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Coherence of an optically illuminated single nuclear spin qubit
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We investigate the coherence properties of individual nuclear spin quantum bits in diamond
[Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-
vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics
are governed by time-dependent hyperfine interaction associated with rapid electronic transitions,
which can be described by a spin-fluctuator model. We show that due to a process analogous to
motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after
a large number of optical excitation cycles. Our theoretical analysis is in good agreement with
experimental results. It indicates a novel approach that could potentially isolate the nuclear spin
system completely from the electronic environment.

Nuclear spins are of fundamental importance for stor-
age and processing of quantum information. Their ex-
cellent coherence properties make them a superior qubit
candidate even in room temperature solids. Unfortu-
nately, their weak coupling to the environment also
makes it difficult to isolate and manipulate individual
nuclei. Recently, coherent preparation, manipulation
and readout of individual 13C nuclear spins in the di-
amond lattice were demonstrated [1, 2]. These experi-
ments make use of optical polarization and manipulation
of the electronic spin associated with a nitrogen-vacancy
(NV) color center in the diamond lattice [3, 4, 5, 6]. This
enables reliable control of the nuclear spin qubit via hy-
perfine interactions with the electronic spin.

In order to be useful for applications in scalable quan-
tum information processing [3], such as quantum com-
munication [7] and quantum computation [8], the quan-
tum coherence of the nuclear spins must be maintained
even when the electronic state is undergoing fast transi-
tions associated with optical measurement and with en-
tanglement generation between electronic spins. In this
Letter, we investigate coherence properties of such an
optically illuminated nuclear spin–electron spin system.
We show that these properties are well-described by a
spin-fluctuator model [9, 10, 11, 12], involving a single
nuclear spin (system) coupled by the hyperfine interac-
tion to an electron [13] (fluctuator) that undergoes rapid
optical transitions and mediates the coupling between
the nuclear spin and the environment. We generalize
the spin-fluctuator model to a vector description, nec-
essary for single NV centers in diamond [1], and make
direct comparisons with experiments. Most importantly
we demonstrate that the decoherence of the nuclear spin
due to the rapidly fluctuating electron is greatly sup-
pressed via a mechanism analogous to motional narrow-
ing in nuclear magnetic resonance (NMR) [14, 15], al-
lowing the nuclear spin coherence to be preserved even
after hundreds of optical excitation cycles. We further
show that by proper tuning of experimental parameters

FIG. 1: (a) Energy levels (left) and schematic model (right)
for optical transitions between different electronic states (|a〉
and |b〉), with transition rates rba and rab. The precession of
the nuclear spin (~ωa or ~ωb) (blue arrow) depends on the elec-
tronic state (|a〉 or |b〉) (orange arrow). (b) Random telegraph
trajectory of the electron, and time-dependent precession of
the nuclear spin. (c) Geometric representation of Larmor pre-
cession vectors. (d) The decoherence rate Γ as a function of
the differential precession frequency ∆ω, in units of γ.

it may be possible to completely decouple the nuclear
spin system from the electronic environment. The spin-
fluctuator model discussed here for NV centers can be
generalized to other AMO systems (see Refs. [16, 17] for
the recent progress).

The essential idea of this work is illustrated in Fig. 1.
We consider an individual nuclear spin system (I = 1/2,
associated with a 13C atom) that is weakly coupled to
the electronic spin of an NV center via the hyperfine in-
teraction. The transitions between ground and optically
excited electronic states are caused by laser light and
spontaneous emission of photons. The strength of the
hyperfine interaction differs between the ground and the
excited electronic states, because they have different spa-
tial wave functions and thus different overlap with the
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nucleus. As the electron undergoes rapid optical tran-
sitions, the nuclear spin precesses according to a time-
dependent effective magnetic field induced by the elec-
tron.

This situation can be modeled by considering the elec-
tron as a fluctuator with two states, |a〉 and |b〉. Let
us first assume that the incoherent transitions between
these two electronic states |a〉

rba

⇋
rab

|b〉 are described by the

random telegraph process as shown in Fig. 1(b), which
is fully characterized by the classical transition rates rba

and rab (corresponding to the optical pumping rate and
the radiative decay rate, respectively, resulting from an
off-resonant optical drive). The nuclear spin will undergo
time-dependent precession, characterized by vectors ~ωa

and ~ωb for the electronic states |a〉 and |b〉, respectively
[Fig. 1(a)].

