ 1. We consider,

a family of (βP , nP ) (we will henceforth drop the subscript) such that for each P we have

P · β = c1|P |2, n = c2|P |2, where c1, c2 are constants. It turns out that such families exist

for which NDT (β,−n) 6= 0 [34]. On the other hand, we can attempt to build a boundstate

using Γ1 = eP/2Γ(β, n) and Γ2 = −Γ∗
1. One finds that such a boundstate would have

η =
24

P 3
(P · β − 2n) (6.89)

and hence, the absence of superpolar states implies η ≥ 0. On the other hand, the explicit

examples of such families in [34] have constants c1, c2 such that η < 0. We are thus forced

to conclude that states with such charges Γ(β, n) are unstable at t1ms, and hence such states

provide examples of swing states. Note that, in this case, once again we can take ǫ = δ/|P |
for sufficiently small δ to eliminate such states from the ensemble C(P, ǫ) thus proving once

more that ξcd ≥ 1.

In fact, a generalization of the argument of the previous paragraph offers a hint that

in fact ξcd = 1. Suppose we have a family of (βP , nP ) (we henceforth drop the subscripts)

such that β · P = c1|P |γ and n = c2|P |γ′ and NDT (β,−n) 6= 0. Reasoning as above, if

γ′ > γ, or γ′ = γ and 2c2 > c1 then Γ(β, n) is a swing state. On the other hand, we can

(following [34]) use Castelnuovo’s inequality (see [104], p. 252), which states that a curve

of degree d in CPn has its genus bounded above by g < d2

2(n−1) for d → ∞. Next recall

from the last equation in (4.23) that n ≤ g(β) − 1. Thus, we should have γ′ ≤ 2(γ − 1).

Combining with γ′ ≥ γ we see that γ ≥ 2 for any such families. But then such swing states

can always be eliminated with ξ = 1.

In section 7.5 we will give some more circumstantial evidence for ξcd = 1.

6.3.3 Factorization of the dilute gas D6-anti-D6 partition function

Let us now return to the analysis of (6.64). We assume that we define this partition

function with ǫ = δ|P |−ξ with a suitable δ and ξ so that we can identify (6.74), (6.76) with

(6.75),(6.77), respectively. In this case, we can proceed with the derivation of (6.94) below

as follows:

We introduce the ǫ-dependent cut off version of (6.16):

Zǫ
D6−D2−D0(u, v;B + iJ) :=

∑

(β,n)∈C(P,ǫ)

Ω(Γ(β, n))|B+iJ u
n vβ . (6.90)

and using (6.73) we write:

Zǫ
D6−D6

(u, v,w) = u
P3+c2P

24 wIP
∑

S

u
1
2
PS2

vPS

× lim
z→L−

Zǫ
D6−D2−D0(w u,w

−P u−S−
P
2 v−1; zP )

× lim
z→R+

Zǫ
D6−D2−D0(w

−1u−1, w−P uS−
P
2 v; zP ).

(6.91)
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Please notice carefully the nature of the limits. Recall that, as we mentioned above,

there is a subtlety when the halo particle has zero D0 charge, because in this case tms

is exactly on the wall of marginal stability for pure D0-halos. As discussed there, this

ambiguity can be resolved by perturbing the background B-field slightly, in which case

there is a D0-halo contribution either on the first cluster or on the second. Therefore,

as noted in eqs. (6.21-6.24), the case in which we first take t → L− does have the D0-

halo MacMahon factor, while the case t → R+ does not. Depending on the sign of the

perturbation of the background B-field we have the limits (L−,R+) as above or (L+,R−).

Our final answer will not depend on this dichotomy.

Now the identifications (6.21-6.24) imply

lim
z→L−

Zǫ
D6−D2−D0(u, v; zP ) = Zǫ

DT (u−1, v) (6.92)

lim
z→R+

Zǫ
D6−D2−D0(u, v; zP ) = Z ′ǫ

DT (u, v), (6.93)

where the ǫ-dependent ZDT is defined as the DT partition function with sum restricted

to (β, n) ∈ C(P, ǫ). Similarly, for Z ′ǫ
DT , we take the infinite product Z ′

DT and truncate its

series expansion. In terms of these quantities we can therefore write:

Zǫ
D6−D6

(u, v,w) = u
P3+c2P

24 wIP
∑

S

u
1
2
PS2

vPS

×Zǫ
DT (w−1u−1, w−P u−S−

P
2 v−1)

×Z ′ǫ
DT (w−1u−1, w−P uS−

P
2 v).

(6.94)

Equation (6.94) is the main result of this section. As noted above, the sum over S is

a formal sum, but the coefficients of unvβwℓ are well-defined.

6.4 D4-D2-D0 degeneracies

In this section we finally return to D4-D2-D0 degeneracies and use the technology developed

above to present a derivation of our refined OSV formula eq. (6.113). We first relate

the polar part of the D4-D2-D0 partition function to the D6-antiD6 dilute gas partition

function. This introduces an error, but one well-controlled by the extreme polar state

conjecture (provided it turns out that ξcd ≤ 2). We then combine this with the fareytail

expansion. At the end of the section we discuss the error terms in the refined OSV formula.

6.4.1 Approximate factorization of polar D4 partition function

Now we return to the considerations of section 2. The extreme polar state part of the D4

partition function (2.39) is, using the notations of section 2.4

Zη∗(τ, τ̄ , C) :=
∑

γ

Hη∗
γ (τ)Ψγ(τ, τ̄ , C) (6.95)

Hη∗
γ (τ) :=

∑

η<η∗

Ω([γ, P
3

24 − ηP
3

24 ], t = i∞) e−2πiτ P3

24
+2πiτη P3

24 (6.96)

– 99 –



where η∗ ≪ 1 and Ω([γ, q̂0]) is as defined above (2.46). When Im τ is sufficiently large,51

the extreme polar part of the partition function is a good approximation to the full polar

part Z− (which is obtained by taking η∗ = 1):

H−
γ (τ) = Hη∗

γ (τ) ×
(
1 + O(e−∆(P,η∗,τ)P 3

)
)

(6.97)

where

∆(P, η∗, τ) := min
1>η>η∗

(
−Σ(P, η) +

π

12
Im τ η

)
(6.98)

Σ(P, η) :=
1

P 3
max
γ

log
∣∣∣Ω([γ, P

3

24 − ηP
3

24 ])
∣∣∣ . (6.99)

Note that as long as ∆(P, η∗, τ) is positive and doesn’t decay as |P |−3 or faster, the error

is exponentially small when P 3 is large; in particular this is the case for Im τ sufficiently

large.

To get an idea of the general behavior of the error term, and to justify our notations

separating out the P 3 factor, let us assume for the moment that we can estimate the growth

of the right hand side of (6.99) from the growth of the entropy of two-centered configurations

of the kind analyzed in section 3.4, and more specifically for further simplicity let us restrict

to configurations with ñ = 0 in the notation used there. Then β̃ = η/24 and the total

Bekenstein-Hawking entropy of the two centers is S ∼ β̃3/2P 3 ∼ η3/2P 3. Hence this

estimates Σ(P, η) ≈ cη3/2 for some constant c independent of P . In this case we have

∆(P, η∗, τ) > 0 if and only if Im τ > 12c/π. If Im τ drops below this critical value, our

error estimate blows up. Moreover, η∗ should not become too small if we want the error to

be exponentially small, since ∆ is in any case smaller than π
12η∗Imτ − cη

3/2
∗ .

Now the index Ω in (6.99) actually receives contributions from many other flow trees,

some very complicated, so this simple estimate might be too naive. However, it will at

least give a rough lower bound on the actual growth of Σ, unless miraculous almost-exact

cancelations occur between contributions of different signs to the index. This implies in

particular that our approximations break down for Im τ less than some order 1 critical value,

unless these miraculous cancelations occur. We will discuss this potential breakdown in

detail in section 7, and show that it is not due to a failure of our derivation, but intimately

related to the entropy enigma of section 3.5.

Combining (6.97) and (6.95), we can write

Z−(τ, τ̄ , C) = Zη∗(τ, τ̄ , C) ×
(
1 + O(e−∆(P,η∗,τ)P 3

)
)
. (6.100)

If we make the OSV substitution (2.17) and formally put τ̄ = τ , then both sides of this

equation diverge due to the non-definiteness of the intersection product on LX , so the

error estimate, strictly speaking, is not meaningful. However we can still give it a precise

51Further on we will apply the approximate factorization we are currently deriving in the fareytail ex-

pansion (2.71), and will find that the dominant term for our purposes comes from the term corresponding

to A = S, where τ gets replaced by −1/τ . Thus, in these applications, we will need a sufficiently large

Im (−1/τ ) to get approximate factorization.
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meaning by considering the terms for a fixed D2-charge (i.e. a fixed power of e−2πiC), or

equivalently by multiplying both sides by some e2πiC·Q and integrating out C. (After a

modular transformation the integral on C involves one wrong sign Gaussian integral which

is easily evaluated in the usual analytically continued sense). Alternatively, we can just

cut off the sum over LX in the theta-functions. Since the error estimate provides a relative

error, it has a well defined meaning for any such finite truncation. In the end we can take

the cutoff to infinity, which when computing any physically meaningful quantity should

give a finite result, with a well-defined error estimate. Keeping this interpretation of the

error term in mind, we will from now on put τ̄ = τ .

The extreme polar state conjecture implies that there exists an ǫ(η∗) ∼ η∗ such that

all extreme polar states (with η < η∗) are generated by D6-anti-D6 dilute gas pairs with

(βi, ni) ∈ C(P, ǫ). We now invoke the formula (5.4) for the polar degeneracies and recall

eq. (6.67). Combining this with (6.100) at τ̄ = τ then gives

Z−(τ, C) =
1

2π

∂

∂α
Zǫ

D6−D6
(e−2πiτ , e−2πi(C+ P

2
), e2π(α− i

2
))

∣∣∣∣
α=0

×
(
1 + O(e−∆(P,η∗,τ)P 3

)
)

(6.101)

where Zǫ
D6−D6

was defined in (6.64). Note that although some D6-anti-D6 pairs with

(βi, ni) ∈ C(P, ǫ) will have η > η∗, they will nevertheless still all be polar states (assuming

ǫ sufficiently small), and therefore not affect the error any further.

Now from (6.94), we get

Zǫ
D6−D6

(e−2πiτ , e−2πi(C+ P
2

), e2π(α− i
2
))

= e−2πiτ
P3+c2P

24 e2πIP (α− i
2
)
∑

S

e−πiτPS
2−2πi(C+ P

2
)PS

×Zǫ
DT (−e2πi(τ+iα), e2πi[iαP+τ(S+ P

2
)+C])

×Z ′ǫ
DT (−e2πi(τ+iα), e2πi[iαP+τ(−S+ P

2
)−C]). (6.102)

Let us make two remarks:

1. To get the factorized generating function (6.94), we needed to restrict to (βi, ni) ∈
C(P, ǫ), as defined in (6.51), and take ǫ = δ|P |−ξcd to dump swing states. According

to the extreme polar state conjecture, we should therefore take η∗ = δ
µ |P |−ξcd . The

cutoff restricts the sum to states splitting into a rank r = 1 D6 and anti-D6; in the

picture of [17, 18], this corresponds to leaving out Zr-quotients of AdS3 × S2 with

r > 1. Furthermore, dumping swing states such as our example in section 6.3.2

corresponds in M -theory to dumping certain black M5 rings which exist in infinite

radius Taub-NUT but not on the finite size S2. See section 7.3 below for a more

extensive discussion.

2. Again, due to the divergence of the sum over S, the error estimate in (6.101) is strictly

speaking meaningless, but as in the discussion under (6.100) we can give it a precise

meaning e.g. by introducing a cutoff in the sum over S. Finally, putting (6.101) and

(6.102) together thus gives an approximate factorization formula for Z−(τ, C).
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6.4.2 Derivation of OSV

We are finally ready to put all our results together and derive a refined version of the OSV

conjecture. From (2.18), we have

Ω((0, P,Q, q0); t = i∞) = (−i)h+1

∮
dφ0dΦ e−2πqΛφ

ΛZ(τ = τ̄ = iφ0, C = iΦ− P

2
) (6.103)

where the φΛ-integrals run over a single imaginary period on the imaginary axis. We wish

to derive an OSV-like formula in the case Γ = (0, P,Q, q0) is nonpolar and large, and hence

has a single centered black hole realization. The first step is to substitute the fareytail

expansion (2.71) of Z into (6.103). Since we are considering nonpolar terms, the c = 0

part of the series will not contribute to (6.103). To leading order in the saddle point

approximation, the c 6= 0 terms contribute terms of order eSsugra/c, as can be seen directly

from the expressions (or see e.g. appendix A of [11]). Hence in the large charge limit,

the c > 1 terms will be suppressed by a factor ∼ e−kSsugra compared to the c = 1 terms,

with k some order 1 constant. Alternatively, we can say that these terms are effectively

suppressed by a factor ∼ e−kP
3/φ0

in the partition function Z(P, φ), with k some constant

of order one, and where we take φ0 to be positive (as it is at the saddle point).

The c = 1 terms correspond to SL(2,Z) elements

A =

(
0 −1

1 d

)
= S T d (6.104)

so we can write, with τ = τ̄ = iφ0, C = iΦ − P
2 ,

Z+(τ, C) =
∑

d∈Z

ω−1
S ω−d

T (τ + d) e
2πi C2

2(τ+d) Z−(− 1

τ + d
,

C

τ + d
) (6.105)

×
(
1 + O(e−kP

3/(τ+d))
)
. (6.106)

Here Z+ is the non-polar part of Z, and the error term comes from dropping the c > 1

terms as discussed above. Note that although the error is no longer exponentially small

when d → ∞, the large d terms themselves are exponentially suppressed compared to the

small d terms, and therefore unimportant. Put differently, the sum over d can be traded

for extending the integration contour in (6.103) over the entire imaginary φ0-axis, but the

large d terms will correspond to points far away from the saddle point, and are therefore

unimportant.

From (6.105), (6.101) and (6.102), we find, after some work and substituting τ = τ̄ =

iφ0, C = iΦ − P
2 :

Z+
BH(φ0,Φ) =

1

2π

∂

∂α

∣∣∣∣
α=0

(∑

d,Ŝ

i(φ0 − id)e2πIPαe
2π

φ0−id

P3+c2P
24

− π
φ0−id

(Φ+iŜ)2−2πiP
2
·Ŝ−2πi

c2P
24

d

×Zǫ
DT (−e−2π( 1

φ0−id
+α)

, e
2πi( 1

φ0−id
(Φ+iŜ+iP

2
)+iαP )

)

×Z ′ǫ
DT (−e−2π( 1

φ0−id
+α)

, e
2πi( 1

φ0−id
(−Φ−iŜ+iP

2
)+iαP )

)

)

×
(

1 + O(e
−∆(P,η∗,

i
φ0−id

)P 3

)

)
(6.107)
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Here Ŝ := S + P
2 ∈ H2(X,Z), and various complicated phase factors have canceled in a

nontrivial way.

Finally, using the identification Z ′
DT (−e−g, e2πit) = Z ′

GW (g, t) discussed in section 1.3,

this becomes, remarkably

Z+
BH(φ0,Φ) =

1

2π

∂

∂α

∣∣∣∣
α=0

∑

d,Ŝ

i(φ0 − id) eF
ǫ(P,φ0−id,Φ+iŜ,α)−2πiP

2
·Ŝ−2πi

c2P
24

deδF(6.108)

where

F ǫ(P, φ, α) := F ǫtop(g, t) + F ǫtop(g, t), (6.109)

F ǫtop := logZǫ
top = logZpol +

1

2
(logZǫ

DT + logZ ′,ǫ
DT) (6.110)

with substitutions

g ≡ 2π

φ0
+ 2πα, t ≡ 1

φ0
(Φ + i

P

2
) + iαP (6.111)

and error

δF = O(e
−∆(P,η∗,

i
φ0 )P 3

). (6.112)

Recall that the cutoff ǫ is related to η∗ through the extreme polar state conjecture of section

6.2.2 as ǫ = µη∗, and that we took ǫ = δ|P |−ξcd to get rid of swing states. In taking the

complex conjugate in (6.109), φ0, Φ and α should formally be taken real. We also dropped

terms of quadratic and higher order in α, since we set α = 0 after taking the derivative.

