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Abstract— Biological systems achieve amazing adaptive be-
havior with local agents performing simple sensing and actions.
Modular robots with similar properties can potentially achieve
self-adaptation tasks robustly. Inspired by this principle, we
present a generalized distributed consensus framework for self-
adaptation tasks in modular robotics. We demonstrate that a
variety of modular robotic systems and tasks can be formulated
within such a framework, including (1) an adaptive column
that can adapt to external force, (2) a modular gripper that can
manipulate fragile objects, and (3) a modular tetrahedral robot
that can locomote towards a light source. We also show that
control algorithms derived from this framework are provably
correct. In real robot experiments, we demonstrate that such
a control scheme is robust towards real world sensing and
actuation noise. This framework can potentially be applied to
a wide range of distributed robotics applications.

I. INTRODUCTION

In nature, biological systems gain a tremendous advantage
by using vast numbers of simple and independent agents
to collectively achieve group behaviors. This has inspired
the area of modular robotics: a class of robotic systems
composed of many independent, connected, programmable
modules that coordinate among themselves to achieve desired
tasks. The incorporation of modularity into robot design
grants flexibility to a single type of robotic hardware and
allows it to achieve the tasks of many different robotic sys-
tems. Most of the algorithmic research in modular robotics
has been focused on systematic techniques for configuring
the robot into a pre-defined structure or shape and techniques
for programming locomotion [1], [2]. Less attention has
been focused on how modular robots can autonomously
reconfigure themselves to achieve environmental adaptation
by sensing the external environment.

On the other hand, biological systems are able to achieve
sophisticated tasks in uncertain environments via iterative
sensing and self-adaptation. For example, birds and fish
rely on simple local observations and actions to travel in
groups and adapt to uncertainties. Similarly, a modular robot
can potentially achieve many applications if it is capable
of performing such sensing and self-adaptation to external
environments, e.g., a modular structure that reconfigures to
maintain uniform force distribution and a modular gripper
that can sense an object and reconfigure to properly grasp it.

In our previous work [3], we proposed an algorithmic ap-
proach to self-adaptation in modular robots. We presented a

simple and decentralized algorithm by which module agents
can cooperate to solve complex tasks specified in terms
of distributed constraints. We demonstrated several environ-
mentally adaptive applications using a modular robot with
distributed tilt sensors and actuators, e.g. a self-balancing
table and a terrain-adaptive bridge. An interesting aspect of
this control approach is that it differs significantly from other
self-reconfiguration and self-assembly algorithms. Instead,
it is closely related to a class of multi-agent algorithms
called distributed consensus [4]. In [5], we studied this
relationship and leveraged this result to prove scalability and
robustness of the algorithm. We also outlined a more general
set of conditions for reaching consensus. Nevertheless, this
framework is strictly limited to shape formation tasks that
can be described by distributed orientation sensor constraints.
An important open question is whether this self-adaptation
approach can be generalized to a larger class of modular
robots with different sensors and actuators and different types
of tasks.

In this paper, we propose a generalized distributed con-
sensus control framework. We extend such a control scheme
in several directions and demonstrate how this generalization
allows many new application areas in modular robotics. First,
we generalize it to new types of sensors, e.g., pressure and
light sensors. In these cases, the module agent has an indirect
relationship between its sensor and actuator. We demonstrate
an example application in hardware: a modular pressure-
adaptive column that is capable of reconfiguring itself to
absorb uniform pressure (Fig. 1 (a)). Second, we extend it
to the case in which the individual agent’s action might have
long range effects. We show that a modular gripper with this
local condition is capable of grasping a fragile object using
distributed sensing and actuation (Fig. 1 (b)). Finally, we
extend this approach to a more complicated task: We equip
modules in a tetrahedral robot with light and pressure sensors
and formulate the robot’s locomotion as a sequence of self-
adaptations. We show that the robot is able to locomote
towards the light source with a series of “pressure consensus”
reaching processes (Fig. 1 (c-d)). This also shows that our
framework is potentially applicable to other dynamic tasks.

This paper makes the following contributions: (1) We
demonstrate that a variety of modular robot tasks can be
formulated and solved as self-adaptation processes based
on environmental feedback, including structure adaptation,



(a) (b) (c) (d)
Fig. 1. (a) A modular column. The structure is capable of sensing the pressure it applies to the external object and reconfiguring itself to apply uniform
pressure on it. (b) A module-formed robotic hand. The hand structure can form a configuration that grasps a fragile object, e.g., a balloon, with each
module coordinating only with its local neighbors. (c-d) A modular tetrahedral robot performs locomotion by a sequence of self-adaptations to the external
environment. The structure is capable of moving toward the light source.

gripper manipulation, and locomotion. (2) We use the same
underlying distributed control principle to derive control laws
for these tasks. The control laws are robust and simple to
implement. (3) We show that the control laws are provably
correct: we can guarantee convergence to the tasks we
consider. (4) We implement the proposed control framework
on three different hardware robot prototypes and show that it
is robust toward sensing/actuation noise and exogenous per-
turbations. (5) We show that this framework can potentially
be applied to many distributed robotics applications beyond
modular robotics.

The rest of the paper is organized as follows: we start with
a literature review in Section II. We define our robot model in
Section III. We describe the generalized distributed consen-
sus framework in Section IV. We then present three different
self-adaptation tasks and their respective control laws in V.
We evaluate the performance of this framework with real
robots in Section VI. Finally, we provide a discussion and
then draw conclusions in Section VII.

II. RELATED WORK

A modular robot is a new class of robots that are composed
of many independent modules. Each module can communi-
cate locally with other modules that are physically connected
to it. While applying appropriate control, modular robots are
capable of changing their configurations to become different
structures or shapes, so they are sometimes referred as
(self-) reconfigurable robots. There are mainly two types of
hardware design for modular robots. The first type is the
“chain-based” modular robot where modules are normally
connected in a chain and perform tasks such as locomotion
by controlling their actuators [2], [6], [7]. Another common
style is the “lattice-based” modular robot, where overall
shape change is achieved by modules changing their local
connectivity [1]. More recently, several groups have pro-
posed strut-based modular robot in which shape formation
is achieved by modules self-deformation [8], [9].

Several groups have demonstrated centralized and decen-
tralized control in modular robots [1], [2], [6], [7]. However,
there are only a few that focus on self-adaptation tasks
based on sensory feedbacks. In chain-based robots, Yim
et al. demonstrate robot locomotion that conforms to the
environment via a hand-designed gait table and distributed
force feedback [6]. However, there is no theoretical guarantee
for the control laws they propose. Another type of adaptive

locomotion strategy for chain-based robots is based on CPG.
Kamimura et al. and Sproewitz et al. have demonstrated
such an approach in the M-Tran [10] and YaMoR [11]
modular robots, respectively. In a lattice-based system, Rus et
al. have demonstrated distributed algorithms for locomotion
over obstacles. Bojinov et al. presented control algorithms for
several interesting examples that were tested in simulations:
a hand that grasps an object and a table that adaptively
supports a weight [12]. One major limitation of lattice-based
systems in self-adaptive tasks is that shape change can only
be achieved through module movement, which is slow in the
hardware implementation. In this work, we mainly consider
the chain-based system which can achieve fast adaptation.

