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Abstract

It is well known that stable weak scale particles are viable dark matter candidates
since the annihilation cross section is naturally about the right magnitude to leave the
correct thermal residual abundance. Many dark matter searches have focused on relatively
light dark matter consistent with weak couplings to the Standard Model. However, in
a strongly coupled theory, or even if the coupling is just a few times bigger than the
Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal
relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary
interactions, and potential signals. We consider signals both with and without higher-
dimension operators generated by strong coupling at the TeV scale, as might happen for
example in an RS scenario. We find some potential for detection in high energy photons
that depends on the dark matter distribution. Detection in positrons at lower energies,
such as those PAMELA probes, would be difficult though a higher energy positron signal
could in principle be detectable over background. However, a light dark matter particle
with higher-dimensional interactions consistent with a TeV cutoff can in principle match
PAMELA data.
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1 Introduction

Dark matter has received a lot of attention of late as new dark matter searches ramp up. Of

particular interest is the increasing capacity to detect dark matter in both direct and indirect

channels. The latter rely solely on dark matter annihilation, which is nice in that it doesnt

assume any particular type of interaction with the Standard Model and furthermore the anni-

hilation rate is generally connected to the annihilation cross section responsible for the current

dark matter abundance.

Given the importance of dark matter searches and our lack of knowledge as to the true

nature of dark matter, it makes sense to explore the range of possibilities and what their

implications would be for current and future detectors. In this paper we will consider singlet

dark matter candidates with mass of order one to a few TeV. We assume a Z2 symmetry

that prevents any operator allowing decay and therefore ensuring stability. This is perhaps the

simplest dark matter candidate there can be. In fact, such a possibility has been previously

considered in Ref. [1, 2, 3, 4], but in a lower mass region. In this paper we concentrate on the

remaining allowed mass range, of order one to a few TeV, which phenomenologically is also a

viable possibility. We concentrate on some novel scenarios that arise in a framework with a low

cutoff scale.

Although we mostly take an agnostic approach about the source of this dark matter, we

also focus on TeV scale particles that arise in a theory with a TeV cut-off scale. Such a scenario

can occur for example in the RS framework [5]. See also [6] for a study of heavy DM in a

supersymmetric theory with a relatively low cutoff.

In this paper we show the range of allowed parameters giving the right relic density and then

consider whether such dark matter has any chance of being detected. We find that annihilation

into photons might provide a visible signal at high energy gamma ray detectors such as HESS

or VERITAS, particularly if higher-dimension operators are present. We also consider more

model-dependent scenarios in which annihilation into positrons can also occur. We show the

signal can exceed background with reasonable assumptions, but most likely not in the PAMELA

range for a TeV-scale mass.

On the other hand, we observe that a dark matter candidate of about 100 GeV whose dom-

inant decay mode involves direct positron emission, such as can occur with a higher-dimension

operator suppressed by the TeV scale, matches PAMELA data quite nicely.
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2 Singlet Dark Matter

We start by discussing the relic density computation for a thermally produced Standard Model

singlet. We consider first a renormalizable four-dimensional theory. This analysis would of

course also apply to a nonrenormalizable theory so long as the renormalizable coupling of the

singlet scalar to a Higgs dominates annihilation, including a five-dimensional theory with a

brane-bound scalar or any five-dimensional theory where the higher-dimension operators are

suppressed.

We then consider a more exotic possibility that could in principle give rise to a detectable

positron signal. We will see this scenario is unlikely to explain the PAMELA data, although it

could give rise to a detectable signal in the high-energy positron range.

2.1 Thermal Relic Abundance for a Singlet

We assume a singlet field Φ protected by a discrete Z2 symmetry Φ → −Φ in a nonrenormaliz-

able theory with a TeV cutoff scale, Λ. Without any additional fields, the only renormalizable

operator that involves SM fields is

L ⊃ 1

2
λΦ2H†H , (1)

where H is the Higgs doublet and λ is a dimensionless coupling. Such an operator can arise in

an RS scenario for either IR brane-localized or bulk scalars Φ. For an IR brane-localized scalar

(assuming the Higgs is also IR localized), the corresponding operator is

L5 ⊃ −δ(L− y)
1

2
λΦ2H†H . (2)

For a bulk scalar Φ the operator Eq. (1) can be induced from a non-renormalizable operator (to

be discussed in the following subsection). If the cutoff is at the TeV scale the effective coupling

λ can easily be of order one, so that the following analysis applies.

The interaction in Eq. (1) can lead to the direct self-annihilation of Φ particles into a pair

of Higgses, and also, if the annihilations occur after the electroweak phase transition, into pairs

of SM gauge bosons and fermions through s-channel Higgs exchange. When the Φ mass is

much larger than the Higgs mass, the direct annihilation into Higgses dominates (this includes

annihilation into the Goldstone modes, hence theWLWL and ZLZL channels). Annihilation into

two Higgses in the limit that MΦ ≫ vEW (with vEW the Higgs VEV) gives in the non-relativistic
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regime

〈σΦΦ→HHv〉 ≈ λ2

16πm2
Φ

, (3)

where v is the relative velocity of the annihilating particles, and the brackets denote thermal

averaging.

Notice that other annihilation channels have to proceed through operators suppressed either

by the cutoff scale Λ or by a loop factor. As we will argue in the next subsection, when the

Φ particles propagate in the bulk of an RS scenario those channels might be relevant (and

could even dominate depending on couplings) in the total self-annihilation cross section, and

therefore in the determination of the relic density. However, for a conventional four-dimensional

scalar (or for a brane-localized Φ in an RS scenario1) all other channels are expected to give

a relatively small contribution when the Φ mass is less than the cutoff scale. For instance,

annihilation into SM fermions would proceed through operators that also involve the Higgs

field, of the form Φ2Hψ̄1ψ2, and are suppressed at least by order (vEW/Λ̃)2, where vEW is the

Higgs vacuum expectation value and Λ̃ = Λ e−kL is the warped down cutoff scale if in a 5D

warped framework, or more generally the cutoff scale of the 4D theory. Decays into SM gauge

bosons are also expected to be subdominant so long as the DM mass is less than the cutoff,

even if the cutoff scale is low, and will be discussed in Subsection 3.1 in the context of DM

indirect signals [see Eqs. (13) and (14) and ensuing discussion].

Under the assumption that the DM candidate is heavy (say 1 TeV or so) and is thermally

produced, the DM relic abundance is controlled by Eq. (3). Taking into account only the

annihilation into Higgses through the operator Eq. (1), and requiring that the observed DM

abundance is completely accounted for by Φ particles, we can determine the coupling λ as a

function of MΦ from the WMAP constraint ΩDMh
2 ≈ 0.11 [7] and

ΩDMh
2 ≈ 1.04 × 109 GeV−1

MP

xF√
g∗

1

〈σv〉 , (4)

where MP ≈ 1.22 × 1019 GeV is the Planck mass, xF = MΦ/TF , with TF the freeze-out

temperature, g∗ is the effective number of relativistic degrees of freedom at freeze-out, and

〈σv〉 is the thermally averaged annihilation cross section times relative velocity in units of

GeV−2. We have assumed that the Φ particles are thermally produced and remain in thermal

1The operators discussed in Subsection 2.2 vanish for a brane localized Φ since always one of the chiralities
of any bulk fermion Ψ vanishes on the brane.
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Figure 1: Left panel: annihilation cross section, 〈σΦΦ→HHv〉, for a brane-localized scalar in the
non-relativistic regime as a function of MΦ, imposing the WMAP constraint on the DM relic
density. The arrows indicate the points where the freeze-out temperature (∼ MΦ/25) crosses
the W± and Z0 thresholds. Right panel: the corresponding coupling λ, defined in Eq. (1), as
a function of MΦ.

equilibrium until freeze-out, which requires a coupling λ > 10−8 [3]. For masses MΦ in the

few TeV range, λ is always of order unity, as shown in the right panel of Fig. 1, so the above

assumption is self-consistently satisfied.