Surprisingly perhaps, the 2πIPα in the exponent of (6.107) is reproduced to this order by

the α-dependence of Fpol after substituting (6.111). The inclusion of φ0 in the measure and

the ∂α operation were absent in the original OSV conjecture [10]. They can be traced back

respectively to the fact that Z(τ, C) has modular weight (−3/2, 1/2) (for a proper SU(3)

holonomy Calabi-Yau), and to the fact that there is a factor ∼ |〈Γ1,Γ2〉| in (5.4). Both

modifications are in agreement with the results of section 2.3 (see eq. (2.54)) obtained in

the small φ0 limit by arguments independent of our D6-anti-D6 picture.

Note furthermore that the sum over Ŝ and d together with the phase factors in (6.108)

give the right hand side precisely the same periodicity as the left hand side. These terms

also allow us to invert (6.108) to the simple expression

Ω(0, P,Q, q0; t = i∞) =

∫
dφµ(P, φ) e−2πqΛφ

Λ
eF

ǫ(P,φ)+δF . (6.113)

where the “measure factor” µ(P, φ) is

µ(P, φ) =
(−i)h
2π

φ0 ∂

∂α
F ǫ(P, φ, α) |α=0 = (−i)hφ0IP + inst. corr. (6.114)

Note that these instanton corrections are of order exp[−2π|P |/φ0] which is the same order

as the other terms we are trying to keep track of and hence are rather essential to a correct

formulation of the OSV conjecture.
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Rather curiously, the measure factor can also be written as

µ(P, φ) = (−i)h 4π

g2
e−K

ǫ
(6.115)

where Kǫ is a generalized Kähler potential, defined by

e−K
ǫ
= Re

[
X̄Λ1I Λ2

Λ1

∂F ǫtop
∂XΛ2

]
(6.116)

with

X0 = 2iφ0 XA = (Φ +
i

2
P )A (6.117)

and we have used the property that φ0, Φ and P are real. Recall that I Λ2
Λ1

was defined

to be I Λ2
Λ1

= σΛ2 δ
Λ1
Λ2

where σ0 = 1, σA = −1. This measure factor is the same as the one

found in [13] for X = T 6 and X = T 2 ×K3.52

6.4.3 Analysis of the error terms

Let us now consider the error term. When the saddle point lies at sufficiently small φ0,

∆ is guaranteed to be positive, hence the first error term is exponentially small at large

P . As we mentioned before, the meaning of “sufficiently small” depends on the growth

of the polar entropies S(η) ∼ Σ(P, η)P 3 as a function of P . We define an exponent κ by

Σ(P, η)P 3 ∼ |P |κ, or, more precisely 53

κ := 3 + lim|P |→∞
log Σ(P, η)

log |P | . (6.118)

Then we need

g−1 ∼ φ0 < O(|P |3−κ) (6.119)

for all η, 0 ≤ η ≤ 1, in order to have an exponentially suppressed error. A simple estimate

based on the BH entropy of two-centered configurations realizations of polar states, outlined

under (6.99), indicates κ = 3, hence we would need g > O(1), i.e. strong topological string

coupling. However, since we are considering indices it might be possible in principle that

miraculous cancelations occur which effectively lower κ. We postpone further discussion of

this possibility to section 7.4.2.

Let us now consider the error we have when we are well within the regime (6.119).

More precisely let φ0
cr be the value at which ∆ = 0. For φ0 ≪ φ0

cr, the second term

dominates in (6.98), so

∆ ∼= π

12

1

φ0
η∗ (6.120)

and the error term becomes

δF ∼ O(e
− π

12
η∗P3

φ0 ) (6.121)

52There are slight differences coming from the different power of φ0 in (6.114), namely (φ0)1−b1 , one gets

in those cases, and the possibility to include gravitini charges. These factors arise in our approach for these

cases as well.
53We take the limit supremum lim which always exists. We expect κ to be at most weakly dependent on

η.
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For η∗ a constant independent of P , this agrees with the error found in [13] for T 2×K3 and

T 6. However, as discussed in section 6.3.2, in general we must take ǫ, and hence η∗ = ǫ/µ,

to depend on |P |. Taking ǫ = δ|P |−ξcd these lead to corrections of order

exp[− πδ

12µ

P 3−ξcd

φ0
] (6.122)

We saw that the split configurations (6.26) imply that we must have ξcd ≥ 1. On the

other hand, worldsheet instantons contribute terms of order exp[−2πβ · P/φ0]. Therefore

if the corrections (6.122) are not to overwhelm the worldsheet instanton corrections then

we must have ξcd ≤ 2. Unfortunately the value of ξcd is unknown. We hasten to point out

that the value ξcd = 1 makes excellent physical sense for reasons discussed in section 7.5

below.

7. Discussion

7.1 Summary

Let us summarize our final result, and discuss to what extent it agrees with the original

OSV conjecture.

We consider the index of BPS states, defined in (1.6), with charge p0 = 0, large

|P | := (DABCP
APBPC)1/2 and q̂0 := q0 − 1

2D
ABQAQB < 0. For these charges a single

centered black hole solutions exists. We choose the background t = i∞. Then the index is

given by

Ω(P,Q, q0; t = i∞) =

∫
dφµ(P, φ) e−2πqΛφ

Λ
eF

ǫ(P,φ)+δF . (7.1)

Where, using the substitutions

g ≡ 2π

φ0
, tA ≡ 1

φ0
(φA + i

PA

2
), (7.2)

we have

µ(P, φ) := (−i)h 4π

g2
e−K

ǫ(g,t,t̄) = (−i)hφ0(P
3

6 + c2P
12 ) + inst. corr. (7.3)

F ǫ(P, φ) := F ǫtop + F ǫtop, (7.4)

F ǫtop(g, t) := logZǫ
top(g, t) (7.5)

:= logZpol(g, t) +
1

2

(
logZǫ

DT(−e−g, e2πit) + logZ ′,ǫ
DT(−e−g, e2πit)

)
(7.6)

Zpol(g, t) := exp

(
−(2πi)3

6g2
DABCt

AtBtC − 2πi

24
c2At

A

)
(7.7)

Zǫ
DT (u, v) :=

∑

|n|,β·P<ǫP 3

NDT (β, n)un vβ. (7.8)

and Z ′,ǫ
DT is defined analogously by cutting off the series for Z ′

DT. The full expression for

e−K
ǫ

is given in (6.116). In taking the complex conjugate in (7.4), φ should be treated as

real.
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The error is of order

δF = O(e
−∆(P,η∗,

i
φ0 )P 3

) (7.9)

where

∆(P, η∗,
i

φ0
) := min

η∗<η<1

(
−Σ(P, η) +

π

12φ0
η

)
(7.10)

Σ(P, η) :=
1

P 3
max
[Q]

log
∣∣∣Ω
(
P, [Q], q̂0 = (1 − η)P

3+c2P
24

)∣∣∣ . (7.11)

Here Ω (P, [Q], q̂0) is the index of BPS states of D4-charge P , D2-charge [Q] with [Q] in

a fundamental domain for the symmetry QA → QA +DABCP
BnC , nC ∈ Z, and reduced

D0-charge (invariant under this symmetry) q̂0, evaluated in a background t = i∞. The

range 0 ≤ η < 1 corresponds to polar charges, with η = 0 being the most polar one.

The integral in (7.1) runs over the imaginary φ-axes. One might worry that the error

(6.112) becomes O(1) for large φ0, but since the integral is dominated by its saddle point,

this part of the integration contour is negligible anyway. The saddle points for φ turn out

to be real.

For the cutoffs ǫ and η, we have the relations

µ η∗ = ǫ = δ|P |−ξcd . (7.12)

The first equality follows from the extreme polar state conjecture of section 6.2.2, and the

second one is required to get rid of swing states, as discussed in section 6.3.2. Here δ and

µ are P -independent constants. The core dump exponent ξcd is a kind of critical exponent,

which we bounded by 1 ≤ ξcd ≤ 3.

In order to clarify the domain of validity of (7.1) we introduced a second critical

exponent, defined by the growth of the polar state indices growth with P at fixed η:

log |Ω| ∼ |P |κ (7.13)

or, more precisely, as in (6.118). In terms of κ the error term is controlled only if

g > O(|P |κ−3) (7.14)

If we estimate the polar index growth by the growth of the two-centered black hole real-

izations, we get

κ = 3 (7.15)

implying OSV is only valid at strong topological string coupling. We discuss the possibility

that κ gets miraculously lowered by cancelations in the index in section 7.4. Neglecting

instanton corrections, the saddle point value of φ0 is given by φ0
∗ ≈

√
P 3

24|bq0| . Hence the

bound (7.14) translates to a bound on the charges:

|q̂0| > O(|P |2κ−3). (7.16)
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Note that when κ = 3, this bound always gets violated when scaling up the total charge

Γ = (0, P,Q, q0) uniformly by a sufficiently large Λ, and that to avoid this, we need κ ≤ 2.

This is not an artifact of our derivation scheme: it is precisely as expected from the

“entropy enigma” discussed in section 3.5. The closely related two centered configurations

considered there had an entropy growing as Λ3, so if no miraculous cancelations occur

between contributions to the index bringing down the growth of log Ω(ΛΓ) to Λ2 or lower,

the OSV conjecture at t = i∞ necessarily breaks down at sufficiently large Λ, since it

predicts Ω(ΛΓ) ∼ Λ2 to leading order at large Λ. We will discuss this in more detail in

section 7.4.

Finally, when g is well inside the regime (7.14), the error simplifies to

δF ∼ exp[− πδ

12µ

P 3−ξcd

φ0
] (7.17)

For this to be negligible compared to the instanton contributions to the free energy, which

are suppressed as e−β·P/φ
0
, we need ξcd < 2 or ξcd = 2 and δ ≫ 1. Using Imt ∼ P/φ0 and

g ∼ 1/φ0, we can also write this as

δF ∼ exp[− c

g2−ξcd
|Imt|3−ξcd ], (7.18)

with c a constant. Note that for ξcd = 1, this is suggestive of a D4/M5 contribution to

the Schwinger computation of the topological string free energy [32, 33]. We return to the

issue of determining the value of ξcd in section 7.5.

7.2 Differences with original OSV conjecture

We note the following differences with the original OSV conjecture:

1. There is an additional measure factor µ(P, φ), in agreement with the special cases

studied in [11, 12, 13]. This does not affect the leading saddle point evaluation of

the entropy, but does affect the inverse charge corrections to it. The origin of this

measure factor is essentially the presence of the angular momentum factor |〈Γ1,Γ2〉|
in the factorization formula (5.4) for degeneracies of polar states.

Furthermore, if we state the OSV formula using |Ψtop|2 with the standard definition

of Ψtop then, since our definition of the topological string partition function in (6.110)

was nonstandard (because the degree zero terms Z0
DT make use of the MacMahon

function, which differs from the standard perturbative Ftop by a term proportional

to χ
24 log g) one would have to include a further factor of gχ/24 in the measure.

2. The topological string partition function is cut off. The cutoff cannot be removed,

since the full Ztop has zero radius of convergence and hence does not exist as a function

which can be integrated, not even in a saddle point approximation. We were led to

put a cutoff on the DT invariants NDT (β, n) contributing to Ztop, namely |n| < ǫP 3,

β · P < ǫP 3. This does not translate into a simple cutoff on the corresponding

M2 BPS invariants in the infinite product representation. Physically, this happens

because the existence of D6-anti-D6 bound states depends on the total D2-D0 charge
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of the constituents, while the M2 BPS invariants refer to “one particle” contributions

to these D2-D0 charges. As usual with cutoffs, there is some arbitrariness in their

choice; possibly there are other “regularization schemes” than the one we used.

3. We find corrections, exponentially suppressed at large P . These are due to the c > 1

terms of the fareytail series as well as to the non-extreme polar states we dropped.

Taking into account terms corresponding to SL(2,Z) transforms with c > 1 in the

fareytail series would add |Ztop|2 type terms to the integrand on the right hand

side of the OSV formula, but with substitutions different from (7.2). These give

corrections δF ∼ e−g P
3
. Taking into account contributions of D6-anti-D6 bound

states with D6 multiplicities r > 1 (which are necessarily non-extreme polar with

η ≥ 3/4) presumably would spoil the simple relation to Ztop. These contributions

give corrections δF ∼ e−g P
3
. Moreover, taking into account non-extreme polar

states (η > η∗), even at r = 1, would spoil factorization, as suggested e.g. already

by fig. 17. More importantly, the existence of the swing states of section 6.3.2,

which spoil factorization and the relation to DT invariants, force us to restrict to

η < η∗ ∼ |P |−ξcd . This gives corrections δF ∼ e−g |P |3−ξcd . If ξcd > 2, the error

actually swamps the instanton contributions we want to keep. We only know with

certainty that 1 ≤ ξcd ≤ 3, although there is some evidence that ξcd = 1.

4. We find a restriction on the range of validity. We need (7.16) to be satisfied. In

particular, if κ > 2, our formula breaks down when uniformly scaling up all charges by

a sufficiently large Λ, whereas the original conjecture was meant to be valid precisely

in this large Λ regime. Put differently, since the saddle point g∗ ∼ 1/Λ, our result is

guaranteed to work in the strong topological coupling regime, but fails in the weak

coupling regime unless there are miraculous cancelations between the contributions

to the indices of the polar states. The original conjecture on the other hand was

supposed to work at weak g.

Clearly, the last two points lead to potentially the most significant discrepancies with

the original conjecture, so we will examine these points more closely and discuss the various

possible loopholes in sections 7.4 and 7.5. Before we get to this though, we will give an

interpretation of our results in the language of the M-theory derivations [17, 18] of the OSV

conjecture which have appeared, and demonstrate in particular that the discrepancies and

subtleties we find are not tied to our specific picture.

7.3 Comparison with M-theory derivations

The M-theory derivations [17, 18] of the OSV conjecture did not detect the measure factor

and did not attempt to give bounds on the regime of validity or on the error. The ap-

pearance of a cutoff and corrections was emphasized in [18], but the level of analysis was

insufficient to provide explicit cutoff prescriptions or estimates of corrections.

In these derivations the polar states were represented as dilute gasses of spinning M2

branes and anti-M2 branes orbiting the poles of the S2 in the spacetime AdS3 × S2 ×X,

the latter carrying a G-flux proportional to P . Some of the issues which were left open
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in [17, 18] were the parameter range for which this dilute gas approximation is accurate,

what happens if the M2’s and anti-M2’s start “spilling over” into each others hemispheres

and what the effect is of other BPS states such as M5 branes and of taking into account

other geometries such as quotients of AdS3 × S2.

The various elements in our picture have a fairly straightforward translation into this

M-theory picture, and hence our analysis clarifies all of these issues.54 The rough idea is as

follows. A D6-brane lifts in M-theory to a Taub-NUT space, so a bound state consisting of

a pure D6 and an anti-D6 stabilized by flux lifts to a Taub-NUT-anti-Taub NUT geometry

stabilized by flux. In the M-theory limit, this geometry becomes AdS3 × S2 with flux

proportional to the net D4-charge P , with the north and south poles of the sphere identified

with the centers of Taub-NUT, projecting down to the D6 and resp. anti-D6. Adding D2D0

charge to the D6 and anti-D6 branes to turn them into black holes corresponds to putting

spinning M2 BMPV black holes at the north and south poles of the sphere [70]. Our

D2D0 halos orbiting the D6 and anti-D6 lift to M2 branes orbiting the north and south

poles. More complicated D6 core states such as the swing states in section 6.3.2 realized

as 2-centered D6-D4 configurations become M5 black rings in AdS3 × S2. Higher rank

r > 1 D6 anti-D6 bound states correspond to Zr quotients of AdS3 × S2 and deformations

thereof. Fractal flow trees such as fig. 8 lift to foamy “bubbling” geometries. And so on.

The upshot is that we have included all possible contributions in our analysis, no matter

how exotic or complicated.

