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Supersymmetric Probes in a Rotating 5D Attractor

Wei Li and Andrew Strominger

Jefferson Physical Laboratory, Harvard University, Cambridge MA 02138, USA

Abstract

Supersymmetric zero-brane and one-brane probes in the squashed AdS, x S3 near-
horizon geometry of the BMPV black hole are studied. Supersymmetric zero-brane
probes stabilized by orbital angular momentum on the S3 are found and shown to
saturate a BPS bound. We also find supersymmetric one-brane probes which have
momentum and winding around a U(1), x U(1)g torus in the S3 and in some cases
are static.
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1 Introduction

The near-horizon attractor geometry of a BPS black hole has twice as many supersymmetries
as the full asymptotically flat solution. In four dimensions, such geometries admit BPS
probe configurations which preserve only near-horizon supersymmetries, and break all of
the supersymmetries of the original asymptotically flat solution [1]. A novel feature of these
configurations is that branes and anti-branes antipodally located on the S? preserve the same
supersymmetries. Quantization of these classical configurations leads to lowest Landau levels
which tile the black hole horizon [2]. In some cases the degeneracies saturate the Bekenstein-
Hawking black hole entropy [3]. Furthermore, an appropriate expansion of the black hole
partition function in a dilute gas of these states [ yields a derivation of the OSV relation
5.

These interesting 4D phenomena should all have closely related 5D cousins [6]. With
this in mind, the present paper extends the 4D classical BPS probe analysis of [I] to five
dimensions. The 5D problem is considerably enriched by the fact that 5D BMPV BPS
black holes can carry angular momentum J and have a U(1);, x SU(2)g rotational isometry
group [7]. BPS zero-brane probes that orbit the S* are found using a x-symmetry analysis.
Their location in AdSy depends on the azimuthal angle on S3, the background rotation J,
and the angular momentum of the probe. For one-branes, we find BPS configurations with
momentum and winding around a torus generated by a U(1)y x U(1)g rotational subgroup.
A one-brane in five dimensions can carry the magnetic charge dual to the electric charge
supporting the BMPV black hole. Interestingly, we find that this allows for static BPS
“black ring” configurations, where the angular momentum required for saturation of the
BPS bound is carried by the gauge field.

nclusion of these states in the partition function of [4] could lead to non-factorizing corrections to the
OSV relation.



2 Review of the BMPYV black hole

The 5D N = 2 supersymmetric rotating black hole arises from M2-branes wrapping holo-
morphic curves of a Calabi-Yau threefold X. It is characterized by electric charges qu,
A =1,2,.by(X), and the angular momentum J in SU(2)s. The metric is [7]

—2 2
J
ds* = — (1 + %) {dt + ﬁag] + (1 + 92) (dr2 + r2dQ§) , (1)
1
02 = [d92 + dg? + dy? + 2 cos Odypde) = 1 Z (2)
i=1
where the ranges of the angular parameters are
0 € [0, 7], ¢ € 0,27], Y € [0,4n]. (3)
o; are the right-invariant one-forms:?
o1 = —sinydf + cosy sinBdo,
oy = cosdl + sin sin6do, (4)

o3 = dy + cosfdo,

and we choose Planck units I5 = (2¢2)1/3 = 1. The graviphoton charge Q is determined via

™
the equations

[SI[oY

Q2 = Dapcy’y"y°, (5)
44 = 3Dapcy”y°, (6)
with Do the intersection form on X.
The near-horizon limit (r — 0) of the metric is
2 J

ds* = {th + @O’g] + Q + QdQ3. (7)

Rescaling t to absorb @, defining sin? B = Q3 and r? = 1/0, we obtain the metric in Poincaré
coordinates:

dt d
ds®> = T [—(; + sin Bog)? + % + o2+ 05+ 032,] ) (8)

2The SU(2) rotation matrix is parameterized as:

