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We present a mechanism to protect quantum information stored in an ensemble of nuclear spins
in a semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the
excess electron through the hyperfine coupling. If this coupling is made off-resonant it leads to an
energy gap between the collective storage states and all other states. We show that the energy gap
protects the quantum memory from local spin-flip and spin-dephasing noise. Effects of non-perfect
initial spin polarization and inhomogeneous hyperfine coupling are discussed.

An essential ingredient for quantum computation and
long-distance quantum communication is a reliable quan-
tum memory. Nuclear spins in semiconductor nanostruc-
tures are excellent candidates for this task. With a mag-
neton 3 orders of magnitude weaker than electron spins,
they are largely decoupled from their environment, and
the hyperfine interaction with electron spins allows one
to access ensembles of nuclear spins in a controlled way
[1, 2, 3, 4, 5, 6, 7, 8, 9]. In particular, the quantum state
of an electron spin can be mapped onto the nuclear spins,
giving rise to a long-term memory [3, 4, 5, 6]. Neverthe-
less, memory lifetimes are limited, e.g., by dipole-dipole
interactions among the nuclei. In this Letter we demon-
strate that the presence of the electron spin in the quan-
tum dot substantially reduces the decoherence of this
collective memory associated with surrounding nuclear
spins. The virtual transitions between electronic and
nuclear states can be used to produce an energy shift
proportional to the number of excitations in the storage
spin-wave mode. This isolates the storage states energet-
ically and protects them against nuclear spin flips and
spin diffusion.

Consider a quantum dot charged with a single excess
electron as indicated in Fig. 1. The electron spin Ŝ is
coupled to the ensemble of underlying nuclear spins Î

j

by the Fermi contact interaction,

Ĥhf = A
N

∑

j

̺j

[

Îj
z Ŝz + 1

2

(

Îj
+Ŝ− + Îj

−Ŝ+

)]

, (1)

where A is the average hyperfine interaction constant,
A ≈ 90 µeV for GaAs, and ̺j is proportional to the elec-
tron density at the position of the jth nucleus,

∑

j ̺j = 1.
For convenience, we introduce the collective operators
Â ≡ ∑

j ̺j Î
j . The first term in Eq. (1) provides an effec-

tive magnetic field BOH
z = A〈Âz〉/g∗µB for the electron,

known as the Overhauser field. The same also produces
an energy shift for each nuclei, the so-called Knight shift.
The flip-flop terms in Eq. (1), ĤJC = A

2
(Â+Ŝ−+ Â−Ŝ+),

can be used to polarize the nuclear spins [1, 2], and to
map the electron’s spin state into a collective spin mode

|1q〉

|1p, 1q〉

|1〉
|1, 1q〉

∆gap

|0〉
∆KE

n
er

g
y

e−

FIG. 1: (Color online) Left: Charged quantum dot with a
single, polarized excess electron. Right: Spectrum of the ef-
fective nuclear Hamiltonian in the presence of a polarized elec-
tron. Off-resonant hyperfine coupling results in a gap ∆gap

between the storage state |1〉 and the non-storage states |1q〉.
∆K denotes the Zeeman shift due to the effective magnetic
field associated with the electron spin (Knight shift).

of the nuclei [3, 4]. As will be shown here, the same can
be used to provide a protective energy gap.

Fully polarized nuclei. We start by reconsidering the
storage of a qubit in a collective nuclear state [3]. In
the simplest case when all the nuclear spins are initially
polarized in the −z direction (zero temperature limit),
the |↓〉e and |↑〉e spin states of the electron are mapped
onto the nuclear spin states

|0〉 ≡ |−I,−I, . . . ,−I〉, (2)

|1〉 ≡ A
Ω

Â+|0〉 ∝
∑

j

̺j|−I, . . . , (−I + 1)j , . . . ,−I〉, (3)

respectively. ĤJC couples the state |0〉|↑〉e to |1〉|↓〉e with
an angular frequency Ω = A

