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Imaging coherent transport in graphene (Part II):

Probing weak localization

Jesse Berezovsky and Robert M Westervelt

School of Engineering and Applied Science, and Department of Physics,

Harvard University, Cambridge MA 02138.

E-mail: westervelt@seas.harvard.edu

Abstract. Graphene has opened new avenues of research in quantum transport, with

potential applications for coherent electronics. Coherent transport depends sensitively

on scattering from microscopic disorder present in graphene samples: electron waves

traveling along different paths interfere, changing the total conductance. Weak

localization is produced by the coherent backscattering of waves, while universal

conductance fluctuations are created by summing over all paths. In this work, we

obtain conductance images of weak localization with a liquid-He-cooled scanning probe

microscope, by using the tip to create a movable scatterer in a graphene device. This

technique allows us to investigate coherent transport with a probe of size comparable

to the electron wavelength. Images of magnetoconductance vs. tip position map the

effects of disorder by moving a single scatterer, revealing how electron interference

is modified by the tip perturbation. The weak localization dip in conductivity at

B = 0 is obtained by averaging magnetoconductance traces at different positions of

the tip-created scatterer. The width ∆BWL of the dip yields an estimate of the electron

coherence length Lφ at fixed charge density. This “scanning scatterer” method provides

a new way of investigating coherent transport in graphene by directly perturbing the

disorder configuration that creates these interferometric effects.
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1. Introduction

Graphene, a single atomic layer of carbon atoms in a hexagonal lattice (figure 1a), shows

quantum phenomena [1] from the coherent flow of electron waves. These include the

quantum Hall effect [2], the Josephson effect [3] and weak localization [4]. Graphene has

an unusual band structure created by the interaction of electrons on the two sublattices,

labeled A and B in (figure 1a): the conduction and valence bands are conical, and they

meet at a point in k-space, the Dirac point, like the band structure for a massless

relativistic particle. The ability to tune the charge density in graphene from positive

values for electrons through zero to negative densities for holes, with no energy gap,

means that the Fermi wavelength can be comparable to the mean free path, and the

charge density can be broken up into puddles of electrons and holes by disorder.

Coherent electron waves traveling through disordered conductors show weak

localization [5–7] and universal conduction fluctuations (UCF) [8–10]; both effects

are created by the interference of electron waves. Weak localization results from the

coherent backscattering of waves from a disordered potential (figure 1c), while UCF are

created by the interference of waves traveling along all possible paths (figure 1d). The

set of paths that interfere is bounded by the diffusive coherent length ∼ Lφ. Because

of the unique band structure of graphene, unique behavior for weak localization and

UCF has been predicted [11–15], and experiments are beginning to shed light on these

issues [4, 16–22].

In this work, we use a liquid-He-cooled scanning probe microscope to probe weak

localization in graphene by mapping the effect of a single SPM-tip-created scatterer

on coherent electron transport. While much can be learned from bulk transport

measurements, a nanoscale probe that perturbs the system on the same size scale as the

disorder potential and the electron wavelength provides important new information [23–

30]. By scanning the location of the scatterer created by the SPM tip, we spatially map

the change ∆G in conductance G caused by the tip, producing a conductance image

G(n,B) that represents a “fingerprint” of the intrinsic disorder, at a particular density

n and magnetic field B. The magnitude of the conductance fluctuations is ∼ e2/h, their

lateral size is ∼ 10s of nm, comparable to the Fermi wavelength, and the images repeat,

as found for UCF conductance images of graphene in zero applied magnetic field [16].

The conductance images change with magnetic field, and become uncorrelated when

∆B is larger than a characteristic correlation field ∆Bc. Weak localization is observed

as a dip in the magnetoconductance G at B = 0, with a characteristic width ∆BWL.

We study weak localization by averaging over either a range of back gate voltages Vg to

vary the charge density, or over a set of different tip positions at a fixed Vg. We find

predicted agreement between the values of ∆BWL for weak localization and ∆Bc for

UCF and, as discussed below. Both ∆Bc and ∆BWL increase as the carrier density n

is reduced, and display a maximum at the Dirac point.
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Figure 1. (a) The hexagonal graphene lattice with carbon atoms in the two sublattices

labeled A (red) and B (blue). (b) Schematic diagram of graphene’s band structure

showing how the two pairs of conical conduction and valence bands each meet at a

point in k-space - the Dirac point. The states are filled up to the Fermi energy EF . (c)

Illustration of a pair of time-reversed backscattered trajectories that interfere to cause

weak localization. The diffusive coherence length Lφ bounds the set of trajectories

that can interfere. (d) A pair of forward scattering trajectories whose interference

contributes to universal conductance fluctuations (UCF).