G i OIS _ cos GtV +e)/2 sin 8 ei(¥—0)/2
— sin geii(wfgb)/Q cos ge*i(¢+¢)/2




The graviphoton field strength in these coordinates is

Fig = dApy, Apy = @[

5 1dt + sin Bos). (9)

g

We will also be using the metric in the global coordinates (7, x, 0, ¢, 1):3

ds* = % [— cosh? xd7? + dx® + (sin B sinh ydr — cos Bos)® + 0% + o3] . (10)
in which
Ap = @ [cos Bsinh xdr + sin Bos). (11)

The near horizon geometry of the BMPV black hole is a kind of squashed AdS; x S3.
The near-horizon isometry supergroup is SU(1,1|2) x U(1)f, where the bosonic subgroup
of SU(1,1]2) is SU(1,1) x SU(2)yight [I0]. When J = 0, U(1)ese is promoted to SU(2)ef
and the full SO(4) = SU(2)yight X SU(2)et, rotational invariance is restored. The unbroken
rotational symmetries for J # 0 are generated by the Killing vectors

& = 0y (12)
and

& = sin ¢pdp + cos ¢(cot 00, — csc 03y,
&Y = cosgdy — sin ¢(cot 00, — csc 00y), (13)
& = 0

The supersymmetries arise from Killing spinors € which are the solutions of the equation

1 1
d+ —wapl™ +
+4wb +8

3The coordinate transformation between the global coordinates and Poincaré ones is:

(e"T™TFye — 4€*T Fp) | € =0 (14)

P cos B cosh y sinT

cosh y cos T + sinh x’
1
g = A I
cosh x cos 7 + sinh x
pPoinearé — —  ypglobal 4 9 tan Btanh™' (e7X tan %)



To solve this in global coordinates we choose the vielbein

S

e? = Y Z[cosh (sin B cos By) cosh xdr + sinh (sin B cos B1)dx],

[— sin (cos® Bi)df + cos (cos® Bi) sin §dg)],
[cos (cos® Bt))df + sin (cos? Bi) sin §dg),

[— sin B sinh xd7 + cos Bog).

“[avlaslarla

The Killing spinors are then [§][9]

e[-i—% (sin BT'%4 — cos BFO)x] e[—%(sin BT —j cos BFl)T]

= SEQ,

€o

where € is any spinor with constant components in the frame (I3).
For Poincaré coordinates we choose the vielbein

o V@ dt 61:@@ o2 V@ 5 V@

e = 7[;+Sin303]> 2 o’ =5 o ¢ = o,
The Killing spinors are [10]
e = LR(QQS?/J)G'F
\/E 7 0>
t
A A v R
where
R(9>¢>w) = 6_%F23¢6%F2406_%F23¢’
ZTOES_L = :l:e(jf,

for constant €7

3 Supersymmetric probe configurations

[sinh (sin B cos By) cosh xdr + cosh (sin B cos By)dy],

e [— % (sin B cos BT 4cos? BF23)1/1] e [—l—% (cos BT'?4 4 sin BFQ)G] e [— % (cos BT'3*4-isin BF3)¢]

In this section, we find classical brane trajectories which preserve some supersymmetries of
the rotating attractor (). The worldvolume action has a local k-symmetry (parameterized

4



by k) as well as a spacetime supersymmetry transformation (parameterized by €) which
acts nonlinearly. A spacetime supersymmetry is preserved if its action on the worldvolume
fermions © can be compensated by a  transformation [IT][T2]:

00+4+6,0=€e+ (1+D)k(o) =0, (21)
where I is given in various cases analyzed below. This gives the condition
(1-T)e=0, (22)

which must be solved for both the Killing spinor and the probe trajectory.