(
∑

j ̺2
j2I

)

1/2. The detuning

between these two states, δ = δel + δOH, comes from the
electron’s intrinsic energy splitting δel due to, e.g., an
external magnetic field, and from the Overhauser field,
δOH = −AI. Coherent flip-flops between the electron
and nuclear spins can be brought into resonance (δ ≪ Ω)
through δel, e.g., applying a spin-state dependent Stark
laser pulse [10]. Then |0〉(α|↓〉e + β|↑〉e) can be rotated
to (α|0〉+β|1〉)|↓〉e, and the quantum information can be
transferred from the electron to the nuclear spin ensemble

http://arXiv.org/abs/0902.4566v1
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and back [3, 4].
Assume that, after the qubit has been written into the

nuclei, the polarized electron is not removed from the
dot but the hyperfine flip-flops are tuned off-resonant
(δ ≫ Ω). Now real transitions can no longer take place
between |1〉|↓〉e and |0〉|↑〉e. However, the residual vir-
tual transitions repel the two states from each other, in
analogy to the dynamic Stark effect. As a result, af-
ter eliminating the electron, the energy of state |1〉 gets
shifted by ∆gap = −Ω2/4δ. The other, orthogonal states
also having exactly one spin flipped (denoted by |1q〉 in

Fig. 1) are “subradiant”, i.e., are not coupled via ĤJC to
the electron. Therefore, they are unaffected by the shift.
This is the origin of the energy gap.

To understand the protection scheme, let us introduce
nuclear spin waves. As long as the nuclei remain highly
polarized, one can introduce bosonic operators through
the Holstein-Primakoff transformation: âj ≈ Îj

−/
√

2I,

â†
j ≈ Îj

+/
√

2I, and â†
j âj = Îj

z + I. This allows us to
define the bosonic spin waves

Φ̂q ≡
∑

j

ηqj âj , Φ̂†
q ≡

∑

j

η∗
qj â

†
j , (4)

where the unitary matrix ηqj describes the mode func-
tions. We identify the storage mode q = 0 as the one
given by η0j =

√
2I A

Ω
̺j , and write |1〉 = Φ̂†

0|0〉. This is
the mode which is directly coupled to the electron spin.
In fact, ĤJC ≈ Ω

2

(

Φ̂†
0Ŝ− + Φ̂0Ŝ+

)

is a Jaynes-Cummings
coupling in the bosonic approximation. After eliminat-

ing the electron, ĤJC reduces to Ĥgap = −A2

4δ Â+Â− ≈
∆gapΦ̂†

0Φ̂0. As shown in Fig. 1, Ĥgap lifts the degeneracy
between states of different number of storage-mode exci-
tations. This is the key feature of our protection scheme:
any decoherence process that is associated with a tran-
sition from the storage mode Φ̂0 to any other mode Φ̂q

now has to bridge an energy difference. If this gap is
larger than the spectral width of the noise, the effect of
the noise is substantially reduced.

A more detailed analysis shows that the off-resonant
interaction with the electron spin—which itself is cou-
pled, e.g., to phonons—leads in general also to an addi-
tional decoherence mechanism for the nuclear spins. If
the corresponding electron spin dephasing rate γ is small
compared to the electron’s precession frequency δ, the de-
cay rate for the storage mode is reduced by the low prob-
ability of exciting the electron spin state: γΩ2/δ2 ≪ γ.

