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Abstract. Graphene provides a fascinating testbed for new physics and exciting

opportunities for future applications based on quantum phenomena. To understand

the coherent flow of electrons through a graphene device, we employ a nanoscale probe

that can access the relevant length scales - the tip of a liquid-He-cooled scanning

probe microscope (SPM) capacitively couples to the graphene device below, creating

a movable scatterer for electron waves. At sufficiently low temperatures and small size

scales, the diffusive transport of electrons through graphene becomes coherent, leading

to universal conductance fluctuations (UCF). By scanning the tip over a device, we map

these conductance fluctuations vs. scatterer position. We find that the conductance is

highly sensitive to the tip position, producing δG ∼ e2/h fluctuations when the tip is

displaced by a distance comparable to half the Fermi wavelength. These measurements

are in good agreement with detailed quantum simulations of the imaging experiment,

and demonstrate the value of a cooled SPM for probing coherent transport in graphene.



Imaging universal conductance fluctuations in graphene 2

1. Introduction

Graphene, a single atomic layer of carbon in a hexagonal lattice, has remarkable

properties. It has conical conduction and valence bands that meet at a single point

in k-space (the Dirac point) [1]. Strong quantum confinement effects have been

observed in quantum dots and nanoribbons [2], and the quantum Hall effect can be

seen at room temperature [3]. Scanning tunneling microscopy has measured the surface

topography [4], local charge density [5], and the local density of states [6, 7], and a

scanned charge sensor has been used to map the charge density [8].

Universal conductance fluctuations (UCF) [9–11] occur when a coherent electron

wave scatters repeatedly while it travels through a disordered conductor, following

all possible paths through the sample. The different paths interfere with each other,

creating a change in the conductance known as UCF that depends sensitively on the

scatterer positions. When the size of the sample is less than the diffusive phase coherence

length Lφ, interference between paths yields a universal magnitude δG ∼ e2/h for UCF,

independent of the sample size and the degree of disorder. Theory [12, 13] has predicted

that the full UCF effect is obtained by moving a single scatterer a distance comparable

to the Fermi wavelength λF .

In this work, we use a liquid-He-cooled scanning probe microscope (SPM) [8, 14–20]

to study coherent transport in graphene. We obtain conductance images that map the

effect of a single scatterer on UCF. A charged SPM tip near the surface of a graphene

sample creates an image charge that acts as a movable scatterer. This alters the electron

wave function in the vicinity of the tip, leading to changes in quantum interference that

give rise to UCF. An image of the sample conductance vs. tip position provides a spatial

“fingerprint” that is unique to the arrangement of scatterers at a given Fermi energy. To

demonstrate that the observed effects arise from UCF, we present the following evidence:

a) Repeatability – The conductance images are repeatable over a time span ∼ 1 hr., ruling

out temporal fluctuations; b) Amplitude – The amplitude of the observed conductance

fluctuations agrees with the expected value for UCF; c) Energy correlation – The change

in Fermi energy needed to decorrelate the conductance images matches the theoretical

prediction for UCF; d) Simulations – Full quantum simulations of coherent transport

and scattering in graphene reproduce the experimental results; and e) Correlation length

– The correlation length obtained from the autocorrelation function of the experimental

images is approximately half the Fermi wavelength, as predicted for UCF. This technique

allows us to observe the signatures of UCF without varying any external parameters (e.g.

the magnetic field or gate voltage). Our approach reveals how UCF are created by the

displacement of a single scatterer, as predicted by theory [12, 13].