In general, the precession vectors ~ωa and ~ωb may point
along different directions as shown in Fig. 1(c). For ex-
ample, the nuclear spin can precess around different axes
for different electronic states. Furthermore, the electron
undergoes fast optical transitions and introduces high fre-
quency noise, which, in addition to dephasing, can induce
spin-flips [1]. Therefore, we need to consider the nuclear
spin precession around a time-dependent, stochastic vec-
tor ~ω (t), generalizing the earlier scalar model [11, 12].

Let γ and ∆ω be the typical scales for the electron
transition rates and the difference between the qubit pre-
cession vectors, respectively. Let us now consider the
limiting case of a fast-fluctuator (γ ≫ ∆ω). In this case
we may use a perturbative approach associated with the
small phase shift acquired by the nuclear spin during one
excitation cycle δφ ∼ ∆ω/γ. On average this phase shift
will result in a modification of the precession frequency.
In addition, due to random variations in the time spent
in different electronic states the phase shift will undergo a
random walk with diffusion constant ∼ δφ2×γ ∼ ∆ω2/γ.

More precisely, to the first order, we have the average
precession vector

〈~ω〉 =
r−1

ba ~ωa + r−1

ab ~ωb

r−1

ba + r−1

ab

, (1)

where the weights are proportional to the durations of
different states for the fluctuator. As illustrated in
Fig. 1(c), 〈~ω〉 defines the quantization axis of the spin
system. The difference between the instantaneous pre-
cession vector (~ωa or ~ωb) and 〈~ω〉, ∆~ω = ~ωa − 〈~ω〉 can
be decomposed into the parallel and perpendicular com-
ponents. The perpendicular component introduces spin-
flips along the quantization axis at rate Γ1 ∼ (∆ω)2⊥ /γ.
The parallel component causes stochastic phase accumu-
lation, leading to dephasing at the rate Γφ ∼ (∆ω)

2

‖ /γ.
Note that both rates are inversely proportional to the
fluctuator transition rate γ in the limit of fast electronic
transitions. The underlying physics is analogous to the
motional narrowing of NMR [14], in which the rapid mo-

tion of the environment (corresponding to large γ) aver-
ages out the randomly accumulated phase.

In the opposite slow-fluctuator limit (γ . ∆ω), the
decoherence rate is only determined by the fluctuator
transition rates. For each fluctuator transition, there is
a time variation, δt ∼ 1/γ, which induces an uncertainty
in the rotation δφ ∼ ∆ωδt ∼ ∆ω/γ ∼ 1. This implies
that a single transition of the fluctuator is sufficient to
destroy the coherence of the spin system. The resulting
qualitative dependence of the nuclear spin decay upon
difference in Larmor precession is illustrated in Fig. 1(d).

We now introduce the master equation formalism and
illustrate that it is possible to reduce the system dynam-
ics to a set of linear differential equations, even in the
presence of the non-commutative stochastic precession.
We will first solve the spin-fluctuator model with the two-
state fluctuator described above. After that, we extend
the procedure to include multi-state fluctuators into the
formalism.

The incoherent transition of the two-state fluctuator
[Fig. 1(a)] can be described by the master equations

d

dt

(

pa

pb

)

=

(

−rba rab

rba −rab

) (

pa

pb

)

, (2)

where pa and pb are occupation probabilities for states
|a〉 and |b〉.

The Hamiltonian of the nuclear spin (depending on the
state of the fluctuator) is H = |a〉 〈a| ⊗Ha + |b〉 〈b| ⊗Hb,

with Ha = ~ωa · ~I and Hb = ~ωb · ~I.
Since there is no coherence between different fluctua-

tor states, we may write the density matrix for the com-
posite system as ρ = |a〉 〈a| ⊗ ρa + |b〉 〈b| ⊗ ρb, where

ρj =

(

ρj,11 ρj,12

ρj,21 ρj,22

)

for j = a or b. The unitary evolu-

tion of the density matrix ρ with Hamiltonian H can be
decomposed into two uncoupled parts: d

dt
ρj = −i [Hj , ρj ]

for j = a, b. In terms of the Liouville operator, the uni-
tary evolution is

d

dt
~ρj = Lj~ρj , (3)

where the density operator is represented by a column
vector ~ρj = (ρj,11, ρj,12, ρj,21, ρj,22)

T and the Liouville
operator by a matrix

Lj ≡ L [~ωj] ≡ (−i)
(

Hj ⊗ I − I⊗ H∗
j

)

, (4)

for j = a, b. Notice that the transition matrix depends
linearly on the precession vector, and such linearity im-
plies L [~ωa] + L [~ωb] = L [~ωa + ~ωb].

