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Effective theory of Fermi pockets in fluctuating antiferromagnets

Yang Qi and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138

(Dated: March 1, 2010)

Abstract
We describe fluctuating two-dimensional metallic antiferromagnets by transforming to a rotating

reference frame in which the electron spin polarization is measured by its projections along the local

antiferromagnetic order. This leads to a gauge-theoretic description of an ‘algebraic charge liquid’

involving spinless fermions and a spin S = 1/2 complex scalar. We propose a phenomenological

effective lattice Hamiltonian which describes the binding of these particles into gauge-neutral,

electron-like excitations, and describe its implications for the electron spectral function across the

entire Brillouin zone. We discuss connections of our results to photoemission experiments in the

pseudogap regime of the cuprate superconductors.
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I. INTRODUCTION

An understanding of the nature of the electron spectral function in the underdoped

‘pseudogap’ regime has emerged as one of the central problems in the study of the cuprate

superconductors. A wealth of data has appeared in photoemission studies, some of which1–6

has been interpreted using a model of “Fermi arcs” across the Brillouin zone diagonals;

other studies7–9 have indicated the presence of pocket Fermi surfaces in the same region of

the Brillouin zone. Scanning tunnelling microscopy (STM) studies10 also indicate a Fermi

arc of excitations which appears to end abruptly at the magnetic Brillouin zone boundary

associated with two sublattice Néel order. Another issue of interest in experiments has been

the angular dependence of the electronic excitation gap energy in the superconducting state.

A ‘dichotomy’ has been noted10–13 between the behavior of the gap near the nodal points

on the Brillouin zone diagonals, and the antinodal points along the principle axes of the

Brillouin zone.

Related studies have also been made of the electronic spectra in the electron-doped

cuprates14–17. Here the spectra seem to be closer to that expected from conventional spin

density wave theory, and so constitute an important testing ground of theoretical ideas.

The recent observation of quantum oscillations in a strong magnetic field18–24 has given

further impetus to the development of a theory the normal state of the underdoped cuprates.

Some of the transport data23,25,26 has been interpreted in terms of the presence of electron

pockets in the hole-doped cuprates, for which there is no apparent evidence in the photoe-

mission studies; the latter, however, have only been carried out without a magnetic field.

Finally, an important motivation for our study comes from numerical studies27–32 of

Hubbard-like models for the cuprate superconductors. These studies show a significant

regime without any antiferromagnetic order, but with a dichotomy in the normal state

electronic spectra between the nodal and anti-nodal regimes. It would clearly be useful to

have analytic effective models which can be used to interpret the numerical data, and we

shall propose such models here.

The theory we present here builds upon the framework set up in Refs. 33 and 34. These

papers described a non-Fermi liquid state which was labeled an ‘algebraic charge liquid’

(ACL); this state was obtained after the loss of antiferromagnetic order in a metal via an

unconventional transition35 . As we will review below, in its simplest realization, the degrees

of freedom of the ACL are spinless fermions and a S = 1/2 complex boson zα which interact

via an emergent U(1) gauge force. This gauge force has strong effects even in possible

deconfined phases, and can lead to the formation of electron-like bound states between the

fermions and zα. The main purpose of this paper is to present a general discussion of the

dynamics of these fermionic bound states, and their influence on the photoemission spectra.

A full description of the pseudogap regime in the hole-doped cuprates will also require36

considerations of pairing of these fermionic bound states into bosonic Cooper pairs: this we

defer to a subsequent paper.
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In our previous work33,34, we presented analytic arguments based upon the structure of a

continuum theory valid at long wavelengths. Here, we shall present a more general formu-

lation of the theory, which allows computation of the electronic spectrum across the entire

Brillouin zone. We shall show how arguments based upon symmetry and gauge invariance

allow construction of an effective theory for the electronic spectrum. The theory will contain

a number of coupling constants, whose values will have to be determined by comparing to

numerical studies or experiments. Also, while the previous work33,34 used strong-coupling

perspective, starting from the Schwinger boson theory of the antiferromagnet. It is possible

to derive the results presented below also from this strong-coupling approach. However, we

will choose to present our results by departing37 from the “spin-fermion” model, which was

originally developed from the weak coupling expansion.

Let us begin by defining the Lagrangian, Lsf , of the spin-fermion model.38 We consider

fermions ciα (α, β =↑, ↓) hopping on the sites of a square lattice. These are coupled to the

fluctuations of the unit vector field nai (a = x, y, z) representing the local orientation of

the collinear antiferromagnetic Néel order. We will restrict our attention here to antiferro-

magnetic order at wavevector K = (π, π), although generalizations to other K are possi-

ble. Throughout, we will freely make a gradient expansion of nai over spatial co-ordinates

r = (xi, yi), focusing on the long wavelength fluctuations of the order parameter. However,

the fermion fields ci,α have important low energy modes at many locations in the Brillouin

zone, and so we will not make any gradient expansion on the fermion operators. We have

the imaginary time (τ) Lagrangian

Lsf = Lc + Lλ + Ln
Lc =

∑
i

c†iα(∂τ − µ)ciα −
∑
i<j

tij

(
c†iαcjα + c†jαciα

)
Lλ = −λ

∑
i

(−1)xi+yinai c
†
iασ

a
αβciβ

Ln =
1

2g

∫
d2r
[
(∂τn

a)2 + v2(∂rn
a)2
]
. (1.1)

Here tij are arbitrary hopping matrix elements describing the “large” Fermi surface, µ is the

chemical potential, λ is the spin-fermion coupling, g controls the strength of the antifero-

magnetic fluctuations, σa are the Pauli matrices, and the na field obeys the local constraint∑
a(n

a)2 = 1. Almost all previous studies of the spin-fermion model38 have involved a per-

turbative treatment in powers of the coupling λ, along with resummations of this expansion.

Here, we will not expand in powers of λ, treating it is a coupling of order unity: instead our

analysis are motivated by expansions either in the number of field components, or by small

g.

For sufficiently small values of the coupling g, the model Lsf clearly has an antiferromag-

netically ordered spin density wave (SDW) ground state with 〈na〉 6= 0. We are interested

here in the mechanism by which this order is lost as g is increased, and a metallic state with
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no broken symmetries is obtained. In a recent paper37 with others, we argued that there

were 2 generic possibilities:

(i) In the first case, there was a direct transition at a single critical g = gc to a Fermi liquid

metal with a large Fermi surface. This transition has been examined in previous work38,

and is directly expressed in terms of fluctuations of the O(3) order parameter na; the T > 0

crossovers above g = gc have also been described27–31.

