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Quantum critical point shifts under superconductivity:

the pnictides and the cuprates

Eun Gook Moon and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138

(Dated: August 31, 2010)

We compare the position of an ordering transition in a metal to that in a superconductor. For
the spin density wave (SDW) transition, we find that the quantum critical point shifts by order |∆|,
where ∆ is pairing amplitude, so that the region of SDW order is smaller in the superconductor
than in the metal. This shift is larger than the ∼ |∆|2 shift predicted by theories of competing
orders which ignore Fermi surface effects. For Ising-nematic order, the shift from Fermi surface
effects remains of order |∆|2. We discuss implications of these results for the phase diagrams of
the cuprates and the pnictides. We conclude that recent observations imply that the Ising-nematic
order is tied to the square of the SDW order in the pnictides, but not in the cuprates.

I. INTRODUCTION

The interplay between spin density wave (SDW) or-
dering and superconductivity clearly plays a central role
in the physics of a variety of quasi two-dimensional cor-
related electron materials. This is evident from recent
studies of the phase diagram of the ferro-pnictides1–7 and
the ‘115’ family of heavy-fermion compounds8. In the
cuprates, it has been argued that d-wave superconduc-
tivity is induced by SDW fluctuations in a metal9, and
this has been the starting point for numerous studies of
the complex phase diagram10,11. In all these materials,
there is a regime of co-existence between SDW ordering
and superconductivity, and this opens the way to a study
of the ‘competition’ between these orders12: this compe-
tition can be tuned by an applied magnetic field, as has
been studied in a number of revealing experiments13–20

on the LSCO and YBCO series of superconductors.

This paper will discuss a question that arises naturally
in the study of such competing orders21,22. We consider,
first, the ‘parent’ quantum critical point as that associ-
ated with the onset of SDW order, ~ϕ, in a metal. To ac-
cess this point we have to suppress superconductivity in
some manner, say by the application of a magnetic field.
This parent critical point will occur at a value r0c of some
tuning parameter r, which could be the carrier concentra-
tion or the applied pressure. We define r so that r < r0c is
the SDW phase with 〈~ϕ〉 6= 0; see Fig. 1. The value of r0c
is clearly material specific, and will depend upon numer-
ous microscopic details. Then, we turn our attention to
the onset of SDW order within the superconductor (SC);
we characterize the latter by a gap amplitude ∆, and
denote the critical value of r by r∆c . The essence of the
picture of competing orders is that the onset of super-
conductivity should shrink the region of SDW order, and
hence r0c > r∆c . We will be interested here in particular
in the magnitude of the shift r0c − r∆c . We will see that
the shift is dominated by low energy physics, and so has
a universal character. This shift r0c − r∆c played a central
role in the phase diagrams presented in Refs. 22,23, and
applied to the cuprates. Recent work has shown that
similar phase diagrams also apply to the pnictides5,6 and
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FIG. 1: The SDW and nematic critical points shifts from
Fermi surface effects. The tuning parameters r, s are for the
SDW and the nematic phase transitions. The critical points
in the metal are at r0c , s

0
c , and under superconductivity, these

shift to r∆c , s∆c , towards the ordered phases.

the 115 compounds8. In the pnictides, a “backbending”
of the onset of SDW order upon entering the SC phase,
consistent with the idea of r0c − r∆c > 0.

Let us begin by computing the shift r0c − r∆c in mean-
field Landau theory. The simplest free energy of the SDW
and SC order parameters has the form23:

L = (r− r0c)~ϕ
2+u

(
~ϕ2
)2

+ r̃|∆|2+ ũ|∆|4+κ~ϕ2|∆|2. (1)

Here κ > 0 is the phenomenological parameter which
controls the competition between the order parameters.
Examining the onset of a phase with 〈~ϕ〉 6= 0 in the
superconductor with ∆ 6= 0, we conclude immediately
from Eq. (1) that

r0c − r∆c = κ|∆|2. (2)

Such a shift was a key feature of the theory in Ref. 23.

The primary focus of the previous work was in the
lower field region, where the superconductivity is well-
formed, and ∆ is large. Here it is appropriate to treat
the superconductivity in a mean-field manner, and ig-
nore pairing fluctuations, while treating spin fluctuations
more carefully. The present paper turns the focus to
higher fields, where eventually superconductivity is lost.
Here, clearly, Landau theory cannot be expected to apply
to the superconducting order. Moreover, we expect the
Fermi surface of the electrons to be revealed, and a more
careful treatment of the electronic degrees of freedom is

http://arxiv.org/abs/1005.3312v4
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called for. One of the primary results of our paper will be
that the Landau theory result in Eq. (2) breaks down for
small ∆, and in particular in the limit |∆| → 0. This is
a consequence of the crucial importance of Fermi surface
physics in determining the position of the SDW transi-
tion at T = 0. Instead, we will show from the physics
of the “hot spots” on the Fermi surface that the shift is
larger, with

r0c − r∆c ∼ C|∆|. (3)

For the competing order picture to hold, we require that
C > 0. Somewhat surprisingly, we will find that our
results for C are not transparently positive definite. Dif-
ferent regions of the Fermi surface contribute opposing
signs, so that determining the final sign of C becomes a
delicate computation. In particular C will depend upon
the vicinity of ‘hot spots’ on the Fermi surface, which are
special points connected by the SDW ordering wavevec-
tor. We will find that the immediate vicinity of the hot
spots contributes a positive sign to C, while farther re-
gions contribute a negative sign. Thus the primary com-
petition between SDW and superconductivity happens
at the hot spots, while other regions of the Fermi surface
which survive the onset of SDW order continue to yield
an attraction between SDW and superconductivity. For
the case where the two hotspots connected by the SDW
ordering wavevector are equivalent under a lattice sym-
metry operation (i.e. they have the same pairing gap
and the same magnitude of the Fermi velocity), we will
find that distinct contributions to C exactly compensate
each other, so that C = 0. However, in the case that the
two spots are not crystallographically equivalent (which
is the generic situation in both the cuprates and the pnic-
tides), we will show that C > 0. A positive C is indicated
in Fig. 1.