Now, the idea of [17] can be summarized like this: Cut the AdS3×S2 in two halves and

identify one half with part of Taub-NUT with flux and the other one with part of anti-Taub-

NUT with flux. Now complete these cut off, finite-size, finite flux Taub-NUT spaces to

complete Taub-NUT spaces of infinite size, with infinite Taub-NUT circle radii and infinite

total integrated flux, and count BPS states on each of those. In this infinite-size, infinite

flux limit, all BPS states are well-described by lowest Landau-levels of spinning M2 probes,

and the generating function of their indices is the Gopakumar-Vafa partition function (as

we argued in section 6.1.2, refining the analysis of [29]). Hence, in this approximation,

ignoring higher r geometries, finite size effects and the coupling between the two sectors,

the AdS3 × S2 elliptic genus is simply given by the product of two GV products, leading

to Z ∼ ZtopZtop.

It is of course not clear to what extent this picture is justified, and through the above

dictionary, our work can be interpreted as a thorough analysis of this problem. Let us

translate a few of our results into this M-theory picture:

• We found it necessary in section 6.2.1 to cut off the D2-D0 charges at βi · P < ǫP 3,

|ni| < ǫP 3, ǫ ≪ 1, in order to guarantee existence at least of the first split of the

flow tree for any choice of (βi, ni) within this cut off domain. This corresponds to

the fact that when these charges grow too large, the M2’s and anti-M2’s associated

to the two S2 poles start interacting so strongly that they can no longer be seen as

independent probes and the BPS state can cease to exist altogether. The extreme

54This translation was developed in collaboration with Dieter Van den Bleeken [82].
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polar state conjecture guarantees we do not need to worry about this for sufficiently

polar states (as well as that we do not have to worry about Zr quotient geometries).

• Swing states can be seen as BPS states which exist in infinite radius Taub-NUT,

but not at some smaller radius — more precisely not in the finite size AdS3 × S2

— or vice versa. The example of the swing state of section 6.3.2 can be thought

of as a BPS M5 ring which would fit in a Taub-NUT of sufficiently large radius,

but not in the finite radius AdS3 × S2, as the ring radius becomes too large. At

infinite TN radius, this should not be counted as a separate BPS state since all BPS

states can be described by light M2 probes which are guaranteed to exist, but at

finite radius this is no longer so and BPS states might disappear from the spectrum,

hence altering the BPS free energy function which counts BPS states.55 Somewhat

surprisingly perhaps, we found that merely taking the cutoff ǫ≪ 1 is not enough to

avoid this phenomenon, but that instead one should take ǫ < δ|P |−ξcd with ξcd ≥ 1.

If ξcd = 1 (as is the case for our examples and for which we gave some circumstantial

evidence at the end of section 6.3.2), the correction to the free energy is of order

δF ∼ e−gtop|P |2 ∼ e−(Im t)2/g, indeed suggestive of finite size nonperturbative D4/M5

corrections to the computation of [32, 33]. This can viewed as a further physical

indication for ξcd = 1, although we will not try to make this precise here.

• Our restriction to sufficiently strong g arose from the fact that at weak g, the fareytail

series ceases to be dominated by the extreme polar terms due to entropic effects. As

a result, in this regime, it is no longer justified to disentangle the two sectors, since

the main contribution will come from complicated BPS configurations delocalized

over the sphere, which do not factorize. The meaning of “strong” and “weak” g

depends on the growth of polar indices, to be discussed in the next subsection. This

is closely related to the entropy enigma of section 3.5, which in M-theory translates

to the entropic dominance of geometries containing two BMPV black holes over the

M5 black string.

• The measure factor we find can be traced back to the fact that even in the most

dilute gas regime, the M2 and anti-M2 sectors do not fully decouple, since there is a

multiplicative contribution to the ground state degeneracies depending on J3
R (given

by |〈Γ1,Γ2〉| in our setup) which depends on the charges in a non-factorized way.

This factor was not taken into account in [17, 18], but was noted in the M-theory

context in [47], where it was found necessary for modularity of the M5 elliptic genus

and detailed matching with geometrical considerations.

7.4 Range of validity, background dependence and miraculous cancelations

We now turn to the issue of weak versus strong topological string coupling, which as we

pointed out depends crucially the growth of polar indices with |P | at fixed η where η

55Related to this, as was shown in [98], in certain limits of the IIA Enriques CY moduli space, the BPS

free energy is generated by D4-branes indices rather than D2 brane indices, as the former become the light

states there.
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parametrizes q̂0 = (1 − η)P
3+c2P
24 . Note that this is equivalent to the growth of these

indices under the scaling (p0, p, q, q0) → (p0, λp, λ2q, λ3q0) since (in the large λ limit) this

leaves η invariant while scaling up |P | → λ|P |. Recall furthermore from section 3.3 that

this rescaling is a symmetry of arbitrary multicentered BPS configurations (provided one

also scales t∞ → λt∞), with corresponding horizon entropy growing as S ∼ λ3. Thus, this

suggests log Ω ∼ P 3 at fixed η, and hence κ = 3 in (7.13), implying a breakdown of the

refined OSV formula (7.1) at weak topological string coupling or equivalently in the limit

in which we scale up all charges uniformly.

Now note on the other hand that when the total charge is (0, P, 0, 0), the same non-

uniform scaling actually acts uniformly on the total charge, so if multicentered configura-

tions exist with nonzero horizon areas and such a total charge, their entropies will scale

as λ3. We saw in section 3.5 that such multicentered solutions do indeed exist, and that

moreover a slight extension of the argument just given leads to the conclusion that uniform

rescaling of any D4-D2-D0 charge (with P > 0) by a sufficiently large Λ leads eventu-

ally to multicentered configurations with horizon entropy growth S ∼ Λ3. This suggests

log Ω ∼ Λ3 in this regime, in contradiction with the OSV prediction, which scales as Λ2.

This confirms the close relation between the “entropy enigma” of section 3.5 and the break-

down of eq. (7.1), and the fact that the latter is not due to a shortcoming of our derivation

itself.

There are two possible loopholes to these conclusions, which could potentially still

allow some version of the OSV conjecture to be valid in the large Λ limit. The first one

is that we have restricted our attention to a background t = i∞, while perhaps the OSV

conjecture should instead be taken to be valid only at some other distinguished point.

The second one is that we are considering an index, which gets many contributions with

different signs, so there might be miraculous cancelations bringing down the growth of the

index compared to the supergravity entropies of individual contributing configurations.

7.4.1 Evaluation point

We do not have much to say about the first possibility. The reason why we considered

t∞ = i∞ only is that our derivation crucially relies on the D4 partition function being a

generalized Jacobi-form, and this is only plainly the case at t = i∞. For example, trying

to construct some sort of partition function where the indices making up the coefficients

are all evaluated at the attractor point of the charge in question would manifestly not give

a Jacobi form, since more or less by definition such a “partition function” would not have

a polar part (since polar charges do not have attractor points). The necessity to restrict

to t = i∞ is not only true for our derivation, but for all derivations based on the fareytail

expansion that have appeared [17, 18].

However one could of course contemplate other backgrounds. A natural choice would

be to take t∞ at the attractor point t∗(p, q) of the charge under consideration (assuming

this exists), and postulate a formula like

Ω(p, q; t∗(p, q))
?∼

∫
dφ|Ztop(p, φ)|2e−2πφΛqΛ (7.19)
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Unlike the t = i∞ case, there is certainly no evidence against such a claim. For example,

the multicentered configurations which lead to the Λ3 scaling of the entropy do not exist in

the attractor background — only configurations encoded by single centered attractor flows,

i.e. single centered black holes as well as multicentered “scaling” solutions asymptotically

connected to single centered black holes (cf. section 3.8). There are very good physical

reasons to believe that, at least to leading order, this version of the OSV conjecture should

be correct, since in this background one expects the leading order statistical entropy to be

given by the Bekenstein-Hawking-Wald entropy, which coincides with the logarithm of the

saddle point value of the right hand side of (7.19).

More generally, one could also consider a fixed finite t∞ background and take (p, q) →
Λ (p, q), Λ → ∞. From the discussion in section 3.5, one can see that in such a limit, the

2-centered configurations with Λ3 entropy will again disappear, since the walls of marginal

stability move off to infinity when Λ → ∞. Note that this raises subtle order of limits

issues.

Yet another alternative modifies the OSV conjecture in the form (1.9) by replacing the

definition of ZBH by

ŽBH(p, φ) :=
∑

q

Ω(p, q; tA =
ΦA + iPA

φ0
) e2πφ

ΛqΛ . (7.20)

This form of the OSV conjecture, regrettably, would seem to be inconsistent with the

wall-crossing formulae we have described, so the right-hand side, |Ztop|2 would need to be

modified also in some way.

Sadly, a direct microscopic counting at gIIA = 0 at finite t∞ seems out of reach for the

charges of interest, because the microscopic description is not sufficiently understood. In

the IIA picture, the problem is that α′ corrections to the D-term constraints determining

the moduli space (in particular determining Π-stability [84, 66]) become manifestly of

crucial importance, since they are responsible for the elimination of the “extra” states

corresponding to multicentered black holes with Λ3 entropy growth existing at large radius.

These α′ corrections are not known systematically. One could try to use mirror symmetry

to type IIB, where the relevant D-branes are special Lagrangian 3-cycles and stability

becomes just a classical geometrical property, but the problem on this side is (a) the F-

terms receive complicated disk instanton corrections and (b) even classically very little is

known about special Lagrangian 3-cycles in compact manifolds.

An alternative approach to a derivation, directly at weak gtop, was suggested in [19],

based on AdS-CFT and the computation of the free energy in IIA perturbation theory in

a suitable attractor background. There are several points to be clarified in this derivation,

and it is not quite a microscopic derivation in the sense of directly counting underlying

quantum mechanical degrees of freedom of some brane model. Nevertheless, if correct, the

proposal would give a very nice explanation of why Ztop should govern the corrections to

the Bekenstein-Hawking entropy.

It would clearly be desirable to know whether the index of D-brane microstates at

t = i∞, might still be governed by the OSV formula even in the weak gtop regime, so let

us next examine the second possibility.

– 112 –



7.4.2 Cancelations between index contributions?

As discussed above, the only way this can happen is if the multicentered black hole entropy

for individual configurations corresponding to polar charges grossly overestimates the actual

index for a given charge.

Recall that the D4-D2-D0 polar indices are given by the factorization formula (5.4):

Ω(Γ, t∞) =
∑

Γ→Γ1+Γ2

(−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉| Ω(Γ1; tms) Ω(Γ2; tms) (7.21)

where tms denotes the location of the MS wall for the split Γ → Γ1+Γ2 along the Γ attractor

flow starting at t = i∞ (if this exists). As we saw, Γ1 and Γ2 need to have nonzero (and

of course opposite) D6-charges for the split to exist.

Each of the Ω(Γi; tms) could in turn still get contributions from different splittings and

possibly also from a single flow (corresponding to a single centered black hole realization

of Γ1), leading to further expressions like

Ω(Γ1; tms) = Ω(Γ1; t∗(Γ1)) +
∑

Γ1→Γ′
1+Γ′

2

(−1)〈Γ
′
1,Γ

′
2〉−1|〈Γ′

1,Γ
′
2〉| Ω(Γ′

1; t
′
ms) Ω(Γ′

2; t
′
ms), (7.22)

where t∗(Γ1) is the attractor point of Γ1, and so on.

Phrased in this framework, the problem we face is that there exist splits Γ → Γ1 + Γ2

into two black holes with SBH(Γi) scaling as |P |3 at fixed η. Identifying log Ω(Γi, t∗(Γi)) ≈
SBH(Γi), we would thus get a contribution scaling as ec|P |3 to the total index.

Hence we see there are three different ways the total index could still grow more slowly

than this:

1. The identification log Ω(Γi, t∗(Γi)) ≈ SBH(Γi) is wrong, and in fact LHS ≪ RHS.

2. There are miraculous cancelations already between the contributions in (7.22).

3. There are miraculous cancelations between the contributions in (7.21).

Possibility (1) is extremely unlikely. In all cases in which one has been able to compute

reliably the (proper) index of BPS states of a large black hole at or near its attractor point

(e.g. [2, 3, 101]), its logarithm has been found to coincide with the Bekenstein-Hawking-

Wald horizon entropy, even beyond leading order. Although physically one expects the

horizon entropy to count the true number of BPS states at the attractor point, there is in

general no reason to expect this true number to be much larger than the index at finite

values of the string coupling, as generically quantum tunneling effects will lift unprotected

bose-fermi pairs as soon as the coupling becomes nonzero. (See section 8 for more discussion

about this.)

At first sight, a class of five dimensional M2 black holes56 studied in [3] seems to provide

a strong counterexample to this claim: it was found there that the black hole horizon

56And therefore, through the 4d-5d correspondence of [70], also a class of four dimensional D6-D2-D0

black holes, for which the D6-brane charge is 1, the D2 charge equals the M2 charge Q, and the D0-charge

equals 2J3
L = 2mL. In other words, precisely the kind of 4d black holes we are interested in here.
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entropy matched the total dimension of the cohomology of the corresponding microscopic

D-brane moduli space rather than the index, which was taken to be the Euler characteristic,

i.e. NQ = n0
Q as defined in (6.4) and (6.5). In fact the logarithm of the former was found to

grow like Q3/2, while the latter grows only like Q, with Q the M2 charge, precisely the kind

of miraculous cancelation we are after. However, upon closer inspection, one sees that NQ

is not the proper index to compare to. Indeed, a 5d BPS black hole is characterized not

only by its M2 charge Q, but also SU(2)L spin J3
L = mL. Therefore, the proper index to

compare to is NmL
Q defined in (6.3) and in fact, we argue in appendix F that for this model,

logNmL
Q ∼

√
Q3 −m2

L, in perfect agreement with the black hole horizon entropy to leading

order. The origin of this huge cancelation arising when summing over mL was explained

under (6.5), and can be summarized as (1 − 1)n = 0. The enhancement of growth going

from the nrQ ∼ eQ to the NmL
Q ∼ eQ

3/2
is due to the presence of large binomial coefficients

in the relation (6.5) between them, which in turn come from degeneracies due to the Wilson

line moduli. In any case, the upshot is that the proper index again agrees with the black

hole horizon entropy.

Nevertheless, the cancelation is suggestive. Could it be that in summing over all

contributions to our total index, we are effectively summing overmL (or, in four dimensional

language as in footnote 56, over D0-charges), thus producing a near-exact cancelation? This

brings us to possibilities (2) and (3) in the list above. In particular, as we will see below,

possibility (2) might be related to this.

Before we go on, it is worth emphasizing that in general cancelations changing the

exponential growth behavior have to be pretty miraculous indeed. Consider for simplicity

two contributions of nearly the same size but with opposite signs, say

ζ := ec|P |3 − e(c+ǫ)|P |3 ≈ ǫ|P |3ec|P |3. (7.23)

Then to get ζ ∼ ec
′|P |2, we need ǫ to be of order e−c|P |3! So it is hard to imagine a

significant cancelation in our index unless all leading order contributions cancel exactly,

and only exponentially subleading contributions remain.

In view of this, it seems highly unlikely that such cancelations could occur as described

in possibility (3). Moreover, even if there were such a cancelation for contributions at

t = i∞, there would not be such a cancelation at other values of t, since different splits

Γ → Γ1 + Γ2 have different walls of marginal stability, so if there were cancelation at one

point in moduli space, this would almost certainly not hold at some other point, since the

set of contributing splits will be different at these two points. Thus, if cancelation is to

happen, one would expect it to take place already at the level of the contributions to Ω(Γ1)

and Ω(Γ2), i.e. possibility (2).

Unfortunately, possibility (2) also appears highly unlikely. In this case, we can relate

the problem, to some extent, to a precise mathematical question about the asymptotic

growth of DT invariants. Recall that according to (6.78) and (6.21)-(6.24), we have, at

least for η < η∗ ≪ 1,

Ω(Γi, tms) = NDT (βi, ni) + ∆Ω(Γi, tms) (7.24)
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with (βi, ni) defined as in (4.17)-(4.19). As we showed in section 6.3.2, ∆Ω can be nonzero

due to swing states. By definition, for η < δ|P |−ξcd (with 1 ≤ ξcd ≤ 3), we have ∆Ω = 0,

but in the case at hand we cannot use this since we want to keep η fixed while scaling up

P , so we always exit this regime. Thus we expect ∆Ω 6= 0.