Distributed consensus [4] has been widely applied in
distributed (robotics) systems, including autonomous vehicle
formation control [13], sensor network time synchronization
[14], and the sensor coverage problem [15]. In most cases,
agents observation space and control space are assumed to
be the same1. In our previous work, we took a first step to
generalize it to the heterogenous sensing/control space, but
it was restricted to tasks that can be described by orientation
sensor constraints [3]. In this work, we propose a generalized
distributed consensus framework that can be applied to a
variety of sensor-actuator networks.

Our work is also inspired by Hiroses work on a distributed
feedback controller for snake robots [16]. He demonstrated
that the snake robot can coil around an object using dis-
tributed controller and force feedback. When applied to
a coiling task, our decentralized framework further allows
each element of the robot to achieve equal pressure or any
desired pressure distribution around the object. In addition,
the control law provably converges to the desired state.

III. ROBOT MODEL

In this section, we describe the robot model and the
capabilities assumed in our framework. Our primary focus
is on modular robotic systems in which the whole robot is
composed of many independent and autonomous modules.
Nevertheless, this decentralized control framework is appli-
cable to many other distributed robotic systems as long as
the assumptions described in this section are satisfied.

In our model, each module is an independent agent that
has computation, communication, and actuation capabilities.

1For example, in sensor networks time synchronization, an agent can
observe its neighbors firing time and thus control its own firing time



Fig. 2. Different modular robot configurations based on our robot model:
(a) A pressure-adaptive column where each module is equipped with a
linear actuator and a pressure sensor, (b) A tetrahedral robot. Each agent’s
configuration is similar to that of the pressure-adaptive column except that
a light sensor is mounted on each surface to receive environmental trigger,
(c) A modular gripper in which each module is composed of a rotary servo
and a pressure sensor.

to many other distributed robotic systems as long as the
assumptions described in this section are satisfied.

In our model, each module is an independent agent that
has computation, communication, and actuation capabilities.
We refer to an autonomous module as an agent in the
remainder of the paper. These agents can be reconfigured into
different robotic systems. In this work, we assume agents
have been connected into a fixed configuration and they
need to coordinate with each other to complete a desired
task. We now describe the assumptions that each agent is
assumed to satisfy, and we use three different modular robots
(an adaptive column, a modular gripper, and a modular
tetrahedral robot) that we built as examples.

Sensor: Each agent is equipped with one or more sensors
suited to different robotics applications. Sensors are used
to measure the current state of the agent. In the pressure-
adaptive structure (Fig 2 (a)), a pressure sensor is mounted
on each agent. In the tetrahedral robot (Fig 2 (b)), we
also supply agents with light sensors to provide additional
environmental triggers.

Actuator: Each agent is equipped with an actuator. We
consider several types of actuators in our framework. In the
pressure-adaptive structure and tetrahedral robots, each agent
is equipped with a linear actuator. In the modular gripper, a
rotary servo (AX-12) is mounted on each agent (Fig 2 (c)).

Computation/Communication: Each agent is capable
of performing simple computations such as addition and
multiplication. Each agent is able to communicate with its
immediate neighbors that are physically connected to it. Most
of the current modular robots have these stated capabilities,
e.g. M-Tran [7], Odin [9], and Superbot [2].

Task: The task is described as inter-agent sensor con-
straints. An agent’s task is complete when it has satisfied
sensory state constraints between it and its neighbors. A
consensus is formed when all agents have satisfied their
constraints with their neighbors. In our framework, a task
can be composed of one or more processes for reaching
consensus

IV. GENERALIZED DISTRIBUTED CONSENSUS

In this section, we begin by briefly reviewing the standard
distributed consensus algorithm. We then present a more

general form of the algorithm and sufficient conditions for
agents to reach consensus, as described in our previous
theoretical study [5]. This generalized framework allows us
to extend the control law to a wide range of applications
which we will cover in Section V.

A. Distributed Consensus

Distributed consensus is a process by which a group of
networked agents come to a state of agreement by commu-
nicating only with neighbors. At each time step, each agent
updates its new state according to the difference between
its own state and its neighbors’ states. This process can be
formally written as:

xi(t + 1) = xi(t) + α
∑

aj∈Ni

xj(t)− xi(t) (1)

where ai indicates agent i, and xi(t) and xi(t + 1) are
actuation states2 of agent i at time step t and t + 1,
respectively. Nj indicates the set of all one-hop neighbors
of agent i. α is a small constant, and is sometimes called
damping factor. There are two main assumptions buried in
Eq. 1: First, each agent is capable of directly observing or
computing its state and its neighbors’ states. Second, each
agent is capable of freely driving itself to a new state x(t+1).

B. Generalized Distributed Consensus Algorithm

In many cases, the mapping between sensor space and
agent’s actuation state is not precisely known. For example,
in the modular gripper (Fig 2 (c)), the mapping between the
actuator’s rotational angle and agent sensor value cannot be
directly computed. In [5], we propose a more general form
of the agent update equation:
ALGORITHM 1: Generalized Distributed Consensus

xi(t + 1) = xi(t) + α ·
∑

aj∈Ni

g(θi, θj). (2)

where θi is agent ai’s sensor reading and θj indicates sensor
reading of ai’s neighbor, aj . g(θi, θj) is a sensory feedback
function that agent ai computes based on θi and θj . We
denote T (·) as a function that maps the agent’s actuation
changes to sensor changes. We showed that g(·) can be any
function satisfying the following conditions:

g(θi, θj) = 0 ⇔ θi = θj (3)
sign(T (g(θi, θj))) = sign(θj − θi) (4)
g(−θi,−θj) = −g(θi, θj) (5)

Intuitively, condition 1 (Eq. 3) means that g only “thinks”
the system is solved when it actually is; condition 2 (Eq. 4)
means that when not solved, each sensory feedback g at least
points the agent in the correct direction to satisfy the local
constraint with a neighboring agent; and condition 3 (Eq. 5)
means that g is anti-symmetric.

2If the agent’s actuator is a linear actuator, xi(t) would represent the
length of the actuator. If the actuator is a rotary one, it would represent the
angle of the actuator
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Fig. 2. Different modular robot configurations based on our robot model:
(a) A pressure-adaptive column where each module is equipped with a
linear actuator and a pressure sensor, (b) A tetrahedral robot. Each agent’s
configuration is similar to that of the pressure-adaptive column except that
a light sensor is mounted on each surface to receive environmental trigger,
(c) A modular gripper in which each module is composed of a rotary servo
and a pressure sensor.

We henceforth refer to an autonomous module as an agent in
the remainder of the paper. These agents can be reconfigured
into different robotic systems. In this work, we assume
agents have been connected into a certain configuration. They
need to coordinate with each other to complete a desired
task. We now describe the assumptions that each agent is
assumed to satisfy, and we use three different modular robots
(an adaptive column, a modular gripper, and a modular
tetrahedral robot) that we built as examples.