3.1 Zero-brane probe
For the zero-brane the (bosonic part of the) k-symmetry projection operator is

1 =
= ——TI,, 23
Vi >

where h and T are the pull-backs of the metric and Dirac matrix onto the worldline of the
zero-brane, respectively:

ho() = 00X“00X”GW,
Ty = 9pX"ell,. (25)

3.1.1 Global coordinates

First, let’s look at the global coordinates. In the static gauge, where we set the worldvolume
time 0¥ equal to the global time 7, the k-symmetry operator is

1 dx*
I'= Ta- 26
Vi dr " 20

To solve for the classical trajectory of a supersymmetric zero-brane, we plug the Killing
spinors (@) into the k-symmetry condition (22)) of the supersymmetric zero-brane. A zero-
brane following a classical trajectory, given by (x(7),8(7), #(7), (7)), is supersymmetric if,
in the notation of (Id),

1 dxe
m dr €MS IFGSEOIEO, (27)



for some constant ¢y, where S = S(x, 7,6, ¢,1). The explicit prefactors are

S7tefl, S = @[(COShXCOSTCOSQB+sin900sqz5sinzB)F0

+i cosh y sin 7 cos BI'®" — i cos @ sin BI'®* — 4 sin 6 sin ¢ sin BI'®
+i(cosh x cos T — sin @ cos ¢) sin B cos BI'"],

S7ledT, S = (—1)@[8111«9 cos ¢ cos 7!

. . 1 34 ;o 3V — 244 ;g 2)g L 34 ;o 3
— sin Tsin Bez(COSBF +isin BT )d)e (cos BI'**+isin BT" )Gez(cosBF +isin BT )¢F4

. . . . . . . i 14_; 1 .
—icos T cos 0 sin BT''2 — i cos 7 sin 0 sin ¢ sin BT + e BT —icos BIOT ginhy v cos BT

+i(cosh x — sin  cos ¢ cos 7) cos B(sin BI'** — i cos BI')],

V@

S7tesT,S = (—1)T[coshxc0s7'cos¢F3—coshxcos7‘sin¢cosBF4

+elcos BT +isin BF3)¢(—|—i sinh y cos BI'® — i cosh y sin 7 cos BI'*® + i cos § sin BI'*%)

+i(cosh x cos 7 cos ¢ — sin 6) sin B(cos BI'** + 4 sin BI'™®)],

V@

S7ledl, S = (—1)7[(coshx cos T cos® B + sin f cos ¢ sin® B)I™
+i sinh y cos BI'"* — 4 cosh y sin 7 cos BI''? — i sin #sin ¢ sin BI'*

+i(cosh x cos T — sin @ cos ¢) sin B cos BI'*Y],

_ \/Q 1 14_; IV (g 04_,; 0 1o 14_; 1
S 1621—‘@5 — (_1) COSB€+2(SmBF tcos BT )'re (sin BT'**—4 cos BT" )X6+2(smBF tcos BI')r

et 1 (cos BT34+isin BI'®)¢ o—(cos BI'?* 1 sin BI'?)0 ot 1 (cos BT®4+isin BF3)¢T4

We first see that a probe static in the global time 7 cannot be supersymmetric. For such

a probe we have %X = 49 — 90 _ 4% _ () 45 the x-symmetry condition reduces to

dr ~ dr = dr = dr

1
v TG o2 - [(cosh x cos T cos® B + sin @ cos ¢ sin® B)I"°
—1 — cos? Bsinh” y
+i cosh x sin 7 cos BI'°! — 4 cos @ sin BI'®* — 4 sin 6 sin ¢ sin BI'® (29)

+i(cosh x cos T — sin @ cos ¢) sin B cos B¢y = «.

The terms in this equation proportional to cos7, sin7 and 1 must all vanish separately,
which is clearly impossible. The lack of such configurations is not surprising, because angular
momentum must be nonzero for a nontrivial BPS configuration.

Now we allow the probe to orbit around the S®. Solving the x-symmetry condition (22))
using (E]) for Killing spinors obeying

F02€0 = Fe€g, (30)
we find the supersymmetric trajectory at a generic (x,#,v) to be

dx_do_dv_ do_

dr dr dr dr =1 (31)
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This is a probe orbiting along the ¢-direction.

