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Two Foraging Algorithms for Robot Swarms
Using Only Local Communication

Nicholas R. Hoff 111, Amelia Sagoff, Robert J. Wood, Radhika Nagpal

Abstract— Large collections of robots have the potential to
perform tasks collectively using distributed control algorithms.
These algorithms require communication between robots to
allow the robots to coordinate their behavior and act as a
collective. In this paper we describe two algorithms which allow
coordination between robots, but do not require physical envi-
ronment marks such as pheromones. Instead, these algorithms
rely on simple, local, low-bandwidth, direct communication
between robots. We describe the algorithms and measure their
performance in worlds with and without obstacles.

I. INTRODUCTION

As the cost of robotic hardware has come down and
availability has gone up, there has been growing interest
in robotic systems which are composed of multiple simple
robots rather than one highly-capable robot. This tradeoff
reduces the design and hardware complexity of the robots
and removes single point failures, but adds complexity in
algorithm design. The challenge is to program a swarm of
simple robots, with minimal communication and individual
capability, to perform a useful task as a collective.

Nature has solved this problem many times over. Schools
of fish swim in unison, and are able to execute large scale
collective maneuvers to avoid a predator. Termite colonies
build large and very complex nests (complete with thermal
regulation). Ants collectively search a very large area and
are capable of returning food to the nest. In each of these
examples, there was no central leader with all the information
making decisions for each individual. Leaderlessness is a
central aspect of distributed swarm algorithms.

In this work, we take inspiration from natural swarm
behaviors to build algorithms for robot swarms. Ant colony
foraging is our primary example. Ants use pheromones
to mark trails in the environment, which allows them to
efficiently communicate the location of food sources and
collectively return food to the nest [1]. This work focuses on
a way for simple robots with simple sensing capabilities to
achieve the same task, without having to implement physical
pheromones or physical environment marking.

In our application, we assume there is a swarm of robots
that have simple sensing capability: each robot can commu-
nicate directionally with other robots within a short range.
The task is for the group of robots to search the environment
for an object of interest (“food”) and then return the food to
the base (“nest”). The robots do not know the location of the
food a priori, nor do they have GPS/odometry capabilities,
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but the efficiency of the group can be dramatically improved
through coordination. We present two algorithms, inspired by
ant colony behavior, that use a simple concept: each robot
can dynamically take on one of two roles, that of a stationary
environment beacon (like a pheromone) or a wandering
robot. The two algorithms (termed “virtual pheromone” and
“cardinality”) differ in when the beacon role is chosen and
what information the beacon emits.

We show that both algorithms are able to effectively
construct paths between food and nest, and to adapt to
environments with static obstacles. We compare the per-
formance of the algorithms to the performance of robots
without coordination and robots with explicit global position
and knowledge of the food; these comparisons represent
two extremes in hardware complexity of the robots. We
show that the virtual pheromone and cardinality algorithms
dramatically increase efficiency over no coordination, and
performance scales directly as the number of robots increases
until congestion impacts all algorithms. Our work shows
that for the task of foraging, we can take advantage of the
collective efficiency that ant colonies achieve, while relying
on hardware implementations that are feasible in simple and
small robots.

In the future, when these algorithms can be implemented
on large collections of small robots, they will enable appli-
cations such as distributed cleanup of environmental toxins
and automated repair. For example, a swarm of small robots
could search a building for defects, then recruit other robots
to bring tools and materials to the site of the damage.

A. Related Work

Multiple researchers have studied foraging and other
pheromone-mediated coordination, and have reduced this
behavior to algorithms [2], [3], [4], [5]. Pheromone-trail
based algorithms sometimes have the ability to dynamically
improve their path [6] and can adapt to changing terrain [7].

Ant-inspired foraging has been implemented in robots by
various groups. One of the chief difficulties is in implement-
ing the pheromone itself, or some way for the robots to
interact. There have been many approaches to this problem:

o Physical marks. Robots can physically mark their trails
in a variety of ways, such as leaving alcohol [3], heat
[8], odor [9], visual marks [10], or RFID tags [11].

o Use existing communication channels. In the work of
Vaughan et al., robots maintain an internal pheromone
model with trails of waypoints, and share it with other
robots over a wireless network [12], [13], [14].