Sensor: Each agent is equipped with one or more sensors
suited to different robotics applications. Sensors are used
to measure the current state of the agent. In the pressure-
adaptive structure (Fig. 2 (a)), a pressure sensor is mounted
on each agent. In the tetrahedral robot (Fig. 2 (b)), we
also supply agents with light sensors to provide additional
environmental triggers.

Actuator: Each agent is equipped with an actuator. We
consider several types of actuators in our framework. In the
pressure-adaptive structure and tetrahedral robots, each agent
is equipped with a linear actuator. In the modular gripper, a
rotary servo (AX-12) is mounted on each agent (Fig. 2 (c)).

Computation/Communication: Each agent is capable
of performing simple computations such as addition and
multiplication. Each agent is able to communicate with its
immediate neighbors that are physically connected to it. Most
of the current modular robots have these stated capabilities,
e.g. Superbot [2], M-Tran [7], and Odin [8].

Task: The task is described as inter-agent sensor con-
straints. An agents task is complete when it has satisfied
sensory state constraints between it and its neighbors. A
consensus is formed when all agents have satisfied their
constraints with their neighbors. In our framework, a task
can be composed of one or more processes for reaching
consensus

IV. GENERALIZED DISTRIBUTED CONSENSUS

In this section, we begin by briefly reviewing the standard
distributed consensus algorithm. We then present a more
general form of the algorithm and sufficient conditions for
agents to reach consensus, as described in our previous
theoretical study [5]. This generalized framework allows us

to extend the control law to a wide range of applications
which we will cover in Section V.

A. Distributed Consensus

Distributed consensus is a process by which a group of
networked agents come to a state of agreement by commu-
nicating only with neighbors. At each time step, each agent
updates its new state according to the difference between
its own state and its neighbors’ states. This process can be
formally written as:

xi(t+ 1) = xi(t) + α
∑
aj∈Ni

xj(t)− xi(t) (1)

where ai indicates agent i, and xi(t) and xi(t + 1) are
actuation states2 of agent i at time step t and t + 1,
respectively. Ni indicates the set of all one-hop neighbors of
ai. α is a small constant, and is sometimes called damping
factor. There are two main assumptions buried in Eq. 1: First,
each agent is capable of directly observing its state and its
neighbors’ states. Second, each agent is capable of freely
driving itself to a new state xi(t+ 1).

B. Generalized Distributed Consensus Algorithm

In many cases, the mapping between sensor space and
agent’s actuation state is not precisely known. For example,
in the modular gripper (Fig. 2 (c)), the mapping between the
actuator’s rotational angle and agent sensor value cannot be
directly computed. In [5], we propose a more general form
of the agent update equation:
ALGORITHM 1: Generalized Distributed Consensus

xi(t+ 1) = xi(t) + α ·
∑
aj∈Ni

g(θi, θj). (2)

where θi is agent ais sensor reading and θj indicates sensor
reading of ais neighbor, aj . g(θi, θj) is a sensory feedback
function that agent ai receives from its neighbor aj . We
note that Eq. 2 assumes agents perform update with round
synchronization, i.e. each agent updates according sensory
feedback at every time step. Let T (·) be a function that
maps the agent’s actuation changes to sensor changes. We
show that g(·) can be any function satisfying the following
conditions:

g(θi, θj) = 0⇔ θi = θj (3)
sign(T (g(θi, θj))) = sign(θj − θi) (4)
g(−θi,−θj) = −g(θi, θj) (5)

Intuitively, condition 1 (Eq. 3) means that g only “thinks”
the system is solved when it actually is; condition 2 (Eq. 4)
means that when not solved, each sensory feedback g at least
points the agent in the correct direction to satisfy the local
constraint with a neighboring agent; and condition 3 (Eq. 5)
means that g is anti-symmetric.

In addition, we need to ensure that
∑
aj∈Ni

α ·
g

xj(t)−xi(t)−∆∗
ij
< 1 holds for all ai and for all t where ∆∗ij

2If the agent’s actuator is a linear actuator, xi(t) would represent the
length of the actuator. If the actuator is a rotary one, it would represent the
angle of the actuator



is the desired state difference between agents that achieves
θj = θi. This will ensure agents’ states from fluctuation
while reaching the consensus state, and it is usually done
by selecting an appropriate α constant and choosing g as
a function that is proportional to distance from the desired
state. This formulation is capable of being applied to a large
class of distributed control tasks provided that one can create
local agent rules that satisfy the conditions. In the next
section, we describe three different generalizations and their
applications.

V. SELF-ADAPTATION TASKS

We have described our robot model in Section III and
sufficient conditions for reaching consensus in Section IV.
When solving modular robot tasks, there are still two main
challenges we need to address to apply this framework. First,
we need to represent a new task in terms of inter-agent
sensor difference or consensus. Second, we need to design an
appropriate sensor feedback function g so that the conditions
outlined in Section IV are provably satisfied.

In this section, we illustrate solutions to these challenges
using three different example applications: (A) A pressure-
adaptive column in which case each agent’s sensor and
actuator has an indirect relationship. (B) A modular gripper
in which case each agent’s actuator has a long range effect.
(C) A modular tetrahedral robot which extends the agents’
task space from forming a single consensus to a sequence
of consensuses. In the last subsection, we further illustrate
some other example tasks that can be formulated within our
framework.

A. Pressure-Adaptive Column

One potential application for modular robotics is a recon-
figurable structure: a structure that can reconfigure itself to
achieve functional requirements irrespective of external envi-
ronment changes. Examples include forming the supporting
structure for a building that absorbs uniform force, and a
modular seat back that adapts to apply uniform pressure on
the user. Motivated by this application area, we construct a
pressure-adaptive column with a modular robot.

As shown in Fig. 3 (1), each agent is equipped with a
linear actuator whose length can be precisely controlled and
a pressure sensor that can sense the force applied on each
agent. We program agents to achieve a state where each agent
absorbs equal force when an unknown object or structure is
placed on it.

The algorithmic overview of the self-adapting process is
shown in Fig. 3. Step 1: An unknown object is placed on the
robot. Step 2: Each agent starts exchanging current pressure
sensor feedback with its neighbors. Step 3: Each agent
computes its actuators new parameters based on the sensor
feedback that it receives from all its neighbors. Each agent
iterates between Step 2 and Step 3 until the desired state has
been reached: θi − θj < ε where ε is a constant. When the
environment starts changing again, the robot automatically
goes back to Step 2.

Fig. 3. The algorithmic overview of the pressure-adaptive column. Step
1: an unknown object is placed on the robot. Step 2: Each agent sends
its pressure reading to neighbors. Step 3: Step 3: Each agent continuously
adapts based on its neighbor’s states.