UCF has recently been investigated in transport measurements of mesoscopic

graphene samples [21–26]. Our SPM technique provides a valuable spatial probe of

coherent transport in graphene: 1) The tip can be adjacent to the two-dimensional

electron gas, maximizing the spatial resolution, because graphene is two-dimensional

material; 2) The Fermi energy EF can be continuously varied from positive values for
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Figure 1. (a) Schematic of the graphene sample mounted in the cooled scanning

probe microscope (SPM), showing a Hall bar contacted by six Cr/Au leads. The SPM

tip and lead 1 are grounded (Vtip = 0), with a 25 nA rms current between leads 1 and

4 at 5 kHz. Voltage is measured between leads 2 and 3 using a lock-in amplifier. A

back-gate voltage Vg is applied to the degenerately doped Si substrate. (b) Voltage V

across contacts 2 and 3 vs. current I through a typical sample at Vg = 0. The cross

indicates the current level used in the conductance measurements. (c) Transverse

conductance Gxy vs. Vg at B = 6.6 T. Spikes occur at the Dirac point where the

measured Rxy = 1/Gxy passes through zero. Gray crosses indicate expected quantum

Hall plateaux for single-layer graphene. (d) Measured conductance G vs. Vg , with a

linear fit for Vg < 20 V. (e) Three consecutive measurements of G vs. Vg with the tip

fixed far from the sample, with the linear background from (d) subtracted. (f) Same

as (e), but with the tip 10 nm above the sample, at three different locations spaced

100 nm apart.

electrons, through zero to negative values for holes by using a back gate; 3) At T = 4 K,

the observed coherence length (Lφ ∼ 500 nm) and elastic mean free path (le ∼ 50 nm)

allow measurement in the coherent regime. Our results for graphene should also apply to

other two-dimensional conductors, though some questions may be raised by scattering

in graphene’s unusual band structure [22, 27].

2. Experimental Methods

The graphene samples studied in these experiments are single-atomic-layer Hall bars,

with a geometry shown schematically in figure 1a. The experimental data in the figures

below are from a sample with width 500 nm and voltage contacts (leads 2 and 3 in

figure 1a) with centers spaced 1200 nm apart. Graphene flakes were prepared through
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mechanical exfoliation (the “sticky tape method”) and deposited onto a degenerately

doped Si substrate capped with 280 nm of SiO2. A back gate voltage Vg is applied

between the substrate and the graphene to vary EF and the carrier density n. Using

electron beam lithography, Cr/Au leads are deposited onto the graphene, after which

the Hall bar structure is formed via an oxygen plasma etch. The sample is then

mounted on a home-built scanning gate microscope [15, 19] and cooled in He exchange

gas in thermal contact with a liquid He bath at T = 4.2 K. Figure 1b shows the

voltage V between contacts 2 and 3 vs. current I through a typical graphene sample,

displaying Ohmic behavior. The gray cross indicates the current level at which the

experiments were performed, well within this linear regime. The presence of single-

layer graphene is confirmed by observing quantum Hall behavior unique to single-

layer graphene. Figure 1c shows the transverse Hall conductance Gxy vs. Vg in a

perpendicular magnetic field B = 6.6 T. Conductance plateaux are observed at the

expected values 4(ν + 1/2)e2/h, where ν is an integer, and are spaced in carrier density

by the expected ∆n = 4B/φ0, where φ0 is the flux quantum. Topographical contact-

mode atomic force microscope scans are performed over the metal leads, which allow

us to locate the sample and calibrate the tip height against the known thickness of

the leads. These topographical scans also determine the plane of the sample surface,

which then allows us to scan the tip over the graphene at a constant height for the

conductance imaging experiments. Similar results have been obtained on three other

samples with similar dimensions. The four-probe conductance G, shown in figure 1d,

displays the characteristic linear variation of G vs. Vg on either side of the Dirac point

at VDirac = 22 V.

Coherent, diffusive transport is expected when the sample size L . Lφ, the

electron’s diffusive coherence length, and L ≫ le, the elastic mean free path. At

T = 4 K, we obtain Lφ ≈ 0.5 µm from weak localization and magnetoconductance

measurements (not shown). Lφ is larger than the 0.4× 0.4 µm2 field of view in figure 2,

and comparable to the sample width (W = 0.5 µm) and length (L = 1.2 µm); all of

these lengths are much larger than le ∼ 50 nm.

From the slope of G vs. Vg in figure 1d and the capacitance between the back gate

and the graphene, discussed below, the electron and hole mobility away from the Dirac

point is found to be µ ≈ 7200 cm2/Vs. The shift of the Dirac point from Vg = 0 to

VDirac = 22 V is attributed to charged impurities located either above or below the

graphene layer, which induce a charge in the graphene.

