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Abstract 

We present a selection of carbon–fluorine bond formations that have been developed in the recent 

past.  An overview of the most common fluorination reagents is followed by fluorination reactions 

organized by reactivity.  We have distinguished between nucleophilic and electrophilic fluorinations as 

well as aliphatic and aromatic fluorinations.  Each section is divided into more specific reaction 

classes and examples for syntheses of pharmaceuticals, 18F-radiolabeling, and mechanistic 

investigations are provided. 

Keywords 

Fluorination; carbon–fluorine bond formation; nucleophilic fluorination; electrophilic fluorination; 

fluorinating reagents, enantioselective fluorination 

Abbreviations 

Ac acetyl, Boc tert-butoxycarbonyl, n-Bu normal butyl, t-Bu tert-butyl, Bn benzyl, Bz benzoyl, 18-

crown-6 1,4,7,10,13,16-hexaoxacyclooctadecane, Cy cyclohexyl, DAST (diethylamino)sulfur 

trifluoride, Deoxofluor bis(2-methoxyethyl)aminosulfur trifluoride, DMF dimethylformamide, DMSO 

dimethylsulfoxide, Et ethyl, Me methyl, MOST 4-morpholinosulfur trifluoride, Ms methanesulfonyl, 

NFSI N-fluorobenzenesulfonimide, p-Ns 4-nitrobenzenesulfonyl, o-Ns 2-nitrobenzenesulfonyl, Nu 

nucleophile, PET positron-emission tomography, Ph phenyl, i-Pr isopropyl, Py pyridyl, Selectfluor = 

F-TEDA-BF4 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate), TADDOL 

α,α,α’,α’-tetraaryl-2,2-dimethyl-1,3-dioxolan-4,5-dimethanol TBAF tetrabutylammonium fluoride, 

TBAT tetrabutylammonium (triphenylsilyl)difluorosilicate, Tf trifluoromethanesulfonyl, TFA 

trifluoroacetic acid, THF tetrahydrofurane, TMAF tetramethylammonium fluoride, TMS trimethylsilyl, 

o-Tol 2-tolyl, Ts 4-toluenesulfonyl, Tr trityl 
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Introduction 

Fluorinated molecules have become increasingly important as pharmaceuticals [1–3], agrochemicals 

[4], tracers for positron-emission tomography (PET) [5,6], and new materials [7,8].  The introduction of 

fluorine into organic molecules can affect the basicity of nearby nitrogen atoms, the dipole moment, 

and hydrogen bonding [9].  In pharmaceuticals, fluorine is often introduced to increase lipophilicity, 

bioavailability and metabolic stability [5,10–16].  The fluorine substituent is often considered an 

isostere of hydrogen, but its size is similar to a hydroxyl group (van der Waals radii: F: 1.47 Å; OH 

1.40 Å; compared to H: 1.20 Å).  The radioisotope 18F has a half-life of 109 minutes and is used in 

positron-emission tomography (PET) for the synthesis of 18F-based PET tracers.  Despite the utility of 

fluorine substituents, relatively few methods are available for general, selective carbon–fluorine bond 

formation [17], when compared to methods for other carbon–halogen bond formations.  Interestingly, 

only 30 natural organofluorides have been identified to date [18], which may indicate the unavailability 

of suitable fluorination methods in nature.  In this short review we provide a selection of reports from 

the last few years for carbon–fluorine bond formations, without giving a comprehensive collection of 

all new fluorination reactions [19–22].  

 

1. Fluorinating reagents 
Nucleophilic fluorinating agents (F–) Electrophilic fluorinating agents (F+) 

Alkali metal fluorides 

 

NaF KF CsF  

N-Fluoropyridinium salts 

N
F BF4

–
N
F BF4

–
Cl ClN

F BF4
–

Me

Me Me
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Tetraalkylammonium fluorides 

N
n-Bu

n-Bu
n-Bu n-Bu

F
N
Me

Me
Me Me
F

(TBAF) (TMAF)  

N-Fluorosulfonamide derivatives 

N
F

S S
CF3F3C

O O O O
N
F

S S
O O O O

Me Me

S
N F

O O  

DAST and its derivatives 

Me

N
SF3

Me

(DAST)

N

O

SF3

MeO

N

OMe

SF3

(MOST) (Deoxofluor)  

 

Selectfluor and its derivatives 

N
N

F

Cl
N

N

F

Me

2 BF42 TfO
(selectfluor)  

Chart 1. Overview of some of the most common fluorinating reagents. 