Combining the dynamics of the system and the fluctu-
ator, we may write down the following master equations:

d

dt

(

~ρa

~ρb

)

=

(

La − rba rab

rba Lb − rab

) (

~ρa

~ρb

)

, (5)
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where La and Lb describe the (slow) dynamics of the
precession; rba = rba I4×4 and rab = rab I4×4 are asso-
ciated with the (fast) incoherent optical transitions be-
tween electronic states, not affecting the nuclear spin.

We generalize to a multi-state fluctuator, by introduc-
ing rij the fluctuator transition rate from state j to state
i, and rjj ≡

∑

i6=j rij the total transition rate from state
j to all other states. For an N -state fluctuator, the gen-
eralized form for Eq.(5) is

d

dt
~ρi = (λLi − rii) ~ρi +

N
∑

j 6=i

rij~ρj (6)

where ~ρj = (ρj,11, ρj,12, ρj,21, ρj,22)
T

for j = 1, 2, · · · , N ,
and rij = rijI4×4. When there are M fluctuators, with
Nj states for the jth fluctuator, we can always reduce it

to one composite fluctuator with N =
∏M

j=1
Nj states.

Given all the parameters {~ωi} and {rij}, we can solve
~ρi (t) exactly from the above 4N linear differential equa-
tions [Eq.(6)] with initial conditions for {~ρi (0)}. Fi-
nally, the density matrix of the nuclear spin system is
~ρ (t) =

∑

i ~ρi (t), which together with Eq. (6) provides an
exact solution to the generalized spin-fluctuator model.

The experimental procedure for probing the dynamics
of an optically illuminated nuclear spin qubit proximal to
NV centers in diamond is described in detail in Ref. [1].
The NV center is a spin triplet in the ground electronic
state. In the experiment we optically polarize the elec-
tron into ms = 0, in which the hyperfine interaction with
the nuclear spin vanishes to leading order. Furthermore,
it is believed [18], and is confirmed by experimental evi-
dence reported below, that the electronic spin is a good
quantum number during the optical excitation of the NV
center. Hence the electron should mostly remain in the
ms = 0 manifold during optical excitation.

However, the hyperfine interaction with the electron
can dramatically change the precession of the nuclear
spin by modifying its effective magnetic moment [4]. The
direction and magnitude of the precession vector, which
is determined by the effective g-tensor [4], varies due to
the changes in the contact and dipolar interactions asso-
ciated with different electronic states. Under these exper-
imental conditions, the nuclear precession vectors asso-
ciated with different electronic states should be propor-
tional to the perpendicular components of the external
magnetic field, B⊥, with a proportionality constant and
direction that depends upon the electronic state. Thus,
we present the experimental data (Fig. 2) as functions
of the ground state precession frequency ωg (ωg ∝ B⊥),
which can be accurately measured. Both the optically in-
duced decoherence rate Γ (the decay rate of the nuclear
spin Bloch vector) and the change in average Larmor pre-
cession frequency 〈~ω〉−ωg were measured for a particular
NV center. For the presented data, the optical excitation
rate was chosen to correspond to about one half of satu-
ration intensity.

A comparison between first-principle theory and exper-
iment would require precise knowledge of nuclear preces-
sion vectors for both the ground and excited electronic
states. The experiments, performed at room tempera-
ture, involve excitation of multiple excited states, whose
wave functions are not known in great detail. To model
quantum dynamics of such a system, we assume that
the excited state precession vector has similar order of
magnitude to that of the ground state, but might point
along a different direction. In the following, we label
the ground state as the first state of the fluctuator with
precession frequency ~ωg ≡ ~ω1 for the proximal nuclear
spin. The jth excited state has precession vector ~ωj , with
its three components drawn from a normal distribution
with mean 0 and deviation σω ∼ ωg, for j = 2, · · · , N .
We assume that the excitation rate from the 1st to the
jth excited state rj1 = R/ (N − 1), the radiative decay

FIG. 2: Comparison between experimental data (points) and
simulation (lines). (a) Optically induced decoherence rate Γ
as a function of ground state Larmor precession frequency
ωg (data adopted from Ref. [1]). (b) Shift of average Lar-
mor precession frequency |〈~ω〉| − ωg as a function of ωg. For
both plots, the axes are also labeled in dimensionless units,
normalized by the radiative decay rate γ = 86 µs−1. Ex-
perimental data points (blue triangles, red diamonds) include
nuclear spins prepared along both directions (x̂, ẑ) perpen-
dicular to the Larmor precession vector (ŷ). The full lines
are from simulation of the generalized spin-fluctuator model,
averaging over 50 different sets of randomly generated ex-
cited states, as described in the text. The simulation assumes
N = 3 for the fluctuator (i.e. one ground state and two ex-
cited states [19, 20]). The dashed lines are the statistical
standard deviation of the different realizations. In panel (a),
the curves from simulation are manually shifted upwards by
Γ0 = 3.4 × 10−3γ, as described in the text.
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rate r1j = γ = 86 µs−1 [19], and the total excitation
rate R = γ. The transitions among excited states are
neglected. According to [19, 20], there are at least two
excited states involved in the optical transition, so we set
N = 3. By choosing σω = 2.5ωg, we find good agreement
between theory and experiment as shown in Fig. 2.