To create a movable scatterer, a conducting, voltage-biased SPM tip with radius

of curvature rtip = 20 nm is held at a height htip = 10 nm above the graphene. In

the measurements presented here, the tip is grounded, so that the charge on the tip is

set by the contact potential between the degenerately-doped Si tip and the graphene.

In addition, image charges are created in the tip from impurities on the surface of the

graphene sample. Previous Kelvin probe measurements of graphene [28] and doped

Si [29] yield a contact potential difference ∼ 0.5 V between the tip and the sample.

Previous SPM imaging measurements of electron flow [16], used tip voltages ∼ 3 V at tip



Imaging universal conductance fluctuations in graphene 5

height 10 nm without pulling the tip into the surface. The potential difference between

the tip and the graphene results in an attractive force, but this force is much smaller

than the van der Waals force between the graphene and the substrate [30]. The fact that

the images accurately reproduce over many scans, demonstrates that the tip does not

damage the graphene surface. Spatial inhomogeneity in the strength of the tip-created

scatterer may arise from a spatially varying graphene work function [28] or from image

charges of randomly placed charged surface impurities. These static spatial variations,

however, cannot explain our experimental results because the observed pattern and

lateral size of conductance fluctuations are found to depend sensitively on the Fermi

energy, as discussed below.

The spatial profile of the density perturbation created in the graphene by the

SPM tip was computed using classical electrostatic finite-element simulations (Maxwell,

Ansoft LLC). The graphene is modeled as a planar conductor, with the observed

offset VDirac of the Dirac point modeled by a homogeneous layer of charge above the

graphene. The tip is realistically shaped and located above the sample at a height

htip = 10 nm. The back gate is modeled as an infinite conducting plane, separated from

the sample by 280 nm of SiO2. The average carrier density in the graphene is found to

be n = α(Vg − VDirac), with α = 8.3 × 1010 cm−2 V−1. The spatial profile of the image

charge created by the SPM tip in the graphene layer has a maximum ∼ 3 × 1011 cm−2

and a Lorentzian-like shape with half-width at half maximum (HWHM) rscat ≈ 25 nm.

The size and magnitude of the tip perturbation can be compared to the naturally

occurring variations in carrier density (charge puddles) in graphene, which are found

experimentally [5, 7, 8] and theoretically [31] to have carrier densities ∼ 4 × 1011 cm−2

with a characteristic diameter ∼ 20 nm, for graphene flakes on a SiO2 substrate. The

perturbation to the charge density created by the SPM tip has approximately the same

amplitude, and about double the spatial size of these pre-existing inhomogeneities.

The conductance fluctuations visible in figure 1d can be identified as UCF. They are

reproducible, and have a root-mean-squared (rms) magnitude δG = 0.64 e2/h. Figure 1e

shows the conductance fluctuation ∆G vs. Vg when the tip is fixed far from the sample

with tip height htip > 100 µm. The three traces from consecutive Vg sweeps show good

reproducibility. Bringing the charged tip near the graphene (htip = 10 nm) creates an

image charge in the electron gas that significantly alters the conductance fluctuations.

Three ∆G vs. Vg traces in figure 1f for different tip positions spaced 100 nm apart,

demonstrate that UCF is sensitive to the spatial configuration of scatterers – a change

in the position of a single scatterer is enough to decorrelate the conductance fluctuations,

as predicted by theory [12, 13].
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Figure 2. (a) Conductance image G(r) vs. tip position r at T = 4 K, for tip

height htip = 10 nm. The density n = −2.7 × 1012 cm−2 (Vg = −10 V) is far

from the Dirac point. The 400 × 400 nm2 scan area is located in the center of

the sample, as indicated in the schematic diagram. (b) Same as (a) except for a

density n = −1.2 × 1011 cm−2 (Vg = 20 V) near the Dirac point. (c) Repeatability

is demonstrated by two 400× 400 nm2 conductance images taken in succession, a few

minutes apart, with the rightmost panel showing the difference between the first two

images.