In addition to the gap, the electron is also respon-
sible for the Knight shift ĤK = AÂz〈Ŝz〉. The dif-
ference of the Knight shifts for the |0〉 and |1〉 states,
∆K = −A

2

∑

j ̺3
j

/
∑

j ̺2
j , is typically much less than

∆gap. When the hyperfine coupling is inhomogeneous,
however, |1〉 fails to be eigenstate of the Knight shift
Hamiltonian: ĤK|1〉 = (− 1

2
δOH + ∆K)|1〉+ ζ|1⊥〉, where

the state |1⊥〉 is orthonormal to |1〉 and the coupling pa-

rameter ζ2 = A2

4

∑

j ̺4
j

/
∑

j ̺2
j − ∆2

K characterizes the

inhomogeneities. As a consequence, the storage mode is
only an approximate eigenmode, and it gradually mixes
with non-storage modes as time passes. This causes loss
of the stored qubit. |1⊥〉 is, however, off-resonant due
to the energy gap, and our simulations show that the
corresponding probability of finding the system in state
|1⊥〉 is bounded by 4ζ2/∆2

gap, so the detrimental effect
of the inhomogeneous Knight shift is suppressed by the
energy gap. In addition, since the admixture of |1⊥〉 is a
coherent process, it can be cancelled by refocusing (echo)
methods.

A large gap can be achieved by bringing the hyperfine
interaction close to resonance. For example, a non-zero
external magnetic field or laser induced AC Stark shifts
[10] can partially cancel the Overhauser field, such that
δ ≪ δel ≈ −δOH = AI. (Of course, δ should be kept suf-
ficiently large so that the hyperfine coupling remains off-
resonant). The requirement of separation of time scales
implies ζ ≪ |∆gap| ≪ Ω ≪ |δ|, i.e., δ & 10Ω. To estimate
the orders of magnitude of the different energies, we take
an oblate Gaussian electron density of ratio (1, 1, 1/3),
and we consider spin- 1

2
nuclei. Then it is easy to see that

∆K and ζ are inversely proportional to the number of
nuclei N , whereas Ω, ∆gap ∝ N−1/2 only (Fig. 2a).

To analyze the decoherence suppression, we first con-
sider a simplistic noise model where the nuclear spins are
coupled to fluctuating, classical fields. The correspond-
ing interaction Hamiltonian is given by V̂ =

∑

j B
j · Îj .

We assume isotropic Gaussian noise with zero mean and

Bj
µ(t)Bk

ν (t′) = δµν ξjkCe−Γ|t−t′| (5)

for µ, ν = x, y, z, where ξjk specifies the spatial correla-
tions of the noise acting on different nuclei. For simplic-
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FIG. 2: Hyperfine Rabi frequency (Ω), protective energy
gap (∆gap), Knight shift difference between the logical states
(∆K), symmetry breaking couplings due to inhomogeneities
(ζ and ω), qubit decoherence rate due to dipolar spin diffu-
sion without (ΓD) and with (Γ′

D) protection. (a) The fully
polarized (zero temperature) case is displayed as function of
the number of spin- 1

2
nuclei (N) taking part in the storage,

i.e., located within 3σ of the oblate Gaussian electron distri-
bution with in-plane variance σ. (b) Estimated energies in
dark states |Dn,β〉 with n spins flipped from the fully polar-
ized state for N = 105. Energy units are chosen to match
GaAs.
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FIG. 3: The parameters Ξ and Ξ′ describing the effects of
spatial correlations in the classical noise (ξjk = e−rjk/ξ) for
different number of nuclei. The same family of Gaussian elec-
tron densities was used as in Fig. 2. The bullets on the curves
denote the linear size of the dot given by the variance σ.

ity, the noise spectrum is assumed to be Lorentzian with
a width Γ, although similar results hold for other spectra
with a high-frequency cut-off.