The required (non-relativistic) cross section as determined from the WMAP constraint to

be 〈σv/c〉 ≈ 0.8 pb and is shown in the left panel of Fig. 1 as a function of MΦ, where the

(weak) dependence of xF on the cross section and the effective number of relativistic degrees of

freedom g∗ is included.2 Throughout the range of interest we have xF ≈ 25, while g∗ is of order

90. The above simple picture is rather generic for a stable TeV scale scalar field whenever the

effects of higher-dimension operators can be neglected. However, when the scale suppressing

the higher-dimension operators is near the TeV scale, other more exotic scenarios are possible.

Such a situation, though less likely, could arise within the RS framework, and will be illustrated

with a bulk scalar in the next subsection.

2The conversion factor from GeV−2 to pb is 0.3894× 109 GeV2 pb. Also, to convert the above cross section
from pb into units of cm3 s−1 [the CGS units for 〈σv〉] one should multiply the number in pb by (10−36 cm2) c ≈
3 × 10−26 cm3 s−1.
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2.2 Bulk Singlet Dark Matter

Another natural possibility in a 5D warped background is that the DM candidate arises as the

lightest KK mode of a bulk scalar. In order to be concrete, and simply for illustration purposes,

we will assume in the following that there is a bulk SM singlet scalar obeying (−,+) boundary

conditions (Dirichlet on the UV brane, Neumann on the IR brane). In this case, the mass of

the lightest KK mode is determined by only two dimensionless parameters, and can be easily

below those of the gauge KK resonances (say around 1 TeV), as discussed in more detail in

Appendix A. We also assume that the SM fermions and gauge fields arise from bulk fields.

The couplings to (an IR localized) Higgs field proceed now through the higher-dimension

operator

− δ(L− y)
λ′

2Λ
Φ2H†H , (5)

where Λ is the cutoff scale and λ′ is a dimensionless coupling. After KK reduction, this induces

a coupling of Φs to Higgses similar to the one discussed in the previous subsection with the

identification λ = λ′f 2
Φ(1)/(ΛL) ≈ λ′(2k/Λ). Here fΦ(1) ≈

√
2kL is the Φ(1) wavefunction

evaluated on the IR brane, where Φ(1) is the lightest scalar KK mode (the DM candidate). If this

channel dominates the self-annihilation cross section, the relic density computation proceeds

in exactly the same way as in the case of a brane-localized scalar discussed in the previous

subsection. As was mentioned there, the observed relic abundance requires an effective 4D

coupling λ of order one. Notice that for a bulk scalar, in spite of the suppression k/Λ, this is

easily consistent with the NDA bound λ′ ∼< 24π3 [8]; in fact, for k/Λ ∼ 1/10 the fundamental

coupling λ′ is well into the perturbative regime, so that the computation is under theoretical

control.

It is possible, however, that channels other than the annihilation into Higgses are important

or even dominate, which could in principle differentiate between brane and bulk dark matter

candidates. This scenario requires the value of λ′ well below its NDA value with other couplings

closer to what NDA would suggest. Since we are taking an agnostic attitude and are interested

primarily in potential signatures and ways to identify the various possible scenarios, we consider

this possibility next.

For this analysis it is useful to rewrite the annihilation cross section into Higgses as

σΦΦ→HHv ≈ λ′2

4πΛ̃2

(

k̃

MΦ

)2

, (6)

5



where Λ̃ = Λ e−kL is the warped down cutoff (of order a TeV) and similarly for k̃ = k e−kL. Now

consider operators involving a 5D fermion field (giving rise to a SM fermion as its zero-mode),

for instance

λψ
2Λ2

Φ2 ΨΨ , (7)

where Ψ is the bulk fermion and λψ is a dimensionless coupling. This operator leads to the

annihilation of Φ particles into a SM fermion and one of its KK resonances, e.g.

λψη

2Λ̃(ΛL)
(Φ(1))2

[

ψ
(1)
ψ(0) + ψ

(0)
ψ(1)

]

, (8)

where ψ(1) is the first KK mode of the bulk fermion Ψ, and ψ(0) is its zero mode (with a well-

defined chirality). The effective 4D coupling depends on the various extra-dimensional profiles

through

η =
1

L

∫ L

0

dy ek(y−L)f 2
Φ(1)fψ(1)fψ(0) , (9)

where all the wavefunctions are normalized as in Eq. (32) of Appendix A.

Assuming that the channel ΦΦ → ψ(1)ψ
0

is open, i.e. Mψ(1) +mψ(0) ≤ 2MΦ, the correspond-

ing annihilation cross section is 3

σψ(1)ψ̄(0)v =
Ncλ

2
ψη

2

16πΛ̃2(ΛL)2

(s−M2
ψ(1))

2

MΦs3/2
, (10)

where Nc = 3 for quarks while Nc = 1 for leptons and, for simplicity, we neglected the zero-mode

mass mψ(0) . In the non-relativistic limit one has σψ(1)ψ̄(0)v = a+ b v2 + · · · , with

a =
Ncλ

2
ψη

2

8πΛ̃2(ΛL)2
(1 − y)2 , b =

Ncλ
2
ψη

2

64πΛ̃2(ΛL)2

(

1 + 2y − 3y2
)

, (11)

where y = M2
ψ(1)/4M

2
Φ. The related process σψ(0)ψ̄(1)v is given by the same expression.

The magnitude of the annihilation cross sections into fermions depends strongly on the

localization of the fermion zero-mode through the parameter η of Eq. (9). Recall that the

fermion zero-mode wavefunctions are proportional to e(1/2−cf )ky, where cf parametrizes the 5D

fermion mass in units of the AdS curvature scale k. The massive KK mode wavefunctions are

all strongly localized near the IR brane. There are a number of distinct scenarios according to

how flavor is generated:

3To simplify notation we will refer to the DM candidate Φ(1) simply as Φ.
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1. The SM fermion mass hierarchies arise from the exponential wavefunction localization and

the overlap with an IR localized Higgs field. This scenario has the advantage that both

calculable flavor changing effects (from KK gluon exchange), as well as non-calculable

effects from flavor changing non-renormalizable operators, are significantly suppressed [9,

10, 11, 12]. One expects the third generation quarks (most likely the right-handed top)

to couple most strongly to Φ.

2. All fermions share the same parameter cf , and are localized close to the IR brane

(cf < 1/2), so that their couplings to Φ are sizable. Somewhat more generally, EW

precision constraints allow different localization parameters for different fermions so long

as those fermions having identical quantum numbers have nearly the same cf (when IR

localized; otherwise we are in scenario 1 above). In these scenarios, as-yet unspecified

flavor-violating interactions would be necessary to explain the fermion mass hierarchies,

while not generating dangerous FCNC effects from higher-dimension operators suppressed

by the TeV scale.

3. Fermion mass hierarchies arise from localization in the extra dimension but the Higgs

field is located on or near the UV brane (for example, if the Higgs mass is stabilized

by supersymmetry (SUSY) and SUSY breaking is connected to the IR scale). In this

case, the lightest fermions would be localized closer to the IR brane and have the largest

couplings to Φ.

Among the fermion channels, Φ annihilates dominantly into the fermions closest to the IR

brane, since the Φ wavefunction is localized near the IR brane. To calculate the annihilation

rate, we need to estimate the expected size of these couplings, which can then be compared

to the couplings to Higgses discussed above, or to the annihilation into gauge bosons (see

Subsection 3.1).