The constraint on the Killing spinor (B0) projects out half of the components of ¢, i.e. the
orbiting zero-brane probe is a half-BPS configuration. We will show in the next subsection,
using the BPS bound, that this supersymmetric trajectory is unique up to rotations.

3.1.2 A BPS bound

The worldline action of a zero brane probe, with mass m and the electric charge ¢, can be

written as
S = —m/\/ﬁdao —l—q/Am, (32)

where Ap is the 1-form gauge field ([[I). We consider supersymmetric probes which have
4
q=m.

In global coordinates with ¢ = 7, the Lagrangian of the system is

@{—m\/cosh2 X — x? — [sin Bsinh y — cos B(w + cos 9@5)]2 — 62 — sin® 0?2

+mlcos Bsinh x + sin B(¢) 4 cos 0¢)]}. (33)

£:

The corresponding Hamiltonian is

cos 0Py — Py sin BPy, — @m sin BP, — @m

)2+ P2+ (

)2 + sinh x(

H = coshx\/P)?+P(,2+( ),

sin 0 cos B cos B
where the momenta are
my/Q
P = IVEy
X o X
my/Q -
p = g 34
) = ok 3
1 . . .
Py = mTQ {—h (— cos B cos f[sin B sinh y — cos B(1) + cos 0¢)] + sin? qu) + sin B cos 9] ,
Py, = mve {i (— cos B[sin Bsinh x — cos B(t) + cos 9¢)]) + sin B]
1/’ 2 \/E )
and . . . .
h = cosh? x — x* — [sin Bsinh x — cos B(t) 4 cos 0¢)]> — 6 — sin? 0> (35)

4The zero-brane can be obtained by wrapping M2-branes on the holomorphic two-cycles of the Calabi-Yau

threefold X. Tt carries electric charges vq, A =1,2,..b3(X). Then m = ¢ = f/*g/z




The unbroken rotational symmetries lead to the conserved charges:

it = Sin@Py 4 cos (cot 0Py — cscOPy),

inght = cos Py — sin ¢(cot 0P, — cscOP,), (36)
Jrgight = P¢>
Jlift = Py

It is easy to see that there are no static solutions. They would have to minimize the
potential energy according to

0= o = @mCOSBcoshx(
ox 2

cos B sinh x
V/cos? Bsinh? y + 1

1), (37)

which has no solutions for finite x. Physically, the probe is accelerated to y = +oo.

Now we allow the probe to orbit. Solutions of this type can be stabilized by the angular
potential. The supersymmetric configuration turns out to be at constant radius in the AdS,,
i.e. P, = 0. The Hamiltonian is minimized with respect to x when

1 sin BP, — Y9m
tanh y = — cgsB 2—). (38)
cos 0Py —P, sin BP, —@m
\/P5+(#)2+P§+(#>2
The value of H at the minimum is
B 5 cos 0P, — Py, 5 7
Hopin = \/Pe + (T)z + Pg = | Jrignel, (39)

where | Jigne|? = (Jigne)? + (Jign)® + (J3gn)?- This implies the BPS bound

H > | gl (40)

for generic .
Up to spatial rotations, we may always choose static BPS solutions to satisfy

H= Jrgight = iP(b? Jrlight = Jr2ight =0. (41)
This implies
PQZO, COSHPd):Pw. (42)
Hence, the azimuthal angle is determined by the ratio of left and right angular momenta:
J3
cosf = J?{—eft (43)
right



We can rewrite qb and w in terms of Py and Py. With x = 6 = 0,

Py—cos0P,
5 - cosh y(=4——57—)
= — ,
2 COSQP(Z’_PU) 2 2 sinBPw——m 2
\/P9 _'_( sin @ ) +P¢ +< v:osB2 )

sin -Qn cos -
cosh x[tan B(ZRELe=Zmmy _ (cosOPy Py )1

b= o sin” 0 + tan Bsinh y.