1.1 Nucleophilic fluorinating reagents 

Fluoride is the smallest of all anions.  The high charge density renders unsolvated fluoride strongly 

basic.  Fluoride can form strong hydrogen bonds [23] and its solvation can dramatically decrease the 

nucleophilicity by the formation of stable solvation shells.  Common alkali fluorides such as LiF [24], 

NaF [25], KF [26, 27], and CsF [28] can be used as fluorination reagents [12,29–31].  Increasing ionic 

strength decreases the nucleophilicity and solubility of fluoride in organic solvents, which renders LiF 

the least reactive fluorination reagent among the alkali metal fluorides.  Crown ethers in combination 

with alkali metal fluorides such as KF-18-crown-6 can be used to increase solubility and hence 

reactivity [32].  Nevertheless, the combination of high basicity and strong hydrogen bonding makes 

fluoride a challenging nucleophile for nucleophilic displacements.  

The use of tetraalkylammonium ions as counterions for fluoride reduces the ionic bond strength and 

increases the solubility in organic solvents [33].  Tetrabutylammonium fluoride (TBAF) is a common 

fluorinating agent that is available as a trihydrate.  The presence of water reduces the nucleophilicity 

of fluoride by hydrogen bonding and is responsible for side reactions such as alcohol formation by 

serving as hydroxide source.  Drying of most quaternary ammonium fluorides is difficult due to 

competing Hofmann elimination with fluoride serving as a strong base under anhydrous conditions 
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(Equation 1) [34].  

N+

n-Bu

n-Bu

Me

F H

E2-Elimination

HF + N
n-Bun-Bu

n-Bu
+ Me

n-Bu

 

(1) 

Hofmann elimination can be circumvented when using tetramethylammmonium fluoride (TMAF [35]), 

which lacks β-hydrogen atoms for elimination and can be obtained as an anhydrous salt.  In 2005, the 

synthesis of anhydrous TBAF via nucleophilic aromatic substitution of hexafluorobenzene with 

cyanide was reported by DiMagno (Equation 2) [36].  TBAF produced by this procedure is highly 

nucleophilic due to the absence of water [37•]. 

n-Bu4N CN +

F
F

F
F

F

F DMSO, THF or MeCN
–35 °C to RT

TBAF
+

CN
NC

NC
CN

CN

CN
anhydrous

(1–6 eq.)
> 95%

 

(2) 

Sulfur fluorides can serve as nucleophilic fluorination sources.  One of the most versatile fluorinating 

agents of this class is (diethylamino)sulfur trifluoride (DAST, 1), a less toxic and less volatile analog of 

sulfur tetrafluoride SF4 [38].  DAST can explode when shock-heated; thus, thermally more stable and, 

hence, safer derivatives with similar reactivity such as 4-morpholinosulfur trifluoride (MOST, 2) and 

bis(2-methoxyethyl)aminosulfur trifluoride (Deoxofluor, 3) have been developed (Figure 1) [39]. 

Me

N
SF3

Me

N

O

SF3

MeO

N

OMe

SF3

1 2 3  

Figure 1. (Diethylamino)sulfurtrifluoride (DAST, 1) and its analogs 4-morpholinosulfur trifluoride (MOST, 

2) and bis(2-methoxyethyl)aminosulfur trifluoride (Deoxofluor, 3). 

SF4, DAST, and their derivatives are useful for converting hydroxyl groups into fluorides.  Upon 

nucleophilic attack of the alcohol onto sulfur, fluoride is released that, in turn, functions as a 

nucleophile to displace the activated hydroxyl group (Equation 3).  
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R OH S
F

F
F

F
O

R

SF3
F

SOF2 HF+ +R–F

 
(3) 

 

1.2 Electrophilic fluorinating reagents 

N-Fluoropyridinium salts were first developed in the 1980s and have become an important source of 

electrophilic fluorine for fluorination [22]. N-fluoropyridinium salts allow the fluorination of a wide range 

of nucleophilic substrates and their reactivity can be adjusted by substitution of the pyridine 

heterocycle (Figure 2).  One potential mechanism for fluorination using N-fluoropyridinium salts 

involves a single electron transfer process as shown in Scheme 1.  Equations 4 [40] and 5 [41] 

provide examples for the fluorination reaction of silyl-enol ethers and enolates with N-fluoropyridinium 

triflate. 