For a fermion localized near the IR brane (localization parameter cf < 1/2, but not very close

to 1/2), one finds η ∼ (1/5kL)(
√

2kL)3
√

(1 − 2cf)kL ≈
√

1
2
− cf kL, where each KK wave-

function contributes a factor
√

2kL, the last factor corresponds to the cf -dependent zero-mode

wavefunction, and the factor 1/(5kL) is a measure of the region that contributes to the integral

in Eq. (9).4 Compared to the annihilation into a pair of IR localized Higgses, Eq. (6), the annihi-

lation into fermion and KK fermion is “suppressed” by order (Nc/2)(λψ/λ
′)2(MΦ/Λ)2(1/ΛL)2,

4The factor of 1/5 is determined by comparison to the exact result, Eq. (9), and reproduces it within 30%
for −0.5 ∼

< cf ∼
< 0.4.
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Figure 2: Annihilation cross section, 〈σΦΦ→ψ(0)ψ(1)v〉, for bulk DM, as a function ofMΦ, imposing
the WMAP constraint on the DM relic density. The curves marked as “freeze-out” correspond
to the annihilation cross section at the time of freeze-out (where the typical velocities were
of order v/c ∼

√

2/25 ∼ 0.3). The lower curves correspond to the annihilation cross section
in the ultra non-relativistic regime, as would be relevant for today’s conditions. The various
curves correspond to different choices of the fermion localization parameter cf that controls
their masses and couplings. The arrows indicate the points where the freeze-out temperature
(∼ MΦ/25) crosses the W± and Z0 thresholds. The curves are terminated (with black dots)
when λψ = 24π3, which we define as the strong coupling regime (see text). We assume that
Λ = 8k.

where it was assumed that the annihilation into fermions is not near threshold, and we used our

estimate for η and take cf of order one. The NDA estimate for λψ is 24π3, which is the same

as for λ′. However, the discussion after Eq. (5) indicates that a correct thermal relic abun-

dance requires a much smaller coupling λ′ ∼< Λ/(2k). Taking Λ ∼< 10k, MΦ ∼ k̃, kL ≈ 34,

one can see that the annihilation into an IR localized fermion and its lightest KK mode could

dominate the annihilation cross section of Φ particles. Other operators that contribute to the

self-annihilation cross section are expected to give subdominant contributions when MΦ ≪ Λ̃.

Nevertheless, the operators that lead to annihilation into gauge bosons can be interesting from

the point of view of DM signals, and are discussed in subsequent sections.

We explore here the exotic picture where the Φs are kept in thermal equilibrium dominantly

by annihilation into a fermion and its lightest KK mode. For concreteness, we imagine here
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scenario 1 discussed above, where the annihilation proceeds mainly into tops and its lightest

KK resonance, but the same would hold in scenario 3 with one of the lightest leptons (either

electrons or neutrinos) replacing the top. The results can also be applied in a straightforward

way to scenario 2 with all fermions localized identically: one should just include a multiplicity

factor 3 × [3 × 4 + 3] = 45.

In scenario 1, the processes taken into account are ΦΦ → T̄
(1)
L tR and ΦΦ → T

(1)
L t̄R, where

T (1) is the first KK excitation of the RH top tower. The annihilation cross section depends on

the lightest KK scalar and fermion masses MΦ and MT (1) , which are both of order k̃. We fix k̃

and obtain different values of MΦ as described in Appendix A. The KK fermion mass has some

dependence on ct, which controls the localization of the tR wavefunction. The overall strength

of the cross section depends on the combination λt/[Λ̃(ΛL)] = λt/[k̃(kL)](k/Λ)2. Assuming

again that the Φs account completely for the observed DM energy density, one can then fix

the quantity5 λt(k/Λ)2 using the WMAP result and Eq. (4) with 〈σv〉 = a + 3b/xF where

the coefficients a and b are given in Eq. (11). In Fig. 2 we show the result for several values

of the fermion localization parameter cf = ct (for the RH top most likely ct is close to 0).

As expected, the annihilation cross section at freeze-out is 〈σv/c〉 ≈ 0.8 pb. However, unlike

the case of annihilation into scalar particles such as the Higgs field discussed in the previous

subsection, both the a and b terms give a comparable contribution. As a result, the annihilation

cross section at very low-temperatures, being dominated by the a term, is somewhat different

from the cross section at freeze-out. This is relevant for annihilation under today’s conditions,

and is also shown in Fig. 2. The curves marked as “At freeze-out” correspond to the annihilation

cross section at the time of Φ decoupling (when the typical velocities were v/c ∼
√

2/25 ∼ 0.3),

while the curves in the lower part of the plot correspond to the annihilation cross section in the

ultra non-relativistic regime, and correspond essentially to the a-term in Eq. (11). The behavior

observed in these curves arises from the fact that as ∆M = 2MΦ −MT (1) approaches zero, the

annihilation cross section vanishes. Specifically a ∼ λ2
ψ(∆M)2 and b ∼ λ2

ψ∆M . Thus, near

threshold the b term dominates, and the WMAP constraint requires the scaling λ2
ψ ∼ 1/∆M .

This explains why the annihilation cross section at very low temperatures decreases as MΦ

decreases (for fixed MT (1)), since a ∼ λ2
ψ(∆M)2 ∼ 1/λ2

ψ ∼ ∆M .

We terminate the curves at the point where the coupling λψ reaches the strong coupling

value given by NDA, λψ ∼ 24π3, assuming Λ ∼ 8k. As explained above this happens near the

5If Λ is defined as the scale where the SU(3)C gauge factor gets strong, then NDA gives ΛL ∼ 24π3/(3g2
s),

where gs is the 4D color coupling at the KK scale. For kL ≈ 34 this corresponds to Λ/k ≈ 8.
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threshold for top-KK top production. The different curves are terminated at different points

due to the ct dependence of the KK fermion mass MT (1) . Thus, at strong coupling, λψ cancels

the volume suppression factor ΛL in Eq. (10) that arises from the fact that the operator Eq. (7)

is suppressed by two powers of Λ. The fact that this channel then dominates over the Higgs

pair production channel, in spite of arising from an operator of higher dimensionality can then

be understood as due to the strong localization near the IR brane of the RH top quark, as

encoded in the parameter η of Eq. (9) as well as the different values of the couplings of the

associated operators. Away from threshold the coupling λψ is a factor of 5-10 below the NDA

value, so that the perturbative computation can be trusted.

It is therefore plausible that the annihilation into Higgses plays a subdominant role in the

determination of the DM relic density. Of course it is straightforward to take both channels

into account when they give a comparable contribution, but we will not do so here and turn

instead to the possible DM signals of these scenarios. Note however that sizable brane-localized

kinetic terms (that were not included in the above analysis) are known to lower the lightest

KK masses significantly [13]. Thus, even for k̃ = 1.2 TeV (as is suggested by the EW precision

constraints as a lower bound on k̃, and as assumed in Fig. 2) the KK masses can easily be

somewhat below a TeV. The qualitative behavior of the ultra non-relativistic cross section

persists: it is of order 0.8 pb, and decreases by a factor of about two near the threshold for

ΦΦ → T (1)t annihilation (assuming that this is the main annihilation channel and that we are

in the perturbative regime). Thus, in the following phenomenological analysis, we will allow a

large range of KK masses and analyze the consequences for indirect detection.

3 Indirect Detection

Because the scalar couples to the Higgs, interactions relevant for direct-detection experiments

are in principle possible [3]. However for the heavy scalars we are talking about the direct

detection rate will be too low so we concentrate on indirect signals.

In this section we consider such possible signals from the DM candidates discussed in Sec-

tion 2. We will argue that current experiments may be sufficiently sensitive to detect photons

(or possibly positrons) from dark matter annihilation, most likely when non-renormalizable

operators are present. We will present our bounds in terms of constraints on the cutoff scale Λ

appearing in these operators, which in the RS context can be understood as being related to

the fundamental gravity scale and more generally represents a scale of strong interactions.
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We first concentrate on the most distinctive signals, ΦΦ → γX and ΦΦ → e+X, where the

photon(s) and positron are produced from direct 2-body decays and have well-defined energies.