3. Results: UCF images

3.1. Fluctuation amplitude and repeatability

Using our SPM, we can study UCF by controllably raster scanning the tip position

over an area of the sample; previous studies of the effect of single scatterers were

based on charge hopping at random positions [32, 33]. Figures 2a and 2b show

conductance images of G vs. tip position r at densities n = −2.7 × 1012 cm−2 and

n = −1.2 × 1011 cm−2 respectively, in a 400 × 400 nm2 area located at the center of

the sample. At high density (figure 2a), conductance fluctuations are observed with

rms magnitude δG = 0.35e2/h and characteristic lateral size ∼ 10s of nm in agreement

with UCF theory, as shown below. At low density, near the Dirac point (figure 2b), the

conductance fluctuations have a smaller magnitude δG ≈ 0.1 e2/h and a larger lateral

size ∼ 100 nm. Previous transport measurements show the magnitude of UCF in single

and multilayer graphene [21, 24, 26] decreases monotonically towards the Dirac point.

The conductance images shown in figure 2 are reproducible, as expected for UCF. Two
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Figure 3. (a) Conductance images G(r) vs. SPM tip position r in a 400 × 400 nm2

region of a graphene sample at different back gate voltages Vg. The color scale spans

a range of ± 1e2/h. An arrow points to the same location in each image, highlighting

their continuous evolution. (b) A repetition of the series of images in (a), performed

1.5 hrs later, demonstrating the repeatability. The arrows point to the same location

and feature as in part (a).

images taken ∼ 3 min. apart (figure 2c) are nearly identical; the difference shows only

small changes, likely caused by the motion of charged defects in the substrate. The

amplitude ∼ e2/h of the repeatable fluctuations in the conductance images provides

evidence that the conductance images represent UCF, as in figures 1e and 1f. Note that

the change in conductance caused by moving the tip is relatively large. For example

in figure 2a, the ∼ 3% conductance fluctuations are caused by a change in the carrier

density over ∼ 0.3% of the sample area. The UCF images shown in figure 2 are loosely

analogous to speckle patterns produced by the coherent scattering of light in a diffusive

medium.

3.2. Correlations vs. Fermi energy

Another test for UCF is obtained by measuring the correlation between conductance

images recorded at different Fermi energies EF by changing the density n with the back

gate voltage Vg. If the measured conductance images were not caused by UCF, but

instead directly reflected some spatial inhomogeneity in the sample (e.g. a spatially

varying work function), one would not expect the images to change dramatically with

a change in Vg. In fact, we find that the conductance images become completely

decorrelated for small changes in Vg, in quantitative agreement with the prediction for

UCF. The correlation energy Ec is the range of EF over which UCF remain correlated.

We can determine Ec from our UCF conductance images by finding the change in Vg

needed to reduce the correlation between two images by one half; this is the correlation

voltage Vc.

Figure 3a shows a series of conductance images recorded at backgate voltages

decreasing from Vg = 0.8 to 0.2 V in 0.1 V steps. By eye, one can see that the images

evolve smoothly from one to the next, becoming less correlated as the change in Vg is
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increased. For example, the arrows point to the location of a dark spot at Vg = 0.5 V in

the middle of the series, which has almost completely disappeared at Vg = 0.2 or 0.8 V.

The reproducibility of these UCF images over time intervals ∼ 1 hr is demonstrated by

figure 3b which shows a repetition of the Vg series, performed 1.5 hrs later. The arrows

point to the same location as in figure 3a, showing that the same feature remains.

The correlation CAB between two conductance images GA(r) and GB(r) vs. SPM

tip position r, is CAB =
∫

(GA(r)−〈GA〉)(GB(r)−〈GB〉)dr, where angle brackets denote

the average over r. The normalized correlation C̃AB, such that the autocorrelation of

an image is equal to unity is

C̃AB =
CAB

(CAACBB)1/2
. (1)