In Step 3, each agent runs a control law to change the
length of its linear actuator xi based on sensory feedback
from its neighbors. This control law can be written as:

xi(t+ 1) = xi(t) + α ·
∑
aj∈Ni

(θj − θi) (6)

Here, the feedback function g is simply g(θj , θi) = θj−θi.
g satisfies conditions Eq. 3 – Eq. 5, since: (1) when θi = θj ,
g(θj , θi) = θj − θi = 0, (2) when sensory θi is smaller
than θj , g(θj , θi) > 0 such that agent ai increases its length
to increase its pressure state θi. Therefore, T (g(θi, θj)) is
moving in the same direction as θj − θi, (3) g function is
anti-symmetric. Therefore, the control law (Eq. 6) will allow
the robot to converge to the desired state. This leads to the
following theorem:

Theorem 1: Let Θ0 be the initial condition of the robot
and Θ∗ be the desired state, so that θj = θi for every agent
ai and its neighbor aj . If configurations between Θ0 and Θ∗

are reachable, the control law Eq. 6 will lead all agents to
converge to Θ∗ at an exponential rate.

Proof: see [17].

B. Modular Gripper

In this section, we illustrate another application a modular
gripper. The gripper is capable of reconfiguring itself to
grasp an object using distributed sensing and actuation. The
control law design follows a similar procedure as in the
previous example. However, the analysis of the convergence
property is somewhat different due to the fact that each
agents actuation affects more than its own sensor state.

As shown in Fig. 4 (1), a modular gripper is composed
of a chain of modular agents, where each agent is equipped
with a rotary servo and a pressure sensor. The goal of the
agents is to grasp a convex object, e.g. a balloon, such that
all of the agents apply equal pressure θp(θmin ≤ θp ≤ θmax).

The illustration of the algorithmic procedure is shown as
Fig. 4. It can be divided into the following steps:

Step 1: One of the agents starts sensing the object. When
the sensor reading is in between θmin and θmax, it starts
sending messages to neighboring agents. Upon receiving a
message, each agent propagates the message and its ID to
neighboring agents (shown in Fig. 4 (1)). We denote Ri as
the agent ID from which agent ai receives the message and
Si as the ID of the agent to which it sends the message



Fig. 4. The algorithmic overview of the grasping task. Step 1: The first
module starts sensing the presence of the object. It starts sending messages
to it neighbors. Steps 2 and 3: Agents perform iterative sensing and actuation
until they converge to the desired state. Step 4: When the robot is perturbed
by exogenous force, it goes back to Step 2.

Step 2: Each agent starts sending its pressure sensor
reading to its neighbors (as shown in Fig. 4 (2)). We note
that this sensory reading message is passed only between an
agent and its immediate neighbors.

Step 3: Each agent computes its new actuation state based
on the sensor readings that it receives from its neighbors. The
control law run by each agent is:

xi(t+ 1) = xi(t) + α · (θRi − θi) (7)

Agents iterate between Step 2 and Step 3 until all agents
have reached the desired state. When the robot is perturbed
by exogenous force, it goes back to Step 2.

The control law we showed in Eq. 7 satisfies condition 1,
since sensory feedback g(·) = θRi

− θi = 0 only when
agent ai’s sensor reading equals to its neighbor aRi

. In
addition, g is also anti-symmetric. However, it is nontrivial to
evaluate whether the control law satisfies condition 2. This is
primarily due to the fact that all agents are connected together
in a chain and changing an agent’s actuation parameter can
potentially change more than its own sensor state. The details
of the proof are in the Appendix. We can state the following
theorem for the Eq. 7 control law:

Theorem 2: Let Θ0 be the initial sensory condition of the
gripper and Θ∗ be the desired sensory state such that θj =
θi, for each agent ai and its neighbor aj . If configurations
between Θ0 and Θ∗ are reachable, the control law Eq. 7 will
lead the gripper to apply uniform pressure on the object, and
the system’s state will converge to Θ∗.

Proof: see [17].
Most of the controllers designed for grasping tasks have

used a centralized architecture. The decentralized and mod-
ular robot approach that we propose here allows the whole
system to adapt to local perturbations more efficiently. In
addition, given any initial contacting module, the gripper is
able to form a grasping configuration that conforms to the
shape of the object. This control scheme is also applicable
to different kinds of gripper configurations. We will provide
demonstrations of these capabilities in Section VI.

C. Modular Tetrahedral Robot Locomotion

So far, we have presented generalizations in forming a
single consensus state between agents. In this section, we

Fig. 4. The algorithmic overview of the grasping task. Step 1: The first
module starts sensing the presence of the object. It starts sending messages
to it neighbors. Steps 2 and 3: Agents perform iterative sensing and actuation
until they converge to the desired state. Step 4: When the robot is perturbed
by exogenous force, it goes back to Step 2.

sending messages to neighboring agents. Upon receiving a
message, each agent propagates the message and its ID to
neighboring agents (shown in Fig 4 (1)). We denote Ri as
the agent ID from which agent ai receives the message and
Si as the ID of the agent to which it sends the message

Step 2: Each agent starts sending its pressure sensor
reading to its neighbors (as shown in Fig 4 (2)). We note
that this sensory reading message is passed only between an
agent and its immediate neighbors.

Step 3: Each agent computes its new actuation state based
on the sensor readings that it receives from its neighbors. The
control law run by each agent is:

xi(t + 1) = xi(t) + (θRi − θi) (7)

Agents iterate between Step 2 and Step 3 until all agents
have reached the desired state. When the robot is perturbed
by exogenous force, it goes back to Step 2.

The control law we showed in Eq. 7 satisfies condition 1,
since sensory feedback g(·) = θRi − θi = 0 only when
agent ai’s sensor reading equals to its neighbor aRi . In
addition, g is also anti-symmetric. However, it is nontrivial to
evaluate whether the control law satisfies condition 2. This is
primarily due to the fact that all agents are connected together
in a chain and changing an agent’s actuation parameter can
potentially change more than its own sensor state. The details
of the proof are in [20]. We can state the following theorem
for the Eq. 7 control law:

Theorem 2: Let Θ0 be the initial sensory condition of the
gripper and Θ∗ be the desired sensory state such that θj =
θi, for each agent ai and its neighbor aj . If configurations
between Θ0 and Θ∗ are reachable, the control law Eq. 7 will
lead the gripper to apply uniform pressure on the object, and
the system’s state will converge to Θ∗.

Proof: see [20].
Most of the controllers designed for grasping tasks have

used a centralized architecture. The decentralized and mod-
ular robot approach that we propose here allows the whole
system to adapt to local perturbations more efficiently. In
addition, given any initial contacting module, the gripper is
able to form a grasping configuration that conforms to the
shape of the object. This control scheme is also applicable

Fig. 5. The algorithmic overview of the tetrahedral robot locomotion
task. Step 2: one of the surfaces is triggered by light. Step 3: the activated
agents exchange sensor readings with their neighbors. Step 4: Agents control
actuators to let the triggered surface lean forward until agents reach the
pressure consensus state. Step 5: The pressure consensus state has been
reached, the robot goes back to the default configuration, and a new surface
is triggered.

to different kinds of gripper configurations. We will provide
demonstrations of these capabilities in Section VI-A.