2. Theory

Graphene has an unusual bandstructure. A graphene sheet is composed of a single

layer of carbon atoms in a hexagonal lattice, with two atoms in each unit cell forming

sublattices labeled A and B in figure 1a. The band structure has two valleys: each

valley has a conduction and a valence band that meet at a single point in the Brillouin

zone, known as the Dirac point, with no energy gap (figure 1b). The electron and hole

energies increase linearly with momentum |k| near their meeting point, and they are

nominally isotropic, yielding pairs of conical bands that are symmetric about the Dirac

point. Because of the two atoms in each unit cell, there is an additional degeneracy

in the electronic states of graphene known as chirality, with the eigenstates of opposite

chirality arising from the two equivalent sublattices. Scattering between the two valleys

in graphene and the effects of chirality must be considered in understanding weak

localization in graphene, as discussed below.

The phenomenon of weak localization can be understood by considering interference

between time-reversed paths of backscattered electrons in a disordered material [5, 6].

Figure 1c illustrates a pair of time-reversed paths that contribute to backscattering: both

paths have an incoming wavevector kin, and an outgoing wavevector kout = −kin. The

only difference between them is that one traverses the loop in a clockwise direction, and

the other traverses the loop in a counterclockwise direction. As an electron travels along
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each path, it accumulates phase according to the Dirac equation in the case of graphene,

or the Schrödinger equation in more conventional materials. This phase is controlled by

the integral of the electron momentum and the magnetic potential along the path, as well

as the geometric phase acquired in graphene. In conventional materials such as metals

and semiconductors with no spin-orbit coupling, the geometric phase difference between

these paths around a closed loop is zero, yielding constructive interference at B = 0

that enhances backscattering, causing a net reduction of the conductance (hence, weak

localization). In graphene, the accumulation of geometric phase depends on whether

elastic scattering breaks the chiral symmetry of the electron state or scatters electrons

between valleys; these processes lead to both constructive and destructive contributions

to the interference, as discussed below.

An applied magnetic field acts to destroy weak localization by altering the phase of

electrons traveling in opposite directions along time-reversed paths. In a perpendicular

magnetic field B, a phase shift δφ = ±2πAB/Φ0 is picked up in both paths in figure 1c

given by the magnetic flux penetrating the effective area A enclosed by the diffusive

loop, where Φ0 = h/e is the magnetic flux quantum - the sign depends on the direction

of propagation around the loop. As the magnetic field is increased, the interference

present at B = 0 is destroyed, allowing one to observe weak localization experimentally

as a dip in magnetoconductance at B = 0, with width ∆BWL determined by the average

effective area A enclosed by pairs of backscattered paths.

In the discussion above, we have assumed that the transport is entirely coherent,

whereas realistically, inelastic scattering also occurs that randomizes the phase of

an electron wave. If inelastic scattering occurs at a rate 1/τφ and we assume an

elastic scattering rate 1/τe ≫ 1/τφ, then we can define a diffusive coherence length

Lφ = (Dτφ)
1/2, where D is the electron diffusion constant; Lφ is the average distance

over which an electron remains coherent. The coherence length Lφ sets an upper limit

to the size of diffusive loops that give rise to weak localization (see figures 1c and 1d),

resulting in a characteristic magnetic field

∆BWL ≈
h

2eL2
φ

(1)

required to destroy weak localization, by producing a 2π phase shift between time-

reversed paths in an area L2
φ.

The conductivity correction ∆gWL(B) due to weak localization is calculated by

using the diffusion equation for coherent electron transport. In a two-dimensional

conventional metal or semiconductor the change ∆g in conductivity g vs. magnetic

field B is [5]

∆gWL =
γe2

2πh
F

(
4eB

~
L2

φ

)
(2)

where γ is the total spin and valley degeneracy, and F (z) = ln(z) + ψ(1/2 + 1/z),

with ψ(x) the digamma function. Equation 2 is calculated by considering the diffusion

equation in the limit where the sample dimensions L,W ≫ Lφ, and the elastic mean



Probing weak localization in graphene with a movable scatterer 5

free path le ≪ lφ. In graphene, equation 2 becomes [12]

∆g =
e2

πh

[
F

(
4eB

~
L2

φ

)
− F

(
4eB

~(L−2
φ + 2L−2

i )

)
−

−2F

(
4eB

~(L−2
φ + L−2

i + L−2
∗ )

)]
, (3)

where τ−1
∗

= DL−2
∗

is the rate of chirality-breaking scattering within a valley, and

τ−1
i = DL−2

i is the rate of scattering between valleys.