We had considered the shift in SDW ordering due
to superconductivity in a previous work21. However,
in that work, the metallic and superconducting states
were not Fermi liquids and BCS states respectively, but
rather fractionalized states known as ‘algebraic charge
liquids’24–27. In this case, we found that the competition
between SDW and superconductivity was robust, and al-
ways yielded a shrinking in the size of the SDW region.
We will not consider such exotic states here, but work
entirely within the framework of Fermi liquid theory, in
which the onset of superconductivity leads to a tradi-
tional BCS superconductor. In this context the interplay
between SDW and SC in a Fermi liquid is conveniently
encapsulated in the ‘spin-fermion’ model28. We will find
the same qualitative shift in the SDW critical point as
found earlier21, and the estimate in Eq. (3).

We will also generalize our methods to analyze the
shifts in the quantum critical points of other orderings be-
tween the metallic and superconducting phases. Specifi-
cally, we will consider charge density wave (CDW) order
and Ising-nematic order, η. We will find that the CDW
shift initially appears to be formally similar to Eq. (3),

but the coefficient C is found to be exactly zero; terms
higher order in ∆ do indicate competition with super-
conductivity, but the CDW critical point shift is much
smaller than the SDW’s For Ising-nematic order, η, we
will also find that the Fermi surface result is similar to
that in Landau theory, as in Eq. (2). This smaller shift
is also illustrated in Fig. 1. The weaker effect upon η
is due to its reduced sensitivity to the gap opened by
superconductivity on the Fermi surface.
We will present a detailed discussion of the implica-

tion of these results for the pnictide and cuprate phase
diagrams to Section VI. However, let us highlight here
an important inference that will follow from our com-
putations. We will argue that the experimental phase
diagrams imply that Ising-nematic ordering and SDW
ordering are independent instabilities of the Fermi sur-
face for the cuprates. In contrast, for the pnictides, our
conclusion will be that the SDW ordering is the primary
Fermi surface instability, and the Ising-nematic ordering
is a secondary response to the square of the SDW order
parameter.
This paper is structured as follows. We will begin in

Section II by introducing our starting point, the spin-
fermion model with the SDW fluctuation. Within the
spin-fermion theory, we show that the SDW fluctuation
induces the d wave pairing for the cuprate and s+− for
the pnictides instead usual s wave pairings in Section III.
Assuming the d or s+− wave pairings in each case, we ex-
tend the spin-fermion theory into the theory with pairing
and other possible orders in Section IV. In section V, we
show the quantum critical point shifts toward the or-
dered phase, which explicitly shows the competition be-
tween superconductivity and the SDW phase. Section VI
presents our conclusions.

II. THE SPIN-FERMION MODEL

We will study the system with SDW quantum phase
transition in two dimensional system. The main ingre-
dients of the spin-fermion model are Fermi surfaces and
the SDW order parameter. Let us first consider generic
microscopic Hamiltonians for the cuprates and the pnic-
tides.

HCu =
∑

k

ǫc(k)c
†
aca +Hsdw

HFe =
∑

k

ǫc(k)c
†
aca +

∑

k

ǫd(k)d
†
ada +Hsdw (4)

Here, we consider “minimal Fermi surfaces” for both ma-
terials, where c correspond to the one band electron for
the cuprates around the Γ point, and for the pnictides,
c, d correspond to the hole and electron bands centered at
(0, 0) and (±π/a0, 0). All terms containing the SDW op-
erators are in Hsdw. In Fig. 2, we illustrate typical hole-
doping cuprates large Fermi surface and pnictides’ two
band Fermi surfaces. To see general features, we consider



3

incommensurate ordering wave-vectors for cuprates20,

~Q1 =
2π

a0

(
1

2
− ϑ,

1

2

)
, ~Q2 =

2π

a0

(
1

2
,
1

2
− ϑ

)
. (5)

For the pnictides, we represent the ordering wavevector

as ~Q = (π/a0, 0) explicitly in the figure, but there is an-

other hot spot with the ordering vector, ~Q = (0, π/a0).
From now on, we set the lattice constant as a fundamen-
tal unit as usual. As it is well-known in the literature,23

the incommensurate SDW fluctuation is decribed by two
complex vector wave functions.

~S = Re[~Φ1e
i ~Q1·~r + ~Φ2e

i ~Q2·~r] (6)

In the figure, two distinct hot spots are represented by
filled and empty circles in the cuprate Fermi surface. The
filled one is farther from the nodal point than the empty
one. Note that the incommensurate SDW fluctuation
links a filled circle with a empty circle. If we consider one
special case, the commensurate SDW fluctuation, two
kinds of hot spots become identical, and we only need
one real O(3) field to describe the SDW fluctuation as
usual.

Because the hot spots mainly contribute to the tran-
sition in the low energy theory, we write the electron
annihilation operator as combination of the hot spot con-
tinuum fields as follows. For the cuprate,

ca(x) ∼
∑

j

fj,a(x)e
ikf,j ·x + gj,a(x)e

ikg,j ·x

, j = (1, · · · , 4, 1̄, · · · , 4̄). (7)

The f, g fields represent the nearer and farther fields from
the nodal points, so the SDW fluctuation mixes the f and
g fields. The commensurate limit means f and g fields
become identical. For the pnictides case, two bands can
be described by hot spot fields as follows.

ca ∼ f1ae
iK1·x + f1̄ae

−iK1·x

+ f4ae
iK4·x + f4̄ae

−iK4·x

da ∼ g2ae
iK2·x + g2̄ae

−iK2·x

+ g3ae
iK3·x + g3̄ae

−iK3·x (8)

As in the cuprates, the SDW fluctuation mixes f and
g particles in this notation. We note that the electron
band does not have the shape of circle, which makes the
SDW possible, and there is no symmetry that guaran-
tees the identity of the two bands. For convenience, we
focus on the commensurate case in the remaining of this
section, and the next two sections for describing spin-
fermion models. But, later in the Sec. V, we will come
back to the general incommensurate cases and consider
the critical point shifts in general.