From a series of conductance images at different back gate voltages Vg, we obtain

the normalized correlation C̃(Vg)(Vg+∆V ) between two images, GVg
(r) and GVg+∆V (r),

separated by a fixed change ∆V in Vg. The average correlation 〈C̃(Vg)(Vg+∆V )〉Vg
vs. ∆V

is then obtained by averaging over different values of Vg for a fixed ∆V .
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Figure 4. (a) Normalized correlation 〈C̃(Vg)(Vg+∆V )〉Vg
vs. ∆V between two UCF

conductance images recorded at different back gate voltages Vg and Vg +∆V , averaged

over Vg. The correlation voltage Vc is the half-width-at-half-maximum (HWHM) of

this curve. (b) Correlation voltage Vc vs. Vg. Points: Vc computed from experimental

conductance images. Line: theoretical curve (see text) following Ref. [25].
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Figure 4a shows the normalized correlation 〈C̃(Vg)(Vg+∆V )〉Vg
, averaged over Vg, vs.

∆V between two UCF images recorded at different back gate voltages Vg and Vg + ∆V

from Vg = −1.0 to 1.0 V in steps ∆V = 0.1 V; the UCF images are similar to those

in figure 3a. As shown, the correlation falls off as ∆V moves away from zero. The

correlation voltage Vc is defined as the halfwidth-at-half-maximum (HWHM) of this

curve. To find Vc at a particular back gate voltage Vg = V 0
g , a series of conductance

images is recorded over the range Vg = V 0
g − 1.0 V to Vg = V 0

g + 1.0 V in steps of 0.1 V.

We then calculate 〈C̃(Vg)(Vg+∆V )〉Vg
vs. ∆V for this series of images, and the correlation

voltage Vc is obtained from the HWHM of this curve. For the data in figure 4a we find

Vc = 0.27 V at Vg = 0. Note that the range of Vg (2V) covered by this procedure is

small compared to the full range of Vg (10s of V) considered in the experiments.

A plot of the measured correlation voltage Vc vs. back gate voltage Vg

is shown by the red dots in figure 4b. Theoretically, the correlation voltage

Vc = (2Ec/~v0)(|Vg − VDirac|/πα)1/2 where Ec is the correlation energy, and v0 =

1.1 × 106 m/s is the Fermi velocity. The correlation energy is Ec ≈ 2.8 kBT in the

thermally broadened regime [25] that is appropriate here. The theoretical curve for Vc

at T = 4 K, is shown by the solid curve in figure 4b; it is in good agreement with

the experimental results providing strong evidence that our conductance images display

UCF.

To ensure that the measured loss of correlation with increasing change ∆V in back

gate voltage Vg is a repeatable effect and not caused by random drift over the course

of the measurement, we calculate the correlation C̃(t)(t′) between a conductance image

GVg,t(r) obtained at time t and the same scan GVg,t′(r) repeated at t′ = t + 1.5 hrs,

as shown in figures 3a and 3b. The correlation for different times 〈C̃(t)(t′)〉Vg
≈ 0.5,

averaged over Vg, is much higher than the correlation 〈C̃(Vg)(Vg+∆V )〉Vg
for different back

gate voltages separated by ∆V = ±1 V, as shown in figure 4a, demonstrating that the

complete loss of correlation with gate voltage cannot be caused by drift.

3.3. Simulated UCF images

We have performed quantum simulations of coherent transport in graphene including

the potential from a movable tip [15], shown in figure 5, to clarify the origin of features

seen in the measured conductance images. The simulation results display UCF that

change with the tip position, producing conductance images in good agreement with the

experimental fluctuation amplitude and spatial size. The simulated UCF images show

spatial fluctuations whose size is given by approximately half the Fermi wavelength,

as in the experiment. The match between the simulations of UCF modulated by a

movable scatterer and the experimental results demonstrates that the origin of the

observed conductance images is well-explained by UCF. By varying parameters in the

simulation, such as the size of the tip perturbation, we can further explore the effect of

a movable scatterer in graphene, and compare to the predictions of analytic theories.