« Virtual pheromones. In [15], authors use direct infrared-
based communication between robots to transmit a kind
of virtual pheromone. They study the use of these sig-
nals to create world—embedded computation and world—
embeded displays. It is assumed that the robots that
receive the pheromone can measure the intensity of
the IR reception to estimate their distance from the
transmitter.

o Pre-deployed sensor network. The GNATS project [16]
uses robots which operate in an environment which
is pre-populated with a regular grid of beacons on
which information can be stored. They have had success
in finding close-to-optimal paths from one place in
the environment to another, even in the presence of
obstacles.

o Deployable beacons. Some groups have explored the
idea of having each robot be able to deploy beacons as
it moves through the environment. The beacons can be
movable or non-movable [17], and contain pheromone-
like information.

e Robot chains. In [18], [19], the robots form chains and
attempt to remain in close proximity with each other,
through communication or even by physically gripping
the next robot in the chain.

There are several shortcomings of these approaches which
we aim to address. Making permanent physical marks in
the environment is generally not acceptable, and temporary
or decayable marks are difficult to physically implement.
Relying on predeployed sensor networks is highly restrictive
and prevents operation in a new or unexplored environment.
Deploying beacons is a good method but requires building
robots which can carry many beacons and can also intelli-
gently recover previously laid beacons. Instead, we use the
robots themselves as beacons. (see also [20])

Of the work cited above, our work is most similar to the
virtual pheromone approach, except that our robots do not
have different behaviors depending on a direct measurement
of their distance from each other. This simplifies the com-
munication hardware because distance measurement is not
required. Secondly, we show that multiple algorithms can be
used with this communication model to achieve coordination
and approximate the collective benefit of pheromones.

B. Robot Model and Simulator

Robot Model: We assume a simple non—holonomic robot
that moves and turns in continuous space. Each robot has
sensors for nest, food, and obstacle detection in direct prox-
imity to the robot. Each robot can also communicate with
nearby robots using a simple IR ring architecture. The robots
have omnidirectional transmission, and directional reception.
This means that when a robot receives a transmission, it
knows roughly which direction the transmission came from
(see Fig. 1). An example of such communication hardware
is described in [21].

Simulator: In order to test the algorithms, we developed a
simulator based on Microsoft(R) Robotics Studio (MRDS).
The simulator models a continuous world in which the
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Fig. 1. This figure shows the communication and sensing structure of the

robots. The figure in the upper left shows an example world setup. The
blowup details a hypothetical communication situation. When the robot on
the left transmits, the robot in the center can receive the transmission, and
also knows that the transmission came from the left-facing octant. The light
gray range in front of the central robot indicates the approximate area in
which the nest, food, and obstacle sensors are sensitive.

robots, food, nest, and obstacles exist, and each object occu-
pies some physical extent. Realistic physics and visualization
is provided by MRDS. A snapshot from the simulator is
shown in Fig. 2. We chose this simulation environment over
a gridded world environment so that the algorithms face the
real-world problems such as collisions and congestion. Our
simulator closely matches a model of the Kheprea II robots
which we plan to use in the future for hardware verification
of the algorithm.

In the remaining sections of this paper, we will describe
two ant-inspired algorithms capable of foraging without
physical pheromones, then present performance results mea-
sured in simulated worlds with and without obstacles, and
finally conclude with a discussion of future algorithm work
and application to small autonomous robots.

II. ALGORITHM DESCRIPTION

In this section, we will describe two algorithms, called the
virtual pheromone (VP) algorithm and the cardinality
algorithm.

Ant colony foraging: Both algorithms are based on the
foraging behavior of ants. Ants mark trails leading from the
nest to food and back by depositing a chemical pheromone
on the ground. Each ant can both deposit and detect this
chemical, and each ant uses the distribution of pheromone
in its immediate vicinity to decide where to move. When
an ant is carrying food, it lays pheromone as it searches
for the nest, and other ants follow this trail outbound to the
food. This distributed leaderless pheromone algorithm is the
starting point for the VP algorithm, but several important
changes have been made.

Virtual Pheromone Algorithm: The first change has to do
with the way the robots return to the nest. The pheromone
trail is laid by individuals once they leave the food, but
the individual still needs a way to return to the nest. Ants
have various methods to do this, including visual landmarks
and odometry (remembering how far and in what direction
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Fig. 2.