We also consider the more exotic decay chain involving a KK lepton, which generally yields a

continuous spectrum (even before propagation thorugh the interstellar medium) except when

this KK lepton is sufficiently heavy to be produced almost at rest so that the positrons that

result from its decay have a spectral distribution similar to those of primary positrons.

Subsequently we will consider possibilities from the decay of the Higgs that would occur as

a consequence of the dark matter-Higgs coupling.

3.1 Photons

We now consider possible photon signals arising from annihilating dark matter. For a continuous

photon signal the total flux is obtained by integrating from some detector-dependent threshold

energy up to the DM mass. In the scenarios discussed in Section 2 the continuous signal is

likely too small to see but we comment on such decays at the end of this subsection.

We start by discussing the more interesting signal arising from the direct decays of the

(slowly moving) DM particle into photons proceeding from higher dimension operators, in which

case the final photon is nearly monoenergetic. Both decays into two photons and a photon and

a Z could in principle contribute. The photon energy in the first process is approximately

equal to MΦ, while in the second process it is approximately MΦ(1 −M2
Z/4M

2
Φ). For DM in

the TeV range, the energy resolution of ACT’s is not enough to resolve the two lines and they

both appear to have energy essentially equal to MΦ. It is therefore appropriate to add the two

photon signals in the flux.

The annihilation of a SM singlet into photons can proceed via higher dimension operators

which we write as

− e2κ

8Λ̃2
Φ2FµνF

µν − e2κ′

4sW cW Λ̃2
Φ2ZµνF

µν , (12)

where Fµν and Zµν are the photon and Z gauge boson field strengths, sW is the sine of the

weak mixing angle, Λ̃ is the effective 4D cutoff scale, and κ, κ′ are couplings of order one.

The operators in Eq. (12) are the 4D effective operators induced by bulk or brane-localized

operators, depending on whether Φ arises from a bulk field or is localized on the IR brane. In

the RS framework the cutoff might be expected to be around the TeV scale and not far from the

mass of Φ, so that the resulting annihilation into photons need not be extremely suppressed.
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In the ultra non-relativistic limit (DM particle velocities in the galaxy are of order v ∼
10−3c), the interaction terms in Eq. (12) give rise to the cross sections

〈σ2γv/c〉 ≈
(

MΦ

Λ̃

)4
3πα2κ2

M2
Φ

≈ 0.2 pb

(

1 TeV

MΦ

)2(
MΦ

Λ̃

)4

κ2 , (13)

where α is the fine structure constant, and an annihilation cross section into γZ

〈σγZv/c〉 ≈
(

MΦ

Λ̃

)4
6πα2κ′2

s2
W c

2
WM

2
Φ

(

1 − M2
Z

4M2
Φ

)

≈ 2.5 pb

(

1 TeV

MΦ

)2(
MΦ

Λ̃

)4

κ′2 . (14)

Notice that besides the enhancement in the γZ channel due to the gauge coupling (the factor

1/s2
W c

2
W ≈ 5.6), there is an additional factor of 2 difference due to the identical particle nature

of the final state photons in the 2γ channel. This factor is compensated by the explicit factor

of 2 in Eq. (16) that accounts for the two photons in the final state.

The rates given in Eqs. (13) and (14) are small when the Φ mass is low due to the strong

(MΦ/Λ̃)4 dependence. However, if Λ̃ is not much above MΦ, ground based Cherenkov detectors

can be sensitive to this signal. We will now interpret current bounds in terms of the implications

for the cutoff scale Λ̃.

The differential photon flux from a direction that forms an angle ψ with the galactic plane

is

dΦγ

dΩdE
=

∑

i

〈σiv〉
dN i

γ

dE

1

4πM2
Φ

∫ ∞

0

dlρ2(r) , (15)

where r2 = l2 + r2
0 − 2lr0 cosψ, with r0 ≈ 8.5 kpc the distance from the Earth to the galactic

center. The integration is along the line of sight, dl, and encodes the information about the

DM distribution, assuming a spherical DM halo of energy density ρ(r). The particle physics

input enters through the thermally averaged cross section times relative velocity (for channels

labeled by i) and the differential photon yield in channel i, dN i
γ/dE where we add the γγ and

γZ signals. We have

Φγ = 5.66 × 10−12 cm−2s−1

[

2

(〈σ2γv/c〉
1 pb

)

+

(〈σγZv/c〉
1 pb

)](

1 TeV

MΦ

)2

J̄(∆Ω)∆Ω , (16)
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Figure 3: Left panel: J̄(∆Ω) as a function of ∆Ω for three different halo profiles (taken from
Ref. [17]). Right panel: J̄(∆Ω) × ∆Ω as a function of ∆Ω.

where the factor of 2 corresponds to the two photons per decay in the 2γ annihilation channel,

J̄(∆Ω) ≡ (1/∆Ω)
∫

∆Ω
J(ψ)dΩ integrates over the angular acceptance of the detector ∆Ω, and

J(ψ) is conventionally defined as

J(ψ) =
1

8.5 kpc

(

1

0.3 GeV/cm3

)2 ∫ ∞

0

dlρ2(r) . (17)

The quantity J̄(∆Ω) depends on the DM halo profile and can vary over several orders of

magnitude depending on the halo model, when looking towards the galactic center. It has been

computed for several DM halo models, and as a function of ∆Ω in [14]. In the left panel of Fig. 3

we reproduce J̄(∆Ω) as a function of ∆Ω for three different halo profiles: the Moore et. al.

profile [15] (a rather cuspy profile), the widely used Navarro-Frenk-White (NFW) profile [16],

and a smooth isothermal profile [17]. For reference we also show in the right panel the product

J̄(∆Ω) × ∆Ω as a function of ∆Ω. The angular acceptance ∆Ω depends on the experimental

setup.

Several experiments exist that can search for photons from dark matter annihilation. Among

the particle community, FERMI (formerly known as GLAST) has recently received a great

deal of attention. FERMI is a satellite-based detector with excellent angular coverage (greater

than about 2 sr) and fairly good energy resolution (< 10%) [18]. FERMI should have a flux

sensitivity of order 10−10 photons cm−2 s−1 for photon energies between about 20 and 300 GeV

(with decreasing sensitivity at lower energies and no sensitivity at higher energies).
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Ground-based detectors, on the other hand, have much smaller angular coverage and worse

energy resolution. However their flux sensitivity is similar to that of FERMI at around 50

GeV [19] and rapidly overtakes FERMI’s sensitivity, depending on angular coverage, at higher

energies. From the right panel in Fig. 3, and taking the NFW halo profile, we see that when

∆Ω = 10−5 sr, a typical value used in HESS, one has J̄(∆Ω) × ∆Ω ≈ 10−1, while for FERMI

with ∆Ω = 2 one has J̄(∆Ω)×∆Ω ≈ 20. Therefore, if HESS achieves only ∆Ω = 10−5, it can be

more sensitive than FERMI to the photon signal we discuss at energies of about 250 GeV [19]

(near the end of FERMI’s sensitivity range). Ground-based detection will be relatively more

sensitive with a Moore profile and less so with an isothermal profile.

HESS and VERITAS could reach a larger angular coverage, since their fields of view (5◦ for

HESS and 3.5◦ for VERITAS) correspond to ∆Ω ∼ 10−2 sr. If such angular acceptances are

reached, and assuming an NFW profile so that J̄(∆Ω) × ∆Ω ≈ 3 (see Fig. 3), these ground-

based detectors could overtake FERMI’s sensitivity even at photon energies of about 100 GeV.