(ii) The second possibility involved intermediate non-Fermi liquid phases before the large

Fermi surface metal was reached at sufficiently large g. In this case, the O(3) order parameter

was parameterized in terms of the spinor zα by

nai = z∗iασ
a
αβziβ. (1.2)

The spinor field zα is the natural variable to describe the loss of magnetic order at g = gc,

and the non-Fermi liquid phases above gc, and replaces the O(3) order parameter na.

Our focus in the present paper will be on the second possibility. Part of our motivation

comes from transport measurements39,40, which show an extended regime of non-Fermi liquid

behavior as T → 0 in high magnetic fields. We shall describe the photoemission spectra

at non-zero temperatures on both sides of gc. Our g ≥ gc results are candidates for the

pseudogap regime of the cuprates, and relate especially to recent experimental results of

Meng et al.9.

To complement the approach taken in Ref. 37, here we will motivate our choice of the

non-magnetic non-Fermi liquid phases by extending the theory35 of the loss of Néel order

in the insulator at half filling. Although motivated in a theory of metals, Lsf also contains

(in principle) a complete description of the insulating states at half-filling. Crucial to the

description of insulators,41,42 are ‘hedgehog’ point tunneling events (‘instantons’) in which

na points radially outwards/inwards from a spacetime point. These hedgehogs carry Berry

phases: in Lsf the Berry phases are expected to appear from the determinant of the gapped

fermions integrated out in a hedgehog field for na. All previous treatments of the spin-

fermion model have neglected the hedgehog Berry phases, and this may well be appropriate

under suitable circumstances in certain superconducting states.43

In this paper, we wish to focus on regimes and phases where the hedgehog tunnelling

events are suppressed. In the insulator, the hedgehog suppression is a consequence of quan-

tum interference from the hedgehog Berry phases, and leads to interesting new ‘deconfined’

phases and critical points.35,44,45 Hedgehog suppression is also possible in certain exotic

metallic states (to be described below), where fermionic excitations near a Fermi surface

lead to a divergence in the hedgehog action.33,34,43,46,47

It is useful to begin our analysis by adapting the phase diagram of Ref. 33 describing the

doping of an insulating deconfined critical point – see Fig. 1. In the insulator, at x = 0, the

transition is between a Néel state and a valence bond solid.42 This transition is described35 by

a deconfined critical point, with the order parameter na replaced by a complex ‘relativistic’
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FIG. 1. Proposed phase diagram33 of a quantum antiferromagnet doped with carrier density x.

The strength of antiferromagnetic fluctuations in the insulator is controlled by the coupling g. At

x = 0, there is a deconfined critical point35, separating a Néel state and a valence bond solid42. The

broken symmetries in these two states survive in metallic Fermi liquid state at non-zero x. More

importantly, the deconfined critical point broadens into a non-Fermi liquid phase, the algebraic

charge liquid (ACL), which is the focus of attention in the present paper. The conventional large

Fermi surface Fermi liquid is not shown in the phase diagram above. It appears at larger x, and

its phase transitions to the ACL and the SDW states were discussed in earlier work37.

boson zα which carries charges under an emergent U(1) gauge field Aµ: this mapping will be

reviewed in Section II. Upon moving away from the insulator, the fermions cα are replaced

by fermions ψp fermions which do not carry spin, but do carry charge p = ±1 of the U(1)

gauge field Aµ. We will present the Lagrangian of zα, ψp, Aµ which described the phase

diagram in Fig. 1 in Section II.

In the SDW phase of Fig. 1, the zα, ψp, Aµ theory is formally identical to the spin-fermion

model of cα, na. This is because hedgehogs are strongly suppressed when there is magnetic

order. We explore this connection in Appendix A, and in Section IV to obtain the spectral

functions of the electrons in the ‘renormalized classical’ (RC) regime49,50.

The transition out of the SDW phase in Fig. 1 is into a fractionalized metal phase, which

was dubbed34 an algebraic charge liquid (ACL). This transition is in the O(4) universality
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class.43 To leading order, the elementary excitations of the ACL are simply the constituent

fractionalized fields zα, ψp, Aµ, and their interactions have been discussed in previous work.43

Here, our primary results will be on the fermionic spectrum over a large intermediate

length scale near the boundary between the ACL and the confining metallic states shown in

Fig. 1. A key characteristic of the deconfined critical point is parametrically large separation

between the spin correlation length, ξ, and the confinement scale, ξconf , at which hedgehogs

proliferate. In the doped system, as argued in Ref. 33, the fractionalized excitations are

already bound into gauge neutral excitations at the scale ξ. Among these bound states are

electron-like fermions which carry charge −e and spin 1/2, and so can be directly detected

in photoemission experiments. We will present a phenomenological effective Hamiltonian

for these excitations in Section III.

II. U(1) GAUGE THEORY

The basic idea37 of the mapping to the theory of the ACL is to transform to a new set

of fermions, ψip with p = ±1, with their spin components p polarized along the direction of

the local SDW order. We perform this rotation with the spacetime dependent SU(2) matrix

Ri
αp so that50,51

ciα = Ri
αpψip (2.1)

We choose Rαp so that spin-fermion coupling is only along σz, and so

naiR
i†
pασ

a
αβR

i
βp′ = σzpp′ = pδpp′ (2.2)

This relationship is equivalent to

nai =
1

2
Tr
(
σaRiσzRi†) (2.3)

Now, we parameterize

Ri =

(
zi↑ −z∗i↓
zi↓ z∗i↑

)
(2.4)

with
∑

α |ziα|2 = 1. We can verify that Eq. (2.3) yields the usual relation in Eq. (1.2).

A crucial feature of the resulting Hamiltonian for the ψip and ziα is that it is invariant

under a local U(1) gauge transformation. This follows from the invariance of Eqs. (2.1) and

(1.2) under the transformation

ziα → ziαe
iϑi

ψip → ψipe
−ipϑi (2.5)
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where ϑi has an arbitrary dependence on space and time. Note that the ψip carry opposite

charges p = ±1 under the U(1) gauge transformation (which is unrelated to the gauge

invariance associated with the physical electromagnetic force). Associated with this U(1)

gauge invariance, we will introduce an internal dynamical gauge field Aµ in constructing the

effective theory.