sin Y@y,
\/Pg _'_ (COSQ.P(Z,—PU) )2 +P£ +( BPw P) )2

sin 0 cos B

Eliminate x through (B8),
1 P, — cos P,

o = (b,
\/ P2 Cos (95?9 P¢) v Pd% sin” 0
b = 1 (P¢—COSGP¢)
N \/P2 cos 9P¢ Pd, ) + P2 sin2 9 ’
sin 0 ¢

Plug in (f2), the solution is
=0, ¢ ==£1, =0,
for which (P, Py) are

VQ cos 6
m
2  cos Bsinhy & sin Bcosf’

Ve 1
2 cos Bsinhy & sin Bcos6’

P, = +

P, = =+

The energy of the particle following this trajectory is equal to £P;:

V@ 1
2 mcosBsinhx:l:sinBcosH ¢

(46)

(47)

(49)

(50)

(51)

We see that the solution with ¢ = 1 (¢ = —1) corresponds to a chiral (anti-chiral) BPS

configuration.

Therefore, we have confirmed that the supersymmetric trajectories (BIl) obtained by

solving the k-symmetry condition correspond to the BPS states.

3.1.3 Poincaré coordinates

In Poincaré coordinates and static gauge o° = ¢, the xk-symmetry condition for a static probe

is

1 1
[——FO} e=1il% =

_ L o
o2

(52)



This equation is solved by simply taking ¢ = ¢t = %R(@, é,v0)ef. Again, we find a half-
supersymmetric solution, although the broken supersymmetries are different than in the
global case. It can be seen that there are no supersymmetric orbiting trajectories in Poincaré

time.

3.2 One-brane probe

In this subsection, we find some supersymmetric one-brane configurations. We consider a
specific Ansatz with no worldvolume electromagnetic field and with the one-brane geometry:

0

T = 0,
¢ = ¢o’+ ¢, (53)
v = o’ + ot

where (6°, o) are worldvolume coordinates, and ¢, v, ¢ and ¢ are all taken to be constant.
Note that since (1, ¢) are the orbits of (J3, J3), they may be viewed as one-brane momentum-
winding modes on the torus generated by (J3,.J3). This torus degenerates to a circle at
the loci @ = {0,7}. One-branes of the form (BE3) at these loci are therefore static (up to
reparametrizations).

With no electromagnetic field the xk-symmetry condition is®

1 ..~
56”Fije =€, (54)

where h and I'; are the pull-backs of the 5D metric and gamma matrices onto the one-brane
worldsheet. With the Ansatz (B3)), we have explicitly

Ty = T+l +4Ty, (55)
Iy = ¢Ty+Ty, (56)
1 I ]- / / o v
56 jFij m[‘b FTfi) + ¢ FTTZJ + (¢w - ¢¢ )F¢>¢]7 (57)

and
hoy = %{— cosh? x + [sin B sinh x — cos B(w + cos 6’&5)]2 +sin%6 Q32},
hy, = %{cosz B 4 cos0¢')? + sin®0 ¢'°}, (58)

hot = %{[Sin Bsinh x — cos B(t) + cos 0¢)](— cos B) (1 + cos 0¢') + sin? ¢¢'},

5There is a simple kappa-symmetric action in six dimensions, but not in five. In 5D we expect an extra
scalar field along with the transverse coordinates to fill out the supermultiplet. For the case of the M5-brane
wrapping a Calabi-Yau 4-cycle, the scalar in the effective one-brane arises as a mode of the antisymmetric
tensor field. The Ansatz of this section corresponds to taking this extra scalar to be a constant.
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and hence

deth = (%)2{(3osh2 x[cos® B(1'+cos 0¢')?+sin? 0¢'*| —sin? 0[sin B sinh x¢'—cos B(— p+¢'1)]2}.