C. Modular Tetrahedral Robot Locomotion

So far, we have presented generalizations in forming a
single consensus state between agents. In this section, we
show how agents can achieve more complicated tasks by
forming a sequence of consensus states. We demonstrate
a modular tetrahedral robot is capable of performing lo-
comotion towards a light source with a sequence of such
tasks. This approach can be potentially applied to many other
modular robot locomotion tasks

As shown in Fig 5 (1), an agent is equipped with a
pressure sensor and is capable of controlling actuators that
are connected to it. We denote xij as the linear actuator
mounted between agent ai and aj . In the example in Fig
5, agent a1 can control actuators x1,2, x1,3, and x1,4. In
addition, a light sensor is mounted on each surface of the
tetrahedron (Fig 5 (2)), and agents on the surface can access
the sensor reading. At each locomotion step, a subset of
agents is selected to form consensus by the light trigger.
The selected agents perform actuation to achieve nearly equal
pressure readings. The detailed steps are as follows:

Step 1: Each agent starts passing messages to its neigh-
bors, allowing it to identify its neighboring agents and the
linear actuators between them.

Step 2: The surface that is closest to the light source is
triggered3. We denote the subset of agents on the triggered
surface as Ω. In our example of Fig 5, Ω = {a1, a2, a4}.

Step 3: The activated agents start sending pressure read-
ings to their other activated neighbors.

Step 4: We denote linear actuators that are on the triggered
surface as surface actuators, and those attached to the trig-
gered surface as supporting actuators; e.g., agent 1 in Fig 5

3In our implementation, we set a threshold θ̄ to determine whether a
surface is triggered. In a tetrahedral structure, only one surface is nearly
perpendicular to the light direction, so only one surface will be triggered.
In some other structures where ambiguities might arise, a maximum value
consensus algorithm can be run on them to identify which surface is to be
triggered.
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Fig. 5. An overview of the tetrahedral robot locomotion task. Step 2: one
of the surfaces is triggered by light. Step 3: the activated agents exchange
sensor readings with their neighbors. Step 4: Agents control actuators to let
the triggered surface lean forward until agents reach the pressure consensus
state. Step 5: The pressure consensus state has been reached, the robot goes
back to the default configuration, and a new surface is triggered.

show how agents can achieve more complicated tasks by
forming a sequence of consensus states. We demonstrate
a modular tetrahedral robot is capable of performing lo-
comotion towards a light source with a sequence of such
tasks. This approach can be potentially applied to many other
modular robot locomotion tasks.

As shown in Fig. 5 (1), an agent is equipped with a
pressure sensor and is capable of controlling actuators that
are connected to it. We denote xij as the linear actuator
mounted between agent ai and aj . In the example in Fig.
5, agent a1 can control actuators x1,2, x1,3, and x1,4. In
addition, a light sensor is mounted on each surface of the
tetrahedron (Fig. 5 (2)), and agents on the surface can access
the sensor reading. At each locomotion step, a subset of
agents is selected to form consensus with the light trigger.
The selected agents perform actuation to achieve nearly equal
pressure readings. The detailed steps are as follows:

Step 1: Each agent starts passing messages to its neigh-
bors, allowing it to identify its neighboring agents and the
linear actuators between them.

Step 2: The surface that is closest to the light source is
triggered3. We denote the subset of agents on the triggered
surface as Ω. In our example of Fig. 5, Ω = {a1, a2, a4}.

Step 3: The activated agents start sending pressure read-
ings to their other activated neighbors.

Step 4: We denote linear actuators that are on the triggered
surface as surface actuators, and those attached to the trig-
gered surface as supporting actuators; e.g., agent 1 in Fig. 5
(2) has surface actuators x12 and x13 and supporting actuator
x14. In this step, each agent actuates the supporting linear
actuator (the linear actuator that it is connected to but not on
the triggered surface) by running the following control law:

xik(t+ 1) = xik(t) + α ·
∑

aj∈Ni∩aj∈Ω

(θj − θi) (8)

3In our implementation, we set a threshold θ̄ to determine whether a
surface is triggered. In a tetrahedral structure, only one surface is nearly
perpendicular to the light direction, so only one surface will be triggered.
In some other structures where ambiguities might arise, a maximum value
consensus algorithm can be run on them to identify which surface is to be
triggered.



where xik is ai’s supporting actuator. This control law will
allow the activated surface to lean forward until the tetrahe-
dron rolls over to put all three activated agents in contact with
the ground. In our Fig. 5 example, this is achieved with x2,3

and x4,3’s contraction and x1,3’s expansion. In our hardware
implementation, all actuators are fully contracted in the
default state, so x2,3 and x4,3 are not able to further contract.
Alternatively, we program agents that have contacted with
ground (a2 and a4) to actuate the surface actuator between
them (x2,4)4. Agents iterate between Steps 3 and 4 until they
converge to the consensus state.

Step 5: The consensus state is formed when all activated
agents have contacted the ground and ‖θj − θi‖ ≤ ε for all
agents ai and their neighbors aj5. After agents have achieved
consensus, they reset to the default configuration (Step 2),
and a new surface is triggered.

The verification of sufficient conditions for reaching con-
sensus with the control law Eq. 8 is similar to that of Eq. 6.
To avoid repetition, we omit the details here.

The generalization of single consensus formation to a
sequence of consensuses allows this framework to extend
from solving static shape/structure adaptations to dynamic
tasks such as locomotion. Utilizing agents’ sensor consensus
provides a way for modular robots to adapt to different
environmental conditions. In the tetrahedral robot example,
the cycle time of locomotion is determined by the pressure
states of the agents. When the environmental condition
allows agents to reach consensus state sooner, e.g., when
the robot is on a steeper slope, the locomotion cycle time
will adapt to become shorter.

D. Other Applications & Potential Extensions/Limitations

There are many potential applications that can be gen-
eralized from this framework. Here we illustrate some of
them: (1) Light-adaptive modular panel: We can change the
pressure sensors we mount on the robot to light sensors.
Each agent is programmed to achieve the same light absorp-
tion as its neighbors. A similar concept can be applied in
many environmental sensory adaptation tasks. (2) Adaptive
prosthetic structure: Existing prosthetic devices for children
require manual reconfiguration to adapt to limb growth. If
force (pressure) sensors are mounted on the device, it is
possible to construct a self-reconfigurable prosthetic device.
(3) A similar concept can be applied to a support structure
for plants. The structure is capable of self-adaptation based
on the growth of the plant and lighting conditions. (4) In
the dynamic task domain, robotic systems that locomote by
shape/structure deformation can potentially apply our

4The modified control law is:

xil(t+ 1) = xil(t)− α ·
∑

aj∈Ni∩aj∈Ω

(θj − θi)

where ai and al are agents have contacted with ground. We note that this
control law will allow surface actuator xil to expand, achieving the same
effect as contracting two supporting linear actuators.