This shows a screenshot of the simulator. Window a shows a dot for each robot, with beacon robots shown as larger dots and beacon values

drawn to the right of beacons. The square near the top is the nest and the square near the bottom is the food. Window b shows the actual MRDS physics

simulation and visualization.

the nest is). Because of our focus on miniaturizability and
hardware simplicity, neither of these approaches is attractive
— vision requires significant computation and memory to
interpret the image, and odometry requires high accuracy
encoders. As an alternative method to navigate back to the
nest, two distinguishable pheromones are used instead of one.
One pheromone leads to the food and a second leads to the
nest.

A second change from the biological algorithm is that
virtual pheromones are substituted for real ones (see Fig. 3a).
Instead of implementing chemical pheromones, simple local
direct communication between robots is used to transmit a
virtual pheromone value.

During the execution of the algorithm (see pseudocode in
Fig. 4), some robots will decide to stop their normal search
behavior and become ‘pheromone robots’, also known as
beacons, which means they stop moving and act as locations
on which virtual pheromone can be stored. The virtual
pheromone is simply a floating point number. Other wan-
dering robots (‘walkers’) can read the pheromone level by
receiving a transmission from the pheromone robot, and they
can lay virtual pheromone by transmitting to the pheromone
robot. So, if there were a network of pheromone robots, the
walker robots could use the distribution of virtual pheromone
they can sense to decide how to move. This mimics the use
of pheromones in real ants. Virtual pheromones decay at a
specific rate and robots follow the pheromone distribution by
moving toward the strongest value. Several of the parame-
ters of the algorithm, such as the walker-beacon transition
probabilities and exploration timer, are shown in Fig. 4. A
diagram of an example situation of the VP algorithm is shown
in Fig. 3a.

Cardinality Algorithm: The cardinality algorithm is
similar to the VP algorithm in that robots can decide to act
as either beacons or walkers — beacons transmit values, and
walkers use those values to decide where to move. The main
difference is that instead of the values that the beacons store
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Fig. 3.  This diagram shows example situations in both the VP and
cardinality algorithms. Each black dot represents a beacon (walkers
are not shown). The numbers to the right of each beacon indicate the virtual
pheromone levels (fig a) or cardinalities (fig b) — food pheromone/cardinality
on the top and nest pheromone/cardinality on the bottom. In fig a, the
dotted lines indicate approximately level curves in both pheromone values.
As can be seen, the area between the nest and food has high concentration
of pheromone. In fig b, the solid line indicates the shortest path between
the nest and the food. As an example, the dotted lines indicate paths that a
robot near the Z beacon on the left could take to get either to the nest or
to the food.

and transmit being real-valued floating-point numbers, they
are integers (called “cardinalities’). The first beacon standing
next to the nest transmits a 1, then the next beacon a little
further out would be able to hear the 1 and so would transmit
a 2. In general, each beacon transmits the minimum of all
the other beacons it can hear, plus one. In this way, the
cardinality of each beacon can be interpreted as the number
of beacons between that beacon and the nest. Furthermore, a
walker robot can use these cardinalities to find a path to the
nest by always moving to the lowest cardinality it can hear. In
a similar manner to the VP algorithm, each beacon actually
transmits two cardinalities — one indicating how many
beacons away from the nest it is, and the other indicating
the number of beacons away from the food. Pseudocode for



FOOD SEARCH:
try to pick up food
am I doing AVOID?
sense obstacle?
turn t degrees
END
se
move forward
lay inPheromone (VP only)

first time step: become walker

begin each timestep:
if beacon, goto beacon
if walker, goto walker

o

walker (either alg):
hear 2 or more beacons?

carrying food? . END

soto NEST SEARCH am [ doing EXPLORE?
else stepCounter >n?

goto FOOD SEARCH stepCounter =0

clse end behavior
become beacon END
END else
try to pick up food

sense obstacle?
turn t degrees
END

beacon (VP alg):

hear 3 or more beacons?
with prob p, become walker else
END move forward

se lay inPheromone (VP only)

both pheromones < threshold? stepCounter ++
become walker END

END neither AVOID nor EXPLORE:

else should I explore?
decay pheromones (rate d) set stepCounter = 0

END execute EXPLORE
else
turn to strongest outPheromone
or lowest foodCardinality
sense obstacle?
execute AVOID
else
move forward
lay inPheromone (VP only)
END

o

beacon (cardinality alg):
hear 3 or more beacons?