Ref. 37 argued that describing the transition to the large Fermi surface Fermi liquid

required the inclusion of additional degrees of freedom so that the theory had a SU(2)

gauge invariance. We will not consider this extension here. However, we expect that simple

extensions of the results in Section III apply also to the SU(2) ACL phases found in Ref. 37.

We can now insert Eqs. (2.1) and (1.2) into Eqs. (1.1) and obtain the theory of fluctuating

Fermi pockets. We will assume that the ziα are slowly varying, but allow the fermion fields

ψip to have an arbitrary dependence on spacetime. The complete Lagrangian is written as

Lacl = Lz + Lψ + Lss (2.6)

The first term is the CP1 model for the zα:

Lz =
2

g

[
|(∂τ − iAτ )zα|2 + v2|(∇− iA)zα|2

]
(2.7)

The fermion hopping term in Eq. (1.1) yields some interesting structure; it can be written

as

−
∑
i<j

tij

[(
z∗iαzjα

) (
ψ†i+ψj+ + ψ†j−ψi−

)
+
(
z∗jαziα

) (
ψ†i−ψj− + ψ†j+ψi+

)
+
(
εαβz∗jαz

∗
iβ

) (
ψ†i+ψj− − ψ

†
j+ψi−

)
+
(
εαβziαzjβ

) (
ψ†i−ψj+ − ψ

†
j−ψi+

)]
(2.8)

Now, from the derivation of the CP1 model we know that

z∗iαzjα ≈ eiAij (2.9)

and this is easily incorporated into the first two terms in Eq. (2.8), yielding terms which

are gauge invariant. We therefore incorporate the first two terms in Eq. (2.8) into the
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gauge-invariant Lagrangian

Lψ =
∑
p=±1

∑
i

ψ†ip
(
∂τ + ipAτ − µ− λp(−1)ix+iy

)
ψip

−
∑
p=±1

∑
i<j

tij

(
eipAijψ†ipψjp + e−ipAijψ†jpψip

)
(2.10)

For Aµ = 0, Lψ describes the band structure in terms of the Fermi pockets. The interactions

arise from the minimal coupling to the Aµ gauge field. Finally, we need to consider the last

two terms in Eq. (2.8). These are the analog of the ‘Shraiman-Siggia’ couplings.48 Combining

these terms with the analogous terms arising from the time derivative of the cα, we obtain

to leading order in the derivative of the zα:

Lss =

∫
k,p,q

[
p · ∂ε(k)

∂k

]
z↓(q− p/2)z↑(q + p/2)ψ†−(k + q)ψ+(k− q) + c.c.

+
∑
i

(zi↑∂τzi↓ − zi↓∂τzi↑)ψ†i−ψi+ + c.c. (2.11)

where ε(k) is the single particle dispersion of the large Fermi surface state:

ε(k) = −
∑
j

tije
ik·(rj−ri). (2.12)

Note that the terms in Lss mix fermions with different Aµ charges.

The analysis in the following Section III will be based largely on symmetry, and so

it is useful to recall33,52 now how the fields introduced so far transform under symmetry

operations. These are summarized in Table I.

III. EFFECTIVE THEORY OF ELECTRONS AND PHOTONS

As discussed in Section I, we want to work in the regime where the photon creates bound

states between the ψ fermions and the zα spinons, but the monopole induced confinement

has not yet occurred. Thus we are in a fluctuating SDW state with a spin correlation length

ξ, but we are interested in phenomena at a scale larger than ξ. However, the confinement

of the photons occurs at a scale ξconf , and so we will restrict ourselves to the ξ < r < ξconf .

We also note the complementary considerations in the work of Wen and Lee53: they

considered a spin liquid model with fermionic spinons and bosonic holons (in contrast to

our bosonic spinons and spinless fermion charge carriers), and described spinon-holon bound

states in the electron spectral functions. Also, Essler and Tsvelik54,55 described a model of

weakly coupled chains, and considered the bound states of the spinons and holons of the

one-dimensional spin liquid on the chains. In our approach, we do not appeal to these spin

liquid states, but deal instead with states motivated by the fluctuations in the observed spin

8



Tx Rdual
π/2 Idual

x T

zα εαβz
β∗ εαβz

β∗ εαβz
β∗ εαβz

β∗

ψ+ −ψ− −ψ− −ψ− ψ†+

ψ− ψ+ ψ+ ψ+ ψ†−

Aτ −Aτ −Aτ −Aτ Aτ

Ax −Ax −Ay Ax −Ax

Ay −Ay Ax −Ay −Ay

na −na −na −na −na

Fα Gα Gα Gα εαβF †β

Gα Fα Fα Fα εαβG†β

TABLE I. Transformations of the lattice fields under square lattice symmetry operations. Tx:

translation by one lattice spacing along the x direction; Rdual
π/2 : 90◦ rotation about a dual lattice

site on the plaquette center (x → y, y → −x); Idual
x : reflection about the dual lattice y axis

(x → −x, y → y); T : time-reversal, defined as a symmetry (similar to parity) of the imaginary

time path integral. Note that such a T operation is not anti-linear. The transformations of the

Hermitian conjugates are the conjugates of the above, except for time-reversal of fermions52. For

the latter, ψ± and ψ†± are treated as independent Grassman numbers and T : ψ†± → −ψ±; similarly

for Fα, Gα.

density wave order.

The regime ξ < r < ξconf was treated in Section IV of Ref. 33. See also the subsection

on holon-spinon binding in the Appendix of Ref. 34. Here we shall provide a more general

treatment, which should also allow for a computation of spectral functions.

Let the bound state between the ψ+ fermions and the zα be Fα. The bound state should

have the full symmetry of the square lattice, and so we can define a local operator Fiα, which

creates this bound state centered at the lattice site i.

As was emphasized in the initial analysis33, there is a second independent bound state,

and a consequent doubling of the fermion species. This is the bound state between the ψ−
and z∗α, which we denote by the local operator Giα. In the ordered Néel state, the sublattice

location of a fermion also fixes its spin. However, when we move to length scales larger than

ξ, this is no longer the case because the spin direction of the background Néel state has

been averaged over. Thus we can view Fα and Gα as fermions that reside preferentially (but
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not exclusively) on the two sublattices, and they separately have an additional degeneracy

associated with carrying S = 1/2.