As we will see below, the generating function for DT invariants has some special

structure which allows one to make some (very) heuristic arguments in favor of miraculous

cancelation of different contributions to the DT invariants. If such cancelations indeed

occur, then it would become perhaps less implausible that something like it might happen

for Ω(Γi, tms) as well. However, note that this is far from obvious. First, for non-extreme

polar states, i.e. values of η closer to 1, there will also be contributions from rank r > 1

D6-anti-D6 splits, which are not directly related to the above DT invariants. Second, the

individual flow tree contributions to each of the two terms on the right hand side of (7.24)

will give contributions to the index scaling as eλ
3

under the large λ scaling (p0, p, q, q0) →
(p0, λp, λ2q, λ3q0) we are considering (this acts on the (βi, ni) parameters as (βi, ni) →
(λ2βi, λ

3ni)), as follows from the general arguments of section 3.3. Hence we would need

miraculous cancelations between the contributions to ∆Ω separately as well. Moreover,

by varying (β2, n2) while keeping (β1, n1) fixed, tms will vary, and so ∆Ω can change if

this variation takes tms over some marginal stability wall. Again individual contributions

to this variation of ∆Ω scale as eλ
3
, so cancelation should occur already within this very

reduced ensemble. It seems hard to imagine how something like this could happen unless

there is extended supersymmetry killing off individual contributions in bose-fermi pairs.

Nevertheless, since the problem for DT invariants can be formulated in a mathemati-

cally precise way, and the question is of some interest on its own, let us proceed to inves-

tigate the scaling

logNDT (λ2β, λ3n) ∼ λk, (7.25)

and ask whether k = 3, as suggested by the scaling argument, or whether cancelations

occur making k ≤ 2. (Note that the asymptotic growth NDT (0, n) ∼ en
2/3

, given in (6.2),

suggests that we always have at least k ≥ 2.57)

To be more precise, consider the limit-supremum:

k = limλ→+∞
log log |NDT (λ2β, λ3n)|

log λ
(7.26)

The first question is whether this is independent of (β, n), and hence equal to a constant

k. We expect this to be the case. If this is indeed so, then the next and crucial question

is the value of k. Unfortunately, the answer to this question seems to be unknown. Even

for particular cases, we have been unable to find k. The reason is that to compute the

DT invariants to sufficiently high order, one needs BPS invariants nrQ to sufficiently high

57Except when χ(X) = 0. Indeed, for T 6 and T 2 × K3, this entire discussion is superfluous: for T 6,

ZDT = 1, and for T 2×K3, ZDT = η(t)−24 where t is the T 2 Kähler modulus. In other words, in these cases

we do have “miraculous” cancelations, although in this case the miracle is simply extended supersymmetry.
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order Q, and despite tremendous recent progress [102], the available data so far are not yet

sufficient to get even a numerical hint of what the correct answer could be. 58

Let us therefore turn to a some heuristic arguments - two pro and two contra - for the

cancellation hypothesis.

1. The first heuristic argument suggesting k = 2 goes as follows. What we want to

compute is

NDT (λ2β, λ3n) ∼
∮
dt dg egnλ

3−2πit·βλ2 ZDT (−e−g, e2πit). (7.27)

Now, because of the DT-GW correspondence as reviewed in section 1.3, we can

formally write, at small g,

ZDT (−e−g, e2πit) ∼ e
1

g2 f(t)
(7.28)

where f(t) is the generating function for genus zero Gromov-Witten invariants. Plug-

ging this in (7.27) and doing a naive saddle point evaluation gives saddle point equa-

tions of the form

n ∼ f(t)

g3
0

, β ∼ f ′(t)

g2
0

, g =: g0/λ, (7.29)

and saddle point value

NDT (λ2β, λ3n) ∼ ecλ
2
, (7.30)

where c is independent of λ. In other words, this indeed suggests k = 2, hence

miraculous cancelations! On the other hand, it is not clearly valid to use (7.28) in

such a saddle point analysis, so the argument is only heuristic.

2. To be conclusive, one would like to see the cancelations happening directly. To

see where these might come from and how they might be related after all to the

cancelations we mentioned earlier in the context of 5d M2 black holes, recall the

expression (6.7)-(6.11) for ZDT . Note that when g → 0, u ≡ −e−g → −1 and

Z ′,r>0
DT → ∏

q (1 − vq)−n
1
q . This collapse is due to the same kind of binomial coeffi-

cient cancelations we saw in the 5d black hole context and as explained under (6.5),

killing all r > 1 contributions. Of course this is as expected from the DT-GW cor-

respondence: only the genus zero and one contributions to Ftop survive when g → 0.

But it is noteworthy that these “miraculous cancelations” are intimately tied to-

gether with this correspondence, indicating that the heuristic result we found does

have something to do with the existence of cancelations.

Furthermore, on general grounds, and as suggested by the heuristic argument, it is

conceivable that the large λ scaling of (7.25) is governed by the g → 0 behavior of

58There are some examples where one could extract k on compact Calabi-Yau manifolds. These use

results on Fg to all orders derived from heterotic/typeIIA duality, [97, 34, 98]. However, in precisely these

cases the relevant black holes have P 3 = 0. Thus, one should suspect that the case where β represents a

holomorphic curve in the K3 fiber of a K3-fibered Calabi-Yau is not representative. That is, there is in fact

some dependence of (7.26) on β and really we should be asking about generic β.
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ZDT , i.e. the r = 0 factor and to a lesser extent the r = 1 factor. Now if we drop the

r > 1 factors, we have effectively dropped our reasons to expect k = 3 in (7.25), since

as we noted in our discussion of 5d black holes above, the enhancement of growth

going from the nrQ ∼ eQ to the NmL
Q ∼ eQ

3/2
is due to the presence of large binomial

coefficients in the relation (6.5) between them, but if we drop all r > 1 contributions,

these are no longer present.

Although this fortifies the case for cancelations, it is still not conclusive. We did some

numerical experiments with very simple toy models for which naively one could make

the same reasoning as above, but which nevertheless did not lead to any cancelations.

Unfortunately, as we noted before, not enough hard data about the BPS invariants

nrQ is available at this time to check these arguments by direct computation in an

actual (compact) model.

3. An argument against the cancelation hypothesis follows if we assume the OSV con-

jecture holds for p0 = 1, for some value of the B-field at J = ∞. Then NDT (λ2β, λ3n)

should be given by the OSV formula, which for λ → ∞ predicts a growth NDT ∼
exp[λ3

√
β3 − n2], leading to k = 3. Indeed, one concrete conclusion from these con-

siderations is that the OSV conjecture for p0 = 1, t∞ → i∞ and the weak coupling

OSV conjecture for p0 = 0, t∞ → i∞ cannot both be true.

4. We conclude by giving a second heuristic argument indicating there are no significant

cancelations, so that the entropy enigma is also an index enigma, i.e. that indeed

log Ω(ΛΓ; t = i∞) does grow as Λ3 in the large Λ limit, with Γ some D4-D2-D0

charge.59 For simplicity we take Γ = (0, P, 0, 0). A naive model for this is a D4-brane

wrapped on P with N = χ(P )/24 ≈ P 3/24 pointlike D0-branes bound to it. Ignoring

divisor moduli, flux degrees of freedom and so on, the index of this system is simply

the orbifold Euler characteristic of the N -fold symmetric product of P . This is given

by the coefficient dN of qN in
∏
n(1 − qn)−χ(P ). The N → ∞ asymptotics are given

by the Cardy formula log dN ∼ 4π
√

(N − χ
24 ) χ24 , and this equals the single centered

entropy for this charge. However, the value N = χ/24 of interest to us lies outside

the regime of validity of this formula — in fact plugging this in the formula gives

zero. Numerically on the other hand, we find log dN=χ/24 ≈ 0.17649134 ∗ χ ∼ P 3.

(Exponential growth of this coefficient can also be proved analytically.) Note that

this is the same growth as suggested by the two-centered black hole estimate without

cancelations! But again this argument is too heuristic to be taken seriously; in

particular, although this model for the D4-D0 system is fine in the limit N → ∞, it

is not clearly applicable to the case N ∼ P 3, since there is now no justification for

ignoring the divisor moduli and fluxes.

In conclusion, although we cannot completely exclude a miracle, it seems very unlikely

to us that a sufficient amount of cancelation could occur to bring down the polar index

growth at fixed η from ∼ eP
3

to ∼ eP
2
, and we therefore believe κ = 3 in (7.13), hence

59We thank D. Gaiotto, A. Strominger and X. Yin for a related suggestion leading to this argument.
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a breakdown of OSV at weak gtop (and t∞ = i∞). It would be interesting to settle this

question definitively.

7.5 Dumping the dangerous swing states

We now briefly return to the second main unresolved issue, namely the value of the core

dump exponent ξcd introduced in section 6.3.2.

At the end of section 6.3.2 we offered some circumstantial evidence suggesting that

perhaps ξcd = 1, and all is well. In addition to this, we can offer the following physical

evidence that suggests that ξcd = 1. As noted in section 7.3, in this case, the D4-D2-D0

partition function differs from |Ztop|2 by terms whose order indicates that they involve

Schwinger pair production of wrapped D4-brane states, giving finite size corrections to the

exactly factorized expression. Analogous states have been seen to play a role in topological

string amplitudes before [98]. Since there are no other obvious physical effects which would

be larger, one might hope that ξcd = 1.

Clearly it is of great interest to investigate these phenomena further to see whether or

not the core-dump exponent ξcd is larger than one. It should be relatively straightforward to

come up with further systematic analytical and numerical evidence, similar to the evidence

we accumulated in favor of the extreme polar state conjecture, but we leave this for future

work.

One of the reasons that the OSV conjecture is interesting is that it suggests a way to

give a nonperturbative definition to the topological string. In view of this it is intriguing

that the corrections we find are indeed suggestive of nonperturbative corrections. Therefore

it might be useful to ask how to compute the contribution of these nonperturbative effects

to F-terms in effective supergravity.

8. Summary of open problems and potential future directions

In this section we collect and summarize the many issues and open problems which arose in

our derivation of the OSV conjecture. We also suggest some potentially interesting future

directions for research.

First, as already discussed in section 1.2, our “proof” of the OSV conjecture is really

more of an outline for a proof. The following important issues need to be settled before

the argument truly constitutes a proof, even in the strong coupling regime:

• Some basic issues in the theory of split attractor flows and multicentered black hole

solutions remain to be clarified. While physically very well motivated, and supported

by numerous examples, the split attractor flow conjecture of section 3.2.2 remains to

be proven mathematically. Moreover, as we discussed, the Hilbert space of BPS states

H(Γ; t) is — roughly speaking — “graded” by the split attractor flows associated

to (Γ; t), but we noted some subtleties, and hence the precise rule remains to be

elucidated. Among other things one should understand better the possible quantum

mixing between states associated to different attractor flow trees.
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• It would be desirable to have a more systematic derivation of the D4 partition function

we used in section 2 starting from a path integral. Ideally, this should clarify the

relation of d(F,N) to general DT invariants.

• The extreme polar state conjecture remains to be proved.

• We have shown that certain swing (core) states could potentially invalidate the OSV

conjecture. This led to the definition of the core dump exponent in section 6.3.2. As

discussed there, it remains to show that ξcd ≤ 2. If it turns out that ξcd > 2 then the

OSV conjecture is very unlikely to be true, even at strong gtop. We outlined some

indications that ξcd = 1, but further work is needed to test this hypothesis.

• The equality of DT and Gromov-Witten partition functions for compact CY remains

to be proved.

Certainly, at the “physical level of rigour” the extreme polar state conjecture and the

claim that ξcd ≤ 2 are the main gaps in our argument. We are rather confident that all the

above issues – be they ever so challenging – can be satisfactorily settled, with the possible

exception of ξcd ≤ 2. Granting these points, there are a number of ways in which the

refined OSV formula could be extended further.

• First there is the question of the extension from strong to weak topological string

coupling. As we have demonstrated, this is loosely related to a well-posed question

regarding asymptotics of DT invariants, namely, the evaluation of

k = limλ→∞
log log |NDT (λ2β, λ3n)|

log λ
. (8.1)

However, while an anomalous value k ≤ 2 instead of the expected k = 3 would

certainly be suggestive, this would not immediately imply a similar growth of the

relevant indices Ω(Γi, tms). Regarding the latter, we see little hope of a cancellation

and expect that the OSV conjecture fails at weak gtop. It would however be very

interesting to verify this more directly.

• As we saw, the “core states” account for the genus r > 0 component of the Gopakumar-

Vafa product form of the topological string partition function. While some core states

are black holes, there are also more complicated core states. It would be very inter-

esting to find some way to organize and classify these core states. It would seem that

this is essential to evaluating ξcd.

• Can our methods be extended to values of P which are not in the Kähler cone but

nevertheless support BPS states? (Consider, for example, a curve of resolved ADE

singularities.)

• The original paper [10] claimed a version of the conjecture for all magnetic charges,

including p0 6= 0. The wall-crossing formulae we have discussed would seem to pose

a serious obstacle for such a version of the conjecture, at least if it is based on the

degeneracies at Im t = ∞. Is there nevertheless a version for p0 6= 0?
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Let us now turn to various questions and potential physical applications which our

paper raises:

• Our work sheds some light on the old confusion of the relevance of absolute BPS de-

generacies versus indices. On physical grounds, one expects the total BPS Bekenstein-

Hawking-Wald entropy and refinements thereof to correspond to the absolute number

of BPS states. Naively one might therefore think one should compare the total di-

mension of the cohomology of the relevant D-brane moduli spaces rather than the

euler characteristic, which is the index. However, one should keep in mind that the

quantum mechanics of D-brane moduli spaces is only a low energy approximation

to the true physical situation. The effective quantum mechanics ignores some of the

degrees of freedom on the D-brane. In particular, one should take the string coupling

constant to be zero. As soon as it is nonzero, instanton effects come into play. For

example there might be tunneling between different classical supersymmetric ground

states, i.e. between different components of the D-brane moduli spaces. In particular

we expect D2-instantons tunneling between different flux sectors with the same total

charge, producing effects of order ∼ e−
√
J3/gIIA ∼ e−1/g4d

IIA .60 These are external to

the moduli space quantum mechanics, and will generically lift bose-fermi pairs of

supersymmetric ground states of the latter. Based on genericity, one could therefore

reason that in fact, all nonprotected states can be expected to be lifted, bringing the

total degeneracy down to the value of the index.

There is quite a bit of evidence in favor of this idea. First, the detailed agreement

we find in this paper (and the agreement found in related work) is with the index,

not with the total cohomology of moduli space. Indeed, the BPS invariants nrQ
determining ZDT are all indices, not total betti numbers. The simplest example of

this is the power of the MacMahon factor, which is the euler characteristic χ(X) of the

Calabi-Yau, not its total cohomology. It should furthermore be noted that these index

invariants appear already in the leading order supergravity entropy formula, even

neglecting R2 and higher order curvature corrections — for example the contribution

proportional to ζ(3)χ(X) in the IIA supergravity entropy formula is obtained from

the MacMahon factor counting indices as in (1.16). This indicates that subtleties

involving higher curvature corrections (and the fact that we are comparing to the

BHW entropy taking into account only F-term R2 corrections) are largely irrelevant

for this discussion.

In fact it has been known for quite some time [8] that D4-D0 black holes for T 2×K3

and T 6 compactifications have, already in the large D0-charge limit, BHW entropies

which do not match the total degeneracy at gIIA = 0, while they agree with the index

(this discrepancy did not arise for SU(3) holonomy Calabi-Yau compactifications

because the D4-D0 brane moduli spaces were approximated as N -fold symmetric

products of a very ample divisor, which in the SU(3) holonomy case does not have

60Here g4d
IIA is the effective four dimensional string coupling, which sits in a hypermultiplet and is therefore

tunable without affecting any BPS indices.
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any odd cohomology, making the index equal to the total degeneracy). The class of

5d black holes studied in [3] seemed to go the other way, but as we show in appendix

F, also in this case there is again exact agreement with the index, provided the proper

index is used.

In conclusion, we see considerable evidence that the true number of BPS states at

finite coupling is in fact given by the microscopic index.61 If the total number of BPS

states at zero coupling is higher than the index, we expect a number of states with

energies no more than ∆E ∼ e−1/g4d
IIA above the BPS bound.