with prob p, become walker
END

else
set my cardinality to min of
all recieved cardinalities + 1

Fig. 4. This figure shows combined pseudocode for both the VP and card-
inality algorithms. Robots begin execution at “start” at the top and then
proceed according to which algorithm is being run and the role (walker or
beacon) of the robot. The normal food search part of the algorithm is shown;
the nest search part is nearly identical, the biggest difference being that
robots lay outPheromone instead of inPheromone. Some of the parameters
of the algorithm are shown in this pseudocode. In the experiments reported,
probability p is set to 30%, angle t is 45°, and step counter n is 4. The
pheromone decay rate d is 1%.

the cardinality algorithm is shown in Fig. 4.

A snapshot of the cardinality algorithm is shown
in Fig. 3b. The beacon standing directly next to the nest
is transmitting a 1 for its nest cardinality, and the beacon
standing next to the food is transmitting a 1 for its food
cardinality. All other beacons are updating their cardinalities
accordingly. Now, by listening to the cardinalities and always
moving to the smallest one, the walker robots can walk to
the nest or to the food from wherever they are.

One significant difference to notice between the VP and
cardinality algorithms is that VP requires the walkers
to transmit to the beacons every time they want to lay a
virtual pheromone. The cardinality algorithm, however,
only requires beacons to transmit — the walkers only need to
receive. Additionally, cardinality has fewer parameters
and is simpler.

III. TEST PARAMETERS AND METRICS

In this section, we will discuss the performance of each
algorithm in an obstacle—free world.

A. World and Test Parameters

The world setup, including positions of nest and food, is
shown in Fig. 8a. (See section V for results in worlds B, C,
and D.) There are several test-related parameters which must
be chosen, such as world size, food placement, run time, and
communication radius.

o world size — World size can be non—-dimensionalized
by dividing by robot body length. The robots we will
ultimately use to test this algorithm have a body length
of about 8 cm. A square world in which each side is
50 times the body length would be 4mx4m. Real ants
have a body length around 8 mm, but operate in roughly
the same size areas, so they would have a world size
to body length ratio of around 500. We study world
with and without obstacles. In this study, we use square
worlds for their symmetry and simplicity. In the future,
we may experiment with non—square worlds, or worlds
with no boundaries at all. (The presence of boundaries
makes the problem simpler by focusing the robots on
the area of interest; in a world with no boundaries, the
robots could get permanently lost.)

« robot density — The number of robots in the swarm
divided by the total world size gives the average robot
density. In this paper, we will primarily explore the
effect of this parameter, presenting results as a function
of both absolute number of robots and robot density.

« nest—food separation — This can be non—-dimension-
alized by dividing by world size. In this paper, we
separate the nest and the food by a distance equal
to 60% of the world size. This gives a large enough
separation that the problem is hard, but not so large that
both the food and nest are next to the world boundaries.
In these experiments, there is only one food pile and it
never runs out of food.

e run time — To non-dimensionalize the run time, we
will use the number of direct nest—food traversals that
are theoretically possible during the run (assuming the
robots could travel straight to the food and back). We
will run each simulation long enough for a robot to
traverse the nest-food distance 25 times. Assuming the
robots can move approximately one body length per
time step, that would yield a run time of 750 time steps.

o communication radius — The non—dimensional pa-
rameter here is communication radius divided by body
length. With the hardware we intend to use to implement
the local communication, a ratio of 10 seems conser-
vative. So in this work, we assume a communication
radius equal to 10 times the body length, or 80 cm.

In this paper, we will focus on the effect of world size
and robot density. A study of the sensitivity of the results
to variations in the other parameters is beyond the scope of
this paper and will be studied in future work.

B. Metrics

To measure the performance of the VP and cardinal-
ity algorithms, two metrics will be used:



« total food returned — The total amount of food that
has been returned to the nest by the entire swarm after
750 time steps. Note that in all experiments, food piles
have an infinite amount of food, so this metric is very
similar to the rate of food return.

e cost — The total energy consumed by the swarm.
For the purposes of calculating this cost metric, every
communication action will incur a cost of 1 and every
movement action will incur a cost of 100. In this way,
cost is roughly analogous to battery usage. The total
cost is the sum of all the costs of all the robots for the
duration of the test.