Because equation 3 has both positive and negative terms, the conductivity

correction in graphene may be positive or negative at B = 0 depending on the relative

rates of the different scattering processes. A positive, weak anti-localization correction

to the conductivity has been observed in epitaxially-grown graphene samples [20]. In

exfoliated graphene samples, however, such as the ones considered here, the negative

weak localization correction is typically dominant at low temperatures [3, 4, 21],

implying the existence of a significant source of chirality-breaking scattering, possibly

from lattice defects in the graphene. We observe a negative weak localization

conductivity correction in all samples studied, and obtain qualitatively good fits to

equation 3 with fit parameters similar to those in Ref. [4]. However, equation 3 is

derived for L,W ≫ Lφ, which is not the case for our samples. In samples A and

B (see figure 3b), W ∼ Lφ, and in sample C, we have W ∼ Lφ near the leads and

W ≫ Lφ in the central region. For simplicity, we will use equation 1 to estimate Lφ

from measurements of ∆BWL below.

In addition to weak localization, the interference of electron waves traveling

along different paths creates universal conductance fluctuations (UCF) with standard

deviation δG ∼ e2/h independent of sample size or the degree of disorder [8, 9]. This

coherent correction to the conductivity depends sensitively on the positions of the

scatterers. We have recently shown [16] that moving a single scatterer created by an

SPM tip by a distance comparable to the electron wavelength is sufficient to cause

the full range of conductance fluctuations in zero magnetic field, in agreement with

theoretical predictions [31, 32].

For UCF at finite B, the change ∆Bc in magnetic field needed to reduce the

correlation of the conductance by a factor of two is [33]

∆Bc ≈
h

eL2
φ

. (4)

Note that ∆Bc = 2∆BWL because weak localization arises from the phase difference

accumulated along two counter-propagating paths around a diffusive loop, whereas

UCF comes from a single loop. We compare these theoretical predictions with our

experimental results below.
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Figure 2. Schematic diagram (to scale) of the charged scanning probe microscope tip

creating an additional scatterer (red) in graphene. The shaded blue color scale in the

graphene layer represents the disorder potential.

3. Experimental Methods

In this work, we use a liquid-He-cooled SPM tip to create a movable scatterer in a

mesoscopic graphene Hall bar. As shown schematically in figure 2, a voltage-biased SPM

tip is brought into close proximity with a graphene sample. Via capacitive coupling, the

tip creates an image charge as a local change in the graphene charge density, indicated

by the red spot, that adds to the average carrier density n controlled by a back gate

voltage Vg, and to the existing disorder in the graphene layer, shown in blue, which

consists of randomly placed scatterers created by charged impurities located above or

below the graphene sheet [34, 35]. As discussed below, the effect of the tip is to add

one additional scatterer in the sample which can be moved about at will.

A scanning electron micrograph of a graphene sample is shown in figure 3a. The
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Figure 3. (a) Scanning electron micrograph of a graphene Hall bar, contacted by

six Cr/Au leads. (b) Schematic diagrams of the graphene samples measured here (to

scale). Sample C continues to the left and right for several microns. An ac current is

applied between contacts 1 and 2 for all three samples, and the voltage is measured

between contacts 3 and 4 for samples A and B, and between contacts 1 and 2 for

sample C.
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samples studied in these experiments are fabricated from single-layer graphene flakes

deposited by mechanical exfoliation (the “sticky tape method”) on a degenerately doped

Si substrate capped with 280 nm of SiO2. The samples were contacted by Cr/Au leads

defined by electron beam lithography, and the graphene structures were formed by a

mask defined by electron beam lithography followed by an oxygen plasma etch. A planar

back gate voltage Vg is applied between the sample and the conducting Si substrate,

allowing us to tune the carrier density n in the graphene.