More formally, all we will really need are the properties of Fα and Gα under the square

lattice symmetry operations: these are summarized in Table I, and will form the bases of

our analysis below.

The bare electron operator will have a non-zero overlap with both the Fα and Gα fermions.

This will be non-local over the scale ξ. We approximate this connection from Eq. (2.1) as

ciα = ziαψi+ − εαβz∗βψi−
≈ Z (Fiα +Giα) (3.1)

where Z is some quasiparticle renormalization factor depending upon the fermion-spinon

bound state wavefunction. In general, Z should be non-local over a scale ξ, but have limited

ourselves for simplicity to a momentum independent wavefunction renormalization. Note

that Eq. (3.1) and the symmetry transformations in Table I ensure that cα is invariant under

all operations of the square lattice symmetry. The possible non-local terms in Eq. (3.1) can

be deduced by the requirements of symmetry.

We now need an effective Hamiltonian for the Fiα and Giα. Formally, any Hamiltonian

which is invariant under the symmetry transformations of Table I is acceptable; however, we

use simple physical requirements to restrict the large class of possibilities. For the diagonal

terms which do not mix the F and G, we assume (for simplicity) that they just inherit the

terms for ψ+ and ψ− in Lψ in Eq. (2.10). The mixing between the F and G is provided by the

Shraiman-Siggia term Lss. Physically this can be understood as the mixing corresponds to

hopping between two sublattices (as F and G reside preferentially on different sublattices),

and Shraiman-Siggia term describes such hopping and associated spin-flipping process48.

These terms are more simply considered in their real space form which are the last two

terms in Eq. (2.8). Combining these terms, we have the effective Hamiltonian

Heff = −
∑
ij

tij

(
F †iαFjα +G†iαGjα

)
− λ

∑
i

(−1)ix+iy
(
F †iαFiα −G

†
iαGiα

)
−
∑
ij

t̃ij

(
F †iαGjα +G†iαFjα

)
(3.2)

where the second line comes from Lss. Here tij and t̃ij are renormalized in some unknown

manner from the bare hopping matrix elements in Lsf . We can now verify that all the terms

above are invariant under the transformations in Table I.

The above Hamiltonian of bound state can be diagonalized in momentum space. First,
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rewrite equation (3.2) in momentum space

Heff =
∑
k

(ε(k)− µ)
(
F †kαFkα +G†kαGkα

)
+
∑
k

ε̃(k)
(
F †kαGkα +G†kαFkα

)
− λ

(
F †kαFk+K,α −G†kαGk+K,α

)
(3.3)

where we parameterize ε(k) and ε̃(k) as

ε(k) = −2t(cos kx + cos ky) + 4t′ cos kx cos ky − 2t′′(cos 2kx + cos 2ky) (3.4)

ε̃(k) = −t̃0 − 2t̃(cos kx + cos ky) + 4t̃′ cos kx cos ky − 2t̃′′(cos 2kx + cos 2ky) (3.5)

Here t, t′ and t′′ are nearest neighbor, next nearest neighbor and next-next-nearest neighbor

hopping tij respectively. t̃, t̃′ and t̃′′ are the hopping elements of t̃ij. Here we only included

terms up to third nearest neighbor hopping, which is capable to capture the shape of the

Fermi surface, but higher order terms can be included in a similar fashion. t̃0 is the matrix

element of the on-site mixing term F †i Gi +G†iFi, which is also allowed by symmetry.

To diagonalize Hamiltonian (3.3), we change basis to

Ckα =
1√
2

(Fkα +Gkα), Dkα =
1√
2

(Fk+K,α −Gk+K,α) (3.6)

Note thatDkα has momentum k according to the transformation under translation symmetry

listed in Table I. In the new basis, the Hamiltonian becomes

Heff =
∑
k

[
(ε(k) + ε̃(k)− µ)C†kαCkα + (ε(k + K)− ε̃(k + K)− µ)D†kαDkα

−λ
(
C†kαDkα +D†kαCkα

)]
(3.7)

The spectrum of electron operator c can be obtained by diagonalizing the Hamiltonian

of C and D fermions, as c is related to C operator according to equation (3.1) ckα '
(Z/
√

2)Ckα. In the Hamiltonian (3.7), C and D fermions have dispersions ε(k) + ε̃(k)

and ε(k + K) − ε̃(k + K) respectively, and they are mixed through the λ term. With the

mixing, gaps will open where the Fermi surfaces of C and D fermions intersect and the

large Fermi surfaces become Fermi pockets. In the case of ε̃(k) = 0, the D Fermi surface

is the same as the C Fermi surface shifted by (π, π); so the pockets are symmetric under

reflection with respect to the magnetic Brillouin zone boundary, and therefore centered at

(π/2, π/2). However, with a non-vanishing ε̃(k), the dispersions of C and D are different,

so the pockets are no longer symmetric about the magnetic Brillouin zone boundary, and

are not necessarily centered at (π/2, π/2).

To show the qualitative effects of ε̃ on the shape of Fermi pockets, we draw the pockets and

electron spectrum functions of some representative choice of ε̃ in Figs. 2-5. The dispersion

ε(k) is chosen with some phenomenological parameters t′ = 0.15t and t′′ = −0.5t′, and the
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FIG. 2. Plot of Fermi pockets of the bound state with ε̃(k) = 0.8t. Subplot (a) shows the

Fermi surface of Ckα and Dkα fermions as if there is no mixing term λ in the Hamiltonian (3.7).

The red line is Ckα and the blue one is Dkα. Subplot (c) shows pockets like Fermi surface of the

quasiparticles described by the Hamiltonian (3.7) with λ = 0.3t. Subplot (b) shows the same Fermi

surface with the color representing the weight of electron operator in the quasiparticle excitation.

Subplot (d) shows the same information as in (b), but by plotting the electron spectral weight at

ω = 0 as a function of momentum; in this plot we manually put in a finite life-time of electron

τ ∼ 0.2t just for visualization purpose. The dashed line in (a) and (c) is the boundary of magnetic

Brillouin zone in the ordered state.

