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Chiral Scale and Conformal Invariance in 2D Quantum Field Theory

Diego M. Hofman* and Andrew Strominger∗

Center for the Fundamental Laws of Nature, Harvard University,

Cambridge, MA 02138, USA

It is well known that a local, unitary Poincare-invariant 2D QFT with a global scaling symmetry
and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right
local conformal symmetry. In this paper we consider a chiral situation beginning with only a
left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal
symmetry is still implied, while right translations are enhanced either to a right conformal symmetry
or a left U(1) Kac-Moody symmetry.

I. INTRODUCTION

A two-dimensional (2D) Poincare and scale invariant
quantum field theory (QFT) has at least four global sym-
metries under which the light cone coordinates transform
as

x− → x− + a, x+ → x+ + b,

x− → λ−x−, x+ → λ+x+.
(1)

If in addition one posits that the theory is unitary and
that the spectrum of the dilation operator for λ+ = λ−

is discrete and non-negative, then it was shown in [1]
that the four global symmetries are enhanced to left and
right infinite-dimensional conformal symmetries. Ex-
plicit counterexamples indicate that the enhancement
need not occur if the dilation spectrum is not discrete.
In recent years, interest in 2D QFTs with other types

of global scaling symmetries has arisen in a variety of
contexts ranging from condensed matter to string the-
ory. In this paper we consider the special case with three
global symmetries:

x− → x− + a, x+ → x+ + b, x− → λx−, (2)

comprising two translational symmetries and a chiral
“left” dilational symmetry. Our assumptions, detailed in
the next section, include locality, unitary and a discrete
non-negative dilational spectrum but not Lorentz invari-
ance. In an argument parallel to the one in [1], we find
that these three global symmetries are sufficient to con-
clude that there are (at least) two infinite-dimensional
sets of local symmetries. One of these is a left local
conformal symmetry which enhances the left dilational
symmetry. The other enhances the right translational
symmetry and can be either a right conformal symmetry
or a left current algebra.
It is surprising that such a powerful conclusion can

be reached from such minimal assumptions. However
the element of surprise is potentially reduced by the
fact that at this point there is no definite example of
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a QFT which non-trivially satisfies all of our stated as-
sumptions1. Hence our powerful conclusions may apply
to an empty set. On the other hand, possible inter-
esting examples are suggested by the recent appearance
of warped AdS3 geometries in a variety of string the-
oretic investigations including the holographic duals of
the so-called dipole deformations of 2D gauge theories
[3–8] and the near-horizon geometries of extreme Kerr
black holes [9–11], see also [12–16]. Warped AdS3 has an
SL(2, R)× U(1) isometry group which contains (2). As
these spaces are continuous deformations of AdS3 spaces
with CFT2 duals, we expect that their holographic duals
exist and are deformed CFT2s with the symmetries (2).
However at present it not clear to what extent these duals
obey all the assumptions stated below. In this paper we
concentrate on the pure field theory analysis and leave
these interesting issues to future investigations. It is also
of interest to try to adapt our analysis to other types
of 2D scaling symmetries such as, for example, Lifshitz
scaling x→ λx, t→ λzt.

II. FROM DILATIONS TO VIRASORO

We wish to consider local, unitary, translationally-
invariant quantum field theories in 2D flat Minkowski
space with a (linearly-realized) chiral global scale invari-
ance. The assumed symmetries act on light-cone coordi-
nates x± = t± x as

x− → x− + a, x+ → x+ + b, x− → λx−, (3)

for constant λ > 0, a, b. We do not assume Lorentz invari-
ance, an action or a conserved symmetric stress tensor.
The operators generating left-moving (i.e. x−) trans-
lations and dilations will be denoted H and D , while
right-moving translations are denoted P̄ , where the bar
in general denotes right-moving charges. By assumption
these operators annihilate the vacuum. Their commuta-
tion relations are:

i [D,H ] = H, i
[

D, P̄
]

= 0, i
[

H, P̄
]

= 0. (4)

1 One possible example might be given by the continuum limit of
the large N chiral Potts model, as discussed in [2].
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We moreover assume, following [1], that the eigenvalue
spectrum λi of D is discrete and non-negative2 and there
exists a complete basis of local operators Φi such that

i [H,Φi] = ∂−Φi, i
[

P̄ ,Φi
]

