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Fermi surfaces and gauge-gravity duality

Liza Huijse and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138

(Dated: May 23, 2011)

Abstract
We give a unified overview of the zero temperature phases of compressible quantum matter: i.e.

phases in which the expectation value of a globally conserved U(1) density, Q, varies smoothly as a

function of parameters. Provided the global U(1) and translational symmetries are unbroken, such

phases are expected to have Fermi surfaces, and the Luttinger theorem relates the volumes enclosed

by these Fermi surfaces to 〈Q〉. We survey models of interacting bosons and/or fermions and/or

gauge fields which realize such phases. Some phases have Fermi surfaces with the singularities

of Landau’s Fermi liquid theory, while other Fermi surfaces have non-Fermi liquid singularities.

Compressible phases found in models applicable to condensed matter systems are argued to also

be present in models obtained by applying chemical potentials (and other deformations allowed by

the residual symmetry at non-zero chemical potential) to the paradigmic supersymmetric gauge

theories underlying gauge-gravity duality: the ABJM model in spatial dimension d = 2, and the

N = 4 SYM theory in d = 3.
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I. INTRODUCTION

There is much recent interest in the topic of compressible quantum matter. This is mo-

tivated partly by the hope of resolving the puzzle of ‘strange metal’ physics in numerous

correlated electron materials. Thinking more broadly, we may define compressible states of

matter as continuum states in spatial dimensions d > 1 which satisfy the following simple

requirements at the absolute zero of temperature (T = 0):

• They have a global U(1) symmetry, and an associated conserved density, Q.

• As we change the value of a ‘chemical potential’ µ which couples linearly to Q, the

ground state value of 〈Q〉 varies smoothly as a function of µ.

• The global U(1) symmetry and translational symmetry are unbroken in the ground

state.

Remarkably, there are only a few known states in condensed matter physics which satisfy the

above requirements, and we will discuss examples of essentially all of them in the present

paper. Moreover, all such states have Fermi surfaces , a concept we will define precisely

below. The most familiar example of a compressible quantum state is, of course, Landau’s

Fermi liquid, which we will refer to simply as the Fermi liquid (FL). It is sometimes assumed

that Fermi surfaces occur only in Fermi liquids, but that is not true: Fermi surfaces are more

general, and are present also in other states of matter.

Note that we have not placed any restrictions on the statistics of the microscopic degrees

of freedom. The compressible state could be made up of either fermions or bosons, or both.

Nevertheless, Fermi surfaces are expected to be present as long as the global U(1) symmetry

is preserved, and the system does not crystallize into a solid by breaking translational

symmetry. The Fermi surfaces could be associated with emergent fermions, which are either

composites or fractions of the microscopic particles.

Despite the paucity of known examples of states of compressible matter, such states have

proliferated in recent studies1–21 using gauge-gravity duality. Clearly, a proper condensed

matter interpretation of these putative states is urgently needed.22,23

A. The Luttinger Theorem

This theorem was originally established for a gas of fermions with weak or moderate

interactions. The non-interacting Fermi gas has a ground state with all states inside the

Fermi surface occupied, and so the momentum-space volume enclosed by the Fermi surface

must equal the density of fermions (our momentum space volumes include phase factors of

(2π)−d). The Luttinger theorem proves that this Fermi surface volume remains invariant to

all orders in the fermion-fermion interaction. In the early presentations of its proof, it was
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implicitly assumed that a Fermi liquid was under consideration, but the result is actually

much more general as we will now discuss.

A more recent discussion of the Luttinger theorem appeared in the works of Powell et

al.24,25 and Coleman et al.,26 who applied it to arbitrary interacting systems of fermions,

bosons, and gauge fields. They pointed out the key role played by continuous symmetries

and associated global conservation laws, and we will now review their presentation.

There is a Luttinger theorem for each global U(1) symmetry which is not spontaneously

broken, and for simplicity let us assume that there is only one: that associated with the

conserved density Q. Express the theory in terms of a complete set of fields ψ`, where ` is

a label identifying the bosons, fermions, or gauge fields. By “complete set” we mean that

we include not only the fundamental canonical fields of the underlying Lagrangian, but also

composites or fractions of the fundamental fields. Composite fields can be introduced via

a suitable Hubbard-Stratonovich decoupling of an interaction term, while fractions arise in

the slave-particle construction along with emergent gauge fields27. There is no requirement

that ψ` fields introduced in this manner be canonical. The complete Lagrangian has a global

U(1) symmetry under which

ψ` → ψ` e
iq`θ (1.1)

where θ generates the U(1) transformation, and q` is the charge of ψ`. Now the usual Noether

argument can be used to generate an expression for the conserved charge density Q. This

expression can depend upon specific details of the Lagrangian, and so we don’t present a

general form. However, if the field ψ` is canonical, then its contribution to 〈Q〉 is given by

〈Q`〉 = ±
∫

ddk

(2π)d

∫ ∞
−∞

dω

2π
q`G`(k, iω)eiω0+ (1.2)

where G` is the 2-point Green’s function of ψ`, and leading sign refers to bosons/fermions.

For simplicity, we will assume that suitable linear combinations of the fields can be chosen

so that the Green’s functions are diagonal. We emphasize that Eq. (1.2) applies only if ψ`
is canonical, but the canonical nature is not required for the Luttinger theorem below in

Eq. (1.4).

Now let us examine the dependence of 〈Q〉 on an applied chemical potential µ. The

Noether argument implies that the Green’s functions of all fields, whether canonical or not,

depend upon µ only in the combination G`(k, ω−q`µ); in other words, the chemical potential

is merely a shift in the frequency. Applying this shift to Eq. (1.2), we might initially conclude

that the frequency shift can be absorbed into a redefinition of the dummy frequency variable

which is being integrated over, and so the result is independent of µ. However, this is not

true because the ω integration is only conditionally convergent at large ω, and a finite result

relies crucially on the eiω0+ convergence factor. The Luttinger theorem relies on an argument

which extracts this conditionally convergent value, which turns out to be insensitive to many

details of the Green’s functions. The final result will yield the value of 〈Q〉, whether or not
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the fields are canonical.

To proceed, it is useful isolate Feynman diagrams which are convergent at large ω, and so

do not require the eiω0+ convergence factor. In the evaluation of the free energy, such contri-

butions are known as the Luttinger-Ward functional28–31 YLW [G`(k, ω)]. This is a functional

of all the fully renormalized Green’s functions, and is the sum of all closed-loop skeleton

Feynman diagrams which are two-particle irreducible. The two-particle irreducibility ensures

convergence at large ω, and so the Luttinger-Ward functional obeys

YLW [G`(k, ω − q`Ω)] = YLW [G`(k, ω)] (1.3)

for all Ω. This identity is a key ingredient in the proof of the Luttinger result. We now refer

the reader to Ref. 24 (see Section V) and Ref. 26 (see Section IV) for further details, and

proceed to the final result:

〈Q〉 =
∑

`∈ fermions

q`V` (1.4)

where V` is the momentum space volume enclosed by the Fermi surface of only the fermionic

particles. We emphasize that

• Q measures the contribution to the total charge from both fermions and bosons,24 as

determined by applying the Noether argument to the symmetry Eq. (1.1).

• The sum on the right-hand-side of Eq. (1.4) involves all fermions, whether canonical

or not.26

• Some of the Fermi surfaces could be of fermions which carry additional charges of

fluctuating gauge fields, or are coupled to other gapless scalars associated with a

symmetry-breaking transition. In these cases, the singularities near the Fermi surface

can differ from those in a Landau Fermi liquid. If the fermions have gauge charges, then

the fermion Green’s functions and the singularities near the Fermi surface are gauge-

dependent; however the volume enclosed by the Fermi surface is gauge-independent.

• The Luttinger relation in Eq. (1.4) does not apply if the global U(1) symmetry is

spontaneously broken, usually by the condensation of a boson which carries charge Q.

Let us now define the Fermi surface more precisely: it is the locus of points in momentum

space where the inverse Green’s function has a zero at ω = 0. Assuming momentum space

isotropy for simplicity, the Fermi momentum kF is defined by

G−1
` (k = kF , ω = 0) = 0 (1.5)

as long as ψ` is a fermion. Unitarity conditions on the spectral representation do not allow

bosons to satisfy Eq. (1.5) in general, because it would lead to instabilities of bosons over

a range of momenta (see Ref. 6 for a recent discussion of this); exceptions can arise at
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certain exotic critical points in spatially isotropic systems, which we will not consider here.

This is why there is no bosonic contribution to the right hand side of Eq. (1.4). The proof

of Luttinger’s theorem also requires an additional mild condition on the fermion Green’s

functions:

lim
ω→0

ImG−1
` (k 6= kF , ω) = 0, (1.6)

while ReG−1
` (k 6= kF , 0) 6= 0. In a Fermi liquid, the expression in Eq. (1.6) vanishes as ω2,

but this behavior is not needed for Eq. (1.4). The latter result applies for a much broader

class of compressible “non-Fermi liquid” states, which usually have a slower approach to the

ω → 0 limit.

As we will see below, many of the non-Fermi liquid states we find, and in particular

those associated with couplings to deconfined gauge fields, are ultimately unstable to paired

superfluid states in which the global U(1) Q symmetry is broken. However, even in these

cases it is interesting to study the non-Fermi liquid “normal” state, because we can add

additional perturbations that suppress the superfluidity. Moreover, the superfluidity may

only appear at a low energy scale, and so there is a wide intermediate energy regime over

which the non-Fermi liquid physics applies.

The plan for the remainder of the paper is as follows. We will present a unified perspective

on previously studied condensed matter models in Sections II, III, and IV. Section II will

consider one of the simplest examples of a compressible non-Fermi liquid phase, the doublon

metal, which has 2 Fermi surfaces of fermions coupled to a U(1) gauge field with opposite

charges. We study the phases of mixtures of bosons and fermions, without gauge fields,

in Section III. Gauge fields are introduced to Bose-Fermi mixtures in Section IV, and such

models are connected to “slave particle” realizations of electronic Hubbard or Kondo models.

This model has a fractionalized Fermi liquid (FL*) phase, which plays an important role in

the connection to dual gravity models. We turn to supersymmetric gauge theories, and the

nature of the phase diagrams at non-zero chemical potential in Sections V and VI which

describe the d = 2 ABJM model and the d = 3 N = 4 SYM models respectively. We

will find that the phases appearing in these models are closely connected to those discussed

earlier in the condensed matter models. Finally, Section VII presents a summary of our

results.

Note added: Two complementary papers appeared just as the present paper was be-

ing submitted, addressing similar questions and models from the dual gravity perspective.

Ref. 32 addressed the d = 2 ABJM model of Section V, and Ref. 33 addressed the d = 3

SYM model of Section VI, both at non-zero chemical potentials.

II. DOUBLON METAL

Our simplest example of a non-Fermi liquid obeying the Luttinger theorem is the dou-

blon metal.34–36 This is a model of a fluctuating doped antiferromagnet, with applications
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to the cuprate superconductors. The theory begins with an ordered antiferromagnet and

re-expresses the electrons in terms of the pocket Fermi surfaces created by the antiferro-

magnetic order. The antiferromagnetic moment is then allowed spacetime fluctuations in

orientation, and these lead to an emergent U(1) gauge field which is coupled to the electron

pockets. The simplest form of such a theory has a pair of fermions, f±; these are some-

times called ‘doublons’ because they represent doubly-occupied sites in a derivation from

a lattice Hubbard model (the doublons were denoted g± in the earlier work34–36). These

doublons are coupled with opposite charges to the U(1) gauge field (Aτ ,A), as described by

the Lagrangian35–40

Ld = f †+

[
(∂τ − iAτ )−

(∇− iA)2

2mf

− µ
]
f+

+ f †−

[
(∂τ + iAτ )−

(∇ + iA)2

2mf

− µ
]
f−. (2.1)

We have not written out a possible bare Maxwell term for the gauge field, because it is

irrelevant at low energies compared to the contributions of the fermion polarization.

This theory has a global U(1) charge

Q = f †+f+ + f †−f−, (2.2)

while the gauge field couples to the orthogonal charge f †+f+ − f †−f−. By the Luttinger

theorem discussed in Section I A, a compressible phase with the global U(1) unbroken must

have Fermi surfaces of the f± fermions. Because of the interchange symmetry between the

fermions, the two Fermi wavevectors must be equal, and so the Fermi volume Vf of each

Fermi surface obeys

2Vf = 〈Q〉 . (2.3)

We have sketched a pictorial representation of this non-Fermi liquid (NFL) phase in Fig. 1.

There is a long history of studies on the influence of the gauge field fluctuations on such

Fermi surfaces. While the longitudinal gauge field fluctuations are screened, the transverse

fluctuations lead to singular non-Fermi liquid renormalizations of the fermions near the

Fermi surface. Such fluctuations are frequently controlled via a 1/N expansion, where each

fermion is endowed with an additional flavor index which can takeN values. Recent work41–43

has shown that the naive 1/N expansion breaks down in d = 2 because of Fermi surface

singularities that appear in higher loop graphs. The d = 2 case is therefore strongly-coupled,

and the ultimate fate of the theory has not been fully resolved: these are difficult questions

we will not address here.

Despite the strong-coupling nature of the problem, the recent studies do point to a natural

scaling structure for the fermion Green’s function in the vicinity of the Fermi surface. We

6



NFL

FIG. 1: The non-Fermi liquid (NFL) doublon metal phase. The blue blurry shading of the Fermi

surface indicates the coupling of the f± fermions to a fluctuating gapless gauge field, so that the

fermion Green’s function has the singular behavior of Eq. (2.6) near the Fermi surface (in d = 2).

Despite the non-Fermi liquid character of the fermion excitations, the value of kF , and so the

location of the Fermi surface, is sharply defined. The global SU(2) spin is carried by the bosons

b±σ which are gapped in this phase.

focus on the d = 2 case, and in vicinity of any point, say k0 = (kF , 0) on the Fermi surface.

Then, we measure the fermion momentum, k, using deviations from this point

q = k− k0. (2.4)

The singularity in the fermion Green’s function scales as a function of the distance to the

nearest point on the Fermi surface, which is

q ≡ |k| − kF ≈ qx +
q2
y

2kF
; (2.5)

note that we have to scale qx ∼ q2
y as we approach the Fermi surface. The vicinity of the

Fermi surface in the doublon metal is described by42

G−1(k, ω) = q1−ηΦ(ω/qz/2) (2.6)

where η and z are anomalous exponents and Φ is a scaling function which can be computed

at low orders in the 1/N expansion. The structure of Φ is such that the relations in Eq. (1.5)

and Eq. (1.6) are obeyed, and so the Luttinger theorem does apply in the doublon metal.

Note that the Green’s function in (2.6) is gauge-dependent, and computations are nor-

mally made in the Coulomb gauge ∇ ·A = 0. However, the Fermi surface can also leave its

fingerprints in correlations of gauge-invariant observables. A prominent example is the two-

point correlator of the density Q, which would have spatial oscillations at the wavevector

2kF , which are analogs of the Friedel oscillations of Fermi liquids.

An important feature of the doublon metal is that it has an instability towards supercon-
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ductivity via the appearance of a condensate of the Cooper pair f+f−: this is a consequence

of the attractive interaction between the f+ and f− fermions mediated by the gauge field.

The Cooper pair is gauge neutral, and so the gauge symmetry remains unbroken in the

state with 〈f+f−〉 6= 0. However, such a condensate does break the global U(1) symmetry

associated with Q. So the conditions on the Luttinger theorem are not obeyed, and there

is no constraint on the Fermi surface volume in the superconducting state. Indeed, in the

present model, the Fermi surfaces are immediately gapped by any non-zero condensate.

The existence of the doublon metal therefore requires that the pairing scale be suppressed

to a very low energy so that there is a significant intermediate energy scale for non-Fermi

liquid physics. Clearly, a large bare repulsive interaction between the fermions can help

establish such a regime. Determining the precise conditions and width of a possible doublon

metal regime involve strong-coupling questions which will be addressed in a forthcoming

paper. Such a pairing instability is an “affliction” common to many of the other non-Fermi

liquid compressible phases we will consider in the present paper.

For completeness, we also note the structure of the spin excitations of the doublon metal;

the reader can skip the remainder of this section without loss of continuity. Here “spin”

refers to a global SU(2) symmetry of lattice electronic models like the Hubbard model, and is

analogous to global “flavor” symmetries in relativistic field theories. The spinful excitations

are bosons b±σ, which carry the charge, ±1, of the U(1) gauge field (Aτ ,A), along with the

global spin quantum number σ =↑, ↓. However, these bosons do not carry the global U(1)

charge Q. The bosons have an energy gap, and their low energy excitations are described

by the relativistic CP1 model34; however we write it here in a non-relativistic notation, to

highlight the connections to models to be considered later in this paper:

Lσ = b†+σ

[
(∂τ − iAτ )−

(∇− iA)2

2mb

+ ε1

]
b+σ

+ b†−σ

[
(∂τ + iAτ )−

(∇ + iA)2

2mb

+ ε1

]
b−σ + ε2 (εσσ′b+σb−σ′ + H.c.) , (2.7)

where εσσ′ is the unit antisymmetric tensor. The bosonic spin excitations have an energy

gap
√
ε21 − ε22, as is easily seen by diagonalizing the quadratic form of Lσ.

The combined theory Ld+Lσ has a number of possible phases, distinct from the doublon

metal34,44–47. Condensation of b±σ breaks the U(1) gauge symmetry and leads to antifer-

romagnetic order. More interesting for our purposes here are phases associated with the

formation of gauge-neutral composites of b±σ and f±, yielding ‘electron’-like fermions cσ
which can have their own Fermi surfaces. Rather than discussing such phases here, we will

examine analogous phases in a simpler model in the following section, and also find several

similar phases in the phase diagrams of the models of subsequent sections.
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III. BOSON-FERMION MIXTURE

Now consider a quantum liquid which is a mixture of fermions, fσ, and bosons b. As in

Section II, σ is a global SU(2) spin ‘flavor’ index, and it does not play a significant role in

this section. We could drop the σ index below, but we retain it because of its importance

in physical analogies to be discussed later.

A common physical example is a mixture of 3He and 4He. Other examples have been

studied recently in ultracold trapped atom systems, such as 6Li and 7Li. With weak interac-

tions between the bosons and fermions, each proceed relatively independently. The bosons

condense to form a superfluid (SF), while the fermions from a Fermi liquid (FL), with the

volume enclosed by the Fermi surface equal to the fermion density.

Now we turn up the interaction strength between the fσ and b, so that in free space

a single fσ and b can bind to form a fermionic molecule. We are interested here in the

consequences of this 2-body physics for the many body problem. A focus on the Fermi

surfaces, and the Luttinger theorem, allows us to make sharp distinctions between phases

in the case of a dense gas.24

Let us write a simple Lagrangian which can describe this physics:

Lbf = f †σ

[
∂τ −

∇2

2mf

− µ
]
fσ + b†

[
∂τ −

∇2

2mb

− µb
]
b

+
u

2

(
b†b
)2 − gf †σb†bfσ (3.1)

This theory clearly has 2 global U(1) symmetries, with conserved charges

U(1) : Q = f †σfσ

Ub(1) : Qb = b†b, (3.2)

and chemical potentials µ and µb coupling to these charges. There is a repulsive interaction

u > 0 between the bosons necessary to stabilize the theory, and an attractive interaction g

between the bosons and fermions. Now it is useful to introduce a fermionic ‘molecular’ field

cσ by a Hubbard-Stratonovich decoupling26 of the two-body interaction:

Lbf = f †σ

[
∂τ −

∇2

2mf

− µ
]
fσ + b†

[
∂τ −

∇2

2mb

− µb
]
b

+
u

2

(
b†b
)2

+
1

g
c†σcσ − c†σbf − f †b†cσ. (3.3)

Note that the field cσ transforms under both U(1) symmetries in Eq. (3.2), which are now
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SF+FL SF+FLFLFL

FIG. 2: Schematic phase diagram of the theory Lbf in Eq. (3.1) for a strong interaction g; with weak

interactions, the two intermediate phases are not present—see Ref. 24 for more details. The Fermi

liquid (FL) phases have no Bose condensate, and the two global U(1) symmetries constrain the two

Fermi surfaces of the fσ and cσ fermions via the Luttinger relation in Eq. (3.5). Unlike the model

of Section II, the Fermi surface excitations are not coupled to a fluctuating gauge field, and Fermi

liquid-like quasiparticles survive near the Fermi surface; this is indicated by the uniform shading

within the Fermi surface. The case with only a cσ Fermi surface is allowed only for 〈Q〉 = 〈Qb〉.
The SF+FL phases have both a Bose condensate and Fermi surfaces; the non-zero 〈b〉 hybridizes

the fσ and cσ fermions, the Fermi surface quasiparticles are therefore linear combinations of fσ
and cσ. There can be one or two such Fermi surfaces as shown above, depending upon parameters.

There is only one Luttinger constraint on the volumes of the Fermi surfaces in the SF+FL phases.

Here and in the following figures, we follow the convention of shading fσ Fermi surfaces blue, cσ
Fermi surfaces red, and Fermi surfaces of hybridized fermions purple.

associated respectively with

U(1) : fσ → fσ e
iθ, cσ → cσ e

iθ

Ub(1) : b→ b eiθb , cσ → cσ e
iθb . (3.4)

However the field c is not canonical, and application of the Noether argument to Eq. (3.3)

shows that the expressions for the charge Q and Qb in Eq. (3.2) remain unchanged .

This theory can now have distinct phases, depending upon whether Ub(1) is broken or

not, as is shown in Fig. 2. In all phases, Fermi surfaces of both the fσ and cσ fermions can

be present: let these enclose volumes Vf and Vc respectively. By Eq. (1.4) and Eq. (3.4),

the volume Vc will be included in the Luttinger count, even though c does not appear in the

expressions for the conserved densities in Eq. (3.2).

The Fermi liquid (FL) phases have no b condensate, and both global symmetries are

preserved. Then by the Luttinger theorem, there have to be 2 restrictions on the Fermi
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volumes. From Eq. (1.4) and Eq. (3.4) these are easily seen to be24

〈Q〉 = 〈f †σfσ〉 = 2(Vf + Vc)

〈Qb〉 = 〈b†b〉 = 2Vc, (3.5)

where the factors of 2 arise from the sum over σ. Thus both Vf and Vc are fixed by the

densities of the underlying bosons and fermions. Remarkably, the volume Vc is constrained

by the number of bosons: intuitively, this means that all the bosons have to bind with a fσ
fermion to form a fermionic molecule cσ to avoid Bose condensation. The case 〈Qb〉 = 0 has

Vc = 0 and hence only a fσ Fermi surface. Similarly, the case with 〈Q〉 = 〈Qb〉 has Vf = 0

and only a cσ Fermi surface. It is not possible to have 〈Q〉 < 〈Qb〉 in a FL phase.

The other phases are where b condenses and Ub(1) is broken; such phases include the

region where 〈Q〉 < 〈Qb〉. Now only the first of the Luttinger constraints in Eq. (3.5)

applies. This is clearly the same as the superfluid (SF) state discussed at the beginning

of this section. The superfluid order co-exists with Fermi surfaces of the fermions, and

depending upon the magnitude of 〈b〉 and other parameters, there can be one or two Fermi

surfaces as shown in Fig. 2. A SF only phase is only possible when 〈Q〉 = 0, i.e. there are

no fermions.

IV. FRACTIONALIZED FERMI LIQUID

The fractionalized Fermi liquid (FL*) was introduced in Refs. 48,49 as a compressible non-

Fermi liquid phase of Kondo and Hubbard lattice models of strongly interacting electrons.

Here, we will introduce the FL* in the context of continuum field theories of fermions and

bosons under consideration. See Ref. 27 for a review of the connection to these condensed

matter lattice models.

Here, we begin with the model of Section III and gauge the U(1) charge Q−Qb. Thus we

have a dynamic U(1) gauge field (Aτ ,A) (as in Section II), and the Lagrangian in Eq. (3.1)

is modified to

L∗ = f †σ

[
(∂τ − iAτ )−

(∇− iA)2

2mf

− µ
]
fσ

+ b†
[
(∂τ + iAτ )−

(∇ + iA)2

2mb

− µb
]
b

+
u

2

(
b†b
)2 − gf †σb†bfσ + iAτρ. (4.1)

The last term is a background charge density ρ: this is needed here because stability requires

that a U(1) gauge field only interact with matter which has net zero U(1) charge density.

So we must have

ρ = 〈Q〉 − 〈Qb〉 , (4.2)
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FL FLFL*SL

FIG. 3: Schematic phase diagram of the theory L∗ in Eq. (4.1). This is similar to the phase diagram

in Fig. 2, but some of the Fermi surface excitations are now coupled to a fluctuating gapless gauge

field: such Fermi surfaces are indicated by the blurry shading, as in Fig. 1. The colors of the

Fermi surfaces are chosen as in Fig. 2. The fractionalized Fermi liquid (FL*) phase has Fermi

surfaces of both gauge-neutral and gauge-charged fermions. The spin liquid (SL) phase has only

a gauge-charged Fermi surface and is incompressible, and is the only incompressible phase in our

phase diagrams. Unlike Fig. 2, the phases with a b condensates are not superfluids because there

is no gauge-invariant condensate which violates a global U(1) conservation.

where the definitions of the charges are just as in Eq. (3.2). We can introduce the composite

field cσ just as in Eq. (3.3): this field is gauge-invariant.

The phases of L∗ closely parallel those of Lbf : the main difference is that the gauge

fluctuations can modify the nature of the singularities near the Fermi surfaces. A schematic

phase diagram appears in Fig. 3.

The FL* phase is obtained when b is uncondensed, and the U(1) gauge theory is in a

deconfined phase. There are both fσ and cσ Fermi surfaces, and their volumes continue to

obey both constraints in Eq. (3.5). Now the gauge fluctuations will lead to singularities on

the fσ Fermi surfaces described by Eq. (2.6). The cσ Fermi surface involves gauge-invariant

fermions, and so has weaker singularities; however they will not be Fermi liquid-like because

the cσ fermions do couple to the fσ sector, albeit only through gauge-invariant operators.

An important point is that only the cσ Fermi surface is observable as a sharp resonance

in the spectral resonance of fermions which carry charge Q; such resonances are detected in

photoemission experiments in the context of the condensed matter models. This is because

these probes only detect gauge-invariant operators. Thus such probes will see a deficit in

the Luttinger count, as the observed Fermi volume will not equal the total fermion density

〈Q〉. In reality the full Luttinger count in Eq. (3.5) is obeyed, and is made up by “hidden”

Fermi surfaces of the gauge-dependent fermions fσ; these hidden Fermi surfaces only appear

as weaker singularities in gauge-invariant observables, as we discussed in Section II. This
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deficit in the observed Fermi volume is a key characteristic of the FL* phase.

A special case of the FL* phase is the spin liquid SL phase (see Fig. 3) which has 〈Qb〉 = 0,

and so there is no gauge-neutral Fermi surface. Because of Eq. (4.2), the SL phase also has

fixed 〈Q〉 and so is incompressible: it is the only incompressible phase we consider. In the

application to lattice Kondo or Hubbard models, the SL phase is an insulator.

Finally, the remaining phases of L∗ are the Higgs phases where b condenses and gaps out

the gauge fluctuations. We can also view these as confining phases of the U(1) gauge theory,

because of the continuity of confinement with Higgs phases of fundamental scalars50. These

are ordinary Fermi liquids (FL), and only the first constraint in Eq. (3.5) applies to Fermi

volumes. As in Section III, the fσ and cσ fermions hybridize via the b condensate, and lead

to Fermi surfaces with ordinary Fermi liquid-like singularities. Depending upon parameters,

there can be one or two such Fermi surfaces, as indicated in Fig. 3. Note that, unlike Fig. 2,

there is no SF order in the FL phases. This is because now the b condensate carries a gauge

charge, and there is no gauge-invariant condensate which breaks a global U(1) symmetry.

The reader is referred to Ref. 27 for a review of the charge transport properties of these

phases.

V. THEORY SIMILAR TO THE ABJM MODEL IN d = 2

This section will extend our study of compressible quantum matter to the canonical model

of AdS/CFT duality in d = 2 spatial dimensions: the ABJM theory.53 This gauge theory

has N = 6 supersymmetry along with a global SU(4) symmetry.

Here we will move away from the superconformal fixed point by adding a chemical po-

tential which couples to one of the generators of SU(4). This induces unstable directions in

the potential of the scalar fields in the theory, and so it seems that such a deformation may

not be well defined. However, it should be noted that the chemical potential also greatly

reduces the symmetry of theory: it breaks supersymmetry and also reduces the SU(4) global

symmetry. Thus, we should allow additional terms in the effective action, consistent with

the reduced symmetry. It seems plausible that these additional terms can be chosen to

render the theory stable. This section will present a simple toy model which can capture

the possible compressible phases of such a stable theory.

Benna et al.54 have given an explicit formulation of the ABJM theory which is suitable

for our purposes: see their Section 4. The theory has two-component Dirac fermions and

complex scalars, both of which are bi-fundamentals of a U(N)×U(N) gauge group, and

fundamentals of the global SU(4) ‘flavor’ symmetry. Using the notation of Eqs. (4.21)

and (4.23) of Benna et al.54, we choose the SU(4) generator diag(1, 1,−1,−1) as our global

U(1) charge Q. We perform a particle-hole transformation on particles on the bottom 2

components, and so then all particles carry a unit U(1) global charge. In the presence of

such a chemical potential, there is a residual SU(2)×SU(2) flavor symmetry; we will drop this
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flavor symmetry for simplicity. Also, we will work with non-relativistic particles which only

carry charges favored by the chemical potential. Finally, we will reduce the U(N)×U(N)

gauge group to the simplest possible U(1) gauge group.

We note that most of the simplifications above are not essential. We just wish to work

in the simplest possible model, and our analysis below can be easily extended to include the

features we have deemed inessential so far. In particular, other choices for the generator of

the global U(1) charge Q lead to similar results.

By this reasoning, we end up with 2 species of non-relativistic fermions f+ and f−, which

carry opposite charges under the U(1) gauge group; the negative gauge-charged particles

were obtained when we performed the particle-hole transformation to obtain positive global

U(1) charges above. We also have a U(1) gauge field (Aτ ,A). Remarkably, so far the particle

and gauge-field content, and global and gauge symmetries are identical to the theory Ld in

Eq. (2.1) of the doublon metal in Section II. In addition, the present model also has bosons,

b+ and b−, which carry the same gauge and global charges as the fermions: the model for

these bosons differs from Lσ in Eq. (2.7), because the bosons of Section II do not carry the

global U(1) charge Q. Instead, the boson sector is similar to that of complementary theories

of doped antiferromagnets60–62 with a different pattern of electron fractionalization.

We can now write down a Lagrangian guided by the structure of the ABJM model54,

or equivalently. using the strategies of Sections II and IV. The ABJM model has a large

number of quartic couplings between the fermions and bosons, but first we only include

those which convert a pair of bosons into a pair of fermions: these terms will be important

for the structure of our mean-field theory. Thus our Lagrangian is, so far

L0 = f †+

[
(∂τ − iAτ )−

(∇− iA)2

2mf

− µ
]
f+

+ f †−

[
(∂τ + iAτ )−

(∇ + iA)2

2mf

− µ
]
f−

+ b†+

[
(∂τ − iAτ )−

(∇− iA)2

2mb

+ ε1 − µ
]
b+

+ b†−

[
(∂τ + iAτ )−

(∇ + iA)2

2mb

+ ε1 − µ
]
b−

+
u

2

(
b†+b+ + b†−b−

)2

+ v b†+b
†
−b−b+ − g1

(
b†+b

†
−f−f+ + H.c.

)
. (5.1)

Here ε1 is a parameter which can be tuned to modify the relative densities of fermions and

bosons, and will help access different phases of our phase diagram.

We can add additional quartic interactions between the fermions and the bosons, but

we will decouple them by a Hubbard-Stratonovich transformation using a gauge-invariant

fermion c, as in Sections III and IV. Unlike these earlier sections however, here we will make

fermion c canonical. This amounts to choosing slightly different short-distance physics, but

helps access more phases already in mean-field theory. We ultimately expect a similar phase
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diagram if c was chosen non-canonical as in Section IV, but after including loop corrections

to the c fermion self energy. An analogy with the Fermi gas at unitarity helps clarify this

point: this theory contains a composite boson which can be either canonical or non-canonical,

and the choice only distinguishes different perturbative expansions of the same physics.51,52

Also, with attractive gauge forces between the b± bosons and f± fermions, we can expect

that they form multiple bound states, and each of these lead to separate Fermi surfaces:

in particular, this expected from the multiple Fermi surfaces seen in a recent holographic

analysis14,15. For simplicity, we will only consider a single such bound state, and a single c

fermion here, but it is not difficult to extend our analysis to multiple c fermions.

Including the gauge-neutral canonical fermion c, our final form for the theory analogous

to the ABJM model is

L1 = L0 + Lc

Lc = c†
[
∂τ −

∇2

2mc

+ ε2 − 2µ

]
c− g2

[
c† (f+b− + f−b+) + H.c.

]
. (5.2)

Here ε2 is another tuning parameter for the phase diagram. The fermion-boson coupling

above respects the discrete Z2 symmetry f± → if∓, b± → b∓, c → ic, and (Aτ ,A) →
−(Aτ ,A) of the theory. So we now have presented our complete theory L1 with a U(1)

gauge invariance and a U(1) global symmetry; the latter has conserved charge

Q = f †+f+ + f †−f− + b†+b+ + b†−b− + 2c†c. (5.3)

As we have already noted, the theory L0 is remarkably similar to the theory Ld + Lσ of

the doublon metal in Section II: the main difference is that bosons of the doublon metal

do not carry the global U(1) charge Q, but have an additional global SU(2) spin (flavor)

quantum number. Instead, the boson and gauge sector of L0 is closely related to theories of

doped antiferromagnets60–62 in which the global charge is carried by the bosons, and the spin

is carried by the fermions. Thus the theory L0 fragments into pieces equivalent to different

models of doped quantum antiferroments, but there is no such precise correspondence for

all of L0.

A. Phase diagram

In the simplest mean-field theory of L1, we treat b± as c-numbers and ignore the gauge

field. This will allow us to determine qualitative aspects of the phase diagram, and we will

subsequently discuss the full structure of the various phases.
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FL*

NFL

FL

FIG. 4: Mean field phase diagram of the theory L1 in Eq. (5.2) in the limit of very large ε1, when

we have 〈b±〉 = 0, and there is no possibility of SF order. All phases are compressible, the global

U(1) symmetry is preserved, and the phases are distinguished by the configurations of the Fermi

surfaces. The phase boundaries in this limit are at ε2 = 2µ and µ = 0. The Fermi surfaces are

colored as in Fig. 3. Fermi surfaces whose volumes are degenerate by symmetry are shown by a

single circle, while inequivalent Fermi surfaces are shown separately.

It is useful to now define new canonical Fermi operators

f1 =
1√

|b+|2 + |b−|2
(f+b− + f−b+)

f2 =
1√

|b+|2 + |b−|2
(
−f+b

∗
+ + f−b

∗
−
)
. (5.4)

Note that the c fermion couples only to f1, and f1f2 = f+f−, this enables diagonalization of

the mean-field fermion Hamiltonian. The mean-field energy density at T = 0 is

E(b+, b−) = (ε1 − µ)
(
|b+|2 + |b−|2

)
+
u

2

(
|b+|2 + |b−|2

)2
+ v |b+|2|b−|2

+

∫
d2k

4π2

[
3∑
j=1

{
εj(k)θ(−εj(k))

}
+

k2

2mf

− µ+
g2

1|b+|2|b−|2mf

k2 + Λ2

]
, (5.5)
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FL*

FIG. 5: The phase diagram of L1 for g1 = 0 and g2 = 1. The other parameters are shown,

or described in the text. All the phases labeled SF have 〈b±〉 6= 0, while the remainder have

〈b±〉 = 0. The Fermi surfaces are colored as in Fig. 3 and 4. For g1 = 0, all but the v term in the

energy depend only upon |b+|2 + |b−|2; we have assumed a small v < 0, so that degeneracy of the

condensate is lifted, and we have 〈b+〉 = 〈b−〉 6= 0 in all the phases with a SF label.

where θ is the unit step function, and εj(k) are the 3 eigenvalues of the matrix

M(k) =



k2

2mc

+ ε2 − 2µ −g2

√
|b+|2 + |b−|2 0

−g2

√
|b+|2 + |b−|2

k2

2mf

− µ −g1b+b−

0 −g1b
∗
+b
∗
− − k2

2mf

+ µ


. (5.6)

We have renormalized the coupling v by

v → v +

∫
d2k

4π2

g2
1mf

k2 + Λ2
, (5.7)

where Λ is a renormalization scale, so that the momentum integral in Eq. (5.5) is ultraviolet

convergent. To determine the phase diagram we now have to minimize the function in

Eq. (5.5) with respect to the complex numbers b±, while fixing the density by

− ∂E

∂µ
= 〈Q〉 . (5.8)

We also have to maintain global neutrality of the U(1) gauge charge, as in Section IV, and
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FIG. 6: As in Fig. 5, with g1 = 0 and g2 = 1, but with a different value of ε2. In this and the

following figures in Section V, we have 〈b+〉 = 〈b−〉 6= 0 in phase with SF or FL labels, unless

otherwise noted.

so we have the constraint

〈b†+b+〉+ 〈f †+f+〉 = 〈b†−b−〉+ 〈f †−f−〉. (5.9)

The results of such an energy minimization under the constraint in Eq. (5.9) are shown

in the phase diagrams of Figs. 4-8. We choose parameters mf = mb = mc/2 = u = 1 and

others as specified in the figures.

The phases are distinguished by the nature of the b± condensates, and the configurations

of the Fermi surfaces:

1. 〈b+〉 = 〈b−〉 = 0. The bosons are gapped and we need only pay attention to the Fermi

surfaces. Because the global U(1) symmetry associated with the charge Q in Eq. 5.3 is

realized, there is a Luttinger relation constraining the volumes of the Fermi surfaces:

2Vf + 2Vc = 〈Q〉 ; (5.10)

the prefactor in front of Vf arises from the sum over f+ and f− Fermi surfaces, while

the prefactor of Vc is from the c charge in Eq. (5.3). The phases here are further

subclassified by the configurations of the Fermi surfaces, as shown in Fig. 4:

(a) FL: If Vf = 0, then there are no Fermi surfaces with gauge charges, the U(1)

gauge field is confining (the U(1) is presumed to be embedded in a compact
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FIG. 7: As in Fig. 5, but with g1 = 1 and g2 = 1. Furthermore, we have set v = 0.85. The

red line represents a first-order transition. The onset of SF order from the FL* or NFL phases is

required to be first order because of reasons discussed near Eq. (6.5). The SF+FL phase with 3

Fermi surfaces has a non-monotonic fermionic dispersion, and so has 3 Fermi surfaces; one of these

carries Q = −1 (i.e. it is “hole”-like), and is indicated by the unfilled circle.

gauge group), and we obtain an FL phase with only a c Fermi surface.

(b) FL*: Now both Vf and Vc are non-zero. The f± fermions are coupled to the U(1)

gauge field, which is now in a deconfined phase. This phase is similar to the FL*

phase of Section IV.

(c) NFL: This non-Fermi liquid phase has Vc = 0, the U(1) gauge force is deconfined,

and the phase is similar to that in Section II.

As discussed in Section II, we expect the NFL and FL* phases to be ultimately unstable

to fermion pairing induced by exchange of gauge bosons. However, this is a fluctuation

correction to our mean field theory, and its importance in the large N limit of the gauge

theory remains to be studied.

2. 〈b+〉 = 〈b−〉 6= 0. Both bosons condense and gap out the U(1) gauge field, leading to

a confining phase50. Notice that the product 〈b+〉〈b−〉 is a gauge-invariant condensate

which carries the global Q charge: consequently the global U(1) symmetry is also

broken and such phases are superfluids. They are expected to correspond to the

superfluids found in holographic studies3,32,55–59. Note that such superfluids correspond

to a gauge-invariant condensate with charge Q = 2. This is confirmed by the presence

of half-vortices60–62: such a vortex has b+ ∼ eiθ (where θ = tan−1(y/x) is the azimuthal

angle), b− ∼ 1, U(1) gauge flux
∫
d2r∇×A = π, and also π magnetic flux dual to the
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FIG. 8: As in Fig. 7, with g1 = 1, g2 = 1 and v = 0.85, but with a different value of ε2.

Q charge. As in Section III, there is no constraint on the Fermi surface volumes when

superfluidity is present. If no Fermi surfaces are present, we obtain a SF phase. One

or more Fermi surfaces can also be present: in general these will be Fermi surfaces of

hybridized c and f± fermions, and will carry Fermi liquid quasiparticles, and so such

phases are SF+FL.

3. 〈b+〉 6= 0 or 〈b−〉 6= 0, but not both. Now the U(1) gauge field is gapped and this is a

confining phase50, but there is no gauge-invariant observable which carries the global

Q charge. So there is no SF order. Stability requires that the total gauge charge be

zero (as in Eq. (5.9)), and so there is a compensating Fermi surface of f− fermions

to achieve this. So this phase is a FL, with one or more Fermi surfaces of f±, c, or

their hybridized combinations. This phase breaks the Z2 symmetry mentioned below

Eq. (5.2). Such phases appear only at very small values of µ and ε2 in our mean-field

phase diagrams, which we discuss in Appendix B.

VI. THEORY SIMILAR TO N = 4 SUPER YANG MILLS IN d = 3

The SU(N) Yang-Mills gauge theory in d = 3 and N = 4 supersymmetry (SYM4) is

the simplest and best-studied case of gauge-gravity duality. It should therefore pay to also

exploit it to understand gravity duals of systems with Fermi surfaces.

As in the d = 2 case considered in Section V, the gauge theory has supersymmetry and

global symmetries which are broken by the application of chemical potential. Our strategy
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will be to write down the simplest model with a similar particle content which is consistent

with the residual symmetries.

We review the particle content and symmetries of SYM4 in Appendix A from a condensed-

matter perspective. The theory has fermions λaiα with adjoint color a, SU(4) flavor i, and

Weyl spinor α indices. Adding the three possible chemical potentials reduces the SU(4)

symmetry to U(1)×U(1)×U(1). For now we consider the case where only a single chemical

potential, say µ1, is non-zero; other cases will be discussed in Section VI B. For the single

chemical potential case, the flavor symmetry is reduced to U(1)×SO(4). We simplify the

theory further by dropping the SO(4) symmetry, and hence the flavor index i, as in Section V.

As discussed in Appendix A, the fermions form bosonic pairs which are antisymmetric in

color, flavor, and spin, and this is consistent with overall fermionic antisymmetry. We want

to retain antisymmetry in color, we have already dropped flavor, and so let us also drop the

Weyl spin index. This is natural from the absence of relativistic invariance in the presence

of the chemical potential. So we are led to consider a theory with non-relativistic fermions

λa which has a global U(1) symmetry, under which λa → eiθλa, and an adjoint color index

a = 1 . . . N2 − 1.

We can apply a similar reasoning to the scalar sector. The SYM theory of Appendix A

has complex scalars Φa
p, where p = 1, 2, 3 is an index specifying transformations under SU(4).

With our choice of chemical potential, µ1 6= 0, the Φa
1 scalar is preferred: we will only work

with this scalar, dropping the Φa
2,3 scalars whose spectrum remains relativistic. So we drop

the SU(4) p index, work with a non-relativistic kinetic energy, but retain a global U(1) under

which Φa → e2iθΦa: this transformation reflects the fact that the scalar couples to fermion

pairs in Eq. (A4).

Finally, we retain the SU(N) gauge field, (Aaτ ,A
a), of SYM4 with no changes. However,

our mean-field theory below will not explicitly include gauge fluctuations.

We can now write down the simplest Lagrangian containing these fields and consistent

with symmetries. We generalize the temporal derivative ∂τ to the covariant derivative Dτ ,

and the spatial gradient ∇ to the covariant derivative D: see Appendix A for explicit

expressions with all indices. Then we have

L2 = LΦ + Lλ

LΦ = Φ†
(
Dτ − 2µ+ ε1 −

D2

2m1

)
Φ + u

(
Φa†Φa

)2

Lλ = λ†
(
Dτ − µ−

D2

2m2

)
λ+ g1

(
fabcΦ

a†λbλc + c.c.
)

(6.1)

where the chemical potential µ = µ1/2, with µ1 as defined in Appendix A, fabc are the

structure constants of SU(N). For N = 2, fabc = εabc. We have inserted a quartic scalar

coupling u to prevent runaways in the scalar, and stabilize the theory. The chemical potential

µ couples to the global U(1) charge, and ε1 is a parameter we will use to tune between possible
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phases. The coupling g1 mirrors the Yukawa coupling of SYM4 in Eq. (A4).

As we noted above, we do not account for SU(N) gauge field fluctuations in the mean-

field analysis below. It is therefore useful to include additional effective interaction terms

in our theory which account for the gauge forces, and are easier to include in mean-field

theory. As we discuss in Appendix A, one effect of the gauge forces is to bind fermions

into pairs which are antisymmetric in color: this pair binding effect is already included via

the g1 coupling in Lλ. For the comparison with dual gravity theories, we would also like a

gauge-invariant fermion, and so let us include interactions which favor singlet bound states

of 3 fermions. In terms of Φa, such a term can be written as the attractive interaction

−Φa†λa†λbΦb, which is analogous to the boson-fermion interaction in Eq. (3.1). Just as in

Eq. (3.3), we can decouple this interaction by introducing a color-singlet fermionic field c.

As in Section V, there can be numerous such bound states of the gauge-charged bosons and

fermions14,15, but, for simplicity, we will only include a single gauge-invariant and canonical

fermion. Our theory becomes

L3 = L2 + Lc

Lc = c†
(
∂τ − 3µ+ ε2 −

∇2

2m3

)
c+ g2

(
c†λaΦa + c.c.

)
(6.2)

where ε2 is another tuning parameter. For our final theory L3, the global conserved U(1)

charge is

Q = λa†λa + 2Φa†Φa + 3c†c. (6.3)

The present theory L3 is similar to the ABJM-inspired theory L1 in Eq. (5.2), but differs

from it in a crucial respect: the g1 fermion pairing term in Eq. (6.1) couples to a single

boson Φa, while the pairing term in Eq. (5.2) coupled to a boson pair b+b−. This has the

important consequence that the present model L3 has a BCS-like instability of λa Fermi

surfaces to the onset of SF order even in mean-field theory, while the ABJM-inspired model

L1 does not. Specifically, let us assume we are in a phase in which λa Fermi surfaces are

present, while 〈Φa〉 6= 0. Now integrate out the λa fermions from L3, and compute the free

energy to order g2
1. This leads to the familiar BCS log divergence, and a contribution to the

ground state energy of the form

E ∼ g2
1|Φa|2 log(|Φa|2) + . . . (6.4)

while other terms are smooth functions of |Φa|2. It is not possible for such an expression to

have a stable minimum at Φa = 0. The conclusion is that any phase with λa Fermi surfaces

is necessary unstable to the appearance of SF order. Hence there can be no FL* or NFL

phases in the mean-field phase diagram of L3, and we will see that is indeed the case in our

analysis below.

In contrast for the ABJM-inspired model L1 in Eq. (5.2) the corresponding contribution
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to the energy has the form

E ∼ g2
1|b+|2|b−|2 log

[
|b+|2|b−|2

]
+ . . . (6.5)

and this can have a stable minimum at b± = 0. This fact accounts for the presence of the

FL* and NFL phases in Figs. 4-8. This logarithm also requires the transition of the onset

of SF order from the FL* and NFL phases to be first order, as is the case in Figs. 7 and 8.

A. Phase diagram

We proceed as in Section V A, and compute the mean-field phase diagram of the SYM-

inspired theory L3 in Eq. (6.2).

We will consider the case with a SU(2) gauge field, and so N = 2, a, b, c = 1 . . . 3, and

fabc = εabc the anti-symmetric tensor. The mean field Hamiltonian for the fermions follows

from setting the Φa to constants. Without loss of generality, we can perform a global SU(2)

rotation to replace Φa by the vector (0,∆1,∆2), where ∆1 is real and ∆2 is complex. The

value of Φa is also restricted by the requirement of gauge charge neutrality, as we will discuss

below. With this choice the g1- and g2-terms read:

2g1

[
l1(∆∗2l

2 −∆1l
3) + (∆2l

2† −∆1l
3†)l1†

]
+g2

[
c†(∆1l

2 + ∆2l
3) + (∆1l

2† + ∆∗2l
3†)c
]
. (6.6)

This suggests we should introduce the fermions

f+ = (∆1l
2 + ∆2l

3)/∆

f− = (∆∗2l
2 −∆1l

3)/∆, (6.7)

where we defined ∆ ≡
√

∆2
1 + |∆2|2. One readily checks that we now have

f †+f+ + f †−f− = l2†l2 + l3†l3. (6.8)

Consequently, the mean field Hamiltonian can be written as

Hmf =

∫
d3k

(2π)3

[
ξlk(l

1†l1 + f †+f+ + f †−f−) + ξckc
†c+ 2g1∆(l1f− + f †−l

1†)

+g2∆(c†f+ + f †+c)
]
− (2µ− ε1)∆2 + u∆4 (6.9)

23



where we defined

ξlk =
k2

2m2

− µ,

ξck =
k2

2m3

− 3µ+ ε2. (6.10)

Introducing the mixed fermions F±,Ψ± the Hamiltonian takes on the diagonal form:

Hmf =

∫
d3k

(2π)3

[
ξ
F+

k F †+F+ + ξ
F−
k F †−F− + ξ

Ψ+

k Ψ†+Ψ+ + ξ
Ψ−
k Ψ†−Ψ− + ξlk

]
−(2µ− ε1)∆2 + u∆4, (6.11)

with

ξ
F±
k =

1

2
(ξck + ξlk)±

1

2

√
(ξck − ξlk)2 + 4g2

2∆2,

ξ
Ψ±
k = ±

√
(ξlk)

2 + g2
1∆2. (6.12)

We can now write down the free energy:

E(∆) = −(2µ− ε1)∆2 + u∆4 +
∑

x∈{F±,Ψ±}

Rx(∆) +

∫
d3k

(2π)3
ξlk, (6.13)

with

Rx(∆) = −T
∫

d3k

(2π)3
ln(1 + e−ξ

x
k/T ). (6.14)

For T = 0 this reduces to

Rx
0(∆) =

∫
d3k

(2π)3
θ(−ξxk )ξxk . (6.15)

It follows that R
Ψ+

0 (∆) = 0, since ξ
Ψ+

k > 0 for all k. Furthermore, we find that R
Ψ−
0 (∆)

diverges for large energies:

R
Ψ−
0 (∆) = −

∫
d3k

(2π)3

√
(ξlk)

2 + g2
1∆2

≈ −
∫

d3k

(2π)3

k2

2m2

(1 +
1

2

g2
1∆2

(k2/(2m2))2
+ . . . ). (6.16)

The first term is cancelled by the last term in (6.13), but the second term is also divergent.
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This is remedied by adding and subtracting the terms∫
d3k

(2π)3

m2g
2
1∆2

k2
−
∫

d3k

(2π)3

m2g
2
1∆2

k2
. (6.17)

The first term cancels the divergence and the second term is absorbed by renormalizing the

detuning ε1:

ε1 → ε1 −
∫

d3k

(2π)3

m2g
2
1∆2

k2
. (6.18)

Putting everything together we obtain

E(∆) = −(2µ− ε1)∆2 + u∆4 −
∫

d3k

(2π)3

√
(ξlk)

2 + g2
1∆2

+

∫
d3k

(2π)3

m2g
2
1∆2

k2
+

∫
d3k

(2π)3
ξlk +

∫
d3k

(2π)3
θ(−ξF+

k )ξ
F+

k

+

∫
d3k

(2π)3
θ(−ξF−k )ξ

F−
k . (6.19)

Now we minimize E(∆) as a function of ∆, for u = 1, m1 = m2 = m3/2 = 3.13, and so

obtain the phase diagram shown in Figs. 9 and 10.

The description of the phases in the phase diagram closely parallels the analysis of Sec-

tion V A. Now all phases with 〈Φa〉 6= 0 also have SF order, because the gauge invariant

combination 〈ΦaΦa〉 ≈ 〈Φa〉〈Φa〉 carries the global chargeQ of Eq. (6.3). Thus the superfluid

condensate has charge Q = 4. The condensate cannot carry a net SU(2) gauge charge63,

and so we should have

εabc〈Φb†Φc〉 = 0, (6.20)

which is realized in mean field theory by a real ∆1. Actually the restriction is on total

gauge charge neutrality, including the contributions of the fermions. However, time-reversal

symmetry and a U(1) particle-number transformation ensure that Eq. (6.20) also implies

neutrality of the fermion contribution. Under time-reversal,

λa(τ)→ λa†(−τ) , λa†(τ)→ −λa(−τ)

Φa(τ)→ −Φa†(−τ) , Φa†(τ)→ −Φa(−τ)

Aaτ (τ)→ −Aaτ (−τ) , Aa(τ)→ Aa(−τ), (6.21)

and so the gauge charge changes sign Qa → −Qa. Combining time reversal with a U(1)

transformation associated with Q, λa → iλa, Φa → −Φa we have Φa → Φa† and Qa → −Qa.

Hence Eq. (6.20) guarantees that 〈Qa〉 = 0.

Let us also examine the structure of the fluctuations of Aaµ, the SU(2) gauge field, in the
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FIG. 9: Mean field phase diagram of the SYM-inspired theory L3 in Eq. (6.2). This theory is

similar to the SYM model of Appendix A with only the chemical potential µ1 6= 0. All the phases

labelled SF have 〈Φa〉 6= 0, while the remainder have 〈Φa〉 = 0. We use the same color conventions

as in Fig. 5, with the f fermions replaced by the λ fermions: the purple Fermi surfaces contain

hybridized combinations of the λa and c fermions. Unlike Figs. 5 and 6, notice there are now no

NFL or FL* phases; this is explained by Eq. (6.4).

phases with 〈Φa〉 6= 0. The gluon mass terms generated by the boson condensate are∣∣εabcAbµΦc
∣∣2 = |A2

µ∆2 − A3
µ∆1|2 +

(
A1
µ

)2 |∆|2 (6.22)

So the field A1
µ is massive, and we will drop it from now. Diagonalizing the quadratic form,

we see that the linear combination

A+
µ = (∆1A

2
µ + ∆2A

3
µ)/∆ (6.23)

remains gapless if Im (∆1∆∗2) = 0, which is indeed the case from Eq. (6.20); the orthogonal

combination A−µ is gapped and will also be dropped. The coupling of the fermions to the

temporal component of the A+
µ gauge field is

εabcλ
a†Abτλ

c = A+
τ (f †−λ

1 − λ1†f−) (6.24)

Notice that the gapless gauge field does not couple to the fermions c and f+ which form

the Fermi surfaces. Therefore this gapless component will not be damped by Fermi surface

excitations, and so will eventually confine. So all the gauge field components are gapped

in the SF phase with 〈Φa〉 6= 0. Thus we expect that all the SF phases are smoothly
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FIG. 10: As in Fig. 9, but with a different value of ε2.

connected64,65 to a description of the superfluidity in terms of the condensation of the gauge

neutral scalar ΦaΦa carrying charge Q = 4. These SF phases are expected to be related to

the holographic superfluids33,55,56,58,66,67.

The Q = 4 charge of the SF condensate is confirmed to the presence of half-vortices, as in

Section V. Here, we can write the field configuration of around a half-vortex as Φa = eiθ/2Ra,

where θ = tan−1(y/x) is the azimuthal angle, and Ra is a real 3-component vector which

traces a curve on S2 from the north pole to the south pole as the vortex is encircled.

We turn to phases with 〈Φa〉 = 0. These can only be stable if they don’t have λa Fermi

surfaces, as noted with Eq. (6.4). Such phases can therefore only have c Fermi surfaces, and

so must be FL states with the gauge theory in a confining phase; from Eq. (6.3), they obey

the Luttinger constraint

3Vc = 〈Q〉 . (6.25)

Note that all the phases of L3 in Figs. 9 and 10 have the gauge field in Higgs/confining

mode, and there are no deconfined phases. This feature differs from the ABJM-like model

in Section VI, and for the SYM-like model with distinct chemical potential assignments to

be considered in the following subsection.

B. Other chemical potential choices

So far, we have discussed the case inspired by the choice of the chemical potentials of the

SYM theory µ1 6= 0, µ2 = µ3 = 0, in the notation of Appendix A. The case µ1 = µ2 = µ3 6= 0,

which leads to the extensively studied Reissner-Nordstrom black holes1,2,4–7, is connected to
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models very similar to those already considered. In this section we consider models inspired

by the case µ1 = µ2 6= 0, µ3 = 0, which leads to some qualitatively different physics. This

case is related to the model studied by Gubser and Rocha10.

-4 -2
2 4

-4

-2

2

SF

SF+FL

SF+FL

SF+FL
NFL

FL*

FIG. 11: Mean field phase diagram of the SYM-inspired theory L̃3 in Eq. (6.26). This theory is

similar to the SYM model of Appendix A with 2 chemical potentials non=zero: µ1 = µ2 6= 0. All

the phases labelled SF have 〈Φa〉 6= 0, while the remainder have 〈Φa〉 = 0. The coloring conventions

are as in Fig. 9 and 5, and the blue Fermi surfaces represent λa fermions. Unlike the SYM-like

model considered previously in Fig. 9 and 10, now there are deconfined phases with Fermi surfaces

of λa fermions coupled to gapless gauge field: these are the FL* and NFL phases.
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FIG. 12: As in Fig. 11, but with a different value of ε2.

For µ1 = µ2 6= 0, µ3 = 0, the charged scalars and fermions both have unit global U(1)

charges. This is in contrast to the case already considered, where the scalars were doubly
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charged. Consequently it is no longer possible to mix the scalar with fermion pairs. There

also remain some fermions with a relativistic spectrum which are neutral under the U(1)

charge, but we neglect these in the spirit of the simplifications we have used. Following the

same reasoning as above, we are then led to the following theory for this chemical potential

assignment

L̃3 = L̃Φ + L̃λ + L̃c

L̃Φ = Φ†
(
Dτ − µ+ ε1 −

D2

2m1

)
Φ + u

(
Φa†Φa

)2

L̃λ = λ†
(
Dτ − µ−

D2

2m2

)
λ

L̃c = c†
(
∂τ − 2µ+ ε2 −

∇2

2m3

)
c+ g2

(
c†λaΦa + c.c.

)
. (6.26)

Note the absence of the pairing g1 term which was present in Eq. (6.1); this is because it is

prohibited by the conserved global U(1) charge which is modified from Eq. (6.3) to

Q = λa†λa + Φa†Φa + 2c†c. (6.27)

The mean-field phases of this theory can be obtained as above: we only have to modify the

mean field equations by setting g1 = 0 and use the different chemical potential assignments.

Indeed, the analyses and phases turn out to be very similar to the ABJM-inspired models

in Section V with g1 = 0 in Eq. (5.1). The resulting phase diagrams in Figs. 11 and 12 are

very similar to those in Figs. 9 and 10.

The non-SF phases, which have 〈Φa〉 = 0, have Fermi surfaces which obey a Luttinger

constraint descending from Eq. (6.27):

3Vλ + 2Vc = 〈Q〉; (6.28)

Here Vλ is the volume enclosed by the λa Fermi surface, and the prefactor 3 arises from the

summation over the a index. The new feature of Figs. 11 and 12 is the presence of deconfined

phases with Fermi surfaces of λa fermions coupled to gapless gauge field, the FL* and NFL

phases; such phases were absent with the different chemical potential assignments in Figs. 9

and 10. As in Sections II and V, the NFL and FL* phases are expected to be eventually

unstable to fermion pairing induced by gauge boson fluctuation68, and it would interesting

to study the strength of this instability in the large N limit of the gauge theory.

VII. DISCUSSION

This paper has drawn connections between the compressible quantum states of mod-

els studied in condensed matter, to those in models amenable to studies by gauge-gravity
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duality.

In Sections II, III, and IV we presented a unified discussion of previously studied con-

densed matter models, which contain a full range of compressible phases. As discussed in

Section I, compressible phases which do not break a global U(1) symmetry associated with

a charge Q must have Fermi surfaces whose total volume is constrained by the value of 〈Q〉.
The most common compressible phase is, of course, the familiar Fermi liquid (FL). However,

we also found non-Fermi liquid (NFL) phases in which the Fermi surface quasiparticles were

coupled to Abelian or non-Abelian gauge fields; in both cases, the damping of the gauge

modes by Fermi surface excitations is expected to stabilize a deconfined phase of the gauge

theory. Finally, we found fractionalized Fermi liquid phase (FL*), which may be viewed as

a co-existence of FL and NFL phases, with Fermi surfaces of both gauge neutral and gauge

charged particles. The FL* phase is crucial for studies of gauge-gravity duality, because it

provides a route for strong scattering of gauge-neutral particles: the Green’s functions of

such gauge-neutral particles appear as observables in the dual gravity theory. Schematic

phase diagrams of such phases in the condensed matter models appear in Figs. 1, 2, and 3.

Next, in Sections V and VI we examined two of the workhorses of gauge-gravity duality:

the ABJM model in spatial dimension d = 2, and the SYM theory in d = 3. In both cases,

we perturbed the conformal field theory with a chemical potential, and used the structure of

the resulting theory to motivate toy models of compressible quantum matter. We presented

the phase diagrams of these models in Figs. 4–12. While the detailed patterns of gauge and

global charges were somewhat different from the condensed matter models, the basic phases

were the same. In particular, the compressible phases with Q symmetry preserved were FL,

NFL, and FL*.

A related correspondence between the condensed matter models and the string-inspired

models was made in Ref. 22. This correspondence begins with the lattice discretization of the

continuum theory L∗ in Eq. (4.1), which is reviewed in Ref. 27. The resulting lattice model is

solvable in the limit of infinite-range hopping, or infinite d, combined with a particular large

N limit69–73. It was shown that the physical properties of this solvable model coincided

with those of the classical dual gravity model of Ref. 6; in the latter model the classical

gravity approximation led to a theory on the space AdS2×Rd. Specifically74, both models

had compressible phases with non-zero ground state entropy density, correlations which

had momentum-independent singular temporal correlations with the structure of conformal

quantum mechanics, and singular damping of the gauge-neutral particles at the c Fermi

surface. It was proposed22, therefore, that the gravity theory of Ref. 6 had realized an

infinite-range limit of the FL* phase.

However, most of the physical properties of the FL* phase so obtained are expected to

be consequences of the respective simplifications: the infinite-range limit in the condensed

matter models, and the factorized AdS2×Rd geometry in the classical gravity theory. Nev-

ertheless, it is quite remarkable that two very different solvable limits lead to essentially the

same physical properties, which could apply to physical systems over a significant interme-
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diate energy scale22.

The challenge for the future is to describe the phases of Sections V and VI using the dual

gravity theory, in a manner which captures their expected properties of finite-range models

in d = 2 and d = 3 respectively, and there have been recent studies in this direction10,12–18,20.

In particular, the d = 3 model of Gubser and Rocha10 is a promising model for future study.

The problem of a Fermi surface coupled to a gauge field appears to be under control in

d = 3: the results of the self-consistent one-loop theory75–77 are expected to be robust to

higher order corrections41,42. Such a theory only gives marginal corrections to the FL results:

the low T specific heat behaves as T log T . It would be interesting to see if such corrections

eventually emerge from dual gravity theories of compressible matter in d = 3, such as that

of Ref. 10.

Acknowledgments

We are grateful to Max Metlitski for a number of key comments at the initial stages of this

work. We thank E. Berg, S. Gubser, S. Hartnoll, D. Hofman, S. Kachru, I. Klebanov, H. Liu,

J. Maldacena, C. Mathy, K. Rajagopal, E. Silverstein, D. Son, S. Trivedi, and E. Witten for

valuable discussions. This research was supported by the National Science Foundation under

grant DMR-0757145, by a MURI grant from AFOSR, and by the Netherlands Organisation

for Scientific Research (NWO).

Appendix A: Lagrangian for N = 4 Super Yang-Mills theory

This appendix will write down the Lagrangian for the Yang-Mills theory in d = 3 spatial

dimensions with N = 4 supersymmetry. We will use a non-relativistic notation, with all

indices explicit, designed to address the case with non-zero chemical potential. Thus rela-

tivistic invariance, supersymmetry, and the associated global SU(4) symmetry will not be

explicit: this is acceptable because the chemical potential breaks these symmetries anyway.

First, let us note the particle content of the theory with a SU(N) gauge group.

• The fermions are complex 2-component Weyl spinors λaiα, with the Weyl index α = 1, 2.

The fermions transform as the adjoint of the gauge group SU(N), and the color index

a = 1 . . . N2 − 1. Without any chemical potentials, there is a SU(4) global symmetry,

and the fermions transform as the fundamental of SU(4) with i = 1 . . . 4.

• There complex scalars Φa
p are also adjoints of color SU(N) with a = 1 . . . N2−1. They

transform as a real 6-dimensional representation of SU(4), and so the index p = 1, 2, 3.

• The gauge field (Aaτ ,A
a) has a color index a.

31



It is possible to add 3 chemical potentials coupling to commuting generators of the global

SU(N). We choose78 these chemical potentials, µp, so that their couplings to the scalar field

are diagonal in the p index. Then, the imaginary time kinetic term for the scalar field is

LΦ =
3∑
p=1

{(
[(∂τ + µp)δab − facbAcτ ] Φb†

p

)(
[(∂τ − µp)δad − faedAeτ ] Φd

p

)
+
(

[∇δab − facbAc] Φb†
p

)(
[∇δad − faedAe] Φd

p

)}
. (A1)

Symmetry now dictates how the chemical potentials couple to the fermions.78 The

fermions kinetic energy terms in imaginary time are

Lλ =
4∑
i=1

λa†iα

(
(∂τ − µ̃i)δab − facbAcτ + iσαβ · (∇δab − facbAc)

)
λbiβ (A2)

Here σ are the Pauli matrices, and the fermion chemical potentials are

µ̃1 =
µ1 + µ2 + µ3

2

µ̃2 =
µ1 − µ2 − µ3

2

µ̃3 =
−µ1 + µ2 − µ3

2

µ̃4 =
−µ1 − µ2 + µ3

2
. (A3)

There is a standard Yang-Mills kinetic term, LA, for the SU(N) gauge field and we will

not display this explicitly.

Most crucial for our purposes are the Yukawa couplings between the scalars and the

fermions. We write these as

LY = gfabcεαβ

(
Φa†

1 λ
b
1αλ

c
2β + Φa

1λ
b
3αλ

c
4β

+ Φa†
2 λ

b
1αλ

c
3β + Φa

2λ
b
4αλ

c
2β

+ Φa†
3 λ

b
1αλ

c
4β + Φa

3λ
b
2αλ

c
3β + c.c.

)
(A4)

Here g is the single coupling constant of the theory. It is easy to check that these cou-

plings are invariant under the ‘diagonal’ SU(4) transformations and the associated chemical

potential assignments to the scalars and fermions. Less explicit is the symmetry of the

Yukawa couplings under the off-diagonal SU(4) transformations. It can be checked that LY
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is invariant under the following transformations

δλ1 = iλ2 , δλ2 = iλ1 , δΦ3 = −iΦ†2 , δΦ2 = iΦ†3

δλ1 = λ2 , δλ2 = −λ1 , δΦ3 = −Φ†2 , δΦ2 = Φ†3

δλ1 = iλ3 , δλ3 = iλ1 , δΦ1 = −iΦ†3 , δΦ3 = iΦ†1

δλ1 = λ3 , δλ3 = −λ1 , δΦ1 = −Φ†3 , δΦ3 = Φ†1

δλ1 = iλ4 , δλ4 = iλ1 , δΦ2 = −iΦ†1 , δΦ1 = iΦ†2

δλ1 = λ4 , δλ4 = −λ1 , δΦ2 = −Φ†1 , δΦ1 = Φ†2

δλ2 = iλ3 , δλ3 = iλ2 , δΦ2 = iΦ1 , δΦ1 = iΦ2

δλ2 = λ3 , δλ3 = −λ2 , δΦ2 = −Φ1 , δΦ1 = Φ2

δλ3 = iλ4 , δλ4 = iλ3 , δΦ3 = iΦ2 , δΦ2 = iΦ3

δλ3 = λ4 , δλ4 = −λ3 , δΦ3 = −Φ2 , δΦ2 = Φ3

δλ4 = iλ2 , δλ2 = iλ4 , δΦ1 = iΦ3 , δΦ3 = iΦ1

δλ4 = λ2 , δλ2 = −λ4 , δΦ1 = −Φ3 , δΦ3 = Φ1, (A5)

which combine to yield full SU(4) symmetry. Note that the chemical potential terms in LΦ

and Lλ are not invariant these off-diagonal transformations.

There are also quartic interactions between the scalars which we will not write out,

because they are not important for our purposes. This is because the chemical potentials

modify the scalar potentials, and so the special restrictions of supersymmetry on the form

of the scalar potential has no bearing on our considerations.

With all the terms in the action described, we are now ready to discuss the structure

of the fermion pairing terms in LY . It is useful to discuss these in using canonical fermion

operators near the Fermi level. We therefore make the following mode expansion79 in terms

of canonical Fermi operators aai (k) and bai (k)

λai (x) =

∫
d3k

(2π)3

(
− sin(θk/2)e−iφk

cos(θk/2)

)[
aai (k)e−ik·x + ba†i (k)eik·x

]
, (A6)

where θk and φk are the polar and azimuthal angles of k, so under k→ −k, θ → π− θ and

φ→ φ+ π. The single-particle Hamiltonian for these canonical Fermi fields is

Hλ =
4∑
i=1

∫
d3k

(2π)3

[(
|k| − µ̃i

)
aa†i (k)aai (k) +

(
|k|+ µ̃i

)
ba†i (k)bai (k)

]
(A7)

The fermion pair terms in LY are fabcεαβλ
b
iαλ

c
jβ, and these are antisymmetric in color, SU(4)

‘flavor’, and Weyl spin. The dominant pairing will arise from fermions at the same Fermi

energy. We will mainly consider the case where only one chemical potention, say µ1 > 0,
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is non-zero. Then the Fermi level excitations are aa1, aa2, and ba3 and ba4, and we ignore the

remaining fermions. Then we have

εαβ
〈
λb1αλ

c
2β

〉
=

∫
d3k

(2π)3
e−iφk

〈
aa1(−k)ab2(k)

〉
(A8)

So we should have79,80 〈
aa1(−k)ab2(k)

〉
∝ eiφkfabc (A9)

to obtain pairing that is antisymmetric in color, SU(4) flavor, and Weyl spin. The eiφk

factor above represents the antisymmetry in Weyl spin for our choices for the fermion normal

modes in Eq. (A6). Such pairing which is antisymmetric in color, flavor, and spin is just

that expected from the attractive interaction from the SU(N) gauge force.79,80

Appendix B: Phases with 〈b+〉 6= 0 and 〈b−〉 = 0.
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FIG. 13: Mean-field phase diagram of L1 as in Fig. 7, with g1 = 1, g2 = 1, but with v = 4 and

ε2 = 0. We zoomed in on a region of the phase diagram where the FL phases with 〈b+〉 6= 0 and

〈b−〉 = 0 appear. The SF+FL phase with 3 Fermi surfaces is similar to that in Fig. 7.

In the mean-field analysis of the theory analogous to the ABJM model L1 in Eq. (5.2)

the confining phase with 〈b+〉 6= 0 or 〈b−〉 6= 0, but not both, appears only for small values
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of the chemical potential µ and the detuning ε2. In this appendix we discuss this phase in

a bit more detail.

In the following we will assume that in the confining phase b+ condenses and b− does not.

The gauge neutrality constraint (5.9) then reads

〈Qc〉 = |b+|2 + 〈f †+f+〉 − 〈f †−f−〉 = 0. (B1)

From (5.4) we find 〈f †+f+〉 = 〈f †2f2〉 and 〈f †−f−〉 = 〈f †1f1〉 in the phase where 〈b−〉 = 0.

In this phase the f2 fermion decouples so we have

〈f †2f2〉 =

∫
d2k

(2π)2
θ(−ξfk ), (B2)

where ξfk = k2/(2mf )−µ. Consequently, 〈f †2f2〉 = mfµ/(2π)θ(µ). The f1 fermion hybridizes

with the c fermion. We define the hybridized fermions F± through their dispersion relation:

ξ
F±
k =

1

2
(ξck + ξfk )± 1

2

√
(ξck − ξ

f
k )2 + 4g2

2|b+|2, (B3)

where ξck = k2/(2mc)− 2µ+ ε2. For the f1 fermions we then have

〈f †1f1〉 =

∫
d2k

(2π)2
(cos2(θk)θ(−ξF+

k ) + sin2(θk)θ(−ξF−k )), (B4)

where θk is the mixing angle in the unitary transformation:(
F−
F+

)
=

(
cos(θ) sin(θ)

sin(θ) − cos(θ)

)(
c

f1

)
. (B5)

We find

sin2(θk) =
1

2
+

(ξck − ξ
f
k )

2
√

(ξck − ξ
f
k )2 + 4g2

2|b+|2

cos2(θk) =
g2

2|b+|2

|(ξck − ξ
f
k )2 + 4g2

2|b+|2| sin2(θk)
. (B6)

With this we can compute the total gauge charge 〈Qc〉 as a function of |b+| and impose the

condition that it is zero.

Clearly, |b+| = 0 always satisfies the constraint. We find, however, that the condition is

only satisfied for |b+| > 0 when both ε2 and µ are close to zero. As an example, for ε2 = 0

there are solutions for |b+| > 0 when |µ| . 0.02 (see Fig. 14).

In figure 13 we show the phase diagram as a function of ε1 and µ where ε2 = 0. We

zoomed in on the region of small µ. For µ > 0 the region with 〈b+〉 6= 0 and 〈b−〉 = 0
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FIG. 14: We plot 〈Qc〉 as a function of |b+| for ε2 = 0 and µ = 0 (red line), µ = ±0.01 (green line)

and µ = ±0.019 (blue line).

has a funny curved shape, which is explained by the fact that for µ < 0.0193 there are two

solutions to the gauge constraint with |b+| > 0. Although this is also true for µ < 0, we find

that in that region the minimum always occurs at the larger solution of |b+|. This is related

to the fact that for both detunings and the chemical potential close to zero the condensation

into this phase without a gauge constraint becomes first order.81
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