SDW gap λ is 0.3t in Figs. 2-4 and 0.5t in Fig. 5. In Fig. 2, a negative t̃0 shifts the hole

pockets outwards, and makes the shape of the hole pockets asymmetric. The inner side

becomes more curved and the outer side more flat. In Fig. 3, a negative t̃ does not shift

the position of the hole pockets significantly, but also makes the shape of the hole pockets

asymmetric in a similar way as in Fig. 2. Combining the effect of these two parameters,

we can move the hole pockets inward and make their inner side more curved than the outer

side with a position t̃0 and a negative t̃, as shown in Fig. 4. Along the Fermi pockets,

the fermionic quasiparticles are a mixture of Ckα and Dkα fermions, while experiments only

probe electron spectrum weight. The weight of electron operator in the quasiparticle is
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FIG. 3. As in Fig. 2 but with ε̃(k) = 0.5t(cos kx + cos ky) and λ = 0.3t.

calculated through diagonalizing equation (3.7) and are plotted in Fig. 2-4. In Fig. 5, we

show a plot with larger λ (λ = 0.5t) so that the anti-nodal electron pocket is completely

gapped. In all the cases, the inner half of the hole pockets have higher electron quasiparticle

weight, since the inner part is primarily made of Ckα fermion and the outer part is primarily

made of Dkα fermion, and electron operator is proportional to Ckα.

This bound state theory can be compared to the Yang, Rice, and Zhang (YRZ) model

of hole pockets57–59. In their theory a phenomenological Green’s function for the electron

in the underdoped state is proposed, based upon “spin liquid” physics, and the spectral

function derived from the Green’s function has hole pockets inside the diamond Brillouin

zone. From our Hamiltonian (3.7), the Green’s function of the electron is

Gc(k, ω) =
Z2

ω − ε(k)− ε̃(k) + µ+ λ2/(ω − ε(k + K) + ε̃(k + K) + µ)
(3.8)
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FIG. 4. As in Fig. 2 but with ε̃(k) = −0.3t+ 0.5t(cos kx + cos ky) and λ = 0.3t.

Compare this to the Green’s function in the YRZ model57–59:

G(k, ω) =
gt

ω − ξ(k)−∆2
k/[ω + ξ0(k)]

. (3.9)

The two results are quite similar. In the present form, instead of the d-wave gap ∆k, our λ

does not have a momentum dependence. However, this distinction is an artifact of the simple

choices made in our form of Heff : we can clearly include more non-local mixing between the

F and G fermions.

The more important distinction between our model and YRZ lies in the physical input

in the fermion spectrum. The YRZ model relies on ‘pairing correlations’ implicit in some

underlying spin liquid state. In contrast, we do not assume any pairing, but fluctuating

local antiferromagnetic order. We will describe the influence of pairing on our spectral

functions in a future paper. We note earlier arguments36 that the pairing amplitudes are

especially strong on the electron pockets, and this may be a contributing factor to removing

the electron-like Fermi surfaces in Figs. 3 and 4.

Recent ARPES experiments9 reveal that there are hole pockets in the underdoped regime,
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FIG. 5. As in Fig. 2 but with ε̃(k) = −0.3t+ 0.5t(cos kx + cos ky) and λ = 0.5t.

and the center of the pockets are inside the first magnetic Brillouin zone. In general the

shape of hole pockets seen in the experiments can be fit to our model. As shown in Fig. 2-5,

the weight of electron operator on the outer part of the pockets is tiny and may be hard to

see in experiments.

We close this section by remarking on the status of Luttinger’s theorem in our theory

of the electron spectral function. These issues were discussed in Refs. 34 and 43, where

we argued that the theorem applied to the sum of the Fα, Gα and the ψ± Fermi surfaces.

Here we will focus on the electron-like Fα, Gα , and will drop the ψ± contributions to the

present discussion; the latter will amount to shift in the effective doping level x. Under this

assumption the total number of Fα and Gα per site is 2 − x, and so is the number of Cα
and Dα, since the canonical transformation in equation (3.6) preserves particle number. On

the other hand, our theory was applied to the doped holes or electrons in the background

of a fluctuating antiferromagnet, and each such charge carrier must occupy one state within

the Fermi surface. Counting hole (electron)-like Fermi surfaces as negative (positive), then

for a doped antiferromagnet with hole density x, the Fermi surfaces in Figs. 2-5 should

enclose a total area of −(2π)2(x/2) (the last factor of 2 is from spin degeneracy). In our
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present effective Hamiltonian model, we have found it more efficient to treat not just the

fermionic excitations near the electron and hole pockets, but across the entire Brillouin

zone. We found that this method was very convenient in treating the contraints imposed by

symmetry, without prejudicing the final locations of the Fermi surfaces. Such an extension

should not be accompanied by any fundamental change in the many body quantum state,

and hence cannot modify the statement of Luttinger’s theorem. Because the Luttinger

constraint only controls the electron density modulo 2 per unit cell, we therefore conclude

that our lattice effective model obeys〈
F †iαFiα

〉
+
〈
G†iαGiα

〉
=
〈
C†iαCiα

〉
+
〈
D†iαDiα

〉
= 2− x (3.10)

Note that this differs from the value in the conventional Fermi liquid phase, in which case the

total electron density is 1− x. This difference is acceptable here because we are discussing

a phase with topological order, which has an emergent U(1) gauge excitation60.

In the discussion of YRZ model57,58 a different form of Luttinger’s theorem is used: there

the total number of particles given by Green’s function (3.9) is given by the total area

enclosed by the contours where the Green’s function changes sign. This includes not only

the Fermi pockets on which the Green’s function diverges, but also the contour where the

Green’s function vanishes. For our Green’s function of C bound states in equation (3.8)

this extra Luttinger surface of zeros is exactly the original Fermi surface of D bound states

without the mixing between C and D. Therefore the total area enclosed by both Fermi

pockets and surface of zeros equal to total number of C and D states minus the number of

D states, and the result is the total number of C states. So this form of Luttinger’s theorem

still holds true in our model, although it is not relevant to the physical doping, which is

related to the area of Fermi pockets only.

A. Coupling to photons

Apart from the electron-like bound states described in the previous section, the other

low-lying excitations in the ACL are the gapless U(1) photons. Here we discuss how these

two low-lying sectors of the theory couple to each other.