5In this application, we allow larger ε to identify whether consensus has
been formed.

(2) has surface actuators x12 and x14 and supporting actuator
x13. In this step, each agent actuates the supporting linear
actuator (the linear actuator that it is connected to but not on
the triggered surface) by running the following control law:

xik(t + 1) = xik(t) +
∑

aj∈Ni∩aj∈Ω

(θj − θi) (8)

where xik is ai’s supporting actuator. This control law will
allow the activated surface to lean forward until the tetrahe-
dron rolls over to put all three activated agents in contact
with the ground. In our Fig 5 example, this is achieved
with x2,3 and x4,3’s contraction and x1,3’s expansion. In our
hardware implementation, all actuators are fully contracted
in the default state, so x2,3 and x4,3 are not able to further
contract. Alternatively, we program agents that have ground
contact (a2 and a4) to actuate the surface actuator between
them (x2,4)4. Agents iterate between Steps 3 and 4 until they
converge to the consensus state.

Step 5: The consensus state is formed when all activated
agents have ground contact and ‖θj − θi‖ ≤ ε for all
agents ai and their neighbors aj

5. After agents have achieved
consensus, they reset to the default configuration (Step 2),
and a new surface is triggered.

The verification of sufficient conditions for reaching con-
sensus with the control law Eq 8 is similar to that of Eq 6.
To avoid repetition, we omit the details here.

The generalization of a single consensus formation to a
sequence of consensuses allows this framework to extend
from solving static shape/structure adaptations to dynamic
tasks such as locomotion. Utilizing agents’ sensor consensus
provides a way for modular robots to adapt to different
environmental conditions. In the tetrahedral robot example,
the cycle time of locomotion is determined by the pressure
states of the agents. When the environmental conditions
allow agents to reach consensus state sooner, e.g., when the
robot is on a steeper slope, the locomotion cycle time will
adapt to become shorter.

D. Other Applications

There are many potential applications that can be gen-
eralized from this framework. Here we illustrate some of
them: (1) Light-adaptive modular panel: We can change the
pressure sensors we mount on the robot to light sensors.
Each agent is programmed to achieve the same light absorp-
tion as its neighbors. A similar concept can be applied in
many environmental sensory adaptation tasks. (2) Adaptive
prosthetic structure: Existing prosthetic devices for children
require manual reconfiguration to adapt to limb growth. If

4The modified control law is:

xil(t + 1) = xil(t)−
∑

aj∈Ni∩aj∈Ω

(θj − θi)

where ai and al are agents have ground contact. We note that this control
law will allow surface actuator xil to expand, achieving the same effect as
contracting two supporting linear actuators.

5In this application, we allow a larger ε to identify whether consensus
has been formed.

Fig. 6. Pressure-adaptive column with different initial conditions. We let
the number of initial contacting agents to be one (green curve), two (red
curve), and three (blue curve) respectively and examine how the column
respond with different initializations. After 1000 iterations of running the
control law, the distance measure, ε, decreases to less than 100.

force (pressure) sensors are mounted on the device, it is
possible to construct a self-reconfigurable prosthetic device.
(3) A similar concept can be applied to a support structure
for plants. The structure is capable of self-adaptation based
on the growth of the plant and lighting conditions. (4) In
the dynamic task domain, robotic systems that locomote
by shape/structure deformation can potentially apply our
framework for locomotion tasks, e.g., an amoebic modular
robot and a cubic modular robot.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results of applying
this framework in three different real robots. Our results
show that our decentralized control approach is able to cope
with real world sensing and actuation noise to achieve self-
adaptation tasks. In the pressure-adaptive column experi-
ments, we show that agents are capable of converging to an
equal pressure state irrespective of different initializations
when an unknown object is placed on it. In the modular
gripper experiments, we show that our control law is capable
of leading agents to grasp around a balloon while applying
equal pressure on it. Furthermore, agents are capable of
achieving the desired state regardless of initial contact loca-
tions. They can also maintain the desired state when facing
exogenous perturbations. In the modular tetrahedral robot
experiments, we show that our robot is capable of moving
toward a light source through a sequence of consensus
formation processes.

A. Pressure Adaptive Column

In this experiment, we examine the control law’s conver-
gence property with different initial conditions. Each agent
is equipped with a pressure sensor (force sensing resistor)
with sensory readings ranging from 0 to 900. Agents are
programmed to achieve equal pressure with their neighbors.
The weight of the unknown object is roughly 1.5 pound.
The robot starts in three different configurations, such that
the number of initial contacting agents is different, ranging
from one to three6. We define ε = maxi θi −mini θi,
the difference between maximal and minimal sensory reading
among agents, as a measure of distance from reaching
consensus. We can see from Fig 6 that ε decreases from

6In the case of one or two initial contacting agents, we provide slight
external support to the object to prevent the rest of the agents from
contacting the object.
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Fig. 6. Pressure-adaptive column with different initial conditions. We let
the number of initial contacting agents to be one (green curve), two (red
curve), and three (blue curve) respectively and examine how the column
respond with different initializations. After 1000 iterations of running the
control law, the distance measure, ε, decreases to less than 100.

framework for locomotion tasks, e.g., an amoebic modular
robot and a cubic modular robot.

The type of tasks we illustrate with this framework share
with one similarity: they can be expressed as a single
consensus state, e.g. modular gripper grasping tasks, or a
sequence of identical consensus states, tetrahedral robot’s lo-
comotion. To further extend such a framework to solve more
sophisticated tasks, it is necessary to have the mechanism that
can decide different consensus states (it is also called biased
consensus states [5]) based on different external states. For
example, we might need different pressure distributions for
modular gripper to optimally grasp different types of objects,
instead of using uniform pressure distribution to grasp all
objects. Understanding the scope of self-adaptation tasks this
limitation is an important future direction of this research.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results of applying
this framework in three different real robots. Our results
show that our decentralized control approach is able to cope
with real world sensing and actuation noise to achieve self-
adaptation tasks. In the pressure-adaptive column experi-
ments, we show that agents are capable of converging to an
equal pressure state irrespective of different initializations
when an unknown object is placed on it. In the modular
gripper experiments, we show that our control law is capable
of leading agents to grasp around a balloon while applying
equal pressure on it. Furthermore, agents are capable of
achieving the desired state regardless of initial contact loca-
tions. They can also maintain the desired state when facing
exogenous perturbations. In the modular tetrahedral robot
experiments, we show that our robot is capable of moving
toward a light source through a sequence of consensus
formation processes.