The performance of the algorithms as measured by these
metrics, will be compared against two comparison algo-
rithms. The first is a randomWa 1k algorithm, in which each
robot decides randomly whether to turn a random amount or
to move forward. The second comparison algorithm is called
the foodGPS algorithm. In this algorithm, each robot has
perfect knowledge of the locations of the food and the nest,
so it is capable of turning directly to the food source and
moving in that direction, then turning directly to the nest
and returning. The foodGP S algorithm will not always yield
perfect or optimal performance because the robots may still
be blocked by obstacles or other robots (of which they have
no knowledge). The robots do not take optimal paths around
obstacles, they simply attempt to go straight to the final goal
location, avoiding obstacles as they encounter them.

randomWalk was chosen as a lower comparison algo-
rithm because it has the smallest requirements for communi-
cation and sensor hardware. It represents a minimum use
of coordination among robots — none. foodGPS, on the
other hand, has very substantial requirements. Every robot
must know the position of the food and the nest, and must
know its own position at all times. These two algorithms
represent extremes of hardware requirements. Our aim is to
develop algorithms with significantly increased performance
with only moderately increased hardware requirements.

I'V. RESULTS IN AN UNCLUTTERED WORLD

Here we show results of the VP and cardinality
algorithms over the course of a single run and compared
across multiple runs, operating in obstacle—free worlds. A
key aim is to understand how reliable and efficient the two
algorithms are.

A. Performance of Algorithms over Time

At each time step during each run, we measured the total
food that had been returned to the nest, the fraction of non-
beacon robots that were carrying food, and the total number
of beacons. Data from example runs of the VP and card-
inality algorithms is shown in Fig. 5. These examples
were run in a 4mx4m world in configuration A (see Fig. 8)
with 70 robots. In the first 50-100 time steps, the number
of beacons rapidly increases to a steady value as the ad-
hoc network of beacons is deployed. Next, the fraction of
food-carrying ants becomes non-zero, as the first robots begin
finding and picking up the food. Some time after that (about
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Fig. 5. This shows an example run of each algorithm in the world

configuration of Fig. 8A. Each run was performed with 70 robots.

100-200 time steps in these examples), the first robots are
able to return food to the nest. For the rest of the run, the
amount of food returned increases and the number of walker
robots carrying food approaches roughly 50%. It makes sense
that half of the walkers would be carrying food in steady
state, because approximately half would be on their way to
the food and half would be returning.

The major difference between the two algorithms is that
cardinality returns food faster than VP, and returns
more. VP requires time for the trail between the food and the
nest to be built and reinforced after it is found, whereas no
such time is required in cardinality.In cardinality,
once any robot has found the food, all robots have a path to
get there, and then once they pick up food, they have a path
to get back to the nest. No reinforcement is required.

B. Performance and Comparison of Algorithms

Each of these four algorithms (randomWalk, VP, card-
inality and foodGPS) were run for 750 simulation time
steps, and the total amount of food collected at the end of
the run was recorded. The results are shown in Fig. 6a.

randomWalk never returns any food. In worlds this big,
the probability of a robot randomly finding the food and then
randomly finding the nest is so small that it never happened
in any of these tests. With this set of test parameters, food—
GPS returns a large amount of food. cardinality and VP

A brief 2D random walk analysis, omitted for brevity, shows that the

number of steps required for the first robot to find the food is N ~ % (%) ,
where R is the number of robots, s is the nest-food separation, d is the step
size, and f depends on the distance at which robots can pick up food. With
appropriate numerical values for these parameters and R = 120, IV is 2460.
Because these tests were only run for 750 time steps, it is not surprising
that no food was returned.



are in the middle, and cardinality outperforms VP. In
these tests, the food pile can never run out of food, so there
is food available for each algorithm for the whole duration of
each run. The algorithms can never be ‘finished’, so food-
GPS is used as a measure of optimal performance. The effect
of congestion can also be seen in the data. As the number
of robots increases, the performance also increases because
there are more robots available to transport food. However,
when there are more than about 100 robots, it is so crowded
that they have trouble moving and the performance again
decreases. See section IV-C for a more detailed discussion
of congestion.