Our first task is search for terms coupling the Fα, Gα to the photons, while being invariant

under all the transformations in Table I. It is useful to do this on the lattice, as many of the

operations involve details of the lattice symmetry. The Fα, Gα are gauge-invariant, and so

will couple only to the field strengths: on the lattice, we define these as

B = ∆xAy −∆yAx , Ex = ∆xAτ −∆τAx , Ey = ∆yAτ −∆τAy; (3.11)

thus B resides at the center of each square lattice plaquette, while Ex,y reside on the links.

After some searching, we found a single term which is linear in the field strengths which
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fulfills the needed criteria:

Sγ = −iγ
∫
dτ
∑
i

[
Ex
(
F †α∆xGα −G†α∆xFα

)
+ Ey

(
F †α∆yGα −G†α∆yFα

)]
(3.12)

This coupling contributes to the self-energy correction of the bound states. At the lowest

order, the self-energy correction is represented by the Feynman diagram in Fig. 6,

FIG. 6. Feynman diagram for the self-energy correction. The solid line with arrow represents F

or G fermion propagator and the wiggly line represents electric field propagator. The interaction

vertex is given by equation (3.12). This diagram is evaluated in equation (3.18).

The action of U(1) gauge field has contributions from both the ψ± fermions and zα field.

Assuming that there exist Fermi surfaces of the ψ± fermions, integrating them out screens

the fluctuation of the Aτ component, and gives the following terms for the action of the

transverse components of A

SAf =
1

2

∫
d2pdω

(2π)3
Ai(−p,−ω)

(
δij − pipj

p2

)(
kψF
|ω|
p

+ p2

)
Aj(p, ω) (3.13)

Here kψF is the Fermi momentum of the ψ± Fermi surface.

We consider two possibilities of the zα fields. At the magnetic ordering critical point,

integrating out zα field gives rise to the following action

SAz =
1

2

∫
d2pdω

(2π)3
Ai(−p,−ω)

(
δij − pipj

p2

)√
ω2 + c2

sp
2Aj(p, ω) (3.14)

On the other hand, if the zα field is gapped as in the ACL, integrating it out gives rise to

terms proportional to ω2 + c2
sp

2, which are higher order than those in Eq (3.13).

In summary, the U(1) gauge field action can be written as

SAz =
1

2

∫
d2pdω

(2π)3
Ai(−p,−ω)Π(p, ω)Aj(p, ω) (3.15)

where the polarizition function Π is given by

Π(p, ω) = kψF
|ω|
p

+
√
ω2 + c2

sp
2 + · · · at the quantum critical point (3.16)

Π(p, ω) = kψF
|ω|
p

+ p2 in the ACL (3.17)
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for imaginary frequencies ω.

Using the action in equation (3.13) and (3.14) we can evaluate the Feynman diagram in

Fig. 6.

Σ(p, ω) = γ2

∫
d2qdΩ

(2π)3

1

i(Ω + ω)− ξq
Ω2

Π(|p− q|,Ω)
(pi + qi)(pj + qj)

[
δij − (pi − qi)(pj − qj)

(p− q)2

]
(3.18)

Here we consider a simple one-band model for the bound state with a quadratic dispersion

ξa = q2/(2m)− µ. The polarization factor at the end can be simplified as

(pi + qi)(pj + qj)

[
δij − (pi − qi)(pj − qj)

(p− q)2

]
=

4p2q2(1− cos2 θ)

p2 + q2 − 2pq cos θ
(3.19)

where θ is the angle between p and q.

We are interested in the life-time of quasiparticles near the Fermi surface, so we consider

the imaginary part of self-energy at the quasiparticle pole (p, ω = ξp). Without losing

generality, we consider the case of ω > 0. At zero temperature, energy of the intermediate

fermion state must be greater than zero but smaller than ω, so its momentum must be inside

the shell of kF < q < p. The imaginary part of self-energy is

ImΣret(p, ω) =
γ2

(2π)2

∫ p

kF

qdq

∫ 2π

0

dθ(ω − ξq)2

Im
1

Πret(|p− q|, ω − ξq)
4p2q2(1− cos2 θ)

p2 + q2 − 2pq cos θ

(3.20)

Near the Fermi surface we can linearize the dispersion relation ξq = vF (q − pF ), and

ω = ξp = vF (p− pF ). We change the integrated variable from q to k = p− q, 0 < k < ω/vF .

In the limit of ω → 0, or p− pF → 0, the integral can be simplified

ImΣret(p, ω) =
γ2k6

F

π2m2

∫ ω
vF

0

dk

∫ 2π

0

dθk2Im
1

Πret(
√
k2 + 2p2

F (1− cos θ), vFk)

1 + cos θ

k2/(1− cos θ) + p2
F

(3.21)

In both of the cases considered in Eqs. (3.16) and (3.17), the gauge field spectrum function

Im
1

Πret(
√
k2 + 2p2

F (1− cos θ), vFk)
∼ k−1, k → 0

when θ 6= 0, and becomes less singular at θ = 0. As a result the integral in Eq. (3.20) has

the following behavior

ImΣret(p, ω) ∼ ω2, ω → 0.

Thus the bound state fermion has a Fermi liquid-like damping.

This conclusion is different from Essler and Tsvelik’s work on a model of weakly coupled
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chains54,55. Their pocket states arose from binding between the one-dimensional holons

and spinons, and the coupling to the one-dimensional spin fluctuations led to a self-energy

proportional to ω ln(ω). Our model is genuinely two-dimensional, and has an emergent

U(1) gauge field who presence is also the key to the violation of the Luttinger theorem in

Eq. (3.10). They explain the violation of the Luttinger theorem by zeros of the Green’s

function54,55,58; the connection of these zeros to our work was discussed below Eq. (3.10).

IV. ELECTRON SPECTRAL FUNCTIONS IN THE RENORMALIZED CLASSI-

CAL REGIME

We will now consider the regime at small non-zero T above the antiferromagnetically

ordered state present at g < gc, the renormalized classical (RC) regime. Here, we expect

the O(3) vector formulation of Lsf in Eq. (1.1) to be equivalent to the spinor/U(1) gauge

theory formulation of Lacl in Eq. (2.6). This is explored at T = 0 in Appendix A, where we

show that the small g expansions of the two theories match with each other. Thus, while

there are differences in the nature of the non-magnetic phases at g > gc in the two cases (as

reviewed in Section I), the g < gc phase and its low T RC regimes are the same.

The RC regime was studied using the O(3) formulation by Vilk and Tremblay49, and

using a U(1) gauge theory similar to Lacl by Borejsza and Dupuis50. Here we shall also use

Lacl, and expand upon these earlier results.