N
F BF4

–
N
F BF4

–
Cl ClN

F BF4
–

Me

Me Me

Increasing fluorinating potential  

Figure 2. Effect of substituents on the oxidation potential of N-fluoropyridinium salts. 

Nu +
N
F

e– transfer
Nu +

N

F

R R
F  transfer

Nu–F +

N

R

 

Scheme 1. Single electron transfer mechanism for the fluorination with N-fluoropyridinium salts. 
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TMSO

OTMSMe

H

TMSO
Me H

H
CH2Cl2, rt O

OMe

H

O
Me H

H

F

51%

N
F

OTf–

(1.0 eq.)

 

(4) 

 

N

O

Ts

1. i-Pr2NLi, THF, –78 °C
2. (PhSO2)2NF, –78 °C

3. TMSOTf, Et3N, CH2Cl2 N

O

Ts

F
F

4. N-Fluoropyridinium 
    triflate, CH2Cl2, reflux

73%  

(5) 

 

In 1984, Barnette reported the use of N-fluorosulfonamides 4 (Figure 3) as a new class of broadly 

applicable fluorinating reagents that were easily prepared by treatment of N-alkylsulfonamides with 

dilute elemental fluorine [42]. Subsequently, several research groups reported the syntheses and use 

of additional fluorinating reagents of this type such as N-fluorobis[(trifluoromethyl)sulfonyl]imide (5) 

[43] or N-fluorobenzenesulfonimide (NFSI, 6) [44].  An enantioselective fluorination reaction has been 

achieved by Differding and Lang using chiral N-fluorosultam (7) [45]. 

S
N

R

F

O O

(R = Me, t-Bu, Cy)

N
S S

F
F3C CF3

OOO O
N

S S

F

OOO O
MeMe

S
N F

O O

4 5 6 7  

Figure 3. Common sulfonamide- or sulfonimide-based fluorinating agents. 

The development of the reagent Selectfluor (8) and its derivatives presented a major advance for 

electrophilic fluorination.  F-TEDA-BF4 or Selectfluor was developed by Banks and is a commercially 

available, stable, and effective source of electrophilic fluorine [46]. The oxidation potential of the F-

TEDA-X reagents can be increased by nitrogen substitution with electron-withdrawing substituents 

(Figure 4) [47]. 
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N
N

F

Cl
N

N

F

Me

N
F

N
F

N
F

N
F

Me

Me

MeN
F

SS
Ph Ph

OOOO

–0.04–0.09–0.34–0.37–0.47–0.73–0.78

Increasing oxidation potential

Ep,red

(V vs. SCE)

–B2F7 2 BF4
–2 TfO–TfO–TfO– TfO–

Selectfluor

8

 

Figure 4. Reduction peak potentials of different electrophilic fluorination reagents: Ep,red in V relative to 

the standard calomel electrode; 1–5 mM in MeCN/0.1 M Bu4N+ BF4
– or CF3SO3

– [47]. 

 

2. Fluorination Reactions 

2.1 Nucleophilic Aliphatic Fluorinations 

The choice of solvent is important for successful SN2 fluorinations.  Nucleophilic displacement of 

leaving groups by fluoride at sp3 hybridized carbon atoms can be impaired by undesired side 

reactions such as β-elimination or hydroxylation when fluoride is too basic in uncoordinating solvents.  

In protic solvents, on the other hand, strong hydrogen bonds decrease the nucleophilicity of the 

fluoride anion and also render the solvent nucleophilic.  In dipolar aprotic solvents such as dimethyl 

sulfoxide (DMSO) and N,N-dimethylformamide (DMF) hydrogen-bonding is minimized and the 

nucleophilicity of the fluoride is retained [48].  In 2002, Chi reported the use of ionic liquids such as 1-

butyl-3-methylimidazolium tetrafluoroborate ([bmin][BF4], 9) as suitable solvents for fluorination  [49]. 