Let us first discuss the dephasing part, V̂z =
∑

j Bj
z Î

j
z ,

of the noise. Using the bosonic spin-wave operators in-
troduced in Eq. (4) we can express V̂z as

V̂z =
∑

j

Bj
z â

†
j âj =

∑

pq

(

∑

j

Bj
zη

∗
pjηqj

)

Φ̂†
pΦ̂q. (6)

Dephasing of individual nuclear spins thus means transfer
of excitations between different spin-wave modes. Espe-
cially, it leads to both real and virtual transitions from
|1〉 to a non-storage state |1q〉 (with q 6= 0). As the latter
state is “subradiant” and, thus, equivalent to |0〉 when
the memory is read out, this process essentially results in
damping (for real transitions) and dephasing (for virtual
transitions) of the stored logical qubit [11]. This can be
seen by formally eliminating the classical fields and all
non-storage mode in Markov approximation and deriv-
ing a master equation for the storage mode. For that, we
assume the zero temperature limit with all non-storage
modes Φ̂q 6=0 in the vacuum state. This results in

d

dt
ρ̂ = i

[

ρ̂, EzΦ̂
†
0Φ̂0

]

+ Lz(ρ̂), (7)

with energy shift Ez = (1 − Ξ)C∆gap/(Γ2 + ∆2
gap) and

Lz(ρ̂) = γ1

(

2Φ̂0ρ̂Φ̂†
0 − Φ̂†

0Φ̂0ρ̂ − ρ̂Φ̂†
0Φ̂0

)

+ γ2

(

2Φ̂†
0Φ̂0ρ̂Φ̂†

0Φ̂0 − Φ̂†
0Φ̂0Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†

0Φ̂0Φ̂
†
0Φ̂0

)

. (8)

Here, γ1 is the damping rate of the stored qubit while γ2

describes its dephasing. The two rates are given by

γ1 =
CΓ

Γ2 + ∆2
gap

(1 − Ξ), γ2 =
C

Γ
Ξ, (9)

where we have introduced the dimensionless parameter
Ξ ≡ ∑

jk ξjk̺2
j̺

2
k

/(
∑

l ̺2
l

)

2 containing the spatial part
of the noise correlator.

When the correlation length of the classical noise is
smaller than the distance between the nuclei (local un-
correlated noise, ξjk ∼ δjk), Ξ scales inversely with the
number of nuclei (Fig. 3). In this case, the dephasing
rate γ2 vanishes as 1/N , which is an effect of the collec-
tive nature of the storage states [11]. The storage of a
qubit corresponds to an encoding of the logical state in
a large, delocalized ensemble of N physical spins. As the
decoherence has strongly local character, there is only a
very small effect on the dephasing of the qubit. Secondly,
the loss of the stored qubit is due to transitions among
states with different number of excitations in the storage
mode. These transitions are strongly suppressed and the
damping rate γ1 is decreased if ∆gap is large compared
to the width of the noise spectrum Γ (or the correspond-
ing cut-off frequency). Finally, we note that the opposite
limit of infinite spatial correlation length (ξjk = 1) cor-
responds to a homogeneous random field resulting, e.g.,
from a global external source. In that case, Ξ ≈ 1 (see
Fig. 3) and there is no protection against dephasing.

Following a similar but slightly more involved pro-
cedure we can discuss the spin-flip part V̂xy =
1
2

∑

j

(

Bj
+Îj

− + Bj
−Îj

+

)

of the noise. When deriving a
master equation for this case, we need to keep higher
order terms in the Holstein-Primakoff approximation: in
the next order Îj

− ≈
√

2I
(

1 − λâ†
j âj

)

âj (and similarly

for Îj
+) with λ = 1 − (1 − 1/2I)1/2. Here we have ne-

glected the probability of double or more excitations on
the same site j, which is reasonable in the high polar-
ization (T = 0) limit and exact for spin- 1

2
nuclei. Omit-

ting the energy shifts, the Lindbladian describing deco-
herences due to spin flips reads, in leading order of 1/N ,

Lxy(ρ̂) = (γ3 + γ4)
(

2Φ̂0ρ̂Φ̂†
0 − Φ̂†

0Φ̂0ρ̂ − ρ̂Φ̂†
0Φ̂0

)