We compute the electron spectral function as a convolution of the zα propagator with

the free ψ propagator containing pocket Fermi surfaces obtained from Lψ.

For the zα propogator we use the simple damped form motivated by studies in the 1/N

expansion.56

Gz(k, ω) =
1

−(ω + iγm)2 + v2k2 +m2
(4.1)

where the dimensionless constant γ determines the damping constant, and the “mass” m is

determined by the “large N” equation

m = 2T ln

[
e−2π%/T +

√
e−4π%/T + 4

2

]
(4.2)

where

% = v2

(
1

g
− 1

gc

)
(4.3)

is the energy scale which determines the deviation from the quantum critical point. The

damping in Eq. (4.1) is a simple interpolation form which is constant with the expected

behavior at the quantum critical point, and with the RC behavior of Eq. (7.28) in Ref.61.

Actually, we have neglected the power-law pre-factor of the exponential in (7.28). Determin-

ing the damping from numerical studies motivated by the ε expansion62 we expect γ ≈ 1.
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In Fig. 7 and 8 we plot electron spectrum function obtained as a convolution of the zα
and fermion spectrum functions at finite temperature. Here fermion dispersion relation is

the same as the one we used in the plots in section III. In contrast to Fig. 2-5, the pockets

are symmetric with respect to the magnetic Brillouin zone boundary, and hole pockets are

centered at (π/2, π/2). Again, the inner half of the pockets has higher spectrum weight, as

the quasiparticle on outer half of the pockets is primarily made of fermion quasiparticles at

fk+(π,π). The broadening of the spectrum comes from two factors: first, the z boson has a

finite life-time γm; second, the convolution is done at finite temperature, so the energy of

fermion and boson excitation does not have to be exactly zero, but can vary by energies

of order T . The second factor dominantes in the RC regime because m � T , and γ is of

order 1. So the electron spectrum is basically the pocket fermion dispersion broadened by

a linewidth of order T : see Fig. 7 and Fig. 8. Earlier work49 had also obtained a linewidth

FIG. 7. Electron spectrum function at zero frequency as a convolution of zα and the ψ± fermions.

In the plot we chose the following parameters: % = 0.1t, T = 0.2t and the SDW gap λ = 0.2t. The

white dashed line shows the boundary of the diamond magnetic Brillouin zone of the commensurate

(π, π) AFM order.

of order T in the RC regime by very different methods.

As we noted above, the present Fermi surface locations are symmetric with respect to the

magnetic Brillouin zone boundary, unlike those in Figs. 2-5. However, as shown in Ref. 33,

the Shraiman-Siggia term in Eq. (2.11 lifts this symmetry. We can compute perturbative

corrections to leading order in λ, and these will contribute spectral weight of width T which

is asymmetric about the magnetic Brillouin zone boundary.
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FIG. 8. Electron spectrum function at zero frequency as a convolution of zα and the ψ± fermions.

In the plot we chose the following parameters: % = 0.1t, T = 0.2t and the SDW gap λ = 0.5t. The

white dashed line shows the boundary of the diamond magnetic Brillouin zone of the commensurate

(π, π) AFM order.

V. CONCLUSIONS

We conclude by reviewing the different routes37 by which the spin fermion model Lsf
in Eq. (1.1) can lose antiferromagnetic order, and their implications for the photoemission

spectrum at finite temperatures.

The first, more conventional, route is that there is a single direct transition at g = gc to a

Fermi liquid with a large Fermi surface. Then in the T -g plane, we have the conventional61

quantum disordered (QD), quantum critical (QC), and renormalized classical (RC) regions.

In QD region at small T for g > gc, the electron spectrum will show quasiparticle peaks

with a Fermi liquid linewidth ∼ T 2. In the QC region near g = gc, the spectrum will

again show weight along the large Fermi surface, but with large anomalous linewidths near

the ‘hot spots’: these are points along the large Fermi surface connected by the ordering

wavevector K. Finally, in the RC region at small T for g < gc, we have the behavior

described in Section IV: the spectrum has ‘small’ Fermi pockets which are centered at the

antiferromagnetic Brillouin zone boundary, and the quasiparticle peaks have a width ∼ T ;

examples of such spectra were shown in Figs. 7, 8.

This paper mainly considered a more exotic route33,34 towards loss of antiferromagnetic

order in the spin-fermion model. This route is possible if topological “hedgehog” tunnelling
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events are suppressed as the transition, as they are at magnetic-disordering transitions in

the insulator (see Fig. 1). Then the transition at g = gc is to a non-magnetic non-Fermi

liquid ACL, with the spinless fermions ψ± and complex bosonic spinons zα as elementary

excitations, interacting (in the simplest case) via an emergent U(1) gauge force. Again,

around this critical point at g = gc, we can define the corresponding RC, QC, and QD

regions. The electron spectrum in the RC region is just as in the first case above, as

discussed in Section IV and Appendix A. The novel spectrum in the QD region was the main

focus of Section III. One contribution to the spectral weight comes from the convolution of

the deconfined spinons and the ψ±. This leads to incoherent spectral weight in ‘arc’-like

regions which were described earlier in Ref. 33. However, it has been argued33,34 that the

spinons and ψ± form electron-like bound states, and these were described in more detail

in Section III. We found that the bound states lead to pocket Fermi surfaces, as shown in

Figs 2-5. An important feature of these spectra are that the pockets are not centered at

the point (π/2, π/2) on the antiferromagnetic Brillouin zone boundary. In fact, this zone

boundary plays no special role, and there are no symmetry relations on the quasiparticle

dispersions across it. We note that recent photoemission observations9 show features related

to this QD region. We did not address the QC region here, but it should mainly have the

incoherent arc spectra, as described in Ref. 33.

We also noted a similarity between our ACL QD results, and the YRZ model57–59 in

Section III. The assumptions of YRZ are very different from ours, as they depart from a

paired fermionic spinons in a spin-liquid state. The Fermi surfaces in the YRZ model to

not obey the conventional Luttinger theorem, as is the case in our model. However, such

a violation must be accompanied by gauge forces reflecting the topological order in such a

state60: these gauge fields do not appear in their formulation. Also, we dealt mainly with the

influence of local antiferromagnetic order on the electron spectrum. We have not included

pairing effects in our computations yet, or the transition to superconductivity; these are

issues we hope to address in forthcoming work.
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Appendix A: Small g expansion

This Appendix will compare the properties of the Lagrangian Lsf defined in Eq. (1.1),

with the ‘fractionalized’ Lagrangian Lacl in Eq. (2.6). We will work at T = 0 in the limit of

small g, where both models have long range SDW order, and are expected to be essentially
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identical. We will compare the two models here by computing the on-shell matrix element

for the decay of a spin-wave in the SDW state into a fermionic particle hole pair.