The fact that VP and cardinality perform better than
randomWalk at all shows that some coordination is being
achieved between the robots using the virtual pheromones
and cardinalities. These algorithms sacrifice some robots
to be immobile beacons, and these robots are no longer
picking up and dropping of food. It could be the case that
this sacrifice outweighs the benefit derived from the virtual
pheromone or cardinality. If that were so, using the VP
or cardinality algorithms at all would be harmful and
randomWalk would be better. In fact, they outperform
randomWalk, which shows that the sacrifice of some
robots to be beacons confers a net benefit on the algorithm.
Furthermore, although each algorithm uses robots as beacons
to achieve a coordination benefit, cardinality derives
more benefit from these beacons. This benefit is reduced
and eventually eliminated in both cases at small numbers of
robots, however, because in that case the robots are mostly
used as beacons so there are few walkers left.

The second metric is cost. Cost is similar to battery usage
in the real robots, but with arbitrary units. When using this
metric, we divide it by the total food returned by the swarm
to arrive at a cost-per-food metric. The results are shown
in Fig. 6b. For each number of robots, cardinality is
capable of returning food at a lower cost than VP.

There also appears to be a trend in each algorithm in which
smaller swarms are more efficient than larger swarms. This is
likely related to congestion. Usually, when a robot encounters
another robot in its path, it must do an avoidance maneuver,
which requires a sequence of turns and forward movements.
If it had not encountered the obstructing robot, it would
have been able to simply move forward along its desired
path with a single movement action. Because movement is
expensive, and avoidance maneuvers require more movement
than simple path following, larger swarms are less efficient
because of the increased frequency of avoidance.

Both cardinality and VP exploit the ant—inspired idea
of marking the environment, but the success of the card-
inality algorithm shows that there are more cost effective
ways to lay marks than to simply copy the ants’ method. The
algorithms are far from the foodGP S performance, however,
so the ability to have long-range detection of the nest could
have a substantial effect on performance.

C. Congestion

Crowds of robots around the nest and the food can
impair swarm performance. Increasing the number of robots
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Fig. 6. These plots show the performance of foodGPS, cardinality,
and VP as measured by both metrics. The horizontal axes are marked both
in absolute number of robots and in robot density. randomWalk never
returns food, so it is not shown. Each point is an average of approximately
15 runs, with standard deviation error bars. Note the log scale on the vertical
axes.

improves performance by providing more robots to transport
food, but exacerbates the problem of congestion. To measure
this effect, we compare the performance of foodGPS under
normal conditions, and its theoretical maximum performance
if robots were able to occupy the same physical space. Since
all robots know the exact location of the food and nest, but
not other robots, they attempt to move in a straight-line path
toward the food or nest, and must avoid collisions with each
other as robots appear.

In the absence of physical collisions, the maximum rate
at which a swarm of robots could return food to the nest
would be f;ls, where f is the amount of food each robot
can carry, n is the number of robots in the swarm, s is the
distance each robot can travel in one time step, and d is
the distance between the food and the nest. (d is doubled
because the robots must travel to the food and back.) This
rate is measured in food units per time step.

Fig. 7 shows the performance of foodGPS vs the the-
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Fig. 7. Effect of congestion. When the number of robots is small it is not
a problem, when the number of robots is large, it is the dominant effect,
and there is an optimum in the middle. Each foodGPS point on this plot
is an average of approximately 15 trial runs, with standard deviation error
bars.

oretical maximum. At low robot densities, congestion has
little effect, but even with a density around 4 robots/m2,
congestion strongly degrades the performance. Congestion
is the dominant factor at high robot density.

V. TESTS AND RESULTS IN WORLDS WITH OBSTACLES

Our long term goal is to operate large numbers of au-
tonomous robots in natural obstacle-filled environments. In
this study, we used three different obstacle configurations,
in addition to an obstacle-free world. All configurations are
shown in Fig. 8. In configuration B, a simple obstacle blocks
the most direct path, such that the swarm must find a path
around the obstacle. Configuration D has two obstacles that
require the robots to take a more complex curving path to
get to the food and back. Configuration C gives the swarm
a choice between two paths: a short path that goes through
an obstacle field, or a long but clear path.

VP, cardinality, and foodGPS do obstacle avoid-
ance in nearly the same manner. Each walker has a direction
it wants to go, determined either by virtual pheromones,
cardinalities, or just knowing the correct direction (in the
case of foodGPS). For each of these three algorithms, when
a robot encounters an obstacle, it attempts to avoid it, usually
by simply turning left and moving forward.