The data presented here are from three graphene samples, shown schematically in

figure 3b; all showed the same qualitative behavior. Samples A and B were measured in

a four-probe geometry, with lead 2 grounded, and a root-mean-square (rms) current

I = 25 nA at 5 kHz applied between leads 1 and 2; the voltage for conductance

measurements was measured between leads 3 and 4, with a lock-in amplifier. Sample C

was tested using a two-probe geometry with the same current applied between leads 1

and 2, with the voltage also measured across leads 1 and 2. For sample C, we estimate

the contact resistance R0 by performing a least-squares fit to find the value of R0 that

yields linear behavior of G = 1/(R−R0) vs. Vg on either side of the Dirac point VDirac,

where R is the measured total resistance of the sample. That is, we find a constant

value of R0 that, when subtracted from the measured resistance, results in a G vs. Vg

curve similar to that shown below in figure 4a for the four-probe geometry. We find

R0 = 7500 Ω resulting from the resistance of the cryostat leads, the metal leads on the

sample, and the small contact area with the graphene [36]. We subtract R0 from the

data from sample C, which allows us to estimate the sample mobility. The determination

of R0 does not affect the analysis of the conductance fluctuations presented below.

Each sample is mounted in a home-built scanning probe microscope [24, 37], and

cooled in He exchange gas that is in thermal contact with a liquid He bath at T = 4.2 K.

The sample sits in the core of a superconducting magnet that provides a magnetic field

up to B = 6 T perpendicular to the sample plane. We verify that the samples are

single-layer graphene by observing quantum Hall conductance plateaux at the expected

values of 4(ν + 1/2)e2/h, where ν is an integer. For the scanning probe measurements,

a conducting SPM tip with radius of curvature rtip = 20 nm is held at a constant height

htip = 10 nm above the graphene sample. The tip is grounded, so the tip charge is set

by the contact potential ∼ 0.5 V between the graphene and the degenerately doped Si

tip. Charged impurities on the surface of the graphene layer create image charges in the

tip, which also contribute to the tip charge.

Using transport measurements and electrostatic simulations, we characterized our

graphene samples, and determined the spatial profile of the density perturbation created

by the SPM tip. Classical electrostatic simulations (Maxwell, Ansoft LLC) were used

to determine the charge density profile in the graphene created by the back gate

and the SPM tip. The back gate voltage Vg capacitively creates a uniform carrier

density n = α(Vg − VDirac), with α = 8 × 1010 V−1cm−2, where VDirac is the offset of

the Dirac point from Vg = 0 caused by charged impurities near the graphene. The

mobility µ for samples A, B, and C was µA = 7200 cm2/Vs, µB = 5600 cm2/Vs, and
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µC = 4200 cm2/Vs, found from the measured G vs. Vg curves. The local perturbation

to the graphene carrier density caused by the tip has a Lorentzian-like shape with half-

width at half maximum (HWHM) ∼ 25 nm, and a maximum ∼ 3 × 1011 cm−2 for a

potential difference ∼ 0.5 V between the tip and the sample. Previous experiments using

scanning tunneling microscopy [35, 38] and a scanning single-electron-transistor charge

sensor [29] have observed the disorder in graphene samples on a SiO2 substrate to consist

of charge puddles with peak carrier density ∼ 4 × 1011 cm−2 and lateral dimensions

l ∼ 20 nm. The perturbation created by the tip in this paper has approximately the

same amplitude as these naturally occurring charge density fluctuations, and about

twice the width. Therefore, it is reasonable to think that the tip adds an additional,

controllable scatterer to the pre-existing scatterers created by charged defects above and

below the graphene.
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Figure 4. (a) Conductance G of graphene sample A measured in a four-probe

geometry vs. back gate voltage Vg at B = 0. Red line is a linear fit of G vs. Vg

below 20 V. (b) Fluctuations ∆G vs. Vg about the linear fit (B = 0); the traces

repeat when the SPM tip is at a fixed position far from the sample. (c) Same as

(b), but with the tip at height htip = 10 nm above the sample for three different

lateral positions spaced 100 nm apart, showing a clear dependence of the conductance

fluctuations on tip position. (d) Magnetoconductance traces G vs. B with Vg = 0 V

(n = −1.8 × 1012 cm−2) and htip = 10 nm, at three tip positions spaced 5 nm apart;

the traces repeat. (e) Same as (d), with four tip positions 100 nm apart; the traces

now differ.