Theoretical simulations of UCF conductance images for graphene were obtained
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Figure 5. (a) Simulated UCF conductance image G(r) vs. tip position r in graphene

for a density n = −8× 1011 cm−2 away from the Dirac point, and (b) simulated UCF

conductance image for a density n = −4 × 1010 cm−2 near the Dirac point. These

simulations show a magnitude δG and spatial size of UCF comparable to the data in

figure 2. The difference in conductance G between the simulation and experiment is

caused by the difference in sample aspect ratio and mobility.

by using a finite-difference method to calculate the conductance through a disordered

graphene sample [34]. The potential in the graphene layer is given by the combination of

a local potential from the tip and a number of randomly placed electrostatic scatterers.

Details of the simulations are given in the Appendix.

By calculating the conductance G(r) vs. the tip position r, we produce the same

type of conductance images as obtained in the experiments. Theoretical conductance

images, such as figure 5, are obtained by rastering the tip position r in a plane above

the sample. The conductance G at each tip position r is simulated using the combined

potential U from the tip, the intrinsic scatterers and the back gate. Each image consists

of 80 × 80 evaluations of G, with tip positions spaced 5 nm apart, centered within the

sample area.

The simulated images shown in figure 5 are in good agreement with the experimental

results in figures 2a and 2b. Figure 5a shows a simulated conductance image at a density

n = −8 × 1011 cm−2 far from the Dirac point. The image displays spatial conductance

fluctuations with amplitude δG ∼ e2/h, and lateral size ∼ 10s of nm, similar to the

fluctuations observed in the experiment in figure 2a. Close to the Dirac point (figure 5b,

n = −4 × 1010 cm−2), the simulated images show UCF with larger lateral size, in

agreement with figure 2b. The simulated UCF images have characteristics similar to

the measured images: rms amplitude δG ∼ e2/h, and spatial size of UCF that increases

near the Dirac point. The agreement between the simulations and the experiment verify

that the measured images show UCF caused by the motion of a single scatterer.
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Figure 6. (a) Experimental (exp) and (b) simulated (sim) autocorrelation C(r0) of

UCF conductance images away from the Dirac point [(a) n = −7.1 × 1011 cm−2 and

(b) n = −8 × 1011 cm−2]. White = high and black = low. (c) Experimental (exp)

and (d) simulated (sim) C(r0) near the Dirac point [(c) n = −8 × 1010 cm−2 and (d)

n = −4 × 1010 cm−2]. Diagrams of graphene band structure schematically indicate

the Fermi energy EF in (a) to (d). (e) Simulated correlation length lc at a fixed

n = −8 × 1011 cm−2
vs. the radius rscat of the movable scatterer created by the tip,

with linear fit (red). Points are the average of 5 disorder configurations. Dotted line

shows the analytical prediction lc = 0.46λF . (f) Measured correlation length lc vs. Vg

(points) obtained from autocorrelations C(r0), shown with the analytical prediction

lc = 0.46λF (dotted line), and an empirical fit (red line) to lc = 0.46λF + r0 with

r0 = 22 nm; the value of r0 obtained from the fit is close to the SPM tip radius, as

expected. Data points represent the average of four images at slightly different Vg to

reduce noise.

3.4. Correlation length of UCF images

Our measurements provide a unique ability to probe theoretical predictions [12, 13]

for the effect of a single movable scatterer on UCF. To quantify the spatial size of

the features in a conductance image G(r), we calculate the spatial autocorrelation

C(r0) =
∫

G(r)G(r−r0)dr. Figures 6a and 6b show C(r0) away from the Dirac point for

the experimental and simulated results, respectively. The width of the central peak in

these plots corresponds to the spatial size of the fluctuations in the original conductance

image. Figures 6c and 6d show C(r0) for EF close to the Dirac point, with significantly

broader peaks.

We find that the correlation length lc for a UCF image is approximately half

the Fermi wavelength, with an offset determined by the spatial size of the scatterers.

The typical feature size of half the Fermi wavelength in a conductance image is a

clear signature that the measured images arise from the interference effect of UCF.

The correlation length can be extracted from C(r0) by averaging over the angular

dependence and defining lc to be the HWHM of the resulting curve. Figure 6f shows

lc vs. Vg from a series of experimental conductance images spanning the Dirac point.
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Theory [12] predicts lc ≈ 0.46λF (dotted line in figure 6f), where the Fermi wavelength

λF = 2(π/|n|)0.5. Both theory and the data show a peak in lc at the Dirac point. The

analytical calculation, however, does not take into account the spatial extent of the tip

or the long-range scatterers (10s of nm) which are not negligible.