= ∂+Φi,
i [D,Φi] = x−∂−Φi + λiΦi

(5)

and
∫

C
dΦi = 0 for any closed or complete space-like

contour C. Note that “local operators” as here defined
do not involve explicit functions of x±. We will refer
to λi as the weight of the operator Φi. Translational
plus dilational invariance implies the vacuum two-point
functions of the {Φi} obey

〈Φi(x
−, x+)Φj(x

′−, x′+)〉 =
fij(x

+
−x′+)

(x−−x′−)λi+λj
(6)

for some a priori unknown functions fij .
Noether’s theorem implies that each of the operators

H, D, P̄ is associated to a conserved Noether current
with components denoted h±, d± and p± whose dual con-
tour integral, e.g.

H =
∫

dx+h+ −
∫

dx−h− (7)

then gives the global charges. A proof in the present
context is reviewed in appendix A. All of these currents
have an ambiguity under shifts of the form ±∂±O, where
O is a more general type of operator potentially involving
explicit functions of x±

O(x+, x−) =
∑

i fi(x
+, x−)Φi(x

+, x−). (8)

We also show in appendix A that the shifts can be cho-
sen so that the currents satisfy canonical commutation
relations, viz:

i[H,h±] = ∂−h±, i[H, p±] = ∂−p±,

i[H, d±] = ∂−d± − h±,
(9)

i[P̄ , h±] = ∂+h±, i[P̄ , p±] = ∂+p±,

i[P̄ , d±] = ∂+d±.
(10)

This implies that h± and p± are local operators, but
the term proportional to h± in i[H, d±] implies that d±
must have explicit dependence on the x− coordinate. Ap-
pendix A demonstrates - relying crucially on the discrete-
ness of the spectrum λi - that the currents can be chosen
to be eigenoperators of D. The weights of the global
charges (4) then imply

i[D,h−] = x−∂−h− + 2h−,
i[D,h+] = x−∂−h+ + h+,

(11)

i[D, p−] = x−∂−p− + p−,

i[D, p+] = x−∂−p+,
(12)

2 For sigma-models this means the target space must be compact.

i[D, d−] = x−∂−d− + d−, i[D, d+] = x−∂−d+. (13)

We see that d+ and p+ are weight 0, d−, h+ and p− are
weight 1 and h− is weight 2.3

As we mentioned, d± must have explicit coordinate
dependence. Let us find it and write the current in terms
of local operators. Defining s± by

d± = x−h± + s± (14)

and using (9) we find that

i [H, s±] = ∂−s±, i
[

P̄ , s±
]

= ∂+s±. (15)

We conclude (s+, s−) are local operators with weights
(0, 1). Conservation of the dilation current yields

∂+d− + ∂−d+ = (16)

x− (∂+h− + ∂−h+) + h+ + ∂−s+ + ∂+s− = 0.

h± conservation then gives

h+ = −∂−s+ − ∂+s− (17)

We have not at this point fixed all the shift freedom in
the currents. In particular, we may shift away s−:

h± → h± ∓ ∂±s−, d± → d± ∓ ∂± (x−s−) , (18)

which remains consistent with the commutators (9-13)
as well as current conservation. Equations (14) and (17)
now take the simpler form

d+ = x−h+ + s+, d− = x−h− (19)

and

h+ = −∂−s+ (20)

Now, we can use the general form of the two-point
functions given by (6) . Bearing in mind the fact that s+
is a local operator of weight 0, we must have

〈s+s+〉 = fs+(x
+) (21)

which implies

∂−s+ = h+ = 0. (22)

Conservation of h± then reduces to ∂+h− = 0 or, equiv-
alently,

h− = h−(x−). (23)

This fact immediately leads to the existence of an infinite
set of conserved charges. Define:

Tξ = −
∫

dx− ξ(x−)h−, J̄χ =
∫

dx+ χ(x+)s+ (24)