For an in depth recent discussion of related issues in the case of extremal nonsuper-

symmetric black holes see [103].

On the supergravity side, we have a parallel picture. Since there are in general many

alternating sign contributions to the BPS index, possibly coming from many different

multicentered configurations, there is again ample room for tunneling effects to lift

BPS states obtained in the supergravity moduli space approximation. For example

in our D6-anti-D6 description of polar states, an anti-D2 particle in a halo around the

D6 could annihilate with a D2 particle in a halo around the anti-D6. Following the

heuristic dictionary of section 4.3, such a process should be the supergravity analog

of a D2-instanton tunneling between different flux sectors.

Thus, on both sides, in suitable coupling regimes, this suggests a picture of having

essentially log |Ω(Γ; t∞)| exact BPS ground states of charge Γ in a background t∞, as

well as a certain number of slightly non-BPS states at exponentially small energies

above the BPS bound. Now, this number might actually be quite huge: indeed if

there is a cancelation eΛ
3 → eΛ

2
in the index of the kind discussed at length in section

7.4.2, and if indeed all canceling contributions in the index get lifted by tunneling

effects, then the number of near-BPS states with exponentially small energy gaps

would in fact be of order eΛ
3
, dwarfing the number of exact BPS states! Even if

there is no such cancelation, one would still expect a comparable amount of bosonic

and fermionic states, and therefore ∼ eΛ
3

non-BPS states with exponentially small

energy gaps.

It would be interesting to see to what extent these speculations are correct, and if

so, if perhaps there might be implications for models of dynamical supersymmetry

breaking.

• It would be helpful to elucidate the connection between our approach and the ap-

proach based on the MSW conformal field theory. The MSW CFT is the effective

conformal field theory with (0, 4) supersymmetry describing a string obtained from

61We should mention though that in [11] (section 4) the BHW entropy of a class of small black holes with

untwisted sector charges in the FHSV model was found to agree with the absolute cohomology to leading

order, but not with the index (while in the twisted sector the index did agree). It is conceivable however

that in this case there exists again a more refined index which would also be in agreement in the untwisted

case. Alternatively, certain Kähler classes were set to zero for these small black holes, and perhaps the

background is too singular.
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wrapping an M5 brane on a holomorphic surface such as P [2, 105]. The precise

formulation of this CFT remains incomplete. Assuming the formulation can be com-

pleted, it would be interesting to clarify the relation between our D4 partition function

and the elliptic genus of the MSW CFT.

• In equation (5.49) we found a remarkably simple formula for the entropy associated

with a 3-node quiver with a loop. The challenge remains to find a conceptual deriva-

tion of this formula. Will it extend to other quivers with loops? Conceivably, there

might be interesting applications to the AdS/CFT correspondence.

• Our discussion of multicentered black holes and their moduli spaces should have im-

plications for the “Mathur program,” which aims to account for microstate entropy

from quantizing supergravity solution moduli spaces [115]. In particular in [79] it

was proposed that quantizing moduli spaces of horizon-free four dimensional multi-

centered configurations with given total charge might account for the corresponding

black hole entropy. The results we found for the three node quiver in sections 5.2.3

and 5.3 seem to create some tension with this proposal. While in the regime in

which there are no scaling solutions to the integrability constraints, the microscopic

(gIIA → 0) quiver degeneracies are correctly reproduced from quantizing the asso-

ciated three centered system, it seems rather unlikely that this remains the case in

the regime in which there are scaling solutions, given the exponential growth (5.49)

of the microscopic degeneracies in this regime and the relative simplicity of the cor-

responding three particle quantum mechanics. Although we can’t exclude that the

set of all multicentered configurations with the same total charge might still add up

to the same degeneracy as the set of all microscopic realizations with the same total

charge, in our opinion, our result is instead rather suggestive of the appearance of

new degrees of freedom and BPS configurations in the scaling regime, qualitatively

different from the multicentered configurations considered so far. (In [79] are related

suggestion of the appearance of nonabelian degrees of freedom was made, based on

SU(N) degrees of freedom associated with nodes of the quiver. The striking thing

about the present example is that the nodes are associated with rank one gauge

groups.)

• In this setting, an open problem remains. In the split attractor flow conjecture the

scaling solutions are in the same component of moduli space as a simple single-

centered flow for the total charge, and hence are represented by the same flow. These

scaling solutions cannot be forced to decay by changing the background moduli.

We do not know however if all multicentered scaling solutions to the integrability

conditions (3.21) with the total charge of a black hole in fact correspond to actual

BPS solutions of supergravity, and if not, whether one can significantly simplify the

rather cumbersome criterion for existence: D(H(~x)) > 0 for all ~x ∈ R3.

• The appearance of the measure factor (6.115) in the integral form of the OSV formula

(6.113) is striking and very reminiscent of Kähler quantization. In this interpretation
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the black hole degeneracies are certain kinds of Wigner functions for a distinguished

quantum state provided by the topological string. Of course, this observation has

been made before [113, 114], but there have been some difficulties making this pro-

posal precise. (For example, the topological string partition function is not a nor-

malizable wavefunction. In fact it is not even a function, since it has zero radius of

convergence.) We hope our precise version can help clarify this conjecture.

• Our results should have several model building applications, since, at least classi-

cally, the conditions to have supersymmetric brane configurations are independent

of whether the branes are space-filling or not. One issue that generally has been

ignored in phenomenological D-brane model building is stability. For example D7

branes wrapping divisors in IIB orientifold models might well decay when the volume

of the divisor gets too “small,” just like the corresponding D4-branes in type IIA.

But as we saw, small is not all that small actually if the divisor has a large Euler

characteristic. Moreover, flux compactifications with all moduli stabilized typically

do not have parametrically large divisor volumes. Thus, stability becomes quite rel-

evant, and the practical tools we developed here might be useful to get a handle on

this.

Finally, we think there are mathematical implications and applications which could be

of some interest.

• If indeed the degeneracies d(F,N) are DT invariants then our main claim is that these

can be arranged in an interesting modular generating function, and our factorization

formulae imply highly nontrivial polynomial relations between the DT invariants.

• Do the physical results here, especially the picture of section 4.3, shed light on the

geometry of the Noether-Lefshetz locus?

• In the discussion of the fareytail expansion a certain interesting class of polynomials

hγ arose. What are these polynomials? Do they have a physical interpretation?

What is the analog when |wH | is half-integral?

• In equation (5.6) we derived a wall crossing formula. However, it is incomplete since

we should like to account for all nonprimitive splits Γ → N1Γ1 +N2Γ2 across a wall

of marginal stability. Generalizing to the case where N1, N2 are both greater than

one appears to be an interesting and challenging problem.

• It would be interesting to clarify the relation of our framework to the study of Π-

stable objects in the derived category of coherent sheaves on X. It has not escaped

our attention that D. Joyce has also arrived at wall-crossing formulae reminiscent of

ours from a very different point of view (see [68] and references therein). It is clearly

of value to examine the relation between these formulae.

• There is an old idea that there should be an interesting algebraic structure associated

with BPS states of D-branes on Calabi-Yau manifolds [117, 88, 118]. Indeed, infinite

– 123 –



products such as (6.8)-(6.11) are reminiscent of denominator products associated to

generalized Kac-Moody algebras. The algebra should be graded byK(X), and should

depend on the moduli t∞. Along lines of marginal stability where Γ → Γ1 + Γ2 we

should associate algebra products H(Γ1; t) ⊗ H(Γ2; t) → H(Γ; t). These algebras

should generalize the geometric construction of highest weight modules of affine Lie

algebras due to Nakajima. Perhaps some of the examples and techniques of this

paper could be usefully applied to realizing this dream.

• As we have mentioned, in the dualM -theory viewpoint the BPS indices are computed

using the elliptic genus of the MSW CFT [17, 47, 18]. It is interesting to ask how

the wall-crossing formula should arise in this context. Studies of the (0, 4) elliptic

genus thus far have been limited to the region t∞ = i∞, but presumably there is

an extension of the (0, 4) CFT and its elliptic genus to finite values of t∞. In this

context many interesting new issues will arise. First of all, the (0, 4) CFT is rather

subtle due to the discriminant locus in the moduli space of the surface on which the

M5 is wrapped, and hence the very definition of the Dirac-Ramond operator will be

subtle. Next, one may guess that as one continues the background moduli through

certain walls the Dirac-Ramond operator fails even to be formally Fredholm and

its character-valued index can change. It would be very interesting to recover the

wall-crossing formulae from this point of view.

• In section 6.1.2 we showed that there is a difference between D6D2D0 degeneracies

and DT invariants. Only in a special limit of the B-field do they correspond. This

raises the question of what the general relation is, and whether other limits of the

B-field could be taken. (That in turn reduces to detailed applications of wall-crossing

formulae which we have not tried to sort out.)

Acknowledgments

We would like to thank Paul Aspinwall, Miranda Cheng, Emanuel Diaconescu, Michael

Douglas, Bogdan Florea, Davide Gaiotto, Albrecht Klemm, Juan Maldacena, David Mor-

rison, Nikita Nekrasov, Hirosi Ooguri, Tony Pantev, Andy Strominger, Cumrun Vafa,

Dieter Van den Bleeken, Erik Verlinde and Xi Yin for useful discussions. We acknowledge

the hospitality of the Kavli Institute for Theoretical Physics, the Aspen Center for Physics

and the high energy theory group at Harvard University, where parts of this project were

done. This work was supported in part by the National Science Foundation under Grant

No. PHY99-07949, and by the DOE under grant DE-FG02-96ER40949. G.M. also thanks

the Institute for Advanced Study and the Monell foundation for support, as well as the 4th

Simons Workshop for hospitality.

A. Definitions and conventions

In the IIA picture, we write charges Γ ∈ Heven(X) in components as

Γ = Γ0 + ΓADA + ΓAD̃
A + Γ0 ω (A.1)
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where {DA} is a basis of H2(X,Z), {D̃A} is a dual basis, and ω is the unit volume element

on X, dual to 1. The index A runs from 1 to h1,1(X) := h. When Γ is identified with

(p, q), we have pΛ = ΓΛ, qΛ = ΓΛ. The index Λ runs from 0 to h. Quantities with an A

index tend to get capitalized. Note that ΦA = φA, PA = pA etc.

The Dirac-Schwinger-Zwanziger symplectic intersection product is defined as

〈Γ,∆〉 = −Γ0∆0 + ΓA∆A − ΓA∆A + Γ0∆
0 =

∫

X
Γ ∧ ∆∗, (A.2)

where ∆∗ is obtained from ∆ by inverting the sign of the 2- and 6-form components. When

Γ1 and Γ2 are represented as sheaves V1 and V2, then their charges are given by

Γi = ch(Vi)

√
Â(X) = ch(Vi) (1 +

c2(X)

24
) (A.3)

and, by the Grothendieck-Riemann-Roch theorem,

∑

k

(−1)k dim Extk(V1, V2) = 〈Γ1,Γ2〉 =

∫

X
ch(V1) ch(V ∗

2 ) Â(X). (A.4)

The normalized period vector is defined as

Ωnrm(t, t̄) := e
1
2
K(t,t̄) Ωhol(t) ∈ H2∗(X,C), K := − ln i〈Ωhol,Ωhol〉, (A.5)

which depends on the complexified Kähler moduli fields tA = BA + iJA and in the large

radius approximation is given by

Ωhol = −eB+iJ , Ωnrm =
Ωhol√
4J3/3

. (A.6)

From this, one defines the holomorphic central charge

Zhol(Γ, t) := 〈Γ,Ωhol(t)〉, (A.7)

which in the large radius approximation becomes

Zhol(p, q; t) = −
∫

X
(p0 + P +Q+ q0 ω) ∧ e−t (A.8)

= p0 t
3

6
− P · t

2

2
+Q · t− q0 (A.9)

=
1

6
p0DABCt

AtBtC − 1

2
pADABCt

BtC + qAt
A − q0 (A.10)

where DABC := DA · DB · DC :=
∫
X DA ∧ DB ∧ DC . The normalized central charge

is obtained from this as Znrm = e
1
2
KZhol. We usually drop the subscript distinguishing

holomorphic and normalized central charges when no confusion can arise. Sometimes we

abbreviate Z(Γ; t) to Z(Γ).

– 125 –



B. Some algebraic geometry

We collect here some mathematical facts used in the text. Many of these are nicely ex-

plained and were skillfully applied in the present context in [2]. Many of the mathematical

facts can be found explained in detail in [104], chapter 1.

Let X be a projective variety. A divisor class is determined by P ∈ H2(X,Z). If P

is of type (1, 1) it is the first Chern class of a holomorphic line bundle LP , and effective

divisors in the divisor class are vanishing loci of sections of LP . The moduli space of these

divisors is a projective space MP = PH0(X,LP ), called a complete linear system, also

denoted |P |. The generic divisor in MP is a smooth hypersurface in X, but there is a

discriminant locus D in MP of singular divisors.

For example, if X is the quintic
∑
X5
i = 0 in P4 then P = nH where n > 0 is integral

and H is the Kähler class of P4 and the linear system MP consists of the set of divisors

defined by the vanishing of a degree n polynomial on P4 intersected with
∑
X5
i = 0. The

discriminant locus D is already quite complicated for n = 1. In this case the divisors are

defined by
∑
αiXi = 0 with [α1 : · · · : α5] ∈ P4 and the discriminant locus is defined by

αi = b4i where [b1 : · · · : b5] ∈ X.

The dimension of the moduli space dimMP can, under some circumstances be obtained

by combining the index theorem with vanishing theorems. The index theorem says

∑

i

(−1)ihi =

∫

X
eP Td(T 1,0X) (B.1)

where hi = dimH i(X,LP ). Now, P is very ample iff the sections s : X → PH0(X,LP )

define an embedding ( [104], p. 192). On the other hand, P is said to be ample if some

positive multiple of it is very ample. A criterion for being ample is that P is positive as a

(1,1)-form, i.e. Pij̄ > 0, which in turn is true iff P lies within the Kähler cone, i.e. β ·P > 0,

D · P 2 > 0, P 3 > 0 for all effective curves β and divisors D. In this case hi(LP ) = 0 for

i > 0 ([104] p.154), and MP is just a projective space of complex dimension h0 − 1 which

can be read off from B.1.

Specializing to a Calabi-Yau 3-fold X we have Td(T 1,0X) = 1 + c2(X)/12 and hence

dimMP =
1

6
P 3 +

1

12
Pc2(X) − 1 (B.2)

and hence χ(MP ) = 1
6P

3 + 1
12Pc2(X).

As explained in detail in [2], using the Hirzebruch signature theorem and χ(Σ) =∫
Σ c2(TΣ) together with the adjunction formula we get

χ(Σ) = P 3 + Pc2(X) (B.3)

σ(Σ) = −1

3
P 3 − 2

3
Pc2(X). (B.4)

We often denote χ(Σ) by χ(P ). Now eqs. (B.3),(B.4) in turn imply

b+2 (Σ) =
1

3
P 3 +

1

6
Pc2(X) + b1(Σ) − 1 (B.5)

b−2 (Σ) =
2

3
P 3 +

5

6
Pc2(X) + b1(Σ) − 1. (B.6)
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Note that for “large” P (such as we consider in this paper) the topology of Σ is quite

complicated. For example, on the quintic, if P = nH we have χ(MP ) = 5n3+25n
6 (an

integer) and χ(Σ) = 5n3 + 50n.

In the text we use the Lefschetz Hyperplane theorem ([104], p. 156) which guarantees

for very ample Σ that the pullback Hq(X,Q) → Hq(Σ,Q) is an isomorphism for q ≤
dimX − 2 and is injective for q = dimX − 1. It follows that, if X has generic holonomy

and P is very ample, then the generic smooth surface Σ ∈ MP has b1(Σ) = 0.