We will work in the “diamond” Brillouin zone associated with antiferromagnetic ordering

with wavevector K = (π, π). In this zone we define

c1α(k) ≡ cα(k) , ε1(k) = ε(k)

c2α(k) ≡ cα(k + K) , ε2(k) = ε(k + K) (A1)

All expressions below are implicitly in this diamond Brillouin zone.

The analysis of the spin-wave decay appears for the two models in the following subsec-

tions.

1. Spin-fermion model

We perform the small g expansion for the order parameter by the following parameteri-

zation in terms of the spin-wave field φ:

na =

(
φ+ φ∗

2

√
2g − g2|φ|2, φ− φ

∗

2i

√
2g − g2|φ|2, 1− g|φ|2

)
(A2)

Then the Lagrangian for na is

Ln = |∂µφ|2 +
g

4

[
(φ∗∂µφ)2 + (φ ∂µφ

∗)2]+
g2

8

|φ|2

(2− g|φ|2)
(φ∗∂µφ+ φ ∂µφ

∗)2 (A3)

and can be analyzed as usual in an expansion in g. For the fermion sector, we diagonalize

the Lc + Lλ at g = 0 by introducing fermion operators γ1,2p, and (we replace the electron

index α by p = ±1)

c1p(k) = ukγ1p(k)− pvkγ2p(k)

c2p(k) = pvkγ1p(k) + ukγ2p(k) (A4)

where uk, vk are real and obey u2
k + v2

k = 1. We choose uk = cos(θk/2), vk = sin(θk/2), and

then

cos θk =
ε1(k)− ε2(k)√

(ε1(k)− ε2(k))2 + 4λ2
sin θk =

−2λ√
(ε1(k)− ε2(k))2 + 4λ2

. (A5)

The fermion Lagriangian at g = 0 is

Lγ =
∑
k,p

γ†1p (∂τ + E1(k)) γ1p +
∑
k,p

γ†2p (∂τ + E2(k)) γ2p (A6)
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where

E1,2(k) =
1

2

[
ε1(k) + ε2(k)±

√
(ε1(k)− ε2(k))2 + 4λ2

]
(A7)

Finally, the non-linear couplings between the spin waves and the fermions is given by

Lφ,γ = −λ
√

2g
∑
k,q

[
φ
√

1− g|φ|2/2
]
q

[
(uk+qvk − ukvk+q)(γ†1−(k + q)γ1+(k)− γ†2−(k + q)γ2+(k))

+ (uk+quk + vkvk+q)(γ†1−(k + q)γ2+(k) + γ†2−(k + q)γ1+(k))
]

+ H.c.

+gλ
∑
k,q

∑
p

[
|φ|2
]
q

[
(uk+qvk + ukvk+q)(γ†1p(k + q)γ1p(k)− γ†2p(k + q)γ2p(k))

+ p(uk+quk − vkvk+q)(γ†1p(k + q)γ2p(k) + γ†2p(k + q)γ1p(k))
]

(A8)

Now we can obtain the self-energy of the φ spin-wave excitation to order g:

Σφ(q, ωn) = −2λ2g
∑
k

[

(uk+qvk − ukvk+q)2

(
f(E1(k))− f(E1(k + q))

−iωn + E1(k + q)− E1(k)
+

f(E2(k))− f(E2(k + q))

−iωn + E2(k + q)− E2(k)

)
+ (uk+quk + vkvk+q)2

(
f(E2(k))− f(E1(k + q))

−iωn + E1(k + q)− E2(k)
+

f(E1(k))− f(E2(k + q))

−iωn + E2(k + q)− E1(k)

)]
+ 2gλ

∑
k

2ukvk(f(E1(k))− f(E2(k))) (A9)

As expected, we have Σφ(0, 0) = 0. We can also estimate the on-shell decay rate at T = 0:

ImΣφ(vq, q) ∼ gq2, as long as v < vF .

We can also use Lφ,γ to compute the fermion spectral density at order g. For the case of

a single particle in the insulator, it seems to me that the result has the same form as (2.47)

in Ref. 63.

2. U(1) gauge theory

For small g, we parametrize the zα field of the CP1 model as

zα =

(√
1− g|φ|2/2√
g/2φ

)
eiϑ (A10)
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Then the Lagrangian for zα is

Lz = |∂µφ|2 +
g

4(2− g|φ|2)
(φ∗∂µφ+ φ ∂µφ

∗)2 +
2

g
(∂µϑ−Aµ)2− i(∂µϑ−Aµ)(φ∗∂µφ−φ ∂µφ∗)

(A11)

If we integrate over Aµ in the gauge ϑ = 0, we reproduce the action in Eq. (A3).

The integral over Aµ also produces a coupling between φ∗∂µφ − φ ∂µφ
∗ and the U(1)

current over the ψ1,2p fermions. Note that this is a quartic coupling, a bilinear in φ coupling

to a bilinear in ψ1,2p.

In our discussion in Section A 1, the dominant coupling between the fermions and the

spin-waves was the term in Lφ,γ which was linear in φ. Such terms arise here exclusively

from Lss. We evaluated the on-shell matrix elements from such terms for the decay of a φ

spin wave into a particle hole pair of the γ1p (and also to the γ2p). From the first term in

Lss we have the matrix element

√
g/2 q ·

(
u2
k

∂ε1(k)

∂k
− v2

k

∂ε2(k)

∂k

)
(A12)

For the time-derivative term in Lss we replace the frequency by its on-shell value q ·
∂E1(k)/∂k to obtain the matrix element

−
√
g/2 q · ∂E1(k)

∂k

(
u2
k − v2

k

)
(A13)

The sum of (A12) and (A13) is equal to the matrix element obtained in Section A 1, which

is

λ
√

2g q ·
(
vk
∂uk
∂k
− uk

∂vk
∂k

)
. (A14)
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