3 In an ordinary 2D CFT , d+ and h+ and p− all vanish, p+ =
T++, d− = x−T−− and h− = T−−.
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where ξ(x−) and χ(x+) are smooth functions. In partic-
ular, H = T1 and D = J̄1 + Tx− . Notice that, while h−
can’t vanish if we are to have a non trivialH operator, s+
could be identically zero. s+ 6= 0 leads to the existence
of even more local symmetries unrelated to the originally
posited global symmetries. Whether or not it is zero, we
show in appendix B that

i[J̄χ, Tξ] = 0. (25)

This means we are free to calculate the algebra spanned
by the conserved charges Tξ without worrying about the
action of J̄χ. We henceforth concentrate on the minimal
case s+ = 0.
Let us now work out the algebra spanned by Tξ. The

action of H = T1 and D = Tx− on h− imply

i[T1, Tξ] = T−ξ′ , i[Tx− , Tξ] = Tξ−ξ′x− , ξ′ ≡ ∂−ξ. (26)

This in turn implies that the action of Tξ on h− is

i[Tξ, h−] = ξ∂−h− + 2ξ′h− + ∂2−Oξ. (27)

The scaling symmetry plus locality implies Oξ must be
of the form Oξ = ξO1 + ξ′O0 with O1 a local operator of
weight one. As it cannot depend on x+, O0 must be a
weight zero constant. Integrating both sides with respect
to dx−ζ(x−) gives

i[Tξ, Tζ] = Tξ′ζ−ζ′ξ +
∫

dx− ζ∂2−Oξ. (28)

Antisymmetry under the exchange of ξ ↔ ζ then requires
that O1 = 0 and :

∂2−Oξ = O0∂
3
−ξ. (29)

Defining c = 24πO0 we end up with the following com-
mutations relations for the charges Tξ:

i[Tξ, Tζ ] = Tξ′ζ−ζ′ξ +
c

48π

∫

dx− (ξ′′ζ′ − ζ′′ξ′). (30)

We recognize this as the algebra of the left-moving con-
formal generators on the Minkowski plane with central
charge c.

III. ENHANCEMENT OF RIGHT MOVING

TRANSLATIONS TO A LOCAL SYMMETRY

Notice that up until now we have not made much use
of the fact that our theory is translationally invariant in
the x+ dimension as well. In particular the above results
also apply when we do not posses this symmetry. What
happens now that we add p± to the game?
In this case, the key observation is that p+ is a zero

weight local operator, as implied by (9-13). This means

〈p+p+〉 = fp+(x
+). (31)

Acting with ∂− on both insertions and using the fact that
a hermitian operator with a vanishing two-point function

is trivial we learn that ∂−p+ = 0. Current conservation
then implies ∂+p− = 0. It follows that

p+ = p+(x+), p− = p−(x−). (32)

We cannot have both p+ = 0 = p− as the charge P̄ is
generically nonzero, although from what we have seen
so far one of them could vanish. We now discuss all
possibilities.

A. p− = 0 ⇒ right-moving Virasoro algebra

In this case we have infinitely many charges given by

T̄ξ =
∫

dx+ ξ(x+)p+. (33)

Since T̄1 = P̄ we have

i[T̄1, T̄ξ] = −T̄ξ′ . (34)

This, in turn, constraints the action of T̄ξ on p+ to be

i[T̄ξ, p+] = ξ∂+p+ + 2ξ′p+ + ∂+Ōξ. (35)

If we compare this expression with (27) we see that we are
very close to the previous situation for Tξ. Multiplying
by ζ(x+) and integrating both sides of this equation we
get

i[T̄ξ, T̄ζ ] = T̄ξζ′−ξ′ζ +
∫

dx+ζ∂+Ōξ. (36)

Antisymmetry with respect to exchange of ξ and ζ then
implies that Ōξ is an even number of derivatives of ξ. The
term with no derivatives can be eliminated by a constant
shift of p+. Terms with four or more derivatives would
violate the Jacobi identity. We conclude (shifting p+ by
a constant if needed)

i[T̄ξ, T̄ζ ] = T̄ξ′ζ−ζ′ξ +
c̄

48π

∫

dx+ (ξ′′ζ′ − ζ′′ξ′). (37)

We recognize this as the algebra of the right-moving con-
formal generators on the Minkowski plane with central
charge c̄. 4

Of course the vacuum will not in general be invariant
under the global SL(2, R)R subgroup. Acting with D

and H on T̄ξ we can check that i[T̄ξ, h−] = ∂2−Φξ. But
Φξ must be a weight zero operator, se we are left with
i[T̄ξ, h−] = 0. The upshot is that [T̄ξ, Tζ] = 0, as ex-
pected.