The performance of foodGPS can be used as a measure
of the difficulty of each obstacle field. The field with no
obstacles is the easiest, then the single obstacle world, then
the obstacle field, and the double obstacle world is the
hardest. Taking the foodGPS result as a type of perfor-
mance standard for each obstacle field, we will normalize
the performance to the performance of foodGPS on that
obstacle field. Results of these normalized performances
are shown in Fig. 9. These algorithms do quite well com-
pared to £oodGPS considering their hardware requirements.
foodGPS requires all robots to have global knowledge, and
cardinality can achieve a significant fraction of that
performance (about 5% - 20%) with no global knowledge or
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Fig. 8. There are four world configurations used in this paper. Results from
configuration A are discussed in section IV, and results from configurations
B, C, and D are discussed in section V. The obstacle field of configuration D
is an area with many small obstacles obstructing simple straight line paths.
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Fig. 9. This figure shows the amount of food returned by each algorithm in
each obstacle field, normalized to the amount of food returned by foodGPS
on that obstacle field. For example, in the single obstacle environment,
cardinality returns about 12% of the food that foodGPS does.

communication at all and only simple local communication.
The performance of cardinality follows the expected
trend, decreasing with increasing obstacle configuration dif-
ficulty. VP, however, performs better in the obstacle field
world than in the single obstacle world (although in no
case better than cardinality). This is likely because the
pheromone distribution will have some randomness so a few
robots will penetrate the obstacle field, but in the single
obstacle case, all robots must go around. cardinality
is better at the single obstacle case because the path can
be composed of a small number of straight-line segments
which cardinality perfers. This does not mean that VP
is better than cardinality at the obstacle field, though —
cardinality always outperforms VP.

We would like to measure the ability of the VP and card-
inality algorithms to adapt to changing obstacles, and



specifically their ability to find a faster path if an obstacle
is removed. To test this, we used the single—obstacle world
setup, shown in Fig. 8B and ran the algorithm as usual. Then,
2/3 of the way through the test, we removed the obstacle.
This makes a new faster path theoretically available for the
robots to use, if they find it and switch to it.

Direct measurements of return rate were taken before and
after the obstacle was removed. For cardinality, the
return rate is in fact faster after the obstacle is removed.
Return rates before and after obstacle removal (measured in
food units per time step) for each algorithm, along with the
percentage increase are shown here:

condition VP cardinality
before removal  0.00266 0.0334
after removal 0.00911 0.0536
increase 343% 60%

The speed at which cardinality returns food after the
obstacle is removed increases by 60%, indicating that it is
indeed able to find and switch to a faster path. The specific
mechanism of this is simple. When the obstacle is removed,
beacons on opposite sides of the obstacale which could
not previously communicate are now able to communicate
and will therefore update their cardinalities accordingly,
connecting the path from the food to the nest. Both before
and after obstacle removal, VP performs much worse than
cardinality. In fact, the pre-removal performance of
VP is so poor that any small increase will appear large by
comparison, yielding a large increase percentage.

VI. CONCLUSION

In this paper, we presented two ant-inspired algorithms
for robot foraging: VP and cardinality. Both performed
better than randomWalk, which indicates that they were
able to achieve some coordination benefit from the beacons.
They function correctly in worlds with and without obstacles,
however congestion has a significant effect.

VP and cardinality show that the ant-inspired idea of
marking the environment is an effective method of coordina-
tion even if one has to sacrifice some robots to act as beacons
to hold the values. However, cardinality shows that
there are better ways of marking the environment than just
mimicking the ant-pheromone strategy, as VP does. Lastly,
even with the coordination, the performance is much lower
than ideal (foodGPS) and thus finding ways of increasing
the range of detection of food or nest (odor or long-range
signal-based navigation to the nest) can have a strong effect
on the robot swarm performance and it may be appropriate
to pursue a combined strategy.

In the future, we will study ways to reclaim useless
beacons for use as walkers, explore more of the parameter
space (multiple food piles, varying communication radius),
and study the robustness of these algorithms to robot failures.

A parallel line of future development will focus on the
hardware required to implement the communication model
described in this paper. A preliminary prototype has been de-
signed and built, and testing is under way. The ultimate goal

is to interface the communication structure with the Khepera
hardware. This project also fits into a larger microrobotics
research effort. These algorithms are designed with a focus
on minimal hardware partially because we envision them
running on microrobotic insects. Such microrobotic hardware
platforms are currently under development at the Harvard
Microrobotics Lab [22].
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