The effect of the spatial size rscat of the movable scatterer created by the tip is

investigated in simulated images by finding lc vs. rscat, shown in figure 6e, where

rscat is the HWHM of the image charge density. The scatterer effectively smears

out the fluctuations on a length scale (1.4 ± 0.3) × rscat, shown by the red line in

figure 6e. This smearing can be modeled by adding an offset r0 to the correlation length,

lc = 0.46λF + r0; a best fit shown by the red line in figure 6f is r0 = 22 ± 1 nm, which

corresponds closely with the tip radius rtip ≈ 20 nm and with the size rscat ≈ 25 nm of

the image charge created by the tip.

4. Conclusions

Our SPM imaging technique probes how coherent transport through a mesoscopic

graphene sample is affected by the motion of a single scatterer. By scanning a charged

SPM tip over a graphene device, we obtain conductance images that display fluctuations

with amplitude δG ∼ e2/h and spatial size ∼ 10s of nm comparable to the Fermi

wavelength. We have performed a series of experiments, summarized below, that identify

the fluctuations in these images as UCF, including measurements of the amplitude and

spatial size of the fluctuations, correlation measurements between images at different

Fermi energies, and comparison of the results with simulations. Repeatability – The UCF

conductance images repeat over times up to 1.5 hrs, as predicted for UCF. Amplitude –

The conductance fluctuation amplitude ∼ e2/h in the measured images is expected for

UCF. Energy correlation – The correlation between two images is destroyed by changing

the Fermi energy and density, by changing the back gate voltage Vg. The correlation

voltage Vc obtained from our measurements agrees well with the theoretical prediction

for the correlation energy for UCF. It is striking that a change ∆Vg < 1 V in back gate

voltage is sufficient to completely change the conductance images; this is expected for

UCF created by the interference of electron waves traveling along different paths, and

demonstrates that the images are not simply reflecting the underlying charge density

puddles. We see that the interference that gives rise to UCF is highly sensitive to the

position of even a single scatterer, yielding the full fluctuation δG ∼ e2/h when the tip

is displaced by only several 10s of nm.

Simulations – To verify that the observed conductance images represent UCF

caused by the motion of a single scatterer, we simulated the effect of the tip-created

scatterer on the conductance of a graphene sample. The simulated conductance images

reproduce the features seen in the experimental images: fluctuations δG ∼ e2/h with

lateral size ∼ 10s of nm, which depend sensitively on the Fermi energy and the

arrangement of the scatterers. The simulations also confirm the observed increase in

the spatial size of the fluctuations near the Dirac point.
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Correlation length – Because universal conductance fluctuations result from

quantum interference, one would expect their spatial length scale to depend on the

electron wavelength. Indeed, from the experimental conductance images and numerical

simulations, we find that the spatial size of the fluctuations is comparable to the Fermi

wavelength λF . We obtain good agreement with theoretical predictions, taking into

account the realistic spatial size of the tip-created scatterer.

Our measurements demonstrate the utility of a low-temperature scanning probe

microscope for studying the coherent flow of electrons through graphene. The

conductance images shown above provide a spatial view of how the interference of

electron waves leads to UCF. This imaging technique will also be useful for the

investigation of magnetoconductance fluctuations and weak localization in graphene.

By using a probe of size comparable to the electron wavelength, we gain new insight

into the quantum behavior of electrons as they flow through a graphene device.
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Appendix: Simulation methods

The numerical calculations we have performed to model our results follow the method

described in Ref. [34]. The sample is discretized into a square lattice and the Dirac

equation is solved using a finite difference method on this grid. An ideal lead is connected

to both sides of the sample with propagating electron modes incident on the sample

edges. The conductance is obtained by calculating the transfer matrix for these modes

as they travel across the sample. Further details of these simulations will be given in a

separate publication.

In our simulations, the sample grid consists of 102×153 points, spaced 5 nm apart.