The lattice H2(Σ,Z) has an intersection form. It is embedded in the vector space

H2(Σ,R), and the latter can be decomposed orthogonally into H2,+ ⊕H2,−. As Σ moves

in the moduli space the decomposition “rotates” relative to H2(Σ,Z). This is described

as a variation of weight two Hodge structures. See [105] for a discussion in the present

context. There is a fixed part, LX = ι∗H1,1(X,Z) which does not rotate. As explained in

[2] LX has signature (1, h1,1(X) − 1) by the Hodge index theorem [106] with the positive

direction being the Kähler class J . Thus H2,+ is spanned by the J and the (2, 0) + (0, 2)

forms, while H2,− is a negative definite space spanned by the orthogonal (1, 1) forms. Note

in particular that since LX has a nondegenerate form the matrix DABCP
C is an invertible

matrix — a fact we often use.

An important role in this paper is played by the locus NL(F ) defined by choosing

F ∈ H2(Σ,Z) and considering the locus of divisors for which F is of type (1, 1). This is

known as the Noether-Lefschetz locus, and, we are told, is a somewhat mysterious object

mathematically. In [107] it is shown that NL(F ) is an algebraic variety. The moduli

space MF,N appearing in eq.(2.7) projects to NL(F ). The fiber over a smooth element

Σ ∈ NL(F ) is HilbN (Σ). Unfortunately, complicated things happen at the discriminant

locus so this is not a practical way of understanding the d(F,N).

C. Finiteness of the number of split attractor flows

Throughout the paper we have assumed the following statement:

The number of distinct split attractor flows terminating on regular attractor points,

beginning with a fixed charge Γ0, at a fixed initial point t∞, is finite.

In this appendix we will prove a weaker version of this claim, namely that the number

of attractor flows terminating in any fixed compact region of Teichmüller space is finite. In

fact our argument proves rather more and addresses a class of noncompact regions. The

proof uses some general ideas mentioned in appendix A of [23].

We will be using the large Kähler structure formulae for the central charges. Expan-

sions around this point in moduli space distinguish a duality frame of electric and magnetic

charges. The first step in the argument shows that there are a finite number of possible

collections of magnetic charges of the final regular attractor points. To do this we consider

the attractor equation for a charge Γ written as:

2Im(Z̄(Γ)Z(Γ′)) = 〈Γ,Γ′〉 (C.1)
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for all charges Γ′. It therefore follows that

|Z(Γ; t∗(Γ))| ≥ 1

2

|〈Γ,Γ′〉|
|Z(Γ′; t∗(Γ))| (C.2)

for all Γ′ such that Z(Γ′; t∗(Γ)) 6= 0.

Let us consider first the one-dimensional case with Γ = r + bP + cP 2 + dP 3 and

t∗(Γ) = (x+ iy)P . Then applying the inequality (C.2) with Γ′ = P 3 we get

|Z(Γ; t∗(Γ))| ≥ 1

2

√
4P 3

3
|r|y3/2 (C.3)

and using Γ′ = P 2 we get

|Z(Γ; t∗(Γ))| ≥ 1

2

√
4P 3

3
|b| y3/2

|x+ iy| (C.4)

In order to for these inequalities to be useful we must assume that the final regular

attractor points will be contained in a region of Teichmüller space of the form −L ≤ x ≤ L,

y ≥ ym. These are the noncompact regions alluded to above. The need to restrict attention

to such regions is the main limitation of the present argument.

Granted that the flows lie in a region of the above type, we have absolute lower bounds

at attractor points:

|Z(Γ; t∗(Γ))| ≥ 1

2

√
4P 3

3
|r|y3/2

m (C.5)

and using Γ′ = P 2 we get

|Z(Γ; t∗(Γ))| ≥ 1

2

√
4P 3

3
|b| y

3/2
m

|L+ iym|
(C.6)

Let us absorb the factor
√
P 3/3 into Z to define Ẑ.

Now, if we consider an attractor flow tree starting from (Γ0, t∞) then since the flow

is gradient flow for log |Z(Γ; t)|2, and since at the walls of marginal stability with vertices

Γ → Γ1 + Γ2, we have |Z(Γ; tms)| = |Z(Γ1; tms)| + |Z(Γ2; tms)|, we see that if the final

regular attractor points for the flow tree are labelled (Γi, ti), i = 1, . . . N then we have

|Ẑ(Γ0; t∞)| 1

y
3/2
m

≥
N∑

i=1

|ri| (C.7)

|Ẑ(Γ0; t∞)| |L+ iym|
y

3/2
m

≥
N∑

i=1

|bi| (C.8)

Because charges are quantized ri are integers, and (taking P to be primitive, for simplicity)

bi are integers. It follows that there are a finite number of sets of possible final magnetic

charges {(r1, b1), . . . , (rN , bN )}. From this finite list of charges we only keep those for

which
∑
ri = r and

∑
bi = b. Then from the remaining list there are a finite number of
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topologies of binary trees we can build up from these final charges terminating on a single

initial charge. Let us call these “magnetic flow trees.”

The finiteness of the number of magnetic flow trees does not yet imply that there are

a finite number of attractor flow trees because we have not taken into account the electric

charges. Now, the the regular attractor flows for pure electric charges, i.e. for D2D0

boundstates, goes to t = i∞. For this reason the inequalities we get taking Γ′ to be a

magnetic charge are less useful and we need to use a different kind of argument.

Suppose there were an infinite set of attractor flow trees. As we have seen there is

a finite list of magnetic flow trees terminating on regular attractor points at finite places

in moduli space. Therefore, there would have to be an infinite family of flow trees with

all the D2D0 emissions taking place along one particular line segment taken from one

particular magnetic flow tree. We are not allowing splits where all three charges have zero

magnetic charge, and hence this line-segment must carry some nonzero magnetic charge

(r∗, b∗P ) 6= 0. Order the infinite set of trees with electric emissions from this line segement

and let (cαP
2, dαP

3), α = 1, . . . ,∞ be the electric charges emitted from this line segment

in the ensemble of all trees. Let the point at which they are emitted be tα = (xα + iyα)P .

Let the charge along the line right after this emission be (r∗, b∗P, ĉαP 2, d̂αP
3). Finally, if

a flow emits (cαP
2, dαP

3) then there will be a set Sα of numbers β ≤ α accounting for

all the electric charges (cβP
2, dβP

3) emitted up to that point along that segment in that

particular flow.

Note that we have

|Ẑ(Γ0; t∞)| ≥ |Z(r∗, b∗P, ĉαP
2, d̂αP

3; tα)| +
∑

β∈Sα

|Z(0, 0, cβP
2, dβP

3; tβ)| (C.9)

for all α.

Now, if the set (cα, dα) is not bounded in Z2 then we clearly must have yα → ∞ so

that

|Z(0, 0, cαP
2, dαP

3; tα)| =
|cα(xα + iyα) − dα|

y
3/2
α

√
3P 3

4
(C.10)

remains bounded. On the other hand, suppose the set of electric charges (cα, dα) does

remain bounded (for example, suppose there is an infinite set of attractor trees where more

and more D2D0 lines are emitted but the charges come with alternate signs and balance

each other). Nevertheless, because the sum on β in (C.9) remains bounded it must be that

there is a subsequence such that

|(cαxα − dα) + icαyα|
y

3/2
α

→ 0 (C.11)

This still implies that yα → ∞. One might wonder if we can have the numerator tend to zero

while yα remains bounded. Clearly, because of the term icαyα, the cα must have an infinite

subsequence with all but finitely many zero. But then we cannot have (cαxα − dα) → 0

without dα = 0, but then we don’t have an infinite number of nonzero D2D0 charges. Thus,

we must have an infinite subsequence with yα → ∞.
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Now, because of (C.9 ) we also have an upper bound (namely,
√

4
3P 3 |Ẑ(Γ0; t∞)|) on

|
1
6r∗(xα + iyα)3 − 1

2b∗(xα + iyα)2

y
3/2
α

+
ĉα(xα + iyα) − d̂α

y
3/2
α

| (C.12)

The ensemble of complex numbers in the absolute value sign is clearly bounded. Now

consider the ensemble of complex numbers

ĉα(xα + iyα) − d̂α

y
3/2
α

We can write:

ĉα(xα + iyα) − d̂α

y
3/2
α

=
c∗(xα + iyα) − d∗

y
3/2
α

−
(
∑

β∈Sα
cβ)(xα + iyα) − (

∑
β∈Sα

dβ)

y
3/2
α

(C.13)

for some fixed c∗, d∗. We claim this is a bounded set of complex numbers (as we let α→ ∞).

The first term on the RHS of C.13 goes to zero. For the second term we use the fact that

the yα are increasing62 so, for example,

∑

β∈Sα

|cβ |y−1/2
α <

∑

β∈Sα

|cβ |y−1/2
β (C.14)

but the RHS of this inequality is bounded. Now, since yα → ∞ the ensemble of complex

numbers
1
6r∗(xα + iyα)

3 − 1
2b∗(xα + iyα)2

y
3/2
α

in (C.12) is unbounded. This is a contradiction with the boundedness of the set (C.12) so

we conclude that there can only be a finite number of split attractor flows.

The above argument can be adapted to the general case as follows.

Let the terminal regular attractor points at finite points of moduli space ti = Bi + iJi
have magnetic charges (ri, Pi). Using the basic inequality (C.2) with Γ′ = ω, where ω is a

unit volume form we again find

|Z(Γ0; t∞)| ≥
∑

i

|ri|
√
J3
i

3
≥
√
J3
min

3

∑
|ri| (C.15)

where as before there is a lower bound on the volume in the moduli space.

Similarly, we find

|Z(Γ0; t∞)| ≥
∑

i

|qi2 · Pi|
|qi2 · ti|

√
J3
i

3
(C.16)

Here qi2 are arbitrary charges in H4(X,Z) applied to each of the terminal attractor points.

The ti are in the Kähler cone, as are the Pi (by the attractor equation), so the most effective

choice is to take the qi2 to range over an integral basis B of effective curves generating

62we might need to choose a subsequence for this to be the case
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H2(X,Z). Once again we claim that in a region of Teichmüller space where the B fields

are bounded, and the Kahler classes are bounded below, there is a universal lower bound

for 1
|qi

2·ti|

√
J3

i
3 as qi2 ranges over B. It follows that

∑
i |PAi | is bounded above for each

component A in the basis dual to B.

As before, from (C.15)(C.16) we conclude that there is a finite set of possible final

magnetic attractor charges, and hence a finite number of magnetic attractor trees one can

make.

As before, if there are an infinite number of attractor flow trees then there must be

some line segment in some tree that supports an infinite family of different trees emitting

D2D0 charges (qα2 , q
α
0 ). Once again,

|qα2 · tα − qα0 V |√
J3
α

(C.17)

must go to zero for some subsequence of electric charges. Again we conclude that J3
α → ∞

is necessary, and now observe that there is an upper bound on

|
1
6r∗t

3
α − 1

2P∗t2α√
J3
α

+
q̂α2 tα − q̂α0 V√

J3
α

| (C.18)

The above is a sum of two complex numbers. The ensemble formed by the second (as

α → ∞ ) is bounded, but the first cannot be, but this contradicts the fact that the norm

is bounded.

Thus, there must be a finite number of split attractor flows terminating in the regions

of the type we have specified. For physical reasons we firmly believe that the number of

split attractor flows in all of Teichmüller space is unconditionally finite. Unfortunately, it

appears to us that the above ideas are not sufficiently powerful to prove this, and the proof

will need a new idea.

D. Attractor tree numerics

As reviewed in section 3.2, whenever the entropy function S on charge space is known

explicitly, one can explicitly construct all solutions to the BPS equations of motion. In

particular one can in principle explicitly construct attractor flows and the trees built from

them, although explicit expressions often become very complicated. The same explicit

prescriptions can be used though to construct highly efficient numerical algorithms, e.g.

for determining whether or not a tree of given topology exists in a given background.

In this appendix, we sketch such an algorithm and explain how we used it to check the

extreme polar state conjecture.

D.1 Existence of flow trees

The topological data of a flow tree can be specified as a nested list. For example the

tree sketched in fig. 20 is represented as T = {{Γ1,Γ2}, {Γ3, {Γ4,Γ5}}}.
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To determine whether a split Γ → Γ1 + Γ2 exists

Γ1 Γ2 Γ3 Γ4 Γ5

Figure 20: Example of topolog-

ical flow tree data.

starting from some initial point tin, i.e. whether a wall

of marginal stability is crossed before an attractor point

or zero of Z(Γ) is reached, we proceed as follows. We

parametrize the attractor flow in the usual way by τ =

1/r such that the initial point corresponds to τ = 0 and

Uτ=0 = 0. Note that from (3.25) we always find a unique

value of τ where Im(Z1Z̄2) = 0:

τ0 =
2

〈Γ1,Γ2〉
Im(Z1Z̄2)

|Z|

∣∣∣∣
τ=0

. (D.1)

When the entropy function S is known explicitly, the value

of the moduli tA and therefore the central charges Z1 and

Z2 at τ = τ0 can be computed explicitly using the results of [24]. For example in the

(effective) one modulus, large radius case with (p0, p, q, q0) = p0 + pD + qD2 + q0D
3 with

D ≡ D1 the basis divisor, we have

S(p0, p, q, q0) =
π

3

√
3 p2 q2 − 8 p0 q3 − 6 p3 q0 + 18 p p0 q q0 − 9 p02 q02

t(p0, p, q, q0) =
p q − 3 p0 q0 + i

√
3 p2 q2 − 6 p3 q0 + 18 p p0 q q0 − 8 p0 q3 − 9 p02 q02

p2 − 2 p0 q
,

so the flows are given by t(τ) = t(H(τ)) with H(τ) = −Γ τ + 2 Im(e−iαΩ)τ=0.

The value of τ0 given by (D.1) corresponds to an actual split point if and only if

τ0 > 0, Re(Z1Z̄2)|τ0 > 0, and tA|τ0 lies in the interior of Teichmüller space (in the large

radius approximation in which we work this amounts to Im tA|τ0 > 0).

To determine whether the full flow tree exists, it thus suffices to check recursively

through the nested list for the existence of the subsequent splits, as outlined above, and

finally whether the Γi attractor points exist for the endpoints of the tree. In the large

radius approximation, this is equivalent to having positive discriminant S2(Γi) ∼ D(Γi).

All of this is easily done numerically. A straightforward implementation in Mathemat-

ica manages to check about one thousand splits per second on a 2 GHz Pentium.

D.2 Maximizing q̂0

Using the procedure for checking the existence of flow trees sketched above, we can try to

find numerically the maximally polar states (i.e. maximal q̂0) within a specified ensemble of

flow trees, thus providing evidence for the extreme polar state conjecture of section 6.2.2.

We implemented this in Mathematica by a simple random walk algorithm, starting

from an existing attractor flow tree within an ensemble specified by a flow tree topology

and charges Γi(u) depending on a set of parameters u. At each step random points u

near the latest successful point uprev are chosen until a value of u is found which gives an

actual attractor flow tree with q̂0 larger than the maximal q̂0 so far, with some bias in the

direction of the last successful step. If the number of trials exceeds a certain cutoff, the
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Figure 21: Left: Initial four-legged flow tree in D6-D6-anti-D6-anti-D6 optimization procedure.

Right: Endpoint of optimization. The final two splits have become invisibly small; in spacetime

this flow tree corresponds to near-coincident D6 − D6 and near-coincident D6 − D6, with nearly

pure fluxed D6 and anti-D6 branes.

stepsize is decreased. This goes on till a specified (large) number of attractor flow trees

has been evaluated. The whole process is repeated several times over, eliminating the less

successful random walks.

For example, we considered four centered D6 − D6 − D6 − D6 flow trees with topol-

ogy as in fig. 21a and charges parametrized by Γ1 = eP/4+Sa(1 − β̃D2 + ñ1D
3), Γ2 =

eP/4−Sa(1 − β̃D2 + ñ2D
3), Γ3 = −e−P/4−Sb(1 − β̃D2 + ñ3D

3), Γ4 = −eP/4+Sb(1 − β̃D2 +

ñ4D
3). Keeping P fixed at P = 1 and starting at {Sa, Sb, β, ñ1, ñ2, ñ3, ñ4} = {5 ×

10−2, 5 × 10−2, 1.92 × 10−2, 2.03 × 10−3,−2.03 × 10−3,−2.03 × 10−3, 2.03 × 10−3} (shown

in fig. 21a), running 100 times at a cutoff of 100, 000 flow tree evaluations, resulted in

a maximal q̂0, (q̂0)max = 0.0104064 at {Sa, Sb, β, ñ1, ñ2, ñ3, ñ4} = {4.9 × 10−4, 1.5 ×
10−4, 1.0 × 10−5, 3.1 × 10−8,−3.1 × 10−8,−3.1 × 10−8, 7.4 × 10−9} (shown in fig. 21b).