Chi also demonstrated that the addition of small amounts of water to the ionic liquid reduced the 

formation of undesired by-products such as alkenes or alcohols (Equation 6). 

 



9 
 
9 
 

O OMs O F

94%

9: N NMe
BF4Me

5 eq. KF, 9 (1.6 mL)
5 eq. H2O, MeCN (3.2 mL)

1.5 h, 100 °C

 

(6) 

 

Fluoride is solvated less efficiently by tertiary alcohols than by primary alcohols and water [50].  

Fluoride is hence more nucleophilic in tertiary alcohols as solvent and its basicity is sufficiently 

attenuated to avoid side reactions.  Therefore, tert-butanol can increase the reaction rate of SN2 

fluorinations and can afford alkyl fluorides in high yield [51,52•].  Chi used tert-butanol as solvent for 

the synthesis of the 18F-PET radiopharmaceutical [51] N-[18F]fluoropropyl-2β-carbomethoxy-3β-(4-

iodophenyl) nortropane ([18F]FP-CIT) (Equation 7) for PET imaging of dopamine transporters.  While 

previous methods only afforded 1% of the desired product [53], tert-butanol increased the yield to 

35.8 ± 5.2%. The combination of ionic liquid and a tertiary alcohol in a single molecule can function as 

bifunctional solvent for SN2 displacements for fluorination.  In 2008, Chi reported that the imidazolium 

ionic liquid 10 as solvent can afford the fluorination product 11 in 97% yield (Equation 7, Scheme 2) 

[54]. 

N

I

OMe

O

MsO

[18F]fluoride (37 GBq)

n-Bu4N  OH

MeCN, t-BuOH

N

I

OMe

O

18F

radiochemical yield: 36%

100 °C, 20 min

 

(7) 
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O OMs CsF (5 eq.), MeCN

100 °C, 50 min

O F

N NMe OH

Me Me 97%

Ionic moiety tert-alcohol moiety
polar → accelerates

SN2 reactions
renders F less basic
→ fewer side reactions

1110:
OMs

 

Scheme 2. Combined effect of ionic liquid and tert-alcohol on nucleophilic fluorination. 

 

The nucleophilic fluorination source tetrabutylammonium (triphenylsilyl)difluorosilicate (TBAT) was 

introduced by DeShong [55].  The fluorine atoms of TBAT are coordinated to the complex silicate 

anion.  While nucleophilicity is reduced compared to “naked” fluoride, TBAT is obtained as an 

anhydrous solid, less basic than other fluoride sources such as TBAF, and can displace halides in SN2 

reactions.  Fluorination of octylbromide with TBAT afforded 15% elimination by-product together with 

85% fluorination, while TBAF produced 48% fluorination and 40% octanol (Equation 8) [55]. 

 

BrMe
TBAT, MeCN

reflux, 24 h
FMe

85%

+ alkene

15% (TBAT)

n-Bu4N+ Ph3SiF2
–

 
(8) 

 

Aliphatic alcohols can be converted into the corresponding fluorides with the nucleophilic fluorination 

reagent DAST.  Typically, fluorinations with DAST proceed with inversion. Two examples for such 

transformations are given in Equation 9 and 10 [38,39]. Schlosser developed a method to access 

vicinal difluoroalkanes stereoselectively by epoxide ring-opening with hydrogen fluoride and 

subsequent treatment with DAST (Scheme 3) [56]. A similar strategy has been applied by Hunter for a 

stereoselective synthesis of an all-syn four vicinal fluorine motif [57]. Key steps in their synthetic route 

(Scheme 4) included epoxide ring-opening by treatment with HF-triethylamine, ring opening of the 

cyclic sulfate with TBAF and introduction of the fourth fluorine atom by treatment with Deoxofluor.  
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OBz

OBnF

OBz

OBnHO DAST

CH2Cl2
–78 °C 81%  

(9) 

 

OBnO

BnO OBn

OH Deoxofluor, CH2Cl2

rt, 30 min

OBnO

BnO OBn

F
α/β = 28:72

98%  

(10) 

 

 

O

R R

HF/NEt3
R

R
OH

F
R

R
F

F

DAST

O

R

HF/NEt3
R

R
OH

F
R

R
F

F

DASTR

R = C4H9  

Scheme 3. Stereoselective synthesis of vicinal difluoroalkanes via epoxide opening with hydrogen 

fluoride and deoxyfluorination with DAST. 