The spin-fermion model with commensurate SDW sim-

kx

ky ΓΓ

1̄

2̄ 3̄

4̄

14

23

kx

ky

1

23

4 3̄

4̄

Q = ( π, 0)

Γ

2̄

1̄

FIG. 2: Hot spots near SDW transition. In the upper and
lower panel, large Fermi surface for the cuprates and two band
structure for the pnictides are shown. The ordering vectors
for the cuprates are ~Q1 = 2π

a0
( 1
2
− ϑ, 1

2
), ~Q2 = 2π

a0
( 1
2
, 1
2
− ϑ)),

and the pnictides have ~Q = (π, 0). In the upper panel,
the filled and empty circles have different distances from the
node, which means the gap magnitudes are different. Two
ordering wave vectors are represented by the dashed and thin
lines in the upper panel and arrowed lines are in the bot-
tom. For the pnictides, the electron band is distorted because
there is no symmetry that guarantees identicalness of the hole
and the electron band, which can also induces different gap
functions.29,30 In both panels, every hot spot is numbered and
the bar notation is used for the negative.

ply becomes

L =
1

2
(∂τ ~ϕ)

2 +
1

2
(∇~ϕ)2 +

r

2
(~ϕ)2 +

u

4
(~ϕ2)2

+ f †
j,a(∂τ − i~vj · ∇ − av2f∇

2)fj,a

+ λ~ϕ
(
f †
j,a~σa,bfj′,b

)
Mj,j′ , (9)

where Mj,j′ is non-zero constant when kj , k
′
j are con-

nected by ~Q. The first and second lines describe the dy-
namics of the spin and fermion sectors. The third line is
the “Yukawa” coupling term. Note that we explicitly in-
clude the second derivative kinetic term for the fermions
in the theory, which becomes irrelevant if we only focus
on the SDW phase transition. Such term is not neces-
sary for describing the SDW phase transition with non-



4

FIG. 3: Pairing vertex. The line with arrow is fermion and
the wavy line is for the SDW fluctuation.

collinear Fermi velocities only, but the existence plays an
important role in extending the theory to the one with
pairing and nematic orders. Note that the final form of
the spin-fermion model is exactly the same in both the
cuprates and the pnictides even though the microscopic
band structure and the ordering vectors are completely
different. This means the physics for the SDW transition
is universal and we can focus on one case and apply the
result to the other case.

As usual, the effective action for the SDW phase tran-
sition is given by integrating out the fermions and expand
with order parameters.

SH =

∫
d2k

4π2
T
∑

ωn

1

2
[k2 + γ|ωn|+ r − χ0]|ϕa(k, ωn)|

2

+
u

4!

∫
d2xdτ(ϕ2

a(x, τ))
2 (10)

This Hertz-type theory is well-known and it describes the
SDW fluctuation with dynamical critical exponent z = 2
at least in the zeroth order. In this paper, we only focus
on the critical point shifts rather than critical properties
of the transition itself.11

III. PAIRING INSTABILITIES

Within the spin-fermion model, we can address pairing
problems naturally. If we consider the SDW fluctuation
as a pairing boson, then we need to investigate plausi-
bility of the pairing instabilities by the SDW. The basic
idea is following. If we assume there is infinitesimal pair-
ing, then the pairing becomes enhanced or suppressed by
the integrating out higher energy-momentum contribu-
tions depending on the possibility of the pairing channel.
In the Fig. 3 such a pairing vertex is illustrated. Note
that the fermions with opposite momentums are paired,
so the participating fermions in the pairing is not the
same as ones in the SDW in general. If we consider the
s wave channel in the cuprates and the s++ channel for

the pnictides, the pairing and its vertex correction are

Φs ≡ εab(f1,af1̄,b + f2,af2̄,b + f3,af3̄,b + f4,af4̄,b)

gsΦ = gsΦ,0

(
1− λ2

ϕ

∫

k,ω

1

ω2 + ε2k

1

γ|ω|+ k2 + ξ−2

)
.(11)

Note that the relative sign between hot spots does not
change, which is the main characteristic of the s wave
pairing. As we can see, the vertex becomes irrelevant
in the low energy limit in the RG sense. Therefore, the
SDW fluctuation cannot mediate usual s wave pairing for
the cuprates and s++ for the pnictides.

However, in the d wave channel of the cuprates9 and
the s+− channel31,32 of the pnictides, the relative sign
between the hotspots changes, given the pairing symme-
tries. Such relative sign changes allow the pairing chan-
nel’s enhancement. The pairing and its vertex correction
are

Φd ≡ εab(f1,af1̄,b − f2,af2̄,b − f3,af3̄,b + f4,af4̄,b)

gdΦ = gdΦ,0

(
1 + λ2

ϕ

∫

k,ω

1

ω2 + ε2k

1

γ|ω|+ k2 + ξ−2

)
.(12)

Clearly, the alternative sign change induces enhancement
of the d, s+− wave pairings in the low energy limit.
Therefore, the d and s+− pairing is natural under the
SDW fluctuations rather than usual s and s++ pairings
in conventional theory. In the next sections, we assume
the existence of the pairings in each case and incorporate
them into the spin-fermion model in a manner consistent
with symmetry. Moreover, by symmetry consideration,
we also introduce other possible order parameters such
as a nematic order and charge density wave and extend
our theory to incorporate them.

Notice that the vertex correction in the Eq. (12) is log-
arithmically divergent if we have finite correlation length.
Such behavior is a well-known signature of the conven-
tional BCS theory. However, in the quantum critical re-
gion, the pairing boson is softened and the quantum fluc-
tuation becomes important. The nature of this quantum
critical pairing has been discussed in Refs. 11,28.