A. Pressure Adaptive Column

In this experiment, we examine the control laws conver-
gence property with different initial conditions. Each agent
is equipped with a pressure sensor (force sensing resistor)
with sensory readings ranging from 0 to 900. Agents are
programmed to achieve equal pressure with their neighbors.
The weight of the unknown object is roughly 1.5 pound. The
robot starts in three different configurations, such that the
number of initial contacting agents is different, ranging from



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 7. (a-d) Different initial conditions for the grasping task. The robot is capable of completing the task irrespective of initial conditions. (e-f) Scalability
experiment. More modules are added to the robot. Empirically, the robot scales successfully to the number of module agents. (g-h) The robot performs
the grasping task with a different gripper configuration.
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Fig. 7. (a-d) Different initial conditions for the grasping task. The robot is capable of completing the task irrespective of initial conditions. (e-f) Scalability
experiment. More modules are added to the robot. Empirically, the robot scales successfully to the number of module agents. (g-h) The robot performs
the grasping task with a different gripper configuration.
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Fig. 8. (a) Experiments with different initial conditions. After ∼ 180 iterations, agents are capable of achieving less 3% distance from the consensus state
in all three cases. (b) Scalability experiment. The decentralized algorithm is scalable with the number of agents. On the other hand, the network structure
might affect the convergence speed. In the 7 and 9 agents cases, the diameter of network is 2 and it leads to longer time for the robot to complete the task.
(c)After the robot has reached the desired state, we constantly perturb the gripper by applying force. The robot is able to re-adapt after being perturbed
each time.

800 to around 100 after 1000 iterations (∼10 sec. in real
time) in all three cases. We note that the sensor we use is
very noisy and sensitive to slight perturbations of the linear
actuators. Therefore, we set the α in Eq 6 to be a very small
constant to avoid the column from being over-sensitive to
perturbations. This naturally leads to a longer convergence
time. We also note that the larger fluctuations in the blue
curve is primarily due to the object significantly shifted its
center of mass when more agents contact it.

B. Modular Gripper

Here, we present an empirical evaluation of this control
framework when applied to a modular gripper. The robotic
configuration of the gripper was described in Section V-B.
Agents are programmed to apply equal pressure on a balloon.
We test Eq 7’s convergence properties under different initial
conditions and different numbers of agents. We also assess
its adaptability towards repetitive perturbations.

Different Initial Conditions: We connect the agents to
form a “cross” configuration as shown in Fig 7. We let
different agents start to touch the balloon to examine the
system’s behavior under different initial conditions. Fig 7 (a-
h) shows a sequence of robot configurations while grasping
the object. We use k to denote the first activated (contacted)
agent’s index. We denote θi(t) as the pressure sensor reading
of agent i at time t. After the first contact between the object
and the robot, the object is held in place. This will lead all
other agents to approach agent ak’s sensor reading θk(t)
while reaching the consensus state. Therefore, we define
the percentage from achieving the task, ε, as a ratio of the
current distance for all agents to reach the first contacted
agent’s sensor reading θk(t) to the initial distance. This can

be formally written as: ε =
∑

i
‖θi(t)−θk(t)‖∑

i
‖θi(0)−θk(0)‖ .

Figure 8 (a) shows ε’s value changing over time. We

can see that the agents are capable of converging to ∼ 3%
from completing the task after 180 iterations, regardless of
initial conditions. From this figure, we can also see that there
is a correlation between the position of the first activated
agent and the convergence time. The red curve shows the
case when the middle agent is first activated. The maximum
communication hop between it and all other agents is two. In
this case, agents achieve faster convergence as compared to
the case where the maximal hop is three and four respectively
(blue and green curve).

Scalability: We further evaluate the algorithm’s scalability
towards the number of agents. As shown in Fig 8 (b), we
increase the number of agents from 5 to 9. We can see from
the figure that there is no significant increase in convergence
time when we increase the number of agents. ε converges to
less than 3% after 150 iterations in all three cases. However,
we can see that the convergence time is slightly shorter
in the 5-agent case in which the diameter of the agent
network is only one (in contrast to two in the other cases).
This coincides with our previous theoretical result [5] that
decreasing the diameter of the agent network can increase
convergence speed.

Adaptation Towards Perturbations: After all agents
achieve the desired state, we start applying an external force
on the gripper. Fig 8 (c) shows ε vs time as the gripper
encounters four different perturbations. We can see that ε
decreases to less than 3% after 50-70 iterations in each case.
This shows that our decentralize control law can efficiently
lead agents recover from exogenous perturbations. We specif-
ically note that the gripper achieves faster adaptation than
the pressure-adaptive column is due to: (1) Each agent’s
actuation has a long range effect, an agent is likely to assist
more than its neighbors in the process. (2) The rotary servos
we use here has better precision than the linear actuators.
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Fig. 8. (a) Experiments with different initial conditions. After ∼ 180 iterations, agents are capable of achieving less 3% distance from the consensus state
in all three cases. (b) Scalability experiment. The decentralized algorithm is scalable with the number of agents. On the other hand, the network structure
might affect the convergence speed. In the 7 and 9 agents cases, the diameter of network is 2 and it leads to longer time for the robot to complete the task.
(c) After the robot has reached the desired state, we constantly perturb the gripper by applying force. The robot is able to re-adapt after being perturbed.

one to three6. ε = maxi θi−mini θi, the difference between
maximal and minimal sensory reading among agents, as a
measure of distance from reaching consensus. We can see
from Fig. 6 that ε decreases from 800 to around 100 after
1000 iterations (∼ 10 sec. in real time) in all three cases.
We note that the sensor we use is very noisy and sensitive
to slight perturbations of the linear actuators. Therefore, we
set the α in Eq. 6 to be a very small constant to avoid
the column from being over-sensitive to perturbations. This
naturally leads to a longer convergence time. We also note
that the larger fluctuations in the blue curve is primarily due
to the object significantly shifted its center of mass when
more agents contact it.

B. Modular Gripper

Here, we present an empirical evaluation of this control
framework when applied to a modular gripper. The robotic
configuration of the gripper was described in Section V-B.
Agents are programmed to apply equal pressure on a balloon.
We test Eq. 7’s convergence properties under different initial
conditions and different numbers of agents. We also assess
its adaptability towards repetitive perturbations.

Different Initial Conditions: We connect the agents to
form a cross configuration as shown in Fig. 7. We let different
agents start to touch the balloon to examine the systems
behavior under different initial conditions. Fig. 7 (a-h) shows
a sequence of robot configurations while grasping the object.
We use k to denote the first activated (contacted) agents
index. Let θi(t) be the pressure sensor reading of agent i
at time t. After the first contact between the object and
the robot, the object is held in place. This will lead all
other agents to approach agent aks sensor reading θk(t)
while reaching the consensus state. Therefore, we define

6In the case of one or two initial contacting agents, we provide slight
external support to the object to prevent the rest of the agents from
contacting the object.

the percentage from achieving the task, ε, as a ratio of the
current distance for all agents to reach the first contacted
agents sensor reading θk(t) to the initial distance. This can be

formally written as: ε =
∑

i
‖θi(t)−θk(t)‖∑

i
‖θi(0)−θk(0)‖

. Fig. 8 (a) shows

ε’s value changing over time. We can see that the agents are
capable of converging to ∼ 3% from completing the task
after 180 iterations, regardless of initial conditions. From this
figure, we can also see that there is a correlation between the
position of the first activated agent and the convergence time.
The red curve shows the case when the middle agent is first
activated. The maximum communication hop between it and
all other agents is two. In this case, agents achieve faster
convergence as compared to the case where the maximal
hop is three and four respectively (blue and green curve).