 

O
HO

F
BnO

F

OBn
F

O
O

S
O O

BnO
F

OBn
FF

OH
TsO

F

OTs
FF

OH
TsO

F

OTs
FF

F

Et3N  3 HF
Na2SO4, 70 °C

40%

1. TBAF, MeCN, rt

2. H2SO4, H2O
    THF, rt

62%

Deoxofluor
70 °C

75%

(80% ee)
(>99% ee)

 

Scheme 4. Asymmetric synthesis of an all-syn four vicinal fluoride motif. 

DAST and its derivatives are also suitable for the conversion of carbonyl groups into gem-

difluoromethylene groups [58].  Examples include the conversions of ketones to difluoromethylene 

derivatives (Equation 11) and of carboxylic acid derivatives to the trifluoromethyl groups (Equation 12) 
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[59].  Aldehydes can be converted into the corresponding difluoromethyl groups as shown in Equation 

13 [60].  

 

Ph
O

O

Me

Deoxofluor, CH2Cl2
rt, 16 h, HF (0.2 eq.)

98%

Ph
O

Me

F F

 

(11) 

 

O

Cl

55%

F

F F1. Deoxofluor, CH2Cl2
     0 °C, 30 min

2. Deoxofluor, 85 °C
    48 h

 

(12) 

 

N

N
Tr

OHC

1. Deoxofluor

N

N
H

F2HC

2. AcOH/HCl/H2O

43%  

(13) 

Enzymatic carbon–fluorine bond formation by Streptomyces cattleya is responsible for the synthesis 

of a variety of fluorometabolites [61–64].  Overexpression of the fluorinase enzyme that catalyzes the 

reaction of fluoride and (S)-adenosyl-L-methionine presumably by SN2 displacement has made 

milligram quantities of this enzyme available.  O’Hagan  has employed the enzymatic reaction for the 

introduction of 18F for PET [65]. 

2.2 Nucleophilic Aromatic Fluorinations 

Nucleophilic aromatic substitutions can be employed to introduce fluorine atoms into electron-deficient 

arenes.  Elimination typically does not occur for arenes as it does for aliphatic compounds and 

strongly basic, nucleophilic fluoride can be used [27,66–72].  A common method for the synthesis of 

fluorinated aromatics in industry is the Halex (halogen exchange) process [27], in which halogens, 

typically chloride, serve as leaving groups and inexpensive, inorganic fluoride sources such as spray-

dried KF are used as nucleophiles.  High-boiling solvents and phase transfer catalysts to solubilize the 
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fluoride source can increase the efficiency of the Halex process (Equations 14 and 15).  A useful 

alternative to the Halex process is fluorodenitration, a process in which the nitro-group functions as 

the leaving group (Equation 16) [66,73]. 

 

Sulfolan:
S

O

O

Cl
Cl

Cl
Cl

Cl
Cl

Cl
Cl

KF, Sulfolan

230–240 °C

F
F

F
F

F
F

F
F

50-60%  

(14) 

 

N N

Cl
ClCl KF, CNC+, Sulfolan

16 h, 200–220 °C N N

F
FF

66-80%

CNC+:

N
Me2N

Me2N N

N
Me

Me

Cl–

(N,N-dimethylimidazolidino)-
tetramethylguanidinium chloride  

(15) 

 

NO2
ClCl

ClCl

F
ClCl

ClCl

n-Bu4PF·(HF)2

THF, 70 °C, 28 h

80%  

(16) 

 

In 2005, DiMagno reported the preparation and use of anhydrous tetrabutylammonium fluoride 

(TBAFanh) [36,37•]. When TBAFanh was used in halogen exchange and fluorodenitration reactions, 

these reactions could be run under mild conditions. For example, a typical Halex fluorination of 2,6-

dichloropyridine requires heating at 200 °C for ten hours (Equation 17) [74]. In comparison, the same 

substrate is fluorinated within 90 minutes upon exposure to TBAFanh at room temperature (Equation 