IV. MICROSCOPIC SYMMETRY AND

EFFECTIVE THEORY

To extend the spin-fermion model to the one with pair-
ing terms and nematic order parameter, let us consider
microscopic symmetries and thier transformations be-
cause the square lattice symmetry should be respected
in the low energy theory. Hereafter, we analyze the sym-
metry in terms of the cuprate problem unless otherwise
stated. It is easy to extend it to the pnictides case. Due
to the dx2−y2 wave property, the pairing term’s rotation
and reflection needs additional factors. In Appendix A,
we show the explicit transformation properties of fields
and bilinear terms to avoid notation ambiguity. Nambu
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Tx,y Rπ/2 Ixy T

Ψ1,a Ψ1,ae
−ik1x,y iτzΨ3,a iτzΨ2,a −τyΨ1,a

Ψ2,a Ψ2,ae
−ik2x,y iτzΨ4,a iτzΨ1,a −τyΨ2,a

Ψ3,a Ψ3,ae
−ik3x,y −iτxεabΨ̃1,b −iτxεabΨ̃4,b −τyΨ3,a

Ψ4,a Ψ4,ae
−ik4x,y −iτxεabΨ̃2,b −iτxεabΨ̃3,b −τyΨ4,a

TABLE I: Symmetry transformations of the spinor fields un-
der square lattice symmetry operations. Tx,y: translation by
one lattice spacing along the x, y direction; Rπ/2: 90

◦ rotation
about a lattice site (x → y, y → −x); Ixy: reflection about
the x = y axis (x → y, y → x); T : time-reversal, defined as a
symmetry (similar to parity) of the imaginary time path inte-
gral and the conjugate fields are transformed to Ψ† → Ψ†τy.
Note that such a T operation is not anti-linear. Also, the
notation, Ψ̃i,b = (Ψ†

i,b)
T is used for convenience.

spinors for particles are defined in a usual way:

Ψi,a ≡

(
fi,a

εabf
†

ī,b

)
, i = 1, 2, 3, 4 (13)

In Table I, we summarize the transformation rules of the
spinor fields.

Among various combinations of bilinear terms, the fol-
lowing operators are of interest.

O∆ ≡ +Ψ†
1,aτ

xΨ1,a −Ψ†
2,aτ

xΨ2,a

−Ψ†
3,aτ

xΨ3,a +Ψ†
4,aτ

xΨ4,a (14)

Oζ ≡ +Ψ†
1,aτ

xΨ1,a +Ψ†
2,aτ

xΨ2,a

+Ψ†
3,aτ

xΨ3,a +Ψ†
4,aτ

xΨ4,a (15)

Oη ≡ +Ψ†
1,aτ

zΨ1,a −Ψ†
2,aτ

zΨ2,a

−Ψ†
3,aτ

zΨ3,a +Ψ†
4,aτ

zΨ4,a (16)

Oρ ≡ +Ψ†
2,aτ

zΨ3,a +Ψ†
3,aτ

zΨ2,a (17)

The operator, O∆, is invariant under all the lattice sym-
metries. This is just d wave pairing term’s low energy
expression. Therefore, inserting the operator, O∆, in the
original Lagrangian is certainly allowed by the symme-
try consideration. For the future convenience, let us write
down the fermion Hamiltonian with pairing explicitly.

Hf =
∑

(
Ψ†

1,a

Ψ†
2,a

)(
ε1τ

z +∆τx 0

0 ε2τ
z −∆τx

)(
Ψ1,a

Ψ2,a

)

+
∑

(
Ψ†

3,a

Ψ†
4,a

)(
ε3τ

z −∆τx 0

0 ε4τ
z +∆τx

)(
Ψ3,a

Ψ4,a

)

(18)

εi(k) = ~vi · ~k + a v2f
~k2. Note that ∆ is a given constant

here.
The Oζ,η operators are also interesting, and they are

transformed as follows:

Tx,y : Oζ,η → +Oζ,η

Rπ/2 : Oζ,η → −Oζ,η

Ixy : Oζ,η → −Oζ,η

T : Oζ,η → +Oζ,η (19)

Therefore, Oζ,η operators have nematic ordering symme-
tries. The difference between two operators are that Oζ

is from the pairing channel and Oη is from the density
channel.
The final operator Oρ describes a charge density wave

order parameter, which has horizontal ordering wavevec-
tor in this case. Such ordering was considered a candidate
of the “pseudogap” phase and the high energy 4a0 order-
ing pattern in the cuprates33. Notice that the hot spots
are in general not linked by (π/4, 0), but linked by the

ordering vector, ~QCDW = ~kf2 − ~kf3, which is consistent
with the observations of the Hudson and collaborators34.
For a thorough consideration of the charge density wave,
we need to investigate “hot-spots” for the charge density
wave order and start from the beginning. But because
the calculations are identical in both cases, we consider
the charge ordering within the present SDW theory.
The original theory can be extended by introducing

the other order parameters from the above microscopic
consideration. The total theory is

Lϕ =
1

2
(∂τ ~ϕ)

2 +
1

2
(∇~ϕ)2 +

r

2
(~ϕ)2 +

u

4
(~ϕ2)2

LΨ = Ψ†
i,a(∂τ +H0)Ψi,a

Lη =
1

2
(∂η)2 + sη2 + · · ·

Lρ =
1

2
(∂ρ)2 + wρ2 + · · ·

Lϕ−Ψ = λϕ~ϕ ·
[
Ψ†

1,a~σabτ
xεbcΨ̃2,c +Ψ†

3,a~σabτ
xεbcΨ̃4,c

]

Lη−Ψ = ληη · Oη = ληη
∑

j

mjΨ
†
j,aτ

zΨj,a

Lρ−Ψ = λρρ · Oρ = λρρ(Ψ
†
2,aτ

zΨ3,a +Ψ†
3,aτ

zΨ2,a)