Scalability: We further evaluate the algorithms scalability
towards the number of agents. In Fig. 8 (b), we increase the
number of agents from 5 to 9. We can see from the figure that
there is no significant increase in convergence time when we
increase the number of agents. ε converges to less than 3%
after 150 iterations in all three cases. However, we can see
that the convergence time is slightly shorter in the 5-agent
case in which the diameter of the agent network is only one
(in contrast to two in the other cases). This coincides with our
previous theoretical result [5] that decreasing the diameter of
the agent network can increase convergence speed.

Adaptation Towards Perturbations: After all agents
achieve the desired state, we start applying an external force
on the gripper. Fig. 8 (c) shows ε vs time as the gripper
encounters four different perturbations. We can see that
decreases to less than 3% after 50 − 70 iterations in each
case. This shows that our decentralize control law can effi-
ciently lead agents recover from exogenous perturbations. We
specifically note that the gripper achieves faster adaptation
than the pressure-adaptive column is due to: (1) Each agents
actuation has a long range effect, an agent is likely to assist
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Fig. 9. (a) The tetrahedral robot configuration. Each agent is equipped with a pressure sensor. A linear actuator is mounted between each pair of
neighboring agents. Flexible joints allow the robot to deform its shape. A light sensor is mounted on each surface of the tetrahedral. (b-f) Tetrahedral robot
moving towards the light source. The average locomotion cycle time is ∼ 5 seonds, and the robot is capable of moving at a speed of 10cm/sec.

C. Modular Tetrahedral Robot

We also implement the sequential consensus formation
process as described in Section V-C on a tetrahedral robot.
As shown in Fig 9 (a), each agent is equipped with a pressure
sensor, and each surface has a light sensor. Figelli L12 linear
actuators are mounted between agents, and the actuators’
maximal speed is 2.3 cm/sec. We also create flexible joints
on the connecting points between linear actuators and agents
to allow deformation of the tetrahedron. The height of the
tetrahedron is ∼ 20cm. Fig 9 (b-f) shows a sequence of the
robot’s locomotion actions. We note that due to mechanical
restrictions7, we place the robot on a slope of roughly 10
degrees. This allows the robot to roll over more easily.

As shown in Fig 9, agents on the surface that is closest
to the light source are activated in each cycle. The average
locomotion cycle time is 5 sec, and the robot is capable of
moving towards the light source at a speed of 10 cm/sec. We
are also interested in further exploring how different terrain
conditions might affect the cycle of locomotion.

VII. CONCLUSIONS
We have presented a generalized distributed consensus

framework for self-adaptation tasks in modular robotics. We
also demonstrated three example applications in hardware
using this framework, including (1) a pressure-adaptive col-
umn; (2) an adaptive modular gripper; (3) a modular tetrahe-
dral robot. We also show that the proposed control laws are
provably correct and robust toward different initial conditions
and constant perturbations. These applications represent a
small set of what is achievable within this framework.

In the future, we plan to extend this work in several
directions. First, in Section V-D, we have illustrated sev-
eral potential applications to which we can further apply
this framework, examples include a self-adaptive support
structure or an adaptive prosthetic device. Second, we are
interested in applying this framework in other distributed
robotics applications beyond modular robots, e.g. on a team
of mobile robots. Finally, we are interested in exploring a
mixed strategy that is composed of centralized and decen-
tralized controllers. For example, a humanoid robot utilizes
a centralized controller to reach an object and decentralized
controllers run on the gripper allowing it to grasp around the
object.

7Our linear actuator can only perform up to 80% extension. This
restriction can be removed if the actuation range is longer.
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(a) (b) (c) (d) (e) (f) (g)
Fig. 9. (a) The tetrahedral robot configuration. Each agent is equipped with a pressure sensor. A linear actuator is mounted between each pair of
neighboring agents. Flexible joints allow the robot to deform its shape. A light sensor is mounted on each surface of the tetrahedral. (b-e) Tetrahedral
robot moving towards the light source. The average locomotion cycle time is ∼ 5 seconds, and the robot is capable of moving at a speed of 10cm/sec.
(f-g) Tetrahedral robot’s locomotion cycle autonomously adjusts with on different slopes. The locomotion cycle time becomes longer when the robot is on
a inclining slope (f) while the cycle becomes shorter when the robot is on a declining slope (g).

more than its neighbors in the process. (2) The rotary servos
we use here has better precision than the linear actuators.

C. Modular Tetrahedral Robot
We also implement the sequential consensus formation

process as described in Section V-C on a tetrahedral robot. As
shown in Fig. 9 (a), each agent is equipped with a pressure
sensor, and each surface has a light sensor. Figelli L12 linear
actuators are mounted between agents, and the actuators
maximal speed is 2.3 cm/sec. We also create flexible joints
on the connecting points between linear actuators and agents
to allow deformation of the tetrahedron. The height of the
tetrahedron is ∼ 20 cm. Fig. 9 (b-e) shows a sequence of the
robots locomotion actions. We note that due to mechanical
restrictions7, we place the robot on a slope of roughly 10
degrees. This allows the robot to roll over more easily. As
shown in Fig. 9, agents on the surface that is closest to
the light source are activated in each cycle. The average
locomotion cycle time is 5 sec, and the robot is capable of
moving towards the light source at a speed of 10 cm/sec. We
are also interested in further exploring how different terrain
conditions might affect the cycle of locomotion.

We also constructed a simulation environment using open
dynamics engine to examine how tetrahedral robot’s loco-
motion adapts to terrains of different slopes. When the robot
is placed on a declining slope of −54 degree (Fig. 9 (f)),
the locomotion cycle time has become much shorter: its
average cycle time is 48% of the average cycle time when
it locomotes on a +18 degree inclining slope (Fig. 9 (g)).
The robot travels in a more efficient way when it can exploit
gravity to assist locomotion.

VII. CONCLUSIONS

We have presented a generalized distributed consensus
framework for self-adaptation tasks in modular robotics. We
also demonstrated three example applications in hardware
using this framework, including (1) a pressure-adaptive col-
umn; (2) an adaptive modular gripper; (3) a modular tetrahe-
dral robot. We also show that the proposed control laws are
provably correct and robust toward different initial conditions
and constant perturbations. These applications represent a
small set of what is achievable within this framework.

We plan to extend this work in several directions. First,
we have illustrated several potential applications to which

7Our linear actuator can only perform up to 80%’s extension. This
restriction can be removed if the actuation range is longer.

we can further apply this framework, examples include a
self-adaptive support structure. Second, we are interested in
applying this framework in other distributed robotics applica-
tions beyond modular robots, e.g. on a team of mobile robots.
Finally, we are interested in exploring a mixed strategy that
is composed of centralized and decentralized controllers. For
example, a humanoid robot utilizes a centralized controller
to reach an object and decentralized controllers run on the
gripper allowing it to grasp around the object.
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