B. p+ = 0 => left-moving current algebra

In this case we have infinitely many left-moving charges

Jχ = −
∫

dx− χ(x−)p−(x
−). (38)

4 Interestingly, it is this right moving Virasoro that gives the en-
tropy in Kerr-CFT[9].



4

Because the zero mode J1 acts as ∂+, we must have
i[J1, p−] = 0. This implies [J1, Jχ] = 0 and hence

i[Jχ, p−] = ∂−Mχ (39)

where the operatorMχ is, by locality, a linear function of
χ. Now we are in position to repeat the arguments used
around (27). Multiplying by ψ(x−), integrating over x−

and invoking antisymmetry and the Jacobi identity we
find

i[Jχ, Jψ] =
k
4π

∫

dx−(ψ′χ− χ′ψ) (40)

where the constant k parameterizes the central element.
This is a U(1) Kac-Moody current algebra.
We also need the [Tξ, Jχ] commutator. The fact that

[J1, Tξ]=0 implies

[Tξ, p−] = ξ∂−p− + ξ′p− + ∂−Nξ (41)

with the operator Nξ linear in ξ. The Jacobi identity
with a third operator Tζ then implies Nξ = f∂−ξ for
some constant f [17, 18]. If f is nonzero, the current p−
is not a dimension one chiral current. However we may
then shift h− by a k-dependent multiple of ∂−p− so that
p− is a good dimension one current. This shift affects
the central charge of Tξ. Performing this transformation
leaves us with the standard commutator

i[Tξ, Jχ] = J−ξχ′ . (42)

It may seem rather strange to have a left-moving Kac-
Moody current algebra whose zero mode generates right
translations. However reminiscent structures have ap-
peared before. In the KK circle reduction of AdS3 to
AdS2, one begins with two Virasoros and ends with a sin-
gle left-moving Virasoro and current algebra associated
to the KK U(1) [19]. The left current algebra zero mode
J0 descends from right Virasoro zero mode in AdS3. Re-
lated structures have appeared in Kerr/CFT, where left
Virasoro and right current algebra zero modes are some-
times identified [20], as well as in the study of asymptotic
symmetries of warped AdS3 [21].

C. Non-minimal p− 6= 0, p+ 6= 0

In this case left and right currents decouple. The com-
mutators i[P̄ , T̄ξ] = T̄−ξ′ implies i[T̄ξ, p−] = ∂−Φξ, for
some local Φξ. Furthermore, because T̄ξ does not trans-
form under D and p− is a weight 1 operator, Φξ must be
weight 0. Therefore

i[T̄ξ, Jχ] = 0. (43)

implying that the conserved charges can be analyzed sep-
arately as above.
In summary, left translational and dilational symme-

tries together with right translations imply the existence
of (at least) two sets of infinite dimensional algebras. On
the left we always find a local conformal symmetry, while
the right translational current is enhanced either to a lo-
cal right conformal symmetry or a left U(1) current al-
gebra.
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Appendix A: Noether’s theorem

In this section we will prove Noether’s theorem for H
and P and show the Noether currents can be put in a
canonical “diagonal” form. We assume the existence of
a unitary hamiltonian H whose commutator with any
operator obeys

i[H, O] = dO
dt

− ∂O
∂t
, (A1)

where the last derivative acts on any explicit coordinate
dependence in O. Conserved charges are defined as any
operator Q such that dQ

dt
= 0. Locality implies

Q =
∫∞

−∞
dx qt(x, t). (A2)

Charge conservation is then

dQ
dt

=
∫

dx qt
dt

= 0, (A3)

implying qt
dt

= − qx
dx
, for some qx. (qx, qt) is the sought

after conserved Noether current associated to Q.
In this paper we further assume the existence of a

conserved momentum charge P commuting with H and
obeying

i[P , O] = dO
dx

− ∂O
∂x

(A4)

for any operator O. From these we construct left and
right translation charges 2H = H−P and 2P̄ = H+ P .
If a conserved charge Q commutes with both H and P̄

the associated Noether current must obey

i[H, q±] = ∂−q± ± ∂±F , (A5)

i[P̄ , q±] = ∂+q± ± ∂±G, (A6)

where ∂± are total derivatives with respect to x± = t±x
and F and G can be expanded