L′
ζ =

1

2
(∂ζ)2 + s1ζ

2 + · · ·

L′
ζ−Ψ = λζζ · Oζ = λζζ ·

∑

j

Ψ†
j,aτ

xΨj,a, (20)

where H0 is the spatial representation of the Eq. (18)
and m1,4 = 1,m2,3 = −1 . Note that the L′ terms are
higher order in terms of the pairings.
Before going further, let us remark the meaning of the

above consideration. In this extended theory, we have
found the two different nematic order channels. One or-
der parameter, η, couples to the density of fermions. The
other one, ζ, couples to the pairing, which suggests they
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FIG. 4: Susceptibility Feynman diagram. The wavy line is
for the order parameters like the SDW or the nematic order.
The vertex matrix elements depend on the order parameters.

have different charges. Many previous works focus on the
pairing channel nematic order with the nodal fermions
of the dx2−y2 superconductivity.35–40 The nematic or-
der naturally induces different pairings, ∆x 6= ∆y, which
corresponds to the condensation of ζ in this case. The
original nodal fermions are gapped and the nodes be-
come shifted depending on the sign of the gap function.
Within the nodal fermion theory the density channel
is not allowed by the square lattice symmetry. In our
spin-fermion model, the density channel is surely allowed
and can see the effect under the small superconductiv-
ity. Note that the pairing channel is higher order in the
pairing amplitude ∆, which we will assume it is small
here.

V. CRITICAL POINT SHIFTS

In this section, to study influence of the superconduc-
tivity on quantum critical points in general, we come back
to general cases, including the incommensurate cases for
the cuprates. We can easily generalize the previous dis-
cussion to the incommensurate case: the changes are
mainly in the fermions’ spectra, which have different
velocities and gap functions between two SDW linked
points, and the existence of the complex two vector fields
for the SDW. We will see effects of superconductivity on
the quantum critical points by evaluating the diagrams
in Fig. 4 for various order parameters with and without
superconductivity.

A. Spin density wave

To investigate the effect of the superconductivity on
the SDW critical point, let us focus on the SDW order
near the criticality with and without superconductivity.
The interaction between the SDW order and fermions
naturally affects the critical point as we saw in the Eq.
(10). If we allow the superconductivity, the main effect
of the superconductivity is gapping out the fermion sur-
faces, so the contribution to the critical point has to be
changed. The amount of the change can be obtained by
evaluating the susceptibility with and without the pair-
ing. In each case, the critical point is affected with the
loop contribution and we can evaluate them with the
Hamiltonian, Eq. (18). The total susceptibility for the

one ordering wavevector,say 1, is

χφ
∆ =

∑

ki−kj= ~Q1

χφ
∆,ij

Due to the symmetry it is enough to choose one of the
linking hot-spots. For example, the SDW fluctuation be-
tween kf,1 and kg,2̄ is

χφ
∆,12̄

= (−)2λ2
ϕ

∫

k,ω

iω + ε1(k)

ω2 + ε21 +∆2
+

iω + ε2̄(k)

ω2 + ε22 +∆2
−

+2λ2
ϕ

∫

k,ω

∆+

ω2 + ε21 +∆2
+

∆−

ω2 + ε22 +∆2
−

= 2λ2
ϕ

∫

k,ω

ω2 − ε1(k)ε2̄(k) + ∆+∆−

(ω2 + ε21 +∆2
+)(ω

2 + ε22 +∆2
−)

. (21)

The two gap functions arise from the two bands in pnic-
tides, and from the distance differences from the nodal
point in the cuprates.To parametrize gap difference, let
us introduce one parameter, α as ∆± = ∆(1±α); thus α
characterizes the distinction between the two hot spots,
which become crystallographically equivalent α = 0. For
the cases under consideration here, α = 0 for a commen-
surate (π, π) wavevector for the SDW ordering for the
cuprate case, while α 6= 0 in all other cases. As we showed
in the Eq. (10), the susceptibility function contributing
to the critical point and the relative critical point shifts
with and without superconductivity is defined as

r∆c = χφ
∆ = χφ

0 − (χφ
0 − χφ

∆) = r0c − δr. (22)

A positive δr implies the critical point shifts to shrink the
SDW region leading to competition between the SDW
and the superconductivity, while the negative sign im-
plies attraction between the SDW and the superconduc-
tivity.

As we can see, the fermion loop formula, χφ
∆, is di-

vergent in the ultraviolet limit without the curvature
term. But the critical point shift, which was defined as
difference between different pairing magnitudes, is well-
defined. This is because the susceptibility function con-
tains two independent momentum components unless the
two Fermi velocities are parallel, which requires hot spots
are the same as the nodes. We exclude such special case
in this paper. Therefore, the curvature term, a, can be
dropped, and we assume |∆|a ≪ 1. So, the dispersion
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relation εi(k) = ~vi · ~k will be used for evaluation.

δr = χφ
0 − χφ

∆

= Nfλ
2
ϕ

∫

k

[
1

|v1 · k|+ |v2 · k|

(
1 +

v1 · k v2 · k

|v1 · k||v2 · k|

)

−
1√

(v1 · k)2 +∆2
+ +

√
(v2 · k)2 +∆2

−

×

(
1 +

v1 · k v2 · k√
(v1 · k)2 +∆2

+

√
(v2 · k)2 +∆2

−

+
∆+∆−√

(v1 · k)2 +∆2
+

√
(v2 · k)2 +∆2

−

)]

= Nf λ2
ϕ

C∆(α)

| sin(θ1 − θ2)|

|∆|

vf1vf2
, (23)

where the Fermi velocities are defined as

~v1 = vf1(cos(θ1), sin(θ1)) , ~v2 = vf2(cos(θ2), sin(θ2)