4. Experimental Results

Using an SPM tip, we probe the dependence of coherent magnetotransport on the

position of a single scatterer. Figure 4a shows the conductance G of sample A vs. Vg

at zero magnetic field; the data vary linearly with Vg on either side of the Dirac point

VDirac = 22 V as indicated by the linear fit shown in red, as expected for single atomic

layer graphene. The small fluctuations ∆G away from the linear fit are reproducible,
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and are attributed to UCF [16]. The fluctuations ∆G can be seen more clearly by

subtracting the linear background from G, as is shown over a small range of Vg in

figure 4b. The three traces of ∆G vs. Vg repeat the same scan with the SPM tip fixed

far from the sample (tip height htip > 100 µm), demonstrating good reproducibility.

The rms amplitude δG ∼ e2/h is in agreement theory [8, 9]. Figure 4c shows the

effect of moving the charged SPM tip to three different positions spaced 100 nm apart,

at htip = 10 nm above the sample – the traces are now quite different. These data

demonstrate that the motion of a single scatterer created by the SPM tip is sufficient

to rearrange the conductance fluctuation pattern.

Moving the tip also changes fluctuations in the magnetoconductance G. Figure 4d

shows three traces of G vs. B with Vg = 0 (n = −1.8 × 1012 cm−2) and with the

tip at three nearby positions, only 5 nm apart. Here the fluctuations repeat, with

amplitude δG ∼ e2/h. In contrast, when the tip is moved to several locations spaced

100 nm apart (figure 4e), the magnetoconductance is largely uncorrelated and looks

like a different sample. The traces in both figure 4d and 4e were obtained in parallel

over the course of several hours as B was slowly ramped. At each value of B, G

is measured at each tip position, then B is stepped to the next value. Nearby tip

positions yield nearly identical conductance fluctuations as B is changed, while more

widely spaced tip positions yield uncorrelated conductance fluctuations. Clearly, there

is a critical length > 5 nm beyond which the tip must be moved in order to decorrelate

the magnetoconductance fluctuations.

4.1. Conductance images and correlations in a magnetic field

We obtain conductance images G(B, Vg) by recording G as the tip is raster scanning

over a region in the center of the sample, at fixed magnetic field B and back gate voltage

Vg. A typical conductance image G consists of 80 × 80 pixels that display the sample

conductance G(r) = Gri,j
over a two-dimensional array of tip positions ri,j = (xi, yj)

with pixel spacing ∆x = ∆y = 5 nm, as shown schematically in figure 5b. The standard

deviation δGtip of the conductance G in an image is given by the standard deviation of

Grij
over all values of i and j. By acquiring a series of images G(B, Vg) as B or Vg is

stepped to different values, we study the effect of the tip on coherent transport.

A series of 500 × 500 nm2 conductance images G(B, Vg) vs. B is shown in

figure 5a with Vg = 0 (n = −1.8 × 1012 cm−2). Each image is obtained over the

same area of the sample. The conductance images show fluctuations ∆G vs. r with

standard deviation δGtip ∼ e2/h and lateral sizes ∼ 10s of nm comparable to the Fermi

wavelength and to the size of the scatterer created by the tip. The conductance images

G(B, Vg) repeat over time intervals ∼ 1 hr. as expected for coherent conductance

fluctuations, demonstrating that their origin is not temporal noise. It can be seen by

eye that the series of conductance images G(B, Vg) shown in figure 5a change with B

in a continuous fashion. We quantify this change by calculating the cross-correlation

CAB =
∫

(GA(r) − 〈GA〉)(GB(r) − 〈GB〉)dr between conductance images GA = GA(ri,j)
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and GB = GB(ri,j), where angle brackets denote the average over the tip position r.

We then define a normalized correlation C̃AB, such that the autocorrelation of an image

with itself is unity

C̃AB =
CAB

(CAACBB)1/2
. (5)
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Figure 5. (a) A series of 500 × 500 nm2 conductance images G(B, Vg) vs. magnetic

field B at fixed back gate voltage Vg = 0 V (sample A). (b) Schematic of a conductance

image G, with pixels spaced 5 nm apart displaying the conductance Grij
with the tip

located at position ri,j = (xi, yj). (c) Correlation C̃(B1)(B2) between conductance

images G(B1, Vg) and G(B2, Vg) with Vg = 0 V. Lines show contours of a best fit from

which ∆Bc is obtained; the width of the black bar is 2∆Bc.