F =
∑

i fi(x
+, x−)Φi, G =

∑

i gi(x
+, x−)Φi. (A7)

The Jacobi identity relates the coefficients fi and gi

[[H, P̄ ], q±] = [H, [P̄ , q±]]− [P̄ , [H, q±]] = 0. (A8)

This translates into an integrability condition implying
the existence of a set of functions ri such that gi = ∂+ri
and fi = ∂−ri. Now let us use the shift freedom q± →
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q± ∓ ∂±R, with R =
∑

i ri(x
+, x−)Φi. We then obtain

the canonical form of the commutators

i[H, q±] = ∂−q±, i[P̄ , q±] = ∂+q±. (A9)

We see that any current associated to a symmetry gen-
erating charge that commutes with the hamiltonian and
the momentum operator can be chosen so as to have no
explicit dependence on the coordinates. In particular,
this applies to the h± and p± current themselves. It is
worth pointing out that, for any local (coordinate inde-
pendent) operator Φ we can still shift q± → q± ∓ ∂±Φ
and preserve the above commutation relations.

Now we show, following [1], that the currents can also
be made dilation eigenoperators. Current conservation
and the commutation relations (4) imply:

i[D,h±] = x−∂−h± + λ (h±)h± ± ∂±Oh,

i[D, p±] = x−∂−p± + λ (p±) p± ± ∂±Op,
(A10)

where λ (p+, p−, h+, h−) = (0, 1, 1, 2). The Jacobi iden-
tity can be used to show that Oh and Op are local opera-
tors with no explicit coordinate dependence. This means
they are expandable in the (by assumption) discrete basis
(5)

Oq =
∑

i aiΦi (A11)

for q = h, p where Φi has weight λi. Let us now shift

q± → q± ∓ ∂±
∑

i biΦi, bi =
ai

w(q+)−λi
, (A12)

for λi 6= w(q+). This shift eliminates all the Φi in Oq
with weights λi 6= w(q+). Operators with weight equal
to w(q+) cannot appear in Oq by the assumption (5) that
the spectrum of D is discrete and diagonalizable. We are
therefore left with the canonical form of the commuta-
tors:

i[D,h±] = x−∂−h± + λ (h±)h±,
i[D, p±] = x−∂−p± + λ (p±) p±.

(A13)

It was shown above that there exists a conserved cur-
rent d± associated to D. A slight variant of the preceding
arguments shows that we can exploit the shift freedom
to set

i[H, d±] = ∂−d± − h±, i[H, d±] = ∂+d±. (A14)

The non trivial commutator i[D,H ] = H requires the
extra term proportional to h±, which implies that the di-
lation current cannot be independent of the coordinates.
Finally, the action of the dilation charge on its own

associated current can be obtained as above and shifted
to the canonical form

i[D, d±] = x−∂−d± + λ (d±) d±, (A15)

where λ (d+, d−) = (0, 1). We note that demanding that
the current/charge commutators take this canonical
form does not fix all the ambiguity in the former. Some
of the remaining shift freedom is exploited in this work
around equation (18) to shift away s−.

Appendix B: Decoupling of s+

In this appendix we show that in the non-minimal case
s+ 6= 0 , [J̄χ, Tξ] = 0. Given that s+ is independent of
x+ and transforms as a zero weight operator under D,
we have

i[H, s+] = 0
i[D, s+] = 0

→
i[H, J̄χ] = 0
i[D, J̄χ] = 0.

(B1)

The Jacobi identity implies that the commutator of an
operator annihilated by H (such as J̄χ) and a local field
(such as h−) must be a local field itself. Therefore, using
(B1), we have

i[J̄χ, h−] = ∂2−Φχ, (B2)

where Φχ is a local operator of weight zero. This implies,
∂−Φχ = 0 as an operator equation. Immediately we get

i[J̄χ, Tξ] = 0. (B3)
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