18). Aromatic fluorodenitration using TBAFanh occurs within minutes with electron-poor, weakly 

activated arenes (Equation 19).  
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NCl Cl NF F200 °C, 10 h

KF, Ph4PBr, PhCN

56%  

(17) 

 

NCl Cl

TBAFanh, DMSO

20 °C, 1.5 h

>95%

NF F

 

(18) 

 

EtO

O

NO2

TBAFanh, DMSO

20 °C, 30 min
EtO

O

F

>95%  

(19) 

The hypervalency of iodine in diaryliodonium salts renders aryl iodide an excellent leaving group [75].  

Beringer used diaryliodonium salts for the nucleophilic fluorination of arenes [76,77].  In 2007, Ross 

used aryl(2-thienyl)iodonium salts for nucleophilic no-carrier-added 18F-labeling of arenes [78] to 

control the regioselectivity of fluoride attack  (Equation 20).  

 

I S

X

R

no-carrier-added [18F]fluoride, 
Kryptofix 222

R

18F

+
S

I

X = Br, I, OTs, OTf

R = 2-OMe, 3-OMe, 4-OMe, 4-Me, 4-OBn, 4-I, 4-Br, 4-Cl

DMF, 130 °C

 

(20) 

 

2.3 Electrophilic Aliphatic Fluorination 

Reagents for electrophilic aliphatic fluorination can react with carbon nucleophiles such as enolates or 

allylsilanes [79]. Recent research has focused on asymmetric fluorination of carbon nucleophiles [22].  

Differding has developed a chiral fluorinating agent for the enantioselective fluorination of enolates 

[45].  Davis prepared N-fluorosultam (7) by treatment of camphorsultam 12 with diluted fluorine for 
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fluorination of β-ketoester 13 in 70% ee. (Scheme 5) [80]. Fluorinated quinuclidine alkaloids such as 

N-fluoroquinine can also function as electrophilic fluorination sources.  Fluorination of the alkaloid with 

Selectfluor generates the chiral N-fluoro reagent that can transfer its fluorine atom via fluorination to 

the silyl enol ether 14 in 99% yield and 89% ee (Scheme 6) [81]. A catalytic version of this reaction 

was reported by the same authors in 2008 [82•]. 

Me Me

NH
10% F2/N2

ONa

CO2Et

O
F

CO2Et

63%
70% ee

SO2

12 7

Me Me

N
SO2

F

13

 

Scheme 5. Asymmetric fluorination of cyclic enolate 13 with (+)-N-fluoro-2,10-camphorsultam (7). 

 

N

OMe

O
H

O

Cl
N

Me

H
Selectfluor

 rt, 1 h

MeCN

N

OMe

O
H

O

Cl
N

Me

H
F

BF4
–

OTMS

Ph

MeCN, rt, 2 h

O

F

Ph

99%
89% ee

14

 

Scheme 6. Asymmetric electrophilic fluorination of a silyl enol ether with N-fluorodihydroquinine 4-

chlorobenzoate [81]. 

An elegant fluorodesilylation protocol was reported by Gouverneur in 2008 (Scheme 7) [83].  

Enantioenriched propargylic fluorides are generated in high ee upon treatment of chiral allenylsilanes 

with Selectfluor.  The process complements the nucleophilic fluorination of propargylic alcohols by 

DAST developed in 2007 by Grée [84].  The enantioenriched propargylic alcohols can be obtained by 

Carreira alkynylation in both cases [85,86].  Gouverneur also pioneered the use of electrophilic [18F]-

radiolabeled N-fluorobenzenesulfonamide fluorinating agents for use in PET  [87]. 
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Cy H

O

H
Cy

n-Bu

TMS

H
Cy

PhMe2Si

n-Bu

Selectfluor
MeCN, 24 h

Selectfluor
MeCN, 6 h

n-Bu
F

H
Cy

n-Bu
F

Cy
H

47%
>90% ee

70%
>95% ee  

Scheme 7. Synthesis of enantioriched propargylic fluorides. 