In the fast-fluctuating regime (ωg ≪ γ), the exper-
imental decoherence rate increases quadratically with
ωg, consistent with the scaling obtained from the fast-
fluctuator limit. When the precession frequency becomes
comparable to the fluctuator transition rates (ωg . 0.2γ),
Γ increases sub-quadratically with ωg. This is because we
are in the transition region as indicated in Fig. 1(d). In
principle, for even higher precession frequency, the de-
coherence rate should saturate at the optical transition
rate. Experimentally, however, it is difficult to manipu-
late the nuclear spin for very high precession frequency
(ωg > 0.2γ) [1].

In addition to the electronic spin-conserving optical
transitions analyzed above, the spin-changing transitions
between ms = 0 and ms = ±1 may also induce deco-
herence of the nuclear spin. However, the hyperfine field
from the electron in spin state ms = ±1 is oriented along
the well-defined z-axis [1], which introduces decoherence
for nuclear spin state |↑〉X , but not for |↑〉Z . This con-
tradicts the observation that the decoherence rates (with
initial states |↑〉X and |↑〉Z) are similar for the observed
center (see Fig. 2). Therefore, we conclude that the spin-
changing transitions should not be the dominant process
for optically induced nuclear spin decoherence.

By extrapolating the experimental data to zero exter-
nal magnetic field, we find that there is still a finite de-
coherence rate Γ0 ≈ 3.4 × 10−3γ (simulation curves are
offset with additional fitting parameter in Fig. 2(a)). Re-
markably, these data indicate that the nuclear spin co-
herence is still maintained after scattering γ/Γ0 ∼ 300
photons by the electron. This insensitivity, enabled via
effects analogous to motional-averaging, is of critical im-
portance for the feasibility of NV-center-based distant
quantum communication [7] and distributed quantum
computation [8] protocols.

The zero field decoherence rate Γ0 is still related to
optical transitions, because it is much larger than the
observed decoherence rate of the nuclear spin in the
dark Γdark ≈ 3 × 10−4γ [1]. We attribute this zero
field decoherence to the orbital motion of the optically
excited states, which produces a “residual” magnetic
field at the position of the nucleus. The residual mag-
netic field can be present for optically excited states, be-
cause the orbital motion for these states is not quenched
[19, 20]. Considering the nucleus on the second coordina-
tion sphere with respect to the vacancy (i.e., r ≈ 2.6 Å),
the magnetic field from the orbital motion is approxi-
mately µB/r3 ≈ 500 ∼ 1000 G. This gives an estimated
decoherence rate Γ0 ≈ ∆ω2/γ ≈ (1 ∼ 5)×10−3 γ, which
is consistent with the value observed experimentally.

These observations may allow us to develop new meth-
ods to further suppress optically induced nuclear decay.
Specifically, at low temperatures (T < 10 K), it is pos-
sible to resolve individual optical transitions and selec-
tively drive the electron between the ground state and
one excited state. Under these conditions, it should
be possible to eliminate the decoherence Γ0 by apply-
ing an external magnetic field that exactly compensates
the residual field from the orbital motion. With the com-
pensation at this “sweet spot”, the nuclear spin sees the
same total magnetic field, regardless of the state of the
electron, and therefore can be completely decoupled from
the electronic environment [21] [22].

In conclusion, we have shown that the vector spin-
fluctuator model provides a good description for our ob-
servations of coherence properties of the optically illu-
minated nuclear spin qubit. Our theoretical and exper-
imental results demonstrate a substantial suppression of
nuclear spin decoherence due to the mechanism analo-
gous to the motional averaging in NMR. Our analysis
further indicated a new approach that may allow us to
completely decouple the nuclear spin and the electron
during optical excitation. These results are of critical
importance for scalable applications of NV-center-based
quantum registers [7, 8].

We thank P. Hemmer, F. Jelezko and A.Zibrov for use-
ful discussions and experimental help. This work was
supported by NSF (CAREER and PIF programs), the
ARO MURI, the Packard and Hertz Foundations.
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