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Introduction 

 Conflicting trends confound the pharmaceutical 

industry.  The productivity of pharmaceutical innovation 

has declined in recent years, which is one reason why the 

share of generic products now accounts for nearly 70 

percent of all prescriptions filled in the United States.1  

Despite spending on research and development (R&D) by U.S. 

companies that more than doubled (in current dollars) in 

the ten years between 1998 and 2008,2 the number of new 

molecular entities introduced into U.S. markets has 

remained relatively stable at between 20 and 30 per year.  

Between 1970 and 2007, the average number of new entities 

approved per year was just over 21.3 

 At the same time, the cohort of large companies who 

are the leading engines of pharmaceutical R&D has become 

increasingly concentrated.  As recently as 1998, the 

leading eight companies accounted for 36 percent of US 

industry shipments of pharmaceutical products.  By 2002, 

                                                 
1  Generic Pharmaceutical Association, Press Release of May 7, 2009. 
2  Pharmaceutical Research and Manufacturers of America, PhRMA Membership Survey, 2009.   
3  F.M. Scherer, “”Pharmaceutical Innovation,” in Bronwyn Hall and Nathan Rosenberg, eds., Handbook of 
the Economics of Technological Innovation, North Holland, 2010, p. 542-3.  See also Iain M. Cockburn, 
“The Changing Structure of the Pharmaceutical Industry,” Health Affairs, January/February 2004, p. 11.  
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their share had risen to more than 53 percent.4  Actually, 

that figure understates the extent of concentration among 

research-based companies because it includes between 18 and 

24 percent of shipments made by generic product producers.5    

 The concurrent presence of these trends is not 

sufficient to determine causation.  Indeed, causal factors 

could work both ways.  In response to lagging innovation 

prospects, some companies have sought refuge in mergers and 

acquisitions to disguise their dwindling prospects6 or, some 

claim, to gain R&D synergies.  On the other hand, the 

increased concentration brought on by recent mergers may 

have contributed to the declining rate of innovation. 

In this paper, we consider the second of these causal 

relationships: the likely impact of the recent merger wave 

among the largest pharmaceutical companies on the rate of 

innovation.  In other words, have recent mergers, which may 

have been taken in response to lagging innovation, 

represented a self-defeating strategy that only made 

industry outcomes worse? 

                                                 
4  US Bureau of the Census, Concentration Ratios in Manufacturing Industries, Washington, various years. 
5  Ibid. 
6  Patricia Danzon et al., "Mergers and Acquisitions in the Pharmaceutical Industry," Managerial and 
Decision Economics, August 2007.  See also Peter Elkind and Jennifer Reingold, “Inside Pfizer’s Palace 
Coup,” Fortune, August 15, 2011. 
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Two recent mergers add prominence to this question:  

Pfizer’s acquisition of Wyeth Laboratories for $68 billion 

in January 2009, and Merck & Co.’s acquisition of Schering-

Plough a few months later for $41 billion.  In 2008, Pfizer 

invested $7.9 billion on pharmaceutical R&D while Wyeth 

spent $3.4 billion, for a total of $11.3 billion.  The 

combined firm would then account for 29 percent of U.S. 

pharmaceutical industry spending on R&D and roughly 22 

percent of world-wide spending.7  In addtion, Merck had 

spent $4.8 billion on R&D in 2008 and Schering-Plough had 

spent $3.5 billion, for a total of $8.3 billion.  This 

second merger would then account for 22 percent of U.S. R&D 

spending and 17 percent world-wide.  The two merged 

entities therefore would thereby account for fully 51 

percent of total U.S. industry R&D spending and up to 39 

percent of total world-wide spending.   

Under existing U.S. antitrust policies, mergers can be 

evaluated in terms of their prospective effects on 

innovation as well as price levels.  We therefore discuss 

current policy standards on the importance of innovation to 

the antitrust consideration of mergers.  Then we shift our 

                                                 
7  Since neither Pfizer nor Wyeth report how much was spent in the United States and how much abroad, 
we compare these amounts with both totals.  According to PhRMA, total US spending by member 
companies on pharmaceutical R&D in 2008 was $38.4 billion in the United States and $50.3 billion 
worldwide.  Since, however, not all companies world-wide are PhRMA members, the suggested 
percentages may be overstated   
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attention to the theory of parallel research paths and 

review relevant prior studies.  Next, we offer a simulation 

analysis for insight into the optimal number of research 

paths at various combinations of research costs and 

payoffs.  We then review the structure of pharmaceutical 

research and development in order to relate the simulation 

results to current industry practice.  And finally, we draw 

conclusions as to the likely impact on pharmaceutical 

innovation of large horizontal mergers.          