Chiral α-fluorination of aldehydes was reported by MacMillan (Equation 21) [88•], Jørgensen 

(Equation 22) [89•], and Barbas (Equation 23) [90•] in 2005.  Chiral enamine catalysis provided 

enantioselectively enriched α-fluoroaldehydes in up to 99% ee.  Isolation of the chiral fluoroalcohols 

after reduction can prevent the erosion of the stereocenter after fluorination.  Enders reported the α-

fluorination of ketones also in the year 2005 (Equation 24) [91]. 

 

H

O
OH

F

1. NFSI, cat (20 mol%)
    THF, i-PrOH
    –10 °C, 12 h

2. NaBH4, CH2Cl2

96%
99% ee

cat:
Ph N

H

NO Me

Me
Me

 

(21) 

 

O

HMe

Me
Me NFSI, cat (1 mol%)

methyl-tert-butyl ether 
rt, 2 h

O

HMe

Me
Me

F

>90%
97% ee

cat: N
H

OTMS

Ar
Ar Ar =

F3C CF3

 

(22) 

 

O

HMe

Me
O

H
F

Me

Me
NFSI, cat (1.0 eq.)

DMF, 4 °C, 2 h

74%
96% ee

cat:
Ph N

H

N
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The successful use of metal-catalysts for enantioselective fluorination was first reported by Togni 

[92•,93]. They used a titanium TADDOL complex (TADDOL = α,α,α’,α’-tetraaryl-2,2-dimethyl-1,3-

dioxolan-4,5-dimethanol) to catalyze the enantioselective fluorination of branched β-ketoesters. 

According to the authors, the steric bulk of the chiral titanium complex is responsible for the si facial 

attack of the F+ source on the complexed β-ketoester (Figure 5, Scheme 8).  Sodeoka used chiral 

phosphine palladium complexes to achieve enantioselective fluorination of various β-ketoesters.  N-

fluorobenzenesulfonimide was the most effective fluorinating source and afforded enantioselectivities 

of 92%  (Equation 25)  [94].  Following the pioneering work of Togni and Sodeoka, Cahard reported 

a catalytic enantioselective electrophilic fluorination of both cyclic and acyclic β-ketoesters catalyzed 

by copper (II) bis(oxazoline) (Phebox) complexes and NFSI (Equation 26) [95].  Shibata reported two 

fluorination reactions using the same ligand antipode 15 with copper (II) and nickel (II), respectively, to 

afford opposite fluorinated product enantiomers (Scheme 9) [96].  Both Sodeoka and Shibata applied 

their enantioselective fluorination approaches to the synthesis of MaxiPostTM (16) [97], a 

pharmaceutical developed by Bristol-Myers Squibb for the treatment of stroke (Scheme 10) [98,99].   
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Figure 5. Proposed asymmetric induction mechanism for a titanium TADDOL complex.  
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Scheme 8. Examples of catalytic asymmetric fluorination reaction with a [TiCl2(TADDOLato)] complex. 
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Scheme 9. Metal-dependent asymmetric fluorination for the synthesis of both enantiomers. 
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Scheme 10. Application of catalytic asymmetric fluorinations to the synthesis of MaxiPost. 

 

 

2.4 Electrophilic Aromatic Fluorination 

Electron rich arenes react with electrophilic fluorinating agents but the regioselectivity is usually low 

(Equation 27) [100].  Common organometallics such as organomagnesiums or organolithiums can 

afford regiospecific fluorination with electrophilic fluorinating reagents.  However, many functional 

groups are not compatible with the strongly nucleophilic and basic Grignards or organolithiums [101].  
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Organometallics with lower basicity such as arylzinc halides, arylsilanes, arylstannanes, 

arylgermanium and arylboronic acids afford fluorinated products which typically require very reactive 

electrophilic fluorinating reagents such as elemental fluorine, XeF2, or O-F reagents for successful 

fluorination [102,103].  
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(27) 

 

Several organic compounds, including arenes, have been fluorinated employing transition metal 

fluorides such as CoF3, KCoF4, AgF2, CeF4, and MnF3 [104–106].  Copper (II) fluoride was shown to 

function as catalyst for the fluorination of benzene in the gas phase at 500 °C [107].  In 2008, copper 

aluminum fluoride (CuAl2F8) was synthesized to exhibit reactivity towards direct oxidative fluorination 

of aromatic compounds as well. The CuAl2F8 reagent can be regenerated by treatment with O2 and 

HF, and the fluorination process has been demonstrated to retain high conversions through 20 

reaction cycles (Scheme 11) [108].  Transition-metal-catalyzed substitution of aryl halides by fluoride 

was reported in a patent in 2007 [109]. 