+ γ5

(

2Φ̂†
0Φ̂0ρ̂Φ̂†

0Φ̂0 − Φ̂†
0Φ̂0Φ̂

†
0Φ̂0ρ̂ − ρ̂Φ̂†

0Φ̂0Φ̂
†
0Φ̂0

)

+ γ3

(

2Φ̂†
0ρ̂Φ̂0 − Φ̂0Φ̂

†
0ρ̂ − ρ̂Φ̂0Φ̂

†
0

)

, (10)

which describes decay with rate γ4, dephasing with rate
γ5, and additionally thermalization (relaxation to the
identity matrix) with rate γ3. The rates read

γ3 =
CΓIΞ′

Γ2 + (∆gap + ∆K)2
, γ4 =

2CΓIλ2

Γ2 + (∆gap − ∆K)2
,

γ5 =
4CΓIλ2

Γ2 + ∆2
K

∑

j ̺4
j

(
∑

j ̺2
j

)

2
. (11)

In the limit of vanishing spatial correlations of the spin-
flip noise, Ξ′ ≡

∑

jk ξjk̺j̺k/
∑

l ̺
2
l tends to 1 (Fig. 3)

and we have protection against thermalization (γ3) be-
cause of the separation of |0〉 and |1〉 by ∆gap +∆K. The
decay corresponding to γ4 is due to spin-flip induced tran-
sitions between |1〉 and |1p, 1q〉 (the latter containing a
total of two excitations but none in the storage mode),
and the energy to bridge is in the order of ∆gap − ∆K

(see Fig. 1). Finally, the last factor in the dephasing rate
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γ5 scales as 1/N , indicating that it is the collective na-
ture of the storage that leads to protection. Note that
the nonlinearity of the Holstein-Primakoff representation
is responsible for this dephasing: the virtual non-storage
excitations are interacting with the storage mode.

Another potential source of decoherence is nuclear spin

diffusion due to dipole-dipole interaction between nuclear
spins [12]. The energy gap gives protection against this
effect, too. The dipolar interaction between the pairs of
spins is described in the secular approximation by

ĤD =
∑

j 6=k

Bjk

(

Îj
+Îk

− − 2Îj
z Îk

z

)

≈ 2I
∑

j 6=k

Bjkâ†
j âk, (12)

where Bjk = 1
4
γ2(3 cos2 θjk − 1)/r3

jk, γ is the gyromag-
netic factor, rjk = rj−rk is the distance between two nu-
clei, θjk is the zenith angle of the vector rjk, and we used
the first order Holstein-Primakoff approximation. At full
polarization, we can rewrite the dipolar Hamiltonian (12)
in terms of the bosonic spin wave mode operators (4)
as ĤD =

∑

pq B̃pqΦ̂
†
pΦ̂q, with B̃pq =

∑

j 6=k Bjkηpjη
∗
qk.

Thus, the storage mode is coupled to a bath of non-
storage modes as if it were a central spin coupled to
a mesoscopic spin bath [13, 14]. Although the total
number of excitations is conserved, ĤD is responsible
for decoherence of the qubit via transitions from the
storage state |1〉 to non-storage states |1q〉. In fact,
the non-storage modes produce a fluctuating effective
transversal magnetic field with (complex) Larmor fre-
quency Ω̂eff

D− = 2
∑

q 6=0 B̃0qΦ̂q. If the electron were not
present, these fluctuations would lead to a decoherence
rate ΓD ∼ ∆Ωeff

D =
(

2
∑

q 6=0 |B̃0q|2
)

1/2 in the fully po-
larized state, which is numerically found to be in the
order of 100Hz for GaAs (Fig. 2a). With the protec-
tive gap, however, the storage mode creation and anni-
hilation operators (Φ̂†

0 and Φ̂0) rotate rapidly with re-
spect to the other ones, and the above coupling aver-
ages out and disappears in first order of the dipolar
perturbation. In second order, the strength of the re-
maining coupling between the storage mode and mode q
is proportional to ∆−1

gap

∑

r 6=0 B̃0rB̃rq, and the corre-
sponding fluctuations yield a decoherence rate of Γ′

D ∼
∆−1

gap

(

2
∑

q 6=0

∣

∣

∑

r 6=0 B̃0rB̃rq

∣

∣

2)1/2 ∼ 3 × 104Hz2/∆gap.
Typically, ∆gap ∼ 1 MHz depending on the dot size
(Fig. 2a), so the effects of spin diffusion can be suppressed
by several orders of magnitude.