Clearly the flux sensitivity is better for either of the ground based experiments6 for reasonable

dark matter masses above about 100 GeV and the determining factor of which is better is likely

to be the angular resolution.7

Of course, without knowing the dark matter profile, it makes sense to search in both satellite

and ground-based experiments at low energies. However, it should be borne in mind that

most dark matter models predict a monochromatic photon signal only at one loop so indirect

detection is unlikely to be sufficiently sensitive to this type of signature of standard thermal

dark matter. Supersymmetric dark matter annihilation into photons offers perhaps the best

possible loop-suppressed scenario because the loop can be enhanced [21, 22] due to a reasonably

large numerical factor and because for a higgsino dominated neutralino an enhancement in the

loop diagram due to near degeneracy with an intermediate state can lead to a cross section that

saturates with 1/m2
W dependence (rather than suppression by the potentially bigger dark matter

mass). This signal is potentially observable, however, only for light dark matter candidates for

which the flux is big (and where FERMI is sensitive). Otherwise the cross section is too small.

We note that the direct signal we discuss is at higher energies since we assume a heavy

dark matter candidate and therefore concentrate on ground-based experiments since they have

6VERITAS does not always point toward the galactic center, however, so the flux sensitivy in that regime is
not guranteed

7The sensitivity of ACTs to the photon signal at large ∆Ω could be limited by the cosmic ray background,
since subtracting the signal from a nearby region can have a significant effect for shallow profiles [20]. However,
for more peaked profiles such as NFW, this is expected to be at most an order one effect.
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∆Ω J̄(∆Ω) × ∆Ω Λ̃ [TeV] at MΦ = 1 TeV 2〈σ2γv〉 + 〈σγZv〉 [cm3 s−1]

10−5 10−1 (NFW) 2 5.4 × 10−27 (1.8 × 10−1 pb)

10−3 1 (NFW) 3.5 5.8 × 10−28 (1.9 × 10−2 pb)

any 102 (Moore) 11.3 5.3 × 10−30 (1.8 × 10−4 pb)

Table 1: Sensitivity of HESS or VERITAS to the cutoff scale Λ̃ for representative ∆Ω’s (NFW
and Moore et. al. halo profiles). A DM candidate with mass MΦ = 1 TeV annihilating into
monoenergetic 1 TeV photons is assumed. We assume κ = κ′ = 1 (see text). The last column
gives the thermally averaged annihilation cross section into photons for the corresponding Λ̃
(and for MΦ = 1 TeV).

better sensitivity. Although the number density of heavy dark matter particles is lower than

that for lighter dark matter candidates, our prediction is a tree-level effect, albeit through a

higher-dimension operator, and the cross section can be bigger than typical supersymmetric

annihilation cross sections [21], which saturate at about 10−28 cm−3 s−1. For example, in the

first row of Table 1 we see that for Λ̃ = 2 TeV and MΦ = 1 TeV the annihilation cross section

is 5.4 × 10−27 cm3 s−1.

For instance, for 1 TeV photons, HESS has a flux sensitivity of about 10−13 cm−2 s−1. Using

∆Ω = 10−5 sr and taking the NFW halo profile, we see from the right panel in Fig. 3 that

J̄(∆Ω) × ∆Ω ≈ 10−1. The expected flux is then Φγ = 1.6 × 10−12 cm−2 s−1(1 TeV/Λ̃)4, which

could be translated into a bound Λ̃ ∼> 2 TeV (we also assumed κ = κ′ = 1).8 Under the same

assumptions, for 2.3 TeV photons HESS would put a bound Λ̃ ∼> MΦ ∼ 2.3 TeV. On the other

hand, the sensitivity could in principle be bigger or smaller according to the dark matter profile.

For example, for the rather peaked Moore et. al. profile, one has J̄(∆Ω) × ∆Ω ≈ 102 and the

non-observation of a line at 1 TeV by HESS would correspond to a bound Λ̃ ∼> 11.3 TeV. This

is the expected scale for Λ̃ in several well-motivated scenarios that take into account the EW

constraints [23, 24, 25, 26].

For HESS or VERITAS operating at ∆Ω = 10−3 sr and using again the NFW halo model

with J̄(∆Ω) × ∆Ω ≈ 1, the expected flux would be Φγ = 1.6 × 10−11 cm−2 s−1(1 TeV/MΦ)2 ×
8For MΦ = 1 TeV and Λ̃ = 2 TeV, the non-relativistic annihilation cross section into γZ is 〈σγZv/c〉 ≈

0.15 pb, which is smaller than the cross section necessary for MΦ to account for the observed DM energy
density. The annihilation into two photons is smaller by a factor of about ten. The largest contribution to
the annihilation cross section would come from either annihilation into Higgses or fermion-KK fermion pairs as
discussed in Section 2, thus justifying the relic density computation discussed there.
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(MΦ/Λ̃)4. For 1 TeV photons, HESS or VERITAS would be sensitive to Λ̃ ∼ 3.5 TeV. We

summarize these observations in Table 1.

Ground-based Cherenkov detectors capable of operating at larger ∆Ω can start probing

theoretically interesting values of Λ̃ even for halo profiles not as peaked as the Moore et. al.

profile. From Fig. 3 we see that for ∆Ω ∼ 1, several halo profiles converge to J̄(∆Ω) × ∆Ω ≈
10. An additional factor of 6 improvement in the flux sensitivity would then make scales

Λ̃ ∼ 10 TeV accessible. Of course, larger ∆Ω means also larger background, but hopefully the

very characteristic line signal can be extracted if there are enough events (see Ref. [17]).

We finally mention the possibility of observing photons from Higgs decays (assuming that

the main channel for DM annihilation is into Higgses, as in Subsection 2.1, so that 〈σHHv〉 ≈
0.8 pb). For instance, for a SM-like Higgs with mass around mh = 135 GeV, the branching

fractions into γγ or Zγ are of order 10−3 each. The photons from these channels present a flat

spectrum between Eγγ
min = 1

2
MΦ(1 − β) and Eγγ

max = 1
2
MΦ(1 + β) for the γγ signal, or between

EZγ
min = 1

2
MΦ(1−m2

Z/m
2
H)(1−β) and EZγ

max = 1
2
MΦ(1−m2

Z/m
2
H)(1+β) for the Zγ signal. Here

β =
√

1 −m2
H/m

2
Φ is the velocity of the Higgs in the DM rest frame.

We show in Fig. 4 the total flux integrated from a threshold energy Eth = 50 GeV up

to Eγγ
max, as a function of MΦ. Here we optimistically assume J̄(∆Ω) × ∆Ω = 102 as would

be appropriate for the Moore profile though of course with other profiles the signal would be

smaller. ACTs such as HESS or VERITAS would be sensitive to such a signal, but if the halo

profile is less peaked or if the Higgs branching fraction into photons is smaller, this continuous

signal becomes challenging. Nonetheless since this is a generic prediction of this type of model

that doesnt rely on higher-dimension operators exploring the possibility of detecting such a

signal is extremely worthwhile.

3.2 Positrons

Recently there has been intriguing evidence for an excess positron signal at energies up to about

80 GeV [27]. Clearly it is of interest to determine whether such positrons can arise from dark

matter annihilation. We do not anticipate that heavy dark matter particles will explain this

excess, since a positron signal, if it exists, will be concentrated at higher energies.

Nonetheless it is of interest to explore this positron signal to see how it compares to back-

ground and to see whether in principle the signal could be detectable at high energies. We

also briefly consider lighter particles (with less theoretical motivation in our context of strongly

intereacting TeV scale physics) with similar interactions to KK dark matter particles and find
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Figure 4: Integrated photon flux from ΦΦ → HH and H → γγ or H → Zγ, as a function
of MΦ. We assume that the branching fractions for these decay modes are 10−3 and take
J̄(∆Ω) × ∆Ω = 102.

that even without a big boost factor annihilations of ∼ 100 GeV dark matter matches the

PAMELA data.