Therefore, the angle dependence and the relative gap
function determine the critical point shift. The angle de-
pendence on the two Fermi velocities indicates that more
parallel velocities implies a larger critical point shift. So
the perpendicular Fermi velocities of SDW participating
fermions have the smallest critical point shift. As we
can see, the sine function dependence indicates that the
collinear Fermi velocities are dangerous in our calcula-
tion. In this case, we need to keep a from the start, and
the functional behavior becomes the same as the nematic
case. The coefficient, C(α), is

C∆(α) =
1

4π2

∫
dqxdqy

[

1

|qx|+ |qy|
−

1
√
q2x + (1 − α)2 +

√
q2y + (1 + α)2

×

(
1 +

1− α2

√
q2x + (1− α)2

√
q2y + (1 + α)2

)]
. (24)

As pointed out in Section I, the sign of C∆(α) is not im-
mediately evident from Eq. (24): the small ~q region near
the hot spot contributes a positive sign, while that from
large ~q has a negative sign. A numerical evaluation of
Eq. (24) shows that the result is indeed non-negative for
all α, and the result is shown in Fig. 5: C∆(α) increases
monotonically with increasing α.

A curious feature of Fig. 5 is that C∆(0) = 0: it van-
ishes for the case of equivalent hot spots. However, it
is not at all evident from the integral in Eq. (24) that it
equals zero for α = 0. This is more easily proved from the
original expression in Eq. (21), by reversing the order of
frequency and momentum integration. Evaluating first
the momentum integration in Eq. (21) (after linearizing

0.1 0.2 0.3 0.4
0

0.3

0.6

0.9

1.2

Α

2Π
2 C
D
HΑ
L

FIG. 5: The SDW critical point shift with the relative gap
parameter α, C∆(α).

the dispersion about the Fermi surfaces) we find

χφ
∆,12̄

= λ2
ϕ

1

2vf1vf2| sin(θ1 − θ2)|

×

∫

ω

ω2 +∆+∆−√
ω2 +∆2

+

√
ω2 +∆2

−

(25)

It is now evident that the critical point shift vanishes for
∆+ = ∆−, for then the above result becomes indepen-
dent of the value of the gap.

If we consider the state slightly off the criticality. e.g.
by considering finite temperature, then the low energy
physics is governed by the temperature. In such a case,
the shift becomes an analytic function of the supercon-
ducting gap, which means quadratic gap functions scaled
with another energy scale, instead of the linear gap.
Therefore, we can understand the non-analytic behavior
of the linear gap as a property of the quantum critical
points.

B. Charge density wave

The CDW ordering operator,Oρ, with a specific order-

ing wave vector, ~QCDW = ~kf2 − ~kf3, was introduced in
the previous section. The CDW has different character-
istics from the SDW. For example, instead of the spin
dependent vertex, it has density type operators linking
two hot spots, and also the linked hot-spots’ gap func-
tions have the same pairing sign and magnitude. Com-
bining all of these, the susceptibility for the CDW with
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superconductivity is

χρ
∆,23

= (−)2λ2
ρ

∫

k,ω

iω + ε3(k)

ω2 + ε23 +∆2
+

iω + ε2(k)

ω2 + ε22 +∆2
+

+2λ2
ρ

∫

k,ω

∆+

ω2 + ε23 +∆2
+

∆+

ω2 + ε22 +∆2
+

= 2λ2
ρ

∫

k,ω

ω2 − ε3(k)ε2(k) + ∆+∆+

(ω2 + ε23 +∆2
+)(ω

2 + ε22 +∆2
+)

. (26)

The CDW critical point shift is

δw = χρ
0 − χρ

∆

=
Nf

2
λ2
ρ

∫

k

[
1

|v3 · k|+ |v2 · k|

(
1−

v3 · k v2 · k

|v3 · k||v2 · k|

)

−
1√

(v3 · k)2 +∆2
+ +

√
(v2 · k)2 +∆2

+

×

(
1−

v3 · k v2 · k√
(v3 · k)2 +∆2

+

√
(v2 · k)2 +∆2

+

+
∆+∆+√

(v3 · k)2 +∆2
+

√
(v2 · k)2 +∆2

+

)]

=
Nf

2
λ2
ρ

C∆(0)

| sin(θ2 − θ3)|

|∆+|

v2f2
, (27)

where the Fermi velocities are defined as

~v2 = vf2(cos(θ2), sin(θ2)) , ~v3 = vf2(cos(θ3), sin(θ3),

where the angle between ~v2,3 is (θ2 − θ3), and the veloci-
ties are not collinear in general. Interestingly, the calcu-
lation itself is quite similar to the SDW’s formally. How-
ever, a key difference is that the participating fermions
have the exactly same gap functions and Fermi velocities
for the CDW, and this is guaranteed by symmetry. Con-
sequently, the prefactor in Eq. (27) is C∆(α = 0) which
is zero. Thus the shift in the CDW critical point vanishes
at this order.
We can estimates higher order in ∆ by evaluating

Eq. (27) with a finite momentum cutoff Λ. This intro-
duces dependence of the result on ∆/Λ, which is evalu-
ated in Appendix B. We find a net competing effect, but
this is formally higher order in ∆ and so parametrically
smaller than the SDW case.