The grayscale map in figure 5c displays correlations C̃(B1)(B2) between images G(B1)

and G(B2) taken from a series of 200 images spanning B = ±145 mT at Vg = 0 (as

in figure 5a). By definition, C̃(B)(B) = 1. The fainter peak along B1 = −B2 shows

that there is some symmetry in the magnetoconductance fluctuations as the sign of

B is reversed about B = 0. The symmetry is imperfect because of the nature of a

coherent four-probe measurement [33], and because of slow drift of the images over the
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course of the measurement time ≃ 10 hrs. We fit the map in figure 5c to a function

given by the sum of two Gaussians centered at B1 = ±B2, shown as the contour plot

in figure 5c. From this fit, we extract the magnetic correlation length ∆Bc = 17 mT,

seen in figure 5c to be constant over the range of B shown here; ∆Bc represents the

magnetic field change needed to reduce the correlation between conductance images by

one half. Using equation 4, we find the diffusive coherence length Lφc = 500 nm, where

Lφc represents a value of Lφ obtained from ∆Bc. A series of images G(B, Vg) vs. B

provides a means to obtain ∆Bc and Lφc at a fixed back gate voltage Vg, which we will

return to below to study the behavior of ∆Bc vs. Vg.

The amplitude δGtip of conductance fluctuations created by moving the local

perturbation of the SPM tip differs from the amplitude δGVg
created by changing the

the global back gate voltage Vg. This is understood by considering the ratio Lφ/L of the

diffusive coherence length Lφ to the sample length L [7]. A sample with width W ∼ Lφ

and length L > Lφ can be envisioned as N = L/Lφ uncorrelated, coherent regions in

series, each with conductance Gi = G0 and exhibiting coherent conductance fluctuations

with standard deviation δGi. The total conductance G of the sample is

G =

(
∑

i

1

Gi

)
−1

= G0/N. (6)

For a global change such as a change in Vg, all N regions undergo uncorrelated

conductance fluctuations with standard deviation δGi = δG0. The standard deviation

δGVg
in the total conductance is given by taking partial derivatives of equation 6 summed

in quadrature:

δGVg
=

[
∑

i

(
∂G

∂Gi
δGi

)2
]1/2

= N−3/2δG0 = (Lφ/L)3/2δG0. (7)

Alternatively, the perturbation from the SPM tip acts locally, causing conductance

fluctuations in only one coherent region yielding δGj = δG0 and δGi = 0 for i 6= j. For

a local perturbation, the standard deviation δGtip in the total conductance is

δGtip =

[
∑

i

(
∂G

∂Gi
δGi

)2
]1/2

= N−2δG0 = (Lφ/L)2δG0. (8)

Combining equations 7 and 8 we obtain δGtip/δGVg
= (Lφ/L)1/2.

We obtain the standard deviations δGtip and δGVg
experimentally from conductance

images G and traces of G vs. Vg for sample A. To reduce the uncertainty, we average

δGtip over 20 conductance images with back gate voltage stepped from Vg = −1 to 1 V

at B = 0 yielding δGtip = 0.32 e2/h. We calculate δGVg
= 0.50 e2/h from the standard

deviation of conductance traces G vs. Vg in the same range of Vg = −1 to 1 V, measured

with the tip away from the sample and with the linear background subtracted, as in

figure 4b. We find that the fluctuation δGtip created by the tip is smaller than that from

the back gate voltage by the ratio δGtip/δGVg
= 0.64. This value is in good agreement

with theory, which predicts δGtip/δGVg
= (Lφ/L)1/2 = 0.6, using Lφc = 500 nm obtained

above at Vg = 0.
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4.2. Weak localization
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Figure 6. (a) Weak localization conductance dip in sample A measured with the SPM

tip fixed far from the sample. Gray: Magnetoconductance ∆G vs. B at 11 densities

stepped from n = −1.6 × 1012 cm−2 to n = −2.0 × 1012 cm−2; curves are shifted to

∆G = 0 at B = 0. Black curve: Average of the 11 gray curves. Red: Fit of black

curve to a Lorentzian, yielding the width ∆BWL = 8.1±0.5 mT. (b) Weak localization

dip in sample A measured at tip height htip = 10 nm. Gray: Magnetoconductance

∆G vs. B at a set of different tip positions separated by 100 nm, with fixed density

n = −1.8 × 1012 cm−2; curves are shifted by G0 = 18.13 e2/h. Black curve: Average

of 6400 such curves with tip positions spanning a 5 nm grid. Red: Fit of black curve

to a Lorentzian, yielding width ∆BWL = 9 ± 2 mT.