With this in mind, we note that for the bulk scalar fields discussed in Subsection 2.2, other

operators involving SM fields can be interesting from the point of view of DM signals, besides

the operators leading to direct annihilation of the Φ particles into photons discussed in the

previous subsection. Specifically, the higher-dimension operators of the type Eq. (8), coupling

a pair of Φs to an electron and its lowest KK mode, can lead to an interesting positron signal.

The dominant annihilation channel involves the fermions closest to the IR brane (we discussed

in Subsection 2.2 how the DM relic density can be determined by the annihilation into a SM

fermion and one of its KK modes).

In Subsection 2.2 we defined three scenarios that differ on how the fermions are localized in

the extra dimension. Of these, the most favorable one to obtain a sizable positron signal from

DM annihilation is scenario 3. But we will see that only the electrons need to be somewhat

localized near the IR brane for the positron signal to be interesting, and this can occur in

scenario 2 as well.9 Note also that the positron signal is sensitive to the local DM distribution

9A hybrid case (of scenarios 1 and 2) with one of the lepton chiralities localized somewhat near the IR
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(and not very much to how peaked the DM halo is at the galactic center). It is common

to parameterize the effects of DM inhomogeneities by an (energy-independent) “boost” factor

B = 〈ρ2〉/〈ρ〉2. Studies of such enhancements for gamma rays indicate that the boost factor

might be as large as order 10 [28]. Therefore, the positron signal can receive an enhancement

compared to the case of a smooth DM density distribution, though the likely size of this

enhancement is not expected to be very large.

With this understanding we proceed to estimate the signal from direct annihilation into a

positron and a KK mode. The produced positron has a well-defined energy that depends on

the DM and KK fermion masses, MΦ and Me(1) : E
prim.
e+ = (4M2

Φ −M2
e(1)

)/4MΦ. Besides these

primary monoenergetic positrons, we also consider the secondary positrons arising from the

annihilation of Φ particles into an electron (neutrino) and a positron KK mode followed by the

decay of the associated KK lepton into a positron and a Z (W ) gauge boson.10 When the KK

lepton l(1) = e(1) or ν(1) has a mass slightly below 2MΦ (about the threshold for DM annihilation

into lepton and KK lepton), it is produced nearly at rest and the resulting positron from its

decay has a relatively well-defined energy. In detail, the energy of the KK lepton produced in

DM annihilation is El(1) = (4M2
Φ +M2

l(1)
)/4MΦ, while its momentum is p = (4M2

Φ−M2
l(1)

)/4MΦ.

For the two-body decays e(1) → Ze or ν(1) → We, one finds the typical flat spectral distribution

f2(E0) =

{

(El(1)βl(1))
−1 E− ≤ E0 ≤ E+

0 otherwise
, (18)

where E0 is the positron energy. Neglecting the masses of the decay products, the maximum

positron energy is E+ = 1
2
El(1)(1 + βl(1)) = MΦ, while the minimum positron energy is E− =

1
2
El(1)(1−βl(1)) = M2

l(1)
/4MΦ. Here βl(1) = p/El(1) = (4M2

Φ−M2
l(1)

)/(4M2
Φ +M2

l(1)
) is the velocity

of the KK lepton (in the rest frame of Φ). Notice that the upper endpoint is determined by

brane and the opposite chirality localized near the UV brane (to generate the small lepton masses by the
exponential wavefunction suppression) also falls in this category. For instance if clR ≈ 0.4 while ctR

≈ 0, we
have ηtR

/ηlR ≈ [(1 − 2ctR
)/(1 − 2clR)]1/2 ∼ 2, where the η parameters were defined in Eq. (9). Therefore, the

annihilation into positrons can plausibly be suppressed compared to the dominant top channel by only a factor
∼ 4Nc ∼ 10, if the unknown dimensionless coefficients λe and λt in Eq. (7) are assumed to be comparable.

If only the RH top and the RH leptons are localized near the IR brane and one neglects other annihilation
channels, the thermal relic density computation implies 〈σe(1)ev/c〉 = 〈σµ(1)µv/c〉 = 〈στ (1)τv/c〉 ≈ 0.06 pb and
〈σt(1)tv/c〉 ≈ 0.6 pb.

10The decays of the KK lepton into Higgs are suppressed by the electron Yukawa coupling. For gauge KK
masses of order 3 TeV, the main decay channels of the KK lepton involve Z or W (through EWSB mixing of the
Z/W with its KK modes, as opposed to mixing of the lepton and its KK modes). When the lepton is an SU(2)
doublet we have Γ(e(1) → Ze)/Γ(ν(1) → We) ≈ (m4

Z/m4
W )(T 3 − s2

WQ)2/c2
W , leading to BR(ν(1) → We) ≈ 75%

and BR(e(1) → Ze) ≈ 25%. Similarly, the SU(2) singlet KK positron decays dominantly into Ze+.
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the DM mass only, and that in the limit Ml(1) → 2MΦ one has f2(E0) → δ(E0 −MΦ). Further

decays of the W s and Zs lead to additional positrons that have a softer spectrum and give a

subdominant contribution due to the small branching fractions involved. We do not include

positrons from W or Z decay in the following analysis. Note also that primary and secondary

electrons with the exact same characteristics as the positrons above are also produced.

The positron energy is distorted as it propagates through the interstellar medium be-

fore detection. In general, for an initial spectral distribution fi(E0), normalized according

to
∫∞

0
dE0fi(E0) = 1, the differential positron flux at the solar position is obtained from

dΦe+

dΩdE
=
Bρ2

0

m2
Φ

∑

i

〈σiv〉Bi
e+

∫

dE0fi(E0)G(E0, E) , (19)

where ρ0 is the average DM mass density, B is the boost factor, 〈σiv〉 is the i-th channel

thermally averaged (ultra non-relativistic) DM annihilation cross section times relative velocity,

Bi
e+ is the corresponding branching fraction into positrons, and G(E0, E) is a Green function

that includes the details of the DM mass distribution in the galactic halo, takes into account

the propagation of the positrons through the interstellar medium in the galaxy, and describes

how their energy E is shifted under diffusion, various spatially and energy-dependent energy

loss mechanisms, reacceleration, etc. The direct annihilation into positrons plus their lightest

KK mode simply corresponds to f(E0) = δ(E0−Eprim.
e+ ), while secondary positrons arising from

the decay of the KK lepton are described by Eq. (18).

In Ref. [29], Moskalenko and Strong modeled the propagation of positrons through the

interstellar medium for several galactic halo DM mass distributions. They provided a simple

parameterization for the Green function that reproduces the more detailed simulation11 to

within 10%:

10−25E2G(E0, E) = 10a(lnE)2+b lnE+c θ(E − E0) + 10w(lnE)2+x lnE+y θ(E0 − E) , (20)

where G(E0, E) is given in units of cm sr−1GeV−1, E is the local positron energy in GeV, and

the coefficients a, b, c, w, x and y are functions of E0 (the initial positron energy) that are

tabulated in Tables II and III of Ref. [29]. For definiteness, we consider the “isothermal” model,

which is characterized by a spherically symmetric DM mass distribution given by

ρ(r) = ρ0

r2
c + R2

⊙

r2
c + r2

, (21)

11The code used in the simulation aims at reproducing simultaneously observational data related to cosmic
ray origins and propagation such as: direct measurements of nuclei, antiprotons, electrons and positrons, as
well as indirect measurements via γ rays and synchrotron radiation.
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where rc is the core radius and R⊙ = 8.5 kpc is the solar distance to the galactic center (the

parameters rc and ρ0 are obtained by fitting to the rotation curve, and for the isothermal model

rc = 2.8 kpc and ρ0 = 0.43 GeV cm−3). We use a galactic halo size of zh = 10 kpc, which is on

the upper limit of the 4 − 10 kpc range favored by the analysis in [29].