 

Mergers and Innovation 

 The U.S. Federal Trade Commission evaluated the 

competitive effects of both mergers described above.  In 

Pfizer-Wyeth, it originally issued a complaint charging a 

violation of the antitrust laws, but then negotiated a 

consent order under which the parties agreed to divest 

their overlapping assets in the area of animal health.  In 

regard to human health markets, however, and specifically 

for the “market for basic research and innovation,” it 

found no adverse effects on competition.8   

 The Commission followed a similar path in the Merck-

Schering Plough case, but then accepted a consent order 

                                                 
8  Federal Trade Commission, “Statement of the Federal Trade Commission Concerning Pfizer/Wyeth,” 
FTC File No. 091-0053, p. 3. 
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under which some assets were divested.  There was no 

mention in any public Commission document of the firms’ R&D 

activities even though they comprise a main mode of 

competition among large pharmaceutical companies. 

 The antitrust agencies typically focus on prospective 

pricing behavior in merger cases.  However, considering 

innovative behavior is not unprecedented.  In the 

investigation of a proposed merger between aerospace giants 

Lockheed-Martin and Northrop-Grumman during the late 1990s, 

for example, the fear that the sources of innovative weapon 

systems concepts would be significantly limited was central 

to an investigation by the Department of Justice.  No 

complaint was brought, however, because Lockheed realized 

that there was opposition to its merger in both the 

antitrust agencies and the Department of Defense, and 

voluntarily abandoned it. 

 On August 10, 2010, the Department of Justice and FTC 

issued revised Horizontal Merger Guidelines, which were 

said in the overview to “describe the principal analytical 

techniques and the main types of evidence on which the 

Agencies usually rely to predict whether a merger may 

substantially lessen competition.”   Section 6.4 of those 

Guidelines addresses “Innovation and Product Variety.”  It 

states in part: 
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Competition often spurs firms to innovate.  The 
Agencies may consider whether a merger is likely to 
diminish innovation competition by encouraging the 
merged firm to curtail its innovative efforts below 
the level that would prevail in the absence of the 
merger.  That curtailment of innovation could take the 
form of reduced incentive to continue with an existing 
product-development effort or reduced incentive to 
initiate development of new products.... 

 
 Although the new Guidelines were not yet published at 

the time of the Merck - Schering-Plough and Pfizer-Wyeth 

merger proposals, they were believed to reflect U.S. 

antitrust agency practice, must at least have been under 

discussion at the time of the giant pharmaceutical mergers, 

and were anticipated at least in the Lockheed - Northrop 

deliberations.9  Nevertheless, the Federal Trade Commission 

chose not to act.  We believe its inaction was mistaken. 

  
The Theory of Parallel Paths 

 Uncertainty is the dominant reality of pharmaceutical 

research and development, just as it is in other R&D 

domains.  The relevant uncertainties are generally of two 

                                                 
9  Earlier, in 1995, the agencies released Guidelines for the Licensing of Intellectual Property that among 
other things proposed the concept of “innovation markets.”  The proposal was controversial and led to 
various dissenting articles.  See Richard J. Gilbert and Steven C. Sunshine, “Incorporating Dynamic 
Efficiency Concerns in Merger Analysis: the Use of Innovation Markets.” Antitrust Law Journal, Vol. 63, 
Winter 1995; Richard T. Rapp, “The Misapplication of the Innovation Market Approach to Merger 
Analysis,” Antitrust Law Journal, Vol. 64, Fall 1995; Dennis W. Carlton and Robert H. Gertner, 
“Intellectual Property, Antitrust, and Strategic Behavior,” in Adam Jaffee and Joshua Lerner, eds., 
Innovation Policy and the Economy Vol. 3, MIT Press, 2003; and Richard J. Gilbert and Steven C. 
Sunshine, “The Use of Innovation Markets: A Reply to Hay, Rapp, and Hoermer,” Antitrust Law Journal 
Vol. 64, 1995.    
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broad types:  uncertainty about whether a given approach or 

design or molecule will be technically successful, and 

uncertainty as to the magnitude of the payoffs, contingent 

upon technical success.10   Both types are relevant for the 

discussion below. 

Pharmaceutical industry representatives often 

emphasize the first of these dimensions.  They assert that 

for every successful therapeutic agent, hundreds (or even 

thousands) of agents are investigated and discarded along 

the way.  Furthermore, uncertainty persists when 

prospective drugs enter clinical trials, since only about 

one out of five drugs entering such trials receives U.S. 