Weak localization can be identified by the conductance dip (or peak) that occurs

at zero magnetic field. A conductance dip ∆GWL created by weak localization is shown

in the magnetoconductance traces in figure 6. As for other measurements of exfoliated

graphene [3, 4, 21], we observe a conductance dip from weak localization, not a peak. In

our samples, where the sample size is comparable to Lφ, the conductance change ∆GWL

from weak localization is comparable to that from UCF. To observe the weak localization
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effect alone, we average over multiple magnetoconductance traces, by varying either the

density n or the tip position r to average out UCF.

We clearly observe the weak localization dip at B = 0 in figure 6a, by averaging

magnetoconductance traces at different densities n with the tip away from the sample

(htip > 100 µm). The gray lines in figure 6a show a series of 11 magnetoconductance

traces for densities n stepped by ∆n = 4 × 1010 cm−2 between n = −1.6 × 1012 cm−2

and n = −2.0 × 1012 cm−2, a range ∆Vg = 5 V. Because G changes significantly with

n, these traces have been shifted to pass through the same point at B = 0. A weak

localization dip ∆GWL is clearly seen in the average of all 11 traces, shown by the black

curve, with magnetoconductance fluctuations averaged out.

We also observe the weak localization conductance dip ∆GWL in figure 6b by

averaging magnetoconductance traces Grij
vs. B over a grid of different tip positions

rij. The gray lines show magnetoconductance traces at fixed n = −1.8× 1012 cm−2 and

different tip positions, on a grid spaced by ∆x = ∆y = 100 nm, with htip = 10 nm. This

data is obtained from a series of 200 conductance images G(B, Vg) at different magnetic

fields B, stepped from B = −145 mT to B = +145 mT. A magnetoconductance trace

Gri,j
(B) at tip position rij is extracted from the dataset by taking the same pixel from

each image G(B, Vg) at different values of B. The weak localization conductance dip

∆GWL is visible in the black curve in figure 6b, which is the average of all 6400 traces.

Conductance fluctuations are still clearly visible in the averaged magnetoconductance,

because the tip-created scatterer only affects the conductance in a region of size ∼ Lφ,

about one third of the sample. Magnetoconductance fluctuations arising from regions

of the sample at distances > Lφ from the tip are not decorrelated by changing the tip

position.

By measuring the width ∆BWL of the weak localization conductance dip ∆GWL

shown in figures 6a and 6b, we obtain an estimate for the coherence length LφWL.

To obtain ∆BWL, we fit the averaged curves of G vs. B in figures 6a and 6b to a

Lorentzian function, which approximates the predicted lineshapes given in equations 2

and 3 for weak localization in two dimensions [7, 12]. The red lines in figures 6a and

6b show the results of the Lorentzian fit, with HWHM ∆BWL = 8.1 ± 0.5 mT and

∆BWL = 9± 2 mT in figures 6a and b respectively, in good agreement with each other.

Using equation 1, we obtain a coherence length LφWL = 510 ± 20 nm for figure 6a

and LφWL = 480 ± 50 nm for figure 6b. These values obtained from weak localization

measurements match the estimate Lφc = 500 nm obtained above from cross-correlations

between magnetoconductance images shown in figure 5.

Measurements of ∆BWL from the weak localization conductance dip ∆GWL and

measurements of ∆Bc from cross-correlations between conductance images allow us to

study how the phase coherence length Lφ depends on the carrier density n. Previous

bulk weak localization measurements found the coherence length LφWL in graphene

varies significantly with n, with a minimum at the Dirac point [4, 21]. Figure 7a shows

our data for ∆BWL and ∆Bc/2 vs. n, obtained from conductance images G(B, Vg)

for sample C. The agreement clearly shows the factor of 2 difference, predicted by the
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Figure 7. (a) Widths of the weak localization conductance dip ∆BWL and the

correlation magnetic field ∆Bc for conductance fluctuations vs. carrier density n in

sample C. Circles: ∆BWL vs. n obtained from magnetoconductance traces averaged

over different tip positions, as in figure 6b. Squares: ∆Bc/2 obtained from cross-

correlations between conductance images, as in figure 5c. (b) ∆BWL in sample B,

obtained with the tip fixed far from the sample, by averaging magnetoconductance

traces over a range (4× 1011 cm−2) of n, showing qualitative agreement with the data

in (a). (c) Standard deviation δGtip of the conductance Grij
over all tip positions rij

in a conductance image G vs. n for sample A.