This places a lower limit on the Fermi wavelength of λmin = 10 nm, corresponding to a

maximum carrier density of nmax = 4π/λ2
min = 4π×1012 cm−2. The direction of current

flow is across the narrow dimension of the grid (510 nm), with a width of 765 nm in the

transverse direction. Periodic boundary conditions are applied at the transverse edges,

and we focus only on the 400 × 400 nm2 square in the middle to avoid effects of the

boundary conditions. Note that the aspect ratio of the simulated sample L/W = 2/3

is less than the aspect ratio L/W = 2.4 for the experimental sample. For the same

conductivity, the conductance G for the simulation will be a factor ≃ 3.6 larger than G

in the experiments.

Disorder in the graphene is modeled in the simulations as a sum of screened

electrostatic potentials created by point charges located above or below the graphene
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layer. According to the method of images, a point charge q located a height a above a

conducting sheet induces a charge density in the sheet

σ(ρ) =
−qa

2π(ρ2 + a2)3/2
(A.1)

where ρ is the radial coordinate away from the position of the point charge. We

then build up the total disorder charge density σd(x) vs. position x as a sum of

such functions, centered at randomly chosen lattice sites, with a fraction ni = 0.2

of lattice sites occupied. The charge q = 2.5 e is chosen to yield a rms charge

density σd ∼ 4 × 1011 e/cm2 that is in agreement with the observed charge puddles

in scanning tunneling [5, 7] and scanning charge sensor measurements [8]. The sign of

each impurity charge is randomly chosen to be positive or negative, with equal numbers

of positive and negative charges. (The offset of the Dirac point from Vg = 0 in the

experiment is not explicitly included in the simulation.) The distance of the charged

impurities from the sample is set to a = 10 nm to match the lateral size scale of

the image charge puddles with puddles observed in scanning tunneling and scanning

charge sensor experiments [5, 7, 8]. These numbers combine to yield an effective density

nimp = 2×1012 cm−2 of impurities with charge ±e. The resulting simulated conductance

increases linearly with n away from the Dirac point, and is rounded off at n = 0. The

mobility of the simulated sample is µ ≃ 15000 cm2/V s, which is a factor of ≃ 2

greater than the experimental mobility. The minimum conductivity is 5.3 e2/h in the

simulations, in agreement with the measured value 5.7 e2/h.

We simulate a conductance image by adding to the charge density an additional

perturbation σtip created by the tip, centered at position r. We model the tip as a point

charge above the sample, so σtip has the functional form given in equation A.1. We

adjust the tip height a to control the width of the tip perturbation rscat. For the images

in figure 5, we chose a = 10 nm, the same distance from the sample as the charged

impurities. To test the effect of the radius of the scatterer created by the tip, we vary

a = 10 nm to a = 32.5 nm in figure 6e. We set the tip charge q to yield a peak image

charge density σmax ∼ 5 × 1011 e/cm2, as determined from electrostatic simulations,

described above.

Finally, an overall offset σ0 to the charge density is added to yield the desired Fermi

energy, controlled by Vg in the experiment. The total charge density in the graphene is

then given by σ = σ0 + σd + σtip. Using the relationship between the Fermi energy and

charge density in graphene, we can now find the potential vs. position x in the graphene

layer:

U(x) = ~v0 × sgn(σ(x))
√

π|σ(x)| (A.2)

where v0 is the Fermi velocity, and “sgn” is the sign function. This potential is

then plugged into the simulation to model the disordered potential through which the

electrons flow. Note that the square root in equation A.2 means that the different

contributions to the potential do not add arithmetically to the total potential. That is,

the contribution to the potential from disorder becomes smaller as the overall charge

density increases.
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The empirical model for the disorder described above is based on calculations

for charge puddles caused by screened impurities in graphene in Refs. [31, 35], and

measurements of the size and magnitude of charge puddles in Refs. [5, 7, 8]. We neglect

short-range scattering with lattice defects, scattering from ripples or trigonal warping,

and the quantum corrections to the screening expected at low density [35]. We find that

this simple model of long-range, ideally-screened electrostatic scatterers is sufficient to

reproduce and understand the experimentally observed phenomena.
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