C. Nematic order

With the extension of the spin-fermion theory, we can
consider the nematic order parameter within the theory.
As we mentioned before, there are two channels for the
nematic order, but for the case of a small pairing gap, it
is enough to consider the density channels. The critical

point correction can be evaluated from the fermion loop
calculation as before, and it is

1

Nf
χη
∆ = (−1)λ2

η

∫

k,ω

Tr

(
τz

iω + εkτ
z +∆iτ

x

ω2 + ε2k +∆2
i

× τz
iω + εkτ

z +∆iτ
x

ω2 + ε2k +∆2
i

)

= 2λ2
η

∫

k,ω

(
1

ω2 + ε2k +∆2
i

−
2ε2k

(ω2 + ε2k +∆2
i )

2

)

= λ2
η

∫

k

∆2
i

(ε2k +∆2
i )

3/2
(28)

Note that there is a crucial difference in this integration
compared to the previous critical point shifts. Because
the nematic order parameter consists of particle and hole
with same Fermi velocity, the pathology of collinear dis-
persions are always present in the nematic phase transi-
tion. Therefore, we need to keep the curvature term, a,
and then we have the susceptibility as

1

Nf
χη
∆ = 2λ2

η

∫

k,ω

(
1

ω2 + ε2k +∆2
i

−
2ε2k

(ω2 + ε2k +∆2
i )

2

)

= λ2
η

∫

k

∆2
i

(ε2k +∆2
i )

3/2

= λ2
ηD0

∫ ∞

−1/(4a)

dε
∆2

i

(ε2 +∆2
i )

3/2

= λ2
η

1

4π

1

v2f

1

a

(
1− 8(|∆i|a)

2
)
, (29)

where D0 is the constant density of state. The lower cut-

off is from the dispersion relation εk = ~v ·~k+av2k2. Note
that this integration is well-defined in both ultra-violet
and infra-red regions. Even in the SDW the colinear
Fermi velocity hot spots whose cases are excluded in this
paper also suffer similar problems.

The critical point shift of the nematic ordering, then,
is

δηc ≡ χη
0 − χη

∆ = Nfλ
2
η

Cη

v2f

1

a
(|∆i|a)

2, (30)

where Cη = 2
π . Note that the nematic critical point shift

does not contain the linear gap behavior like the SDW.
Instead it starts from the second order and it is analytic
in terms of the gap function. Such a term describes usual
competing term of the Landau-Ginzburg theory, as was
discussed in Section I. Parametrically the nematic order-
ing is more stable than the spin density wave under the
“weak” superconductivity.
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FIG. 6: Cuprate phase diagram adapted from Ref. 21,22.
Here x is hole doping, xm is the position of the SDW crit-
ical point in the metal, and xs is the SDW critical point in
the insulator. The shift between xm and xs represents the
consequence of Eq. (3). The regions with ‘fluctuating Fermi
pockets’ have renormalized classical thermal fluctuations of
SDW order. Ising-nematic ordering is expected for T < T ∗,
and consistent with Fig. 1, this regime is not sensitive to the
onset of superconductivity.

VI. CONCLUSIONS

Our main results, summarized in Fig. 1, have a natu-
ral application to the physics of the cuprates. For SDW
ordering, we have shown that there is a large shift in the
quantum critical point due to the onset of superconduc-
tivity, represented by Eq. (3). In contrast, for the Ising-
nematic order, when considered as an independent order
parameter, there is a significantly smaller shift, of order
that expected in Landau theory in Eq. (2). These results
provide a natural basis for the phase diagram proposed in
earlier work21,22, which we reproduce here in Fig. 6. The
large shift in the SDW ordering between the metal and
the superconductor is represented by the arrow from xm

to xs. We assume that the Ising-nematic ordering has an
onset around xm, and this is barely shifted by the onset
of superconductivity, as implied by Fig. 1. Consequently,
long-range Ising-nematic ordering can survive for x > xs,
as is indicated in Fig. 6. These results are consistent with
recent observations of Ising-nematic ordering41–43 in the
hole-doped cuprates.
In an applied magnetic field, as was discussed in

Refs. 22,23, the point xs eventually merges with xm, so
that the SDW transition in the high-field normal state
takes place at x = xm. Given this, we expect that the
Ising nematic transition will also merge (or become very
close to) with the SDW transition at high fields.
A notable feature of Fig. 6 is the “back-bending” of

the crossover line bounding the region where there are
‘renormalized classical’ fluctuations of local SDW order:

0 0.02 0.04 0.06 0.08 0.10 0.12

150

100

50

0

SC

Ort

AFM Ort/

Tet

FIG. 7: Phase diagram for Ba[Fe1−xCox]2As2 from Refs. 5,
6. The back-bending of the SDW ordering transition in the
superconducting phase is similar to that of Tsdw in Fig. 6.
Here, rather than renormalized classical SDW fluctuations,
we have true long-range order indicated by ‘AFM’. The Ising-
nematic order is present in the phase labeled ‘Ort’ and absent
in that labeled ‘Tet’. Note that, unlike the cuprates, the Ising-
nematic transition follows the SDW ordering transition in the
superconducting state too.

this region is bounded by the line labeled T ∗ in the nor-
mal state, and by the line labeled Tsdw in the supercon-
ducting state. As we have argued21,22, this is a natural
consequence of the shift of the in SDW quantum critical
point from xm to xs.
Turning to the pnictides, we note that the back-

bending of the SDW ordering has been clearly seen in
recent experiments, as shown in Fig. 7. Here, because
the stronger 3-dimensionality of the crystal structure and
the commensurate wavevector, the region of renormal-
ized classical SDW fluctuations becomes a region of true
long-range order, and so is more easily detected by neu-
tron scattering. However, Fig. 7 differs from the phase
diagram in Fig. 6 in one important aspect: note that
the Ising-nematic transition in Fig. 7 closely tracks the
SDW transition in both the normal and superconducting
states, rather than separating from it in the supercon-
ducting state as in Fig. 6. This means that the shift in
the nematic ordering transition due to superconductivity
is not significantly smaller than that of the SDW tran-
sition. This is in conflict with the situation outlined in
Fig. 1, where the nematic transition hardly shifts relative
to the SDW transition.
This difference between our computations and the

pnictide phase diagram in Fig. 7 implies that the Ising-
nematic transition in the pnictides is not an independent
instability associated with the electrons near the Fermi
surface. For if it were, our computations show that it
would barely notice the onset of superconductivity. We
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now argue that the phase diagram in Fig. 7 can be un-
derstood if we assume that the Ising-nematic ordering is
primarily induced by its coupling to the square of the
SDW order44,45. Thus, in addition to the coupling of the
nematic order, η, to the fermions in Eq. (20), we need to
add its coupling to the SDW order:

Lη−ϕ = λ̃η
(
~ϕ2
x − ~ϕ2

y

)
, (31)

where ~ϕx (~ϕy) is the SDW ordering at wavevector (π, 0)
((0, π)). Then a correction of order |∆| to the SDW fluc-
tuations from the onset of superconductivity, will feed
into a similar correction to the Ising-nematic fluctua-

tions via a perturbation theory in λ̃. Thus our conclu-

sion is that λ̃ is the dominant coupling which induces
Ising-nematic order in the pnictides. A similar conclu-
sion appears to have been reached recently by Kimber
et al.46 based upon their analysis of the STM observa-
tions of Chuang et al.47. In contrast, for the cuprates,

the influence of λ̃ appears significantly weaker.
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Appendix A: Symmetry

In this section, we set the notation for the symme-
try transformation of the square lattice. Mean field
Hamiltonian with the dx2−y2 needs the pairing term as
∆i,i±x = −∆i,i±y .

HMF = −
∑

<ij>

tij(c
†
iacja + h.c)− µ

∑

i

c†i,aci,a

+
∑

i,j

∆∗
i,j(ǫ

abciacjb) + h.c. (A1)

The first line describes usual hopping terms on the square
lattice, which gives the Fermi surface. We exclude special
‘nesting’ type Fermi surfaces and assume there are points
linked by the spin density wave ordering vector.
We start with lattice field transformations.

Tx,y : ca(x) → c′a(x
′) = ca(x)

Rπ/2 : ca(x) → c′a(x
′) = ica(x)

Ixy : ca(x) → c′a(x
′) = ica(x) (A2)

The rotation and reflection transformation attaches the

Tx Ty Rπ/2 Ixy

f1,a f1,ae
−ik1x f1,ae

−ik1y if3,a if2,a

f2,a f2,ae
−ik2x f2,ae

−ik2y if4,a if1,a

f3,a f3,ae
−ik3x f3,ae

−ik3y if1̄,a if4̄,a

f4,a f4,ae
−ik4x f4,ae

−ik4y if2̄,a if3̄,a

f1̄,a f1̄,ae
ik1x f1̄,ae

ik1y if3̄,a if2̄,a

f2̄,a f2̄,ae
ik2x f2̄,ae

ik2y if4̄,a if1̄,a

f3̄,a f3̄,ae
ik3x f3̄,ae

ik3y if1,a if4,a

f4̄,a f4̄,ae
ik4x f4̄,ae

ik4y if2,a if3,a

TABLE II: Symmetry transformations of the hot-spot fields
under square lattice symmetry operations.

factor i, which makes the d wave pairing term invariant.
After writing the lattice fields with continuum field, we
can obtain the transformation in Table. II. It is worth-
while to mention that at low energy or long-wavelength
scale the fields at hot spots can be treated as independent
fields.

Time reversal symmetry is obtained with low energy
fields instead of the lattice fields, so we do not consider
it here. See the caption of the Table. I.

Ψi,a ≡

(
fi,a

εabf
†

ī,b

)
, i = 1, 2, 3, 4 (A3)

After introducing the Nambu spinors, bilinear spinors’
transformations can be done easily.

Physical quantities are described with bilinear terms
such as density and pairing interactions. Below several
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important bilinear terms are listed up to constants.

Ψ†
1,aτ

0Ψ1,a = f †
1af1a − f †

1̄a
f1̄a

Ψ†
1,aτ

zΨ1,a = f †
1af1a + f †

1̄a
f1̄a

Ψ†
1,aτ

xΨ1,a = εab(f
†
1af

†

1̄b
+ f1̄bf1a)

Ψ†
1,aτ

yΨ1,a = (−i)εab(f
†
1af

†

1̄b
− f1̄bf1a)

Ψ†
1,aτ

x~σabεbcΨ̃2,c = −(f †
1a~σabf2̄b + f †

2a~σabf1̄b)

Ψ†
1,aτ

y~σabεbcΨ̃2,c = i(f †
1a~σabf2̄b − f †

2a~σabf1̄b)

Ψ†
1,aτ

0~σabΨ1,b = f †
1a~σabf1b + f †

1̄a
~σabf1̄b

Ψ†
1,aτ

z~σabΨ1,b = f †
1a~σabf1b − f †

1̄a
~σabf1̄b

Ψ†
1,aτ

x~σabΨ1,b = (f †
1af

†

1̄c
εbc + f1̄df1bεad)~σab

Ψ†
1,aτ

y~σabΨ1,b = (−i)(f †
1af

†

1̄c
εbc − f1̄df1bεad)~σab

(A4)

Appendix B: The CDW critical point shift

As we saw in the above, the critical point shift for the
CDW is determined by the function,

C∆(0) =
1

4π2

∫
dqxdqy

[
1

|qx|+ |qy|

−
1

√
q2x + 1 +

√
q2y + 1

×

(
1 +

1
√
q2x + 1

√
q2y + 1

)]

=
1

4π2

∫
dθdr

[
1

| cos(θ)|+ | sin(θ)|

−
r

√
r2 cos2(θ) + 1 +

√
r2 sin2(θ) + 1

×

(
1 +

1
√
r2 cos2(θ) + 1

√
r2 sin2(θ) + 1

)]

= lim
Λ→∞

∫
dθFΛ(θ). (B1)

FΛ(θ) ≡
1

4π2

∫ Λ

0

[
1

| cos(θ)|+ | sin(θ)|

−
r

√
r2 cos2(θ) + 1 +

√
r2 sin2(θ) + 1

×

(
1 +

1
√
r2 cos2(θ) + 1

√
r2 sin2(θ) + 1

)]
(B2)

In Fig. 8, we illustrate the function, FΛ(θ), with different
cutoffs. As we can see the larger cutoffs make the smaller
C∆(0), even though it is positive.
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