This is fully compatible with our conjectured (q̂0)max = P 3/24r2 = 1/96 ≈ 0.0104167, at

{Sa, Sb, β, ñ1, ñ2, ñ3, ñ4} = {0, 0, 0, 0, 0, 0, 0}, in accordance with the extreme polar state

conjecture.

E. The three node quiver index

In this appendix we evaluate the integral (5.47) yielding the Euler characteristic of M
defined in (5.44). We therefore define the function:

χ(a, b; c) :=

∮
dJ1

∮
dJ2J

−a
1 J−b

2

(1 + J1)
a(1 + J2)

b

(1 + J1 + J2)c
(J1 + J2)

c. (E.1)

In this appendix we will derive the following four main properties.

First, we obviously have χ(a, b; c) = χ(b, a; c). Second, we can write χ(a, b; c) in terms

of an integral of Laguerre polynomials:

χ(a, b; c) = ab−
∫ ∞

0
dse−sL1

a−1(s)L
1
b−1(s)L

1
c−1(s) (E.2)
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in particular, χ(a, b; c) = ab− f(a, b, c) where f(a, b, c) is totally symmetric.

To state the third and fourth properties note that for 3 positive integers a, b, c either

all three triangle inequalities are satisfied

a+ b ≥ c (E.3)

b+ c ≥ a (E.4)

c+ a ≥ b (E.5)

or precisely one is violated. Our third property states that:

χ(a, b; c) =





b(a− c) if a ≥ b+ c

a(b− c) if b ≥ a+ c

0 if c ≥ a+ b

(E.6)

Fourth, when all three inequalities (E.3) are satisfied we do not have a simple formula for

χ(a, b; c), but we do have the asymptotic formula

χ(a, b; c) ∼ k(−1)a+b+c(abc)−1/32a2b2c (E.7)

where k is a constant.

E.1 Derivation of property two

Write χ(a, b; c) as:

χ(a, b; c) =
1

(c− 1)!

∮
dx1

∮
dx2 (1 + 1/x1)

a (1 + 1/x2)
b (x1 + x2)

c

∫ ∞

0

ds

s
sce−s(1+x1+x2) (E.8)

=
1

(c− 1)!

∫ ∞

0

ds

s
sce−s

∮
dx1

∮
dx2 (1 + 1/x1)

a (1 + 1/x2)
b

(
− ∂

∂s

)c
e−s(x1+x2) (E.9)

=
1

(c− 1)!

∮ ∞

0

ds

s
sce−s

(
− ∂

∂s

)c [(∮
dx1 (1 + 1/x1)

a e−sx1

)(∮
dx2 (1 + 1/x2)

b e−sx2

)]
(E.10)

Now we note that
∮
dx1 (1 + 1/x1)

a e−sx1 =
a∑

j=1

(
a

j

)
(−s)j−1

(j − 1)!
= L1

a−1(s) (E.11)

is a Laguerre polynomial. Thus we can write

χ(a, b; c) =
1

(c− 1)!

∮ ∞

0
dssc−1e−s

(
− ∂

∂s

)c(
L1
a−1(s)L

1
b−1(s)

)
(E.12)

Now integrate by parts c− 1 times (assuming c− 1 > 0). The boundary terms do not

contribute. Next use the Rodrigues formula
(
d

dx

)n
(xn+ae−x) = n!xae−xLan(x) (E.13)

to get

χ(a, b; c) =

∫ ∞

0
dse−sL0

c−1(s)

(
− ∂

∂s

)(
L1
a−1(s)L

1
b−1(s)

)
(E.14)

– 134 –



The last integration by parts produces

χ(a, b; c) = ab+

∫ ∞

0
ds

d

ds
(e−sL0

c−1(s))L
1
a−1(s)L

1
b−1(s) (E.15)

Finally, using
d

ds
(e−sL0

c−1(s)) = −e−sL1
c−1(s) (E.16)

we arrive at the elegant formula (E.2). Of course the integral can be done explicitly as a

triple sum:

χ(a, b; c) = ab−
a−1∑

s=0

b−1∑

t=0

c−1∑

u=0

(
a

s+ 1

)(
b

t+ 1

)(
c

u+ 1

)
(s + t+ u)!

s!t!u!
(−1)s+t+u (E.17)

E.2 Evaluation when a triangle inequality is violated

The Laguerre form (E.2) of the function does not appear to be the most useful form for

evaluating χ in this region. Rather, in the contour integral (E.1) it is useful to make the

change of variables

zi := 1 + 1/Ji (E.18)

The contour will now be on two large circles with radius ∼= 1/ǫi and we have the contour

integral

χ(a, b; c) = I(a, b; c) =

∮
dz1

∮
dz2

1

(1 − z1)2
1

(1 − z2)2
za1z

b
2

(
z1 + z2 − 2

z1z2 − 1

)c
(E.19)

Let us try to do the integral by deforming the z1 contour first. Then we potentially

pick up poles at z1 = 1 and z1 = 1/z2. This leads to I = I1 + I2 where I1 comes from the

pole at z1 = 1 and I2 from the pole at z1 = 1/z2. We have

I1 =

∮
dz2

d

dz1
|z1=1

[
zb2

(z2 − 1)2
za1

(
z1 + z2 − 2

z1z2 − 1

)c]
(E.20)

I2 =

∮
dz2

1

(c− 1)!

(
d

dz1

)c−1

|z1=1/z2

[
zb−c2

(z2 − 1)2
za1

(z1 − 1)2
(z1 + z2 − 2)c

]
(E.21)

It is straightforward to carry out the differentiation in I1 and evaluate the z2 integral

from its pole at z2 = 1:

I1 =

∮
dz2(a− c)

zb2
(z2 − 1)2

= (a− c)b (E.22)

In order to evaluate I2 we expand

(z1 + z2 − 2)c =

c∑

s=0

(
c

s

)
(z1 − 1)s(z2 − 1)c−s

so now we write:

I2 = IA2 + IB2 + IC2 (E.23)
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IA2 =

∮
dz2

1

(c− 1)!

(
d

dz1

)c−1

|z1=1/z2

[
zb−c2

(z2 − 1)2
za1

(z1 − 1)2
(z2 − 1)c

]

IB2 =

∮
dz2

1

(c− 1)!

(
d

dz1

)c−1

|z1=1/z2

[
zb−c2

(z2 − 1)2
za1

(z1 − 1)2
c(z1 − 1)(z2 − 1)c−1

]

IC2 =

∮
dz2

1

(c− 1)!

(
d

dz1

)c−1

|z1=1/z2

[
zb−c2

(z2 − 1)2

c∑

s=2

(
c

s

)
za1 (z1 − 1)s−2(z2 − 1)c−s

]

Next we write out the action of the derivative wrt z1. Important simplifications occur

because after differentiating we replace

z1 − 1 → −z−1
2 (z2 − 1)

The remaining z2 integral will get contributions from the poles at z2 = 1 and, possibly, at

z2 = 0. If we replace

(
d

dz1

)c−1

|z1=1/z2z
a
1 (z1 − 1)s−2

=

c−1∑

k=0

(
c− 1

k

)
a!

(a− (c− 1 − k))!

(s− 2)!

(s− 2 − k)!
z
a−(c−1−k)
1 (z1 − 1)s−2−k

then we find after setting z1 = 1/z2 that the term is proportional to

zb−a−s+1
2 (z2 − 1)c−k−4 (E.24)

Thus, we can only get a pole for the contributions from k = c− 3, c− 2, c− 1 and then we

find that only s = c, c− 1 can contribute.

Adding up the contributions we get

IC2 = a(a− 1) + a(b− a− c+ 1) +

∮

z2=0
[...] (E.25)

The second term arises from the contributions of the poles at z2 = 0. From (E.24) we see

that these poles are absent if b+ 1 ≥ a+ c.

In exactly the same way we find that

IA2 =
1

2
a(a− 1)(c − 2) + a(c− 1)(b − a+ 1) +

1

2
c(b− a+ 1)(b − a) +

∮

z2=0
[...]

IB2 = −1

2
a(a− 1)c− ac(b− a) − 1

2
c(b− a)(b− a− 1) +

∮

z2=0
[...]

where we have added up the poles at z2 = 1. The poles at zero are absent for b+ 1 ≥ a for

IA2 and b ≥ a for IB2 .

Thus, when b+1 ≥ a+c we only have poles from z2 = 1 and adding up the contributions

we find

χ = I(b, a; c) = a(b− c) a+ c ≤ b+ 1, (E.26)

in agreement with what we found in section 5.3.
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What about other ranges? Clearly we have I(b, a; c) = I(a, b; c) so we also have

χ = I(a, b; c) = b(a− c) b+ c ≤ a+ 1 (E.27)

When c ≥ a+b we can use the fact that χ(a, b; c) = ab−f(a, b, c) with f(a, b, c) totally

symmetric to derive χ(a, b; c) = 0.

E.3 Large (a, b, c) asymptotics

For estimating asymptotics at large a, b, c satisfying the triangle inequality we return to

the formula (E.2). For simplicity we consider

∫ ∞

0
dse−sL1

A(s)L1
B(s)L1

C(s)

For large A,B,C the integrand oscillates, but has a large peak (at least for A = B = C

) and one can try to do the integral by saddle-point approximation. The integrand is

certainly very small for s ≥ (A+B + C).

The appropriate asymptotic expansion of the Laguerre polynomials for our needs is

that given in [112], equation 8.22.10. Namely, for x = (4n + 4) cosh2(φ), ǫ ≤ φ ≤ Λ

L1
n(x) ∼

1

2
(−1)nex/2(π sinhφ)−1/2x−3/4n1/4 exp

(
(n+ 1)(2φ − sinh 2φ)

)
(1 + O(n−1))

(E.28)

This covers a region up to (4n + 4) cosh2 Λ for any fixed Λ as n → ∞. We see that the

integrand grows much more slowly than e−x+3x/2 in this region. Beyond this region we will

start to get exponential decay.

We consider the case where A,B,C do not differ too much from some common large

integer N . To be more precise, define φA, φB , φC by s = 4(A+ 1) cosh2 φA, etc. and define

also s = 4(N + 1) cosh2 φ. We define µA := A+1
N+1 := 1 + δµA and we are considering limits

where δµA = (A−N)/(N + 1) ∼ N−θ with 0 < θ < 1. We will neglect corrections to the

integral of order 1 + O(δµ). These are very complicated. But we will keep corrections to

the entropy of order (N + 1)δµ2 ∼ N1−2θ. Note that if 1/2 > θ these are even dominant

over the logN correction from the one-loop prefactor.

We solve cosh φA = (1 + δµA)−1/2 coshφ by

φA = φ− 1

2
δµA coth φ+

δµ2
A

16

(cosh 3φ− 3 cosh φ)

(sinhφ)3
+ · · · (E.29)

and then expand the action to second order:

f = (N+1)

(
2 cosh2 φ+3(2φ−sinh 2φ)+2φ(δµA+δµB+δµC)−1

2
(δµ2

A+δµ2
B+δµ2

C) coth φ+· · ·
)

(E.30)

We find the stationary point for this action is

φ∗ = log
√

2 +
1

2
(δµA + δµB + δµC)− 3

4
(δµA + δµB + δµC)2 + (δµ2

A + δµ2
B + δµ2

C) (E.31)
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and the saddle point value is

f(φ∗) = (N+1)

(
log 8+(δµA+δµB+δµC) log 2+

1

2
((δµA+δµB+δµC)2−3(δµ2

A+δµ2
B+δµ2

C))+· · ·
)

(E.32)

From this we get:

IABC ∼ 21/2

π37/2

(−1)A+B+C

(ABC)1/3
2A+12B+12C+1 (E.33)

e(N+1) 1
2
((δµA+δµB+δµC )2−3(δµ2

A+δµ2
B+δµ2

C))

(
1 + O(δµA, δµB , δµC )

)
(E.34)

Note that if A,B,C are not very different from each other, as we assumed, then it is natural

to take N = (A+B + C)/3.

Thus, translating back to our entropy we find that in this regime,

χ ∼ 21/2

π37/2

(
(−1)a2a

a1/3

)(
(−1)b2b

b1/3

)(
(−1)c2c

c1/3

)
(1 + · · ·) (E.35)

where the corrections in + · · · are of order

O((
2a− b− c

b+ a+ c
), (

2b− a− c

b+ a+ c
), (

2c − b− a

b+ a+ c
)) (E.36)

The leading order factorization of the answer, and especially the factors 2a etc. call for

a conceptual explanation!

F. Index vs. absolute cohomology and the entropy of 5d black holes

In [3] C. Vafa adduced an example of black hole entropy counting which appears to imply

that the entropy can only be accounted for by computing the total number of BPS states

without signs, rather than by an index of BPS states. In this appendix we will explain

that, in fact, the entropy can be correctly accounted for using an appropriate index.

The problematic example studied in [3] involves type IIA string theory on an elliptically

fibered Calabi-Yau π : X → B with section. The BPS states in question are those obtained

from wrapping D2 branes on a curve C ⊂ B.

Let Ĉ = π−1(C) be the elliptically fibered surface covering C. Then, in [3] it is argued

that the relevant moduli space which one should quantize to produce BPS states is

∐n≥1 Symn(Ĉ) (F.1)

As usual, this quantization involves a Fock space based on oscillators associated with the

cohomology of Ĉ. For generic elliptic fibrations one has h1,0(Ĉ) = h1,0(C). 63 It then

follows from the adjunction formula that

h1,0(Ĉ) =
1

2
(C · C + C ·KB) + 1 (F.2)

63Note that this explicitly excludes the case of a direct product Ĉ = C × T 2. Our considerations below

apply equally well in the direct product case.
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where the intersection products are taken within the surface B, and KB is the canonical

bundle of B. Now, using equations (B.5-B.6) together with c2(X) = 12σπ∗(c1(B))modπ∗

where σ is the section of the elliptic fibration, (see, for example, [110], eq. 7.28), we find

[3]

h2,0(Ĉ) =
1

2
(C · C − C ·KB) (F.3)

h1,1(Ĉ) = C · C − 9C ·KB + 2. (F.4)

Now, the key to resolving the puzzle pointed out in [3] lies in considering the SU(2)×
SU(2) Lefshetz decomposition of the cohomology of the moduli space. As emphasized in

[95] the existence of such a double Lefshetz decomposition follows from physical reasoning,

although it is not so obvious mathematically. The existence of an SU(2)×SU(2) Lefshetz

decomposition of the cohomology of Ĉ is strongly suggested by the Leray spectral sequence,

and we will simply assume it exists. Some rigorous results along these lines appear in [111].

Proceeding naively, the SU(2)R raising and lowering operators are constructed us-

ing the Kähler form ω(C) of the base, while those for SU(2)L are constructed using

ω(E) := ω(Ĉ) − ω(C) which may be regarded as the Kähler form of a generic fiber. The

decomposition into multiplets of the type (jL, jR) is then

2h1,0(Ĉ)(
1

2
, 0) ⊕ (2h2,0 + h1,1 − 2)(0, 0) ⊕ (

1

2
,
1

2
) (F.5)

where the last summand is the multplet 1, ω(C), ω(E), ω(C) ∧ ω(E).

Taking into account the symmetric products (F.1) we have

Z = Tr(−1)2mL+2mRy2mLqN =
∏

n≥1

((1 − yqn)(1 − y−1qn))Nf

(1 − qn)Nb
(F.6)

where

Nf = 2h1,0(Ĉ) − 2 (F.7)

Nb = h1,1(Ĉ) + 2h2,0(Ĉ) − 2. (F.8)

Note that if we wish to extract the Euler character of the moduli spaces then we set y = 1

and study the coefficients of qn. For y = 1 we indeed we obtain

η−χ(Ĉ) (F.9)

where χ(Ĉ) = −12C ·KB . From the Calabi-Yau condition χ(Ĉ) > 0 so this will produce

exponential degeneracies ∼ exp[π
√

8|C ·KB |n] but, as stressed in [3] the growth under

uniform scaling of charges (C,n) → (ΛC,Λn) goes as exp[const.Λ] in contradiction with the

supergravity entropy which scales like exp[const.Λ3/2]. On the other hand, since beven(Ĉ)

and bodd(Ĉ) each scale like C · C for large C, the absolute cohomology will grow like

exp[const.
√
C · Cn] ∼ exp[const.Λ3/2]. This observation suggests that, at least in this

example, one needs to use the absolute cohomology – the sum over all BPS states without
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signs – to account properly for the entropy. Unfortunately, that proposal in turn leads to

many paradoxes.