+ CuAl2F8
500 °C

F

C6H6 + "CuF2" C6H5F + Cu0 + HF

O2 + HF

500 °C

47%

 

Scheme 11. Oxidative fluorination of benzene with CuAl2F8. 

The palladium-catalyzed fluorination of aryl halides has been investigated by Grushin [110] over the 
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past two decades and, more recently, by Yandulov [111]. The proposed catalytic cycle involves 

oxidative addition of an arylhalide to palladium (0), ligand exchange to form a palladium (II) fluoride, 

followed by a carbon–fluorine reductive elimination.  While oxidative addition and ligand exchange 

have been described, the carbon–fluorine reductive elimination has not yet been observed by Grushin.  

Yandulov reported the formation of fluorobenzene in 10% yield from a palladium (II) fluoride (Equation 

28), but the mechanism of this formation has not yet been established (Figure 6) [112]. 

F
Pd(0)

Pd(II)LnPd(II)Ln X
PhPh

F

oxidative
addition

reductive
elimination

halogen
exchange

FX

X

X = Cl, Br, I

 

Figure 6. Proposed ideal catalytic cycle for transition-metal-catalyzed C–F bond formation. 

The electrophilic fluorination of specific carbon–hydrogen bonds of phenylpyridine derivatives and 

related structures was reported by Sanford in 2006 [113•].  The reaction takes advantage of a 

covalently attached pyridine directing group and affords fluorinated arylpyridine derivatives using 

microwave irradiation (100–150 °C, 1–4 h, 33–75% yield) by fluorination of carbon–hydrogen bonds 

proximal to the pyridine directing group (Scheme 12).   
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(28) 
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Scheme 12. Palladium-catalyzed fluorination of phenylpyridine derivatives. 

In 2008, Vigalok reported carbon–fluorine bond formation from a Pd (II) aryl complex upon treatment 

with an electrophilic fluorination reagent in 10% yield (Equation 29) [114].  Possible mechanistic 

pathways for this transformation include the involvement of a discrete palladium (IV) intermediate and 

electrophilic palladium–carbon bond cleavage. 
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(29) 

 

In 2008, our group developed a two-step fluorination reaction from arylboronic acids using 

stoichiometric amounts of a palladium (II) pyridyl-sulfonamide complex (Equation 30) [115•]. The 

fluorination reaction is regiospecific and functional-group-tolerant as illustrated in Scheme 13.  In 

addition, the reaction conditions are attractive for the late-stage introduction of fluorine atom into 

functionalized molecules. Mechanistic investigations suggest the intermediacy of discrete palladium 

(IV) intermediates for this reaction.  To stabilize a hypothetical palladium (IV) intermediate, the rigid 
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palladium (II) complex 17 was treated with Selectfluor and afforded the high-valent palladium (IV) aryl 

fluoride 18.  Thermolysis of 18 afforded carbon–fluorine reductive elimination.  Similarly, the palladium 

(IV) difluoride 19 afforded carbon–fluorine bond formation in 97% yield (Scheme 14) [116]. 
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Scheme 13. Functional-group-tolerant fluorination of aryl palladium complexes. 
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Scheme 12. C–F reductive elimination from palladium(IV) fluorides. 

 

Conclusion 

In the past decade, a number of new transformations for carbon–fluorine bond formations has been 

developed.  Impressive advances in the fields of enantioselective fluorination, transition-metal-

mediated fluorinations, and applications for positron-emission tomography provided a wealth of new 

reactivity for carbon–fluorine bond formation.  Despite recent progress, controlled, general, and 

selective carbon–fluorine bond formation remains a major challenge in synthetic organic chemistry 

and due to the importance of fluorine in pharmaceuticals, agrochemicals, materials, and PET, we will 

witness a rapid development of new fluorination reactions in years to come. 
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