FDA approval and is commercially introduced.11  An essential 

element in any research policy is how to confront this high 

degree of uncertainty.  A long-recognized means for coping 

with uncertainty is supporting parallel (and independent) 

research paths toward a specific technical objective. 

The oldest known example of this approach was the 

famous British Longitude Prize, announced in 1714, for 

which numerous individuals competed with proposed technical 

solutions.12  Introducing the prize proposal to Parliament, 

                                                 
10  Attention to this important distinction was first drawn by Edwin Mansfield and others in The 
Production and Application of New Industrial Technology, Norton: 1977, pp. 22-32. 
11  Christopher P. Adams and Van V. Brantner, “Estimating the Cost of  New Drug Development: Is it 
Really $802 million?” Health Affairs, Vol. 25, 2006, pp. 402, 422.   
12   See Dava Sobel, Longitude (New York: Walker, 1995), especially pp. 51-60.  
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Isaac Newton offered a non-exclusive list of specific 

technical avenues. The one he considered least promising ex 

ante was the one that eventually won the prize.  Another 

example is the Manhattan Project of the 1940s, where U.S. 

authorities supported five different methods of separating 

the fissionable materials needed for an atomic bomb, with 

expenditures anticipated at the outset amounting to 0.3 

percent of U.S. gross national product in 1942.13 

Recognizing the advantages of packing transistors into 

much smaller cubic volumes, the U.S. military services 

issued a dozen parallel R&D contracts to induce a 

solution.14  None succeeded, but seeing the demand for such 

a product, two companies, Texas Instruments and Fairchild, 

invented the important integrated circuit concept.  The 

predecessor company to Fairchild had made numerous 

unsuccessful efforts to win one of the military contracts 

supporting its semiconductor miniaturization work.15 

The explicit and implicit application of parallel path 

strategies by the U.S. military spurred theoretical work by 

economists on the subject.  The first important 

contribution was by Richard Nelson, who showed with a 

                                                 
13  See James Phinny Baxter, Scientists Against Time, (MIT Press, 1986), pp. 433-436. 
14.  See F. M. Scherer, Industry Structure, Strategy, and Public Policy (New York: HarperCollins, 1996), 
pp. 204-204. 
15.  From a conversation of F.M. Scherer with Victor Jones, a member of the Shockley Semiconductor Lab 
staff and later professor of solid state physics at Harvard University. 
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specific numerical example for fighter aircraft development 

that parallel development strategies could yield more 

advantageous results than a monolithic approach.16 

Soon thereafter, M.J. Peck and F.M. Scherer identified 

parallel R&D paths as one element of a broader time-cost 

tradeoff problem in weapons development.17  The essence of 

this strategy was 

operating simultaneously two or more approaches 
to the step, test, or problem to insure that at 
least one approach will hit the mark at the 
earliest possible moment.18  
 

Peck and Scherer showed that the deeper was the stream of 

benefits flowing from successful development, the greater 

the support for a strategy of time-reducing parallel 

paths.19  They argue that R&D is an investment seeking to 

yield a stream of benefits in the future, pursuing more 

sequential approaches to research and development often 

leads to foregone payoffs during the period of probable 

delay.   

In a 1966 article, Scherer extended that analysis by 

exploring various combinations of parallel and sequential 

                                                 
16  Richard R. Nelson, "Uncertainty, Learning, and the Economics of Parallel Research and Development," 
Review of Economics and Statistics, November 1961, pp. 351-368. 
17  Merton J. Peck and F. M. Scherer, The Weapons Acquisition Process: An Economic Analysis (Harvard 
Business School Division of Research, 1962), pp. 254-263 and 276-281.  The manuscript was in draft form 
by the summer of 1961, when Peck joined the Department of Defense staff. 
18   Ibid., p. 261. 
19  Ibid., pp. 254-263 and 276-281. 
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R&D project scheduling alternatives, finding that a convex 

time-cost tradeoff set persisted over a broad range of 

assumptions.20  In a simulation analysis entailing pure 

parallel path strategies, he found that the maximum surplus 

of benefits minus R&D costs was gained by supporting more 

parallel paths, the deeper was the stream of benefits 

arising from successful projects. 

The time-cost tradeoff, however, was highly sensitive 

to the single-approach ex ante probability of success.  

With success probabilities on the order of 0.2 -- i.e., 

analogous to success probabilities in the clinical testing 

of drugs -- from 10 to 20 parallel paths were warranted, 

assuming the presence of promising alternatives.  With 

success probabilities of one in one hundred, however - more 

favorable than what is typically experienced in pre-

clinical drug candidate screening - supporting as many as 

200 parallel paths was warranted with sufficiently rich