There is an alternative however. To account for the entropy we should work at fixed jL,

and compute the asymptotic growth of NmL
Q as explained in section 6.1.2. In order to do

this properly we should incorporate the Wilson line degrees of freedom for the D2 wrapped

on C. This leads to an extra torus factor in the moduli space, and the quantization of

that torus leads to a factor y − 2 + y−1 = (y1/2 − y−1/2)2 for each T 2. Therefore, we are

interested in the asymptotics of the coefficients D′(n, ℓ) defined by

(y1/2 − y−1/2)2h
1,0(Ĉ)

∏

n≥1

((1 − yqn)(1 − y−1qn))Nf

(1 − qn)Nb
=
∑

D′(n, ℓ)qnyℓ (F.10)

Setting y = e2πiz and q = e2πiτ and using the product formula for the theta function

we see that the asymptotics for large n of D′(n, ℓ) are in turn governed by those in the

Fourier expansion of

(y1/2 − y−1/2)2η−χ(Ĉ)

(
ϑ1(z, τ)

η3

)C·C+KB·C

(F.11)

We are interested in the leading behavior for (C,n) → (ΛC,Λn) and since χ(Ĉ) is linear

in C the first two factors in (F.11) lead to a subleading correction to the entropy.

Now let us derive the asymptotics of the Fourier coefficients of

η−χ(Ĉ)

(
ϑ1(z, τ)

η3

)C·C+KB·C

(F.12)

Put C2 +C ·KB = M and for simplicity assume M is an even integer, and define k = M/2.

In this case (F.12) is a weak Jacobi form of index k = M/2 and weight −M − χ/2, where

χ = χ(Ĉ). (We choose M to be even to avoid certain inconvenient phases in the modular

transformations. Similarly, strictly speaking we should take χ to be a multiple of 24, but

this latter point is not too essential. )

The spectral flow identity shows that (F.12) has an expansion of the form

∑

n≥0,ℓ∈Z

c(2Mn − ℓ2)qnyℓ (F.13)

Decompose the sum by writing

ℓ = µ+ 2ks (F.14)

n = n0 + ks2 + µs (F.15)

and choose a fundamental domain −k + 1 ≤ µ ≤ k so that we can write

η−χ(
ϑ1(z, τ)

η3
)M =

k∑

µ=−k+1

Hµ(τ)Θµ,k(z, τ) (F.16)
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where

Hµ(τ) =
∑

n∈Z

c(4kn − µ2)qn−
µ2

4k
−χ/24 (F.17)

= (−1)µ
(

2k

k − µ

)
q−

µ2

4k
− χ

24 + · · · (F.18)

Note that the most negative power goes like q−
k
4
− χ

24 for µ = ±k. Also note that by

the modular transformations of level k theta functions the Hµ transform under τ → −1/τ

by a finite fourier transform, times the usual modular weight of −M − χ+1
2 .

Applying the Rademacher expansion we find that for 2Mn− ν2 ≫ 1

c(2Mn − ν2) ∼ ζeπ
q

(2Mn−ν2−Mχ
12

)(1+ χ
3M

) (F.19)

with a rather awkward prefactor

ζ = (−1)ν+M/2
√

2

(
M

2

)M+ 1
2
χ+ 3

2
(

1 +
χ

3M

) 1
2
(M+χ/2+1)(

2Mn − ν2 − Mχ

12

)− 1
2
(M+χ/2+2)

(F.20)

Now, we can take into account the prefactor y − 2 + y−1 in (F.11) by noting that this

amounts to taking a discrete second derivative with respect to ν of (F.19). This will leave

the exponential factor and modify the prefactor ζ.

Letting M = C2 + C · KB this shows that the entropy at fixed mL is exactly that

predicted macroscopically by supergravity, at least for large 2Mn − ν2, and we do indeed

have exp[const.Λ3/2] growth for an index. Note that the terms depending on χ correct the

leading supergravity result in an interesting way.

What has happened here is that the sum over mL, which corresponds to putting y = 1

leads to impressive cancellations. Nevertheless, one can still capture the entropy with an

index rather than the absolute cohomology.

G. A derivation of gtop → ∞ OSV using flux vacua counting techniques

Now let us return to the discussion of section 2.1. As we explained below eq. (2.5), counting

BPS states involves the counting of “open string flux vacua.”

To make this more precise, we make use of the N = 1 special geometry structure of the

D4-brane moduli space M [108]. Let ΣF be the Poincaré dual 2-cycle to F , and expand

ΣF in a basis {Cα} of H2(P ): ΣF = mαCα. In a neighborhood of the divisor moduli space,

parametrized by moduli zi, i = 1, . . . , n := h2,0, we can define chain periods Πα by

Πα(z) :=

∫

Γα(z)
Ω (G.1)

where Γα is a 3-chain with a z-dependent boundary component on P given by Cα, and

possibly other, fixed boundary components, independent of z. With these chain periods,
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we define a superpotential64

W (z) := mαΠα(z) =

∫

Γ(z)
Ω, (G.2)

where Γ := mαΓα is thus a 3-chain with boundary ΣF on P . Critical points of W precisely

correspond to points where F (0,2) = 0. To see this, note that an infinitesimal holomorphic

variation of W gives

δW =

∫

δΓ
Ω =

∫

ΣF

δn · Ω =

∫

P
F ∧ (δn · Ω)

where δn is the normal holomorphic vector field corresponding to the variation δz of the

divisor moduli and δn·Ω is the contraction of δn with Ω, providing an isomorphism between

the space of holomorphic sections of the normal bundle to P and (2, 0)-forms on P . Thus

we see that requiring ∂iW = 0 is equivalent to F (0,2) = 0 (and therefore of course also

F (2,0) = 0).

For the same reason, we have that for each i = 1, . . . , h2,0, ∂iΠα(z) is the period vector

of a (2, 0)-form ωi on P . The natural Kähler metric on moduli space is given by

gij̄ :=

∫

P
ωi ∧ ω̄j̄ = ∂iΠαQ

αβ ∂̄j̄Π̄β = ∂i∂̄j̄(ΠαQ
αβ Π̄β), (G.3)

where Qαβ is the inverse of the intersection form Qαβ := Cα · Cβ.
Similar to the more familiar N = 2 special geometry, acting with further derivatives on

∂iΠ will produce periods of (1, 1)- and (0, 2)-forms on P , because of Griffiths transversality

[108]. In particular

∇i∂jΠ(z) ∼ (1, 1) (G.4)

where ∇i is the Levi-Civita covariant derivative with respect to the above defined metric.

Let us now compute the actual BPS partition sum. For a given flux F , the number of

isolated critical points of the corresponding flux superpotential WF is given by

∫

M
d2nz δ2n(∂WF ) |det∇i∂jWF |2. (G.5)

The determinant ensures that each isolated zero of the delta function contributes +1 to the

integral. We are free to use covariant derivatives instead of ordinary derivatives because

the difference is proportional to ∂W , which vanishes. At any such critical point, the divisor

is frozen, so the only remaining moduli are the positions of the N D0-branes bound to P .

The contribution to the total degeneracy or Euler characteristic from this component of

moduli space is therefore simply χ(SymN (P )) = pχ(N), where pχ(N) are the partitions of

N into χ colors.65

64This superpotential and generalizations thereof have been discussed in [43, 109].
65Because b1(X) = 0, we have b1(P ) = 0 hence the Euler characteristic of the symmetric product equals

the total degeneracy.
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Thus, we get for the OSV black hole partition sum

ZBH :=
∑

q

Ω(p, q) e2πφ
0q0+2πφAqA (G.6)

≈
∑

N,F

pχ(N) e2πφ
0(−N+ 1

2
F 2+ χ

24
)+2πΦ·F

∫

M
d2nz δ2n(∂WF ) |det∇i∂jWF |2 (G.7)

Here Φ = φADA viewed as an element of H2(P ), and we used (2.1)-(2.4). Actually, the

above partition sum misses the contributions from components which have flat directions

in the divisor moduli space (since then detW ′′ = 0), e.g. for F = 0. However, we will even-

tually make a continuous F approximation anyway, which as we will discuss is equivalent

to a large q0 or small φ0 approximation, and for generic divisors the set of such components

with flat directions has measure zero in flux space. So we will take the above expression

for ZBH as our starting point.

The sum over N is easily performed and yields a factor 1/ηχ. We furthermore expand

as before F = mαCα, which gives:

ZBH ≈ 1

ηχ(e−2πφ0)

∫

M
d2nz

∑

m

eπφ
0Qαβm

αmβ+2πΦαmα
δ2n(mα∂iΠα) |detmα∇i∂jΠα|2.

(G.8)

Note that Qαβ is an indefinite form of signature (b+2 , b
−
2 ). However, only critical points of

W contribute, at which F is in H1,1(P ). Restricted to this space, Q has signature (1, b−2 ).

The one positive direction corresponds to the Kähler form J on P . This positive direction

will cause the black hole partition sum to diverge, but as discussed in [12] and at length in

this paper, this divergence is easily regularized by adding a Boltzmann factor e−βH(p,q). To

avoid cluttering of formulas, we will not do this regularization explicitly in what follows,

and use its existence only to justify formal manipulations.

Both the delta-function and the determinant can be rewritten as integrals of exponen-

tials linear in mα:

δ2n(mα∂iΠα) =

∫
d2nλ eiπm

α(λi∂iΠα+λ̄ī∂̄īΠ̄α) (G.9)

|detmα∇i∂jΠα|2 =
1

π2n

∫
dnθ dnψ dnθ̄ dnψ̄ eπm

α(∇i∂jΠα θiψj+∇̄ī∂̄j̄Π̄α θ̄īψ̄j̄). (G.10)

The second integral is over fermionic variables. This recasts the partition function (G.8) as

a Gaussian ensemble with boson-fermion-fermion cubic interactions. To obtain the “large

flux” asymptotics, i.e. the limit of small φ0, we replace the sum over discrete fluxes mα by

an integral, parallel to [30, 31]. The resulting integral is Gaussian, so it can be performed

exactly. This yields for the part of (G.8) starting at
∑

m ≈
∫
db2m:

1

π2n
(φ0)−b2/2e

− π
4φ0 (2Φα+iλi∂iΠα+∇i∂jΠαψiθj + c.c.)Qαβ (2Φβ+iλi∂iΠβ+∇i∂jΠβψ

iθj +c.c.)
(G.11)

where b2 := b2(P ) and +c.c. stands for the conjugate terms in (G.9)-(G.10). Crucial here is

that detQαβ = 1, because the middle cohomology of a compact manifold is always self-dual
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and therefore its intersection form unimodular. In the above expression and the remainder

of this appendix, we drop overall phase factors.

We now need to work out the intersection products. At first sight, this seems to give a

lot of complicated terms. However, the underlyingN = 1 special geometry structure, and in

particular Griffiths transversality, simplifies this a lot, again in parallel to the closed string

case analyzed in [30, 31]. First recall that ∂iΠα ∼ (2, 0), ∇i∂jΠα ∼ (1, 1), and Φα ∼ (1, 1).

Only intersection products of (1, 1) with (1, 1) or (2, 0) with (0, 2) can be nonzero. Further-

more, the intersection product ΦαQ
αβ∇i∂jΠβ = 0 because ΦαQ

αβ ∂jΠβ = 0 identically

for all values of the moduli z.

The remaining nontrivial products can be computed using the Leibniz rule and or-

thogonality, together with (G.3):

∂iΠαQ
αβ ∂̄j̄Π̄β = gij̄ (G.12)

∇i∂jΠαQ
αβ ∇̄k̄∂̄l̄Π̄β = Rik̄jl̄ (G.13)

∇i∂jΠαQ
αβ ∇k∂lΠβ =: Fijkl (symm. in ijkl) (G.14)

These are similar to (but somewhat simpler than) the closed string expressions of [30, 31].

The exponential in (G.11) thus becomes

e
− π

φ0 (Φ2− 1
2
gij̄λ

iλ̄j̄+ 1
2
Rik̄jl̄ψ

iψ̄kθj θ̄l)
. (G.15)

The term Fijklψiθjψkθl drops out because Fijkl is symmetric in its indices. Doing the

Gaussian integrals over λ and ψ, ψ̄ turns this in

πn e
− π

φ0 Φ2

(det gij̄)
−1 det(Rik̄jl̄θ

j θ̄l) (G.16)

which is equal to

πn e
− π

φ0 Φ2

det(Rkijl̄θ
j θ̄l). (G.17)

This can be combined with the measure d2nz in (G.8) to produce

πn e
− π

φ0 Φ2

detR (G.18)

where R is the curvature 2-form

Rki =
i

2
Rkijl̄dz

j ∧ dz̄ l̄. (G.19)

We are almost ready to write down our final result. A final step is to do a modular

transformation on the 1/ηχ factor in (G.8):

1

ηχ(e−2πφ0)
= (φ0)χ/2

1

ηχ(e
− 2π

φ0 )
. (G.20)

Putting everything together, and noting that χ = b2 + 2, we get (in the continuous flux /

small φ0 approximation):

ZBH ≈ φ0 e
− π

φ0 Φ2

ηχ(e
− 2π

φ0 )

∫

M

1

πn
detR (G.21)

≈ χ̂(M)φ0 e
2π
φ0 (P3+c2·P

24
−Φ2

2
)

(G.22)
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where

χ̂(M) :=

∫

M

1

πn
detR. (G.23)

Alternatively

Ω(p, q) ≈ χ̂(M)

∫
dφφ0 e−2πφ·q e

2π
φ0 (P3+c2·P

24
−Φ2

2
)
. (G.24)

To get to (G.22) we used the small φ0 approximation to the η-function and χ = P 3+c2(X)·
P (the terms dropped are exponentially suppressed). Formally (G.23) is exactly the Euler

characteristic of the divisor moduli space M, but there might be some subtleties since the

metric on M has singularities. Note that although this is a natural result for counting

critical points of W on M, it is not trivial: while it is true that the Euler characteristic

counts the number of zeros of a section of the cotangent bundle, ∂iW does not give such a

section because W is not single valued on M (due to monodromies acting on the fluxes).

Indeed, for some fluxes there will be no critical points at all, for example fluxes Poincaré

dual to 2-cycles which are trivial on X, and which moreover satisfy F 2 > 0, cannot satisfy

F (0,2) = 0 anywhere in moduli space. Again all this has a close analog for IIB closed string

flux vacua, where the analogous index is
∫

1
πn det(R + ω1) [30, 31]. The difference comes

from the fact that the relevant covariant derivatives in the closed string case involve an

additional ∂K connection piece, whose curvature is the Kähler form ω.

The moduli space for very ample divisors P is simply M = CPIP−1, with IP :=
P 3

6 + c2·P
12 . If the “differential Euler characteristic” (G.23) equals the topological Euler

characteristic, we thus have

χ̂(M) = χ(CPIP−1) = IP . (G.25)

The results obtained in the bulk of this paper support this assumption. (It might be

possible to prove that χ̂(M) = IP directly using the estimates in [119]. We have not

attempted to do so.)

The result obtained here is in agreement with (2.54). The sum over S is absent here;

including it is equivalent to extending the integration contour for Φ to the entire imaginary

axis in (G.24). However, since the saddle point of (G.24) lies at

φ0
∗ =

√

−P
3 + c2P

24 q̂0
(G.26)

φA∗ = −φ0DABqB, (G.27)

we see that in the large q0 limit at fixed qA and pA, φ0
∗ and φA∗ become small, and therefore

the contributions from the extension of the integration contour or equivalently the S-shifted

terms in (2.54) are actually exponentially suppressed in the regime of interest here. Hence

they can be dropped consistent with our approximations.
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