interference of two time-reversed diffusive loops for weak localization vs. the single loop

for interfering forward scattering paths, discussed above. Each data point is derived

from a series of 200 conductance images G(B, Vg) at a fixed density n. The circles show

∆BWL, from the width of the weak localization conductance dip in an average over tip

positions, as in figure 6b. The squares show ∆Bc/2 obtained from the cross-correlation

C̃(B1)(B2) (equation 5) between conductance images G(B1, Vg) and G(B2, Vg). We find

∆Bc from the correlation function C̃(B1)(B2) as in figure 5c. The values of ∆BWL and

∆Bc in figure 7a both increase as the hole density decreases and the system approaches

the Dirac point.

Figure 7b shows ∆BWL found for sample B with the tip fixed far from the sample.

Each data point is obtained by averaging 20 magnetoconductance traces G vs. B over a

range of densities n = ±2× 1011 cm−2 (a 5V change in Vg). The data in figure 7b show

that ∆BWL increases as the electron density is decreased, and is largest at the Dirac

point (n = 0), complementing the behavior for holes.
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The coherence length Lφ for samples B and C is estimated from ∆BWL and ∆Bc

in figures 7a and 7b, using equations 1 and 4. We find that the minimum coherence

lengths LφWL = Lφc = 300 nm occur at the Dirac point for both samples. The maximum

coherence length Lφ occurs at the largest hole or electron density: LφWL = 600 nm for

n = 4× 1012 cm−2 in sample B, and LφWL = Lφc = 500 nm at n = −1.7× 1012 cm−2 in

sample C. The change of Lφ with n is in good agreement with previous results [4, 21], and

is likely caused by the change in electron-electron interaction strength with n [4, 17, 21],

as well as the effects of electron-hole puddles near the Dirac point [4, 21, 22].

The standard deviation δGtip of conductance fluctuations over a single image for

a series of conductance images G(n) at different densities n at B = 0 is shown in

figure 7c. We find that δGtip increases away from the Dirac point with the electron

or hole density; these results are similar to bulk transport measurements on single and

multilayer graphene [19, 22, 39]. The trend in δGtip vs. n is consistent with the behavior

of ∆BWL and ∆Bc in figures 7a and 7b. As discussed above, when the sample length

L > Lφ, then δGtip ∝ (Lφ/L)2. Because ∆BWL ∝ L−2
φWL and ∆Bc ∝ L−2

φc , we expect

δGtip ∝ 1/∆BWL and δGtip ∝ 1/∆Bc; the data in figure 7 follow this trend. From n = 0

to n = ±2 × 1012 cm−2, δGtip changes by a factor ≈ 2, which agrees with the observed

change in ∆BWL and ∆Bc by a factor ≈ 1/2 over the same range of n in figures 7a and

7b.

5. Conclusions

The study of coherent electron transport and weak localization in graphene has recently

received much attention through bulk transport measurements. Here, we add a new

technique that allows one to probe transport by creating a movable scatterer with an

SPM tip. This allows us to investigate weak localization in a new way by creating

a controllable, local change to the disorder configuration. Our measurements provide

a direct way to observe the spatial nature of coherent transport in graphene. This

technique provides an image of the magnetoconductance vs. tip position that represents

a spatial “fingerprint” of the interfering paths at a particular Fermi energy EF and

magnetic field B. From correlations between images at different B we measure the

coherence length Lφc for electrons diffusing through the sample, and find good agreement

with the coherence length LφWL obtained from weak localization measurements.

Understanding and controlling disorder is one of the main challenges in realizing

many of the proposals for probing new physics and discovering applications for graphene.

In this work, we have described a tool that maps the effect of a nanoscale change to

the disorder in a graphene sample produced by an SPM tip. This represents a step

towards the goal of gaining mastery over disorder in graphene, by developing methods

to controllably shape it and bend it to our will.
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