It is simplest to analyze the xk-symmetry condition in the form )
1
S §€jrij560 = €. (60)
The rotated gamma matrices appearing in this expression are explicitly
SIS (61)

= —% [(cosh® x cos? B + sin? @ sin? B)['"? — i(cosh y cos T cos® B + sin @ cos ¢ sin® B

—i cosh x sin 7 cos BI'! 4 i sin @ sin ¢ sin BT
—i(cosh x cos T — sin # cos ¢) sin B cos BI'*)(cos @ sin BT® + sinh y cos BT'?)],

S_IFﬂZ)S (62)
= % cos B{— cosh? y cos 6 cos BT'"?

4 cos B'sinh y[i cosh y sin @ cos T cos ¢I'* + cosh y sin @ sin ¢ sin 7'

— cosh y sin 6 cos 7 sin ¢(sin BT'** — i cos BT™?)

+ cosh x sin 6 cos ¢ sin 7(cos BT + i sin BT)]

—(cos? B cosh? x sin  cos ¢ + sin? B cosh x cos 7)I'™ — sin B cos B cosh  sinh x cos 7 cos 0T
— cosh y sin 7 sin BT'"! 4 cos B cosh y sinh x cos 8 sin 712

— cosh? y sin @ sin ¢ cos BI'%

—i cosh y(cosh x sin @ cos ¢ — cos 7) sin B cos BI'* 4 i cos® B cosh y sinh x cos 7 cos 0%},

ST y,S (63)
= % cos B{+ sinh x sin® § sin BT

+sin B cos 0[i cosh  sin 6 cos ¢ cos 7' + cosh  sin 6 sin ¢ sin 71"

+ cosh x sin 6 cos ¢ sin 7(cos BI''* + i sin BT™)

— cosh  sin § sin ¢ cos 7(sin BT'** — i cos BT'™?)]

— sin B cos B sinh  sin 6 cos 6 cos ¢I'** + (cosh x sin”  cos 7 sin® B + sin 6 cos ¢ cos® B)T'*

— cosh y sin? @ sin 7 sin BT'?

— sin B sin 6 cos f sin ¢ sinh xI'®® + sin @ sin ¢ cos BI'*

—isin? B sinh  sin 6 cos § cos ¢I'’ — i sin §(cosh x sin @ cos 7 — cos ¢) cos B sin BI'?}.

11



This all simplifies at points obeying
sinh y = +tan B cos (64)
when —1'¢ + ¢/ = £¢. Under these conditions

Vaeth = (& + cos o), (65)
and
STHPTrg + U Try + (9 — ¢ )Tgy] S
= %—(aﬁ’ + cos 0 )T + (¢ Dy + o' Dy)(I° £+ I'?)], (66)
where
Dy = icosfsin Blcosh y cosT cos® B + sin 6 cos ¢ sin® B

—i cosh x sin 7 cos BI'! + i sin § sin ¢ sin B — i(cosh x cos 7 — sin 6 cos ¢) sin B cos BI™],
D, = —cos B(cos® Bsin# cos ¢ + sin® B cosh y cos 7)I'* + cos B sin B cosh x sin 71"

4 cos® Bsin fsin ¢I"® — i sin B cos® B(sin f cos ¢ — cosh  cos 7).
So far we have not chosen which supersymmetries are to be preserved. We take those
generated by spinors obeying I'"2¢y = +¢(, or equivalently I'?¢y = FI'%,. In this case, the

last term in (B8) can be dropped and the supersymmetry conditions are satisfied.
To summarize, any configuration satisfying

Yoty = =, x=0=0
sinhy = ZtanBcosf (67)
preserves those supersymmetries corresponding to
F02€0 = :|:€0. (68)

Other BPS configurations preserving other sets of supersymmetries can be obtained by
SL(2,R) x SO(4) rotations of these ones.

Note that, as for the zero-branes, there are generic solutions for any 6. These include
0 = {0, 7}, which correspond to static one-branes because the (1, ¢) torus degenerates to a
circle along these loci. Static solutions are possible because a one-brane probe in 5D couples
magnetically to the dual of the spacetime gauge field Fjy of ([IIl) hence there is nonzero
angular momentum carried by the fields.
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