Non-perfect spin polarization. Finally, we investigate
the consequences of non-perfect nuclear spin polariza-
tion. It has been shown that partially polarized nu-
clei (at finite temperature) can also be used for storing
a qubit state [4]. Instead of the fully polarized state
(2), the initial preparation drives the nuclear ensemble
into a statistical mixture of dark states |Dn,β〉 defined by

Â−|Dn,β〉 = 0. These dark states can be characterized
by the total number of spins flipped n and the permu-
tation group quantum number β. As the detuning δ is

adiabatically swept from far negative to far positive, a
superposition of the |↓〉e and |↑〉e electron spin states is
mapped into the mixture of superpositions of the nuclear
spin states |Dn,β〉 and |En,β〉 ≡ A

Ωn
Â+|Dn,β〉, and the

qubit state is efficiently written into the memory [4].
When the electron is left in the quantum dot, it feels

different Overhauser fields for different dark states, hence
the detuning should be adjusted such that δOH

n + δel ≫
Var(δOH

n ). Moreover, the hyperfine Rabi frequency also
varies with n and the energy gap ∆gap,n is not the
same for all dark states. This inhomogeneous broaden-
ing would result in dephasing of the qubit, but can be
avoided by a symmetric spin echo sequence [4].

To describe inhomogeneous effects in the case of non-
perfect polarization, first we note that the storage state
|Dn,β〉 is no longer an eigenstate of the Knight shift oper-
ator, but it is partially mapped into an orthogonal state:
ĤK |Dn,β〉 = − 1

2
δOH
n |Dn,β〉+ωn|D⊥

n,β〉. This is due to the

fact that the inhomogeneous Âz,± operators do not follow
the angular momentum commutation relation. Further-
more, |En,β〉 is neither an eigenstate of Ĥgap nor of ĤK:

Ĥ|En,β〉 = (− 1
2
δOH
n + ∆K,n + ∆gap,n)|En,β〉 + ζn|E⊥

n,β〉.
The parameters can be expressed as expectation values
in |Dn,β〉:

Ω2
n = A2〈Â−Â+〉, ω2

n = A2

4

(

〈Â2
z〉 − 〈Âz〉2

)

,

∆gap,n = A4〈Â−Â+Â−Â+〉
/

4δnΩ2
n,

∆K,n = A
2
〈Âz〉 − A3〈Â−ÂzÂ+〉

/

2Ω2
n,

ζ2 = 〈En,β |Ĥ2|En,β〉 − 〈En,β |Ĥ |En,β〉2. (13)

The explicit form of the inhomogeneous dark states [4]
allows us to estimate these values (see Fig. 2b). We ex-
pect that the storage mode is still protected as long as
ωn and ζn are much smaller than ∆gap, which is the case
even for considerable unpolarized fraction (n/N).

In summary, we have demonstrated that it is possible
to suppress the influence of spin-dephasing and spin-flips
on a quantum memory consisting of a delocalized ensem-
ble of nuclear spins in a quantum dot if the noise has
a highly local character and the spectral width or cut-
off frequency of the noise spectrum is small compared to
the energy gap. We have shown in particular that the
memory can be protected against nuclear spin diffusion
mediated by dipole-dipole interaction. We have also an-
alyzed the effects of inhomogeneous hyperfine couplings
and imperfect initial nuclear spin polarization.
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