The local positron flux then takes the form

E2 dΦe+

dΩdE
= 2.7 × 10−8

(

ρ0

0.3 GeV/cm3

)2(
1 TeV

mΦ

)2
∑

i

(

B〈σiv/c〉
1 pb

)

Bi
e+Fi(E) , (22)

where the units on the r.h.s. are GeV cm−2s−1sr−1, and the dimensionless Fi(E) is defined by

Fi(E) = 10−25E2

∫

dE0fi(E0)G(E0, E) . (23)

Experimental observations are commonly presented in the form of the positron fraction,

e+/(e− + e+), where the electron and positron fluxes include both background and signal. This

quantity has the advantage that systematic uncertainties cancel out. For the electron and

positron background spectral distributions we use the simple parameterizations given in [30]:

(

dΦe−

dΩdE

)

prim. bkg

=
0.16E−1.1

1 + 11E0.9 + 3.2E2.15
,

(

dΦe−

dΩdE

)

sec. bkg

=
0.70E0.7

1 + 110E1.5 + 600E2.9 + 580E4.2
,

(

dΦe+

dΩdE

)

sec. bkg

=
4.5E0.7

1 + 650E2.3 + 1500E4.2
,

where E is in GeV and the units of the l.h.s are GeV−1 cm−2 s−1 sr−1.

In the following we envision a scenario in which the dominant DM annihilation channel is

into pairs of electron/positron plus a KK mode, as could be expected in scenario 3 defined in

Subsection 2.2. In this case, the WMAP relic abundance requires 〈σe(1)ev/c〉 ≈ 1 pb. Somewhat

more generally, the results are valid for B×〈σe(1)ev/c〉 = 1 pb, where B is the boost factor. Since

B is expected to be order a few, our results can illustrate situations where the electron/positron

channel is one among a few dominant annihilation channels (e.g. if the other lepton channels

are equally important).

In the left panel of Fig. 5 we show the expected positron fraction signal, assuming DM

masses MΦ = 500 GeV and MΦ = 2 TeV. We also include the secondary positrons arising

from the decay of the KK lepton, assuming Me(1) = MΦ. Interestingly, there is a rather clear
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Figure 5: Left panel: positron fraction including the primary positrons/electrons from the
annihilation ΦΦ → e±e(1) and the secondary positrons/electrons from the annihilation ΦΦ →
l(1)l(0), followed by a two-body decay l(1) → e±X. We show the spectra for two DM masses,
MΦ = 500 GeV and MΦ = 2 TeV, assuming that Me(1) = MΦ and a boost factor such that
B × 〈σe(1)ev/c〉 = 1 pb, with ρ0 = 0.3 GeV/cm3. The solid lines represent the individual
contributions from primary and secondary production. Right panel: positron fraction for MΦ =
1 TeV and Ml(1) = 0.85×(2MΦ) = 1.7 TeV showing clear peaks at Eprim.

e+ = (4M2
Φ−M2

e(1)
)/4MΦ

and near MΦ (the endpoint is exactly at MΦ).

peak above background that could be observable in the sub TeV range. A moderate boost

factor would make such a feature even more prominent. In the right panel of Fig. 5 we show

another example where Me(1) = 0.85 × 2MΦ is closer to threshold. This case exhibits more

clearly the two peaks discussed above, one at Eprim.
e+ from the primary positrons and another

near MΦ for the secondary positrons from the KK lepton decay. As remarked above, the upper

endpoint gives a direct measurement of MΦ. The first peak then gives information about the

KK lepton mass. With a handle on the DM and KK fermion masses it would be possible to get

information about the effective cutoff scale (λe/ΛL)−1Λ̃ [see coefficient a in Eq. (11)], modulo

the uncertainty associated with the local DM energy density (since these high-energy positrons

come from distances of at most a few kpc, the dependence on the DM halo model is expected

to be milder).

There seems to be evidence in several experiments for an excess in the positron flux in the

tens of GeV energy range (HEAT [31], AMS-01 [32]), with the PAMELA satellite experiment

supporting this excess up to energies of about 80 GeV [27]. As has been emphasized recently [33,

34, 35] the observed fluxes are larger than what would be expected from thermal WIMPs when
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Figure 6: Positron fraction due to positrons from a 120 GeV DM particle annihilating into ee(1),
where e(1) is a heavy electron of mass Me(1) = 200 GeV. The lower energy peak arises from
direct annihilation into a positron (plus heavy lepton), while the higher-energy peak arises from
the direct decay of the heavy lepton into a positron (plus a gauge boson). Further positrons
from the W ’s or Z’s produced in the heavy lepton decay are not included and would add a
softer contribution. We assume B × 〈σe(1)ev/c〉 = 3 pb.

these lead to positrons mainly through the decays of their annihilation products (e.g. W ’s).12

Nonetheless, it is interesting to note that a DM candidate with a mass of about 100 GeV

annihilating primarily into electrons/positrons can explain the observed positron excess with a

boost factor of order unity. Although such low masses are not expected in our scenario, we show

in Fig. 6 the positron signal from the annihilation of a 120 GeV DM candidate into a positron

and a “heavy vector-like electron” of mass Me(1) = 200 GeV. We show the HEAT data and

the recently released PAMELA data, which shows a clear increase with energy of the positron

fraction up to energies of at least 80 GeV [27]. However, the ATIC-2 balloon experiment [38]

also indicates an excess in the total electron plus positron flux extending up to energies of about

a TeV, which would not be explained by the self-annihilation into electrons/positrons of such

a light DM candidate. Antiprotons produced in decays of the heavy electron (via W gauge

bosons) may also conflict with the non-observation of an antiproton excess in the PAMELA

p̄/p data [39].

Of course the above observations hold only for a light dark matter particle of order 100 GeV.

12However, the presence of a relatively long range force among the DM particles can lead to an enhancement
of several orders of magnitude in the annihilation cross section at very low velocities, which can account for these
observations in certain dark matter models [34, 36, 37]. Our DM candidate, having only non-renormalizable
interactions, does not fall into this category.
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Figure 7: Positron fraction when ΦΦ → H†H (including longitudinal gauge bosons) dominates
the DM annihilation cross section. We include the secondary positrons/electrons from the
annihilation ΦΦ → W+

LW
−
L and the tertiary positrons/electrons from the annihilation ΦΦ →

hh → 4W , assuming mh = 170 GeV. Only two-body W decays into positrons/electrons are
included. We take MΦ = 1 TeV and B × 〈σW+W−v/c〉 = 10 pb, with ρ0 = 0.3 GeV/cm3. The
solid lines represent the individual contributions from secondary and tertiary production, with
the latter having a softer spectrum.

For the range of masses expected in our scenario (around 1 TeV), the proton flux is sufficiently

suppressed, but the positron excess below about 80 GeV would not be explained. However, the

signal can exceed the background at high energy which would be interesting if experiments can

attain the required sensitivity.

We close this subsection by coming back to the case of a scalar DM candidate that decays

dominantly into Higgses, as discussed in Subsection 2.1, and comment on the associated positron

signal. The annihilation cross section Eq. (3) corresponds to the processes ΦΦ → WLWL,

ΦΦ → ZLZL and ΦΦ → hh in the large MΦ limit. In this limit we have σ(ΦΦ → WLWL) ≈
2σ(ΦΦ → ZLZL) ≈ 2σ(ΦΦ → hh). Further decays of the W s, Zs and Higgses can result in

energetic positrons. We consider here the case mH = 170 GeV with a SM branching fraction

BR(H →W+W−) ≈ 1, and compute the spectrum of secondary positrons from ΦΦ → 2W/Z →
e+X and of tertiary positrons from ΦΦ → hh → 4W → e+X. We do not include positrons

from processes further down the decay chain.

The cross sections times branching fractions (including the positron multiplicities) to be used

in Eq. (22) are 〈σW+W−v〉×BR(W → eν), 2×〈σZZv〉×BR(Z → e+e−) ≈ 〈σW+W−v〉×BR(Z →
e+e−), and 2 × 〈σHHv〉 × BR(H → W+W−) × BR(W → eν) ≈ 〈σW+W−v〉 × BR(W → eν),

23



respectively, where BR(W → eν) ≈ 0.11 and BR(Z → e+e−) ≈ 0.036. In Fig. 7, we show

the positron fraction for MΦ = 1 TeV and B × 〈σW+W−v/c〉 = 10 pb, which corresponds to a

boost factor B ≈ 20. We conclude that such a signal would be visible above background only

for rather large boost factors. In particular, such a scenario can also not explain the observed

positron excess reported at lower energies.

4 Conclusions

We considered a simple scenario for scalar DM of mass around 1 TeV in the context of non-

renormalizable theories with a cutoff near the TeV scale. Such a possibility arises naturally in

extra-dimensional models that address the hierarchy problem, such as the Randall-Sundrum

scenario but could also arise from other strongly interacting TeV-scale theories. The thermal

relic density can be determined either by renormalizable or non-renormalizable interactions.

Such dark matter particles are clearly more challenging to detect but can conceivably yield ob-

servable gamma ray signals at current detectors and might ultimately yield observable positrons.

A monochromatic gamma ray line signal arises from the direct annihilation via nonrenor-

malizable operators of the DM particle Φ into photons. For a cutoff scale of up to about 10 TeV,

such a signal can be larger than the signal from a typical one-loop induced direct coupling to

photons. We also point out that the monochromatic signal associated with non-renormalizable

operators is likely observable in currently operating ground-based experiments, and could be

used to probe the cutoff scale up to several TeVs.

We also consider secondary photons from Higgs decay in the annihilation ΦΦ → HH , and

find that this continuous signal can be observable if the DM halo is relatively peaked at the

galactic center. Secondary or tertiary positrons can also be produced in the decays of Higgses or

longitudinally polarized gauge bosons, but the positron flux is likely too small to be observable

above background.

It is also possible to have more exotic scenarios where the annihilation cross section is

dominated by the non-renormalizable interactions, as opposed to the dimension-4 coupling of

Φ to the SM Higgs field. In the extra-dimensional context one could have annihilations into a

SM fermion and the associated KK fermion dominating the total annihilation cross section. If

the leptonic channels are dominant, it is possible to have an observable positron signal in the 100

GeV to 1 TeV range with a boost factor of order one. Such a signal would typically present two

peaks, due to the heavy lepton involved. However, the expected flux is too small to account
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for the positron excess reported by HESS/AMS-01 and the PAMELA satellite experiment.

Nevertheless, we find it promising that indirect searches in the sub-TeV range can be sensitive

to cutoff scale physics.
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A Bulk Scalars in an RS Background

We consider a bulk real scalar, Φ, propagating in the background [5]

ds2 = e−2kyηµνdx
µdxν − dy2 , (24)

where xµ (µ = 0, 1, 2, 3) are the 4D coordinates, and 0 ≤ y ≤ L parametrizes the fifth dimension.

We assume that the scalar obeys (−,+) boundary conditions, and consider the action

S =

∫

d4x

∫ L

0

dy
√

|g| 1
2

{

∂MΦ∂MΦ −M2Φ2 − δ(y − L)mΦ2
}

, (25)

where M and m are bulk and IR localized mass parameters, respectively. We do not write

a localized mass on the UV brane, since the scalar is assumed to vanish at y = 0. We will

parametrize these mass parameters in units of the curvature scale as

M2 =

[

c2s + cs −
15

4

]

k2 , (26)

m =

[

cs −
3

2
+ δ

]

k . (27)

For δ = 0, the mass spectrum that follows coincides precisely with that of a fermion obeying

(−,+) b.c., where cf = cs parametrizes the fermion bulk mass [40]. Our sign conventions are

such that for cs < 1/2 the lightest KK mode is exponentially localized near the IR brane,

and when cs < −1/2 its mass is exponentially smaller than the warped down curvature scale

k̃ = k e−kL. We will see that the lightest eigenvalue can remain small for a wide range of values

of the parameter δ defined in Eq. (27), and therefore the lightest scalar KK mode can be easily

lighter than the SM gauge and fermion KK resonances.
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The KK decomposition for Φ reads

Φ(xµ, y) =
eky√
L

∞
∑

n=1

φn(xµ)fn(y) , (28)

where we pulled out an explicit factor eky for convenience, and the KK wavefunctions obey

∂2
yfn − 2k∂yfn − (3k2 +M2)fn = −e2kym2

nfn , (29)

and satisfy the b.c.:

fn(0)|y=0 = 0 , ∂yfn|y=L = −(k +m)fn(L) . (30)

The solutions can be written in terms of Bessel functions as

fn(y) = Ane
ky
[

J|cs+ 1
2
|

(mn

k
eky
)

+ b Y|cs+ 1
2
|

(mn

k
eky
)]

, (31)

where An is a normalization constant, determined from

1

L

∫ L

0

dyfn(y)fm(y) = δnm , (32)

and

b = −
J|cs+ 1

2
|

(

mn

k

)

Y|cs+ 1
2
|

(

mn

k

) . (33)

The eigenvalues can be written as mn = xnk e
−kL, where the xn solve

J|cs+ 1
2
|

(

xne
−kL
)

Y|cs+ 1
2
|(xne

−kL)
=
xnJ|cs+ 1

2
|−1(xn) + (cs + 1

2
− |cs + 1

2
| + δ)J|cs+ 1

2
|(xn)

xnY|cs+ 1
2
|−1(xn) + (cs + 1

2
− |cs + 1

2
| + δ)Y|cs+ 1

2
|(xn)

. (34)

For kL≫ 1, the lowest solutions are approximately given by the vanishing of the numerator

in the r.h.s of Eq. (34). We show the smallest eigenvalue in Fig. 8 as a function of δ, defined in

Eq. (27), for several values of cs [which parametrizes the bulk mass M2 as in Eq. (26)]. This

eigenvalue can be well approximated by

x1 ≈











2
√

1
2
− cs

√

δ
2+δ

cs < −1/2 ,

2
√

3
2

+ cs

√

1+2cs+δ
3+2cs+δ

cs > −1/2 .
(35)
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Figure 8: Lightest mass, m1 = x1k e
−kL, for a bulk scalar obeying (−,+) b.c., as a function of

bulk and IR localized masses, parametrized by cs and δ, as in Eqs. (26) and (27). Recall that
for a KK gauge boson obeying (+,+) b.c., x1 ≈ 2.45.

We see that for δ < Min{0,−(1 + 2cs)}, x2
1 becomes negative and the corresponding mode is a

tachyon. We will assume that we are in a region where no such instability arises. One should

also keep in mind that for δ = 0 and cs ≈ −1/2, Eq. (35) receives additional corrections not

shown there. In this case, the smallest eigenvalue remains non-zero, becoming exponentially

small for cs < −1/2.

For Fig. 2 in the main text, we chose cs = −0.2 and adjusted δ so as to reproduce the desired

mass MΦ. This determines the corresponding wavefunction and allows the computation of the

relevant overlap integrals that determine the Φ couplings. Note, however, that the dependence

on the choice cs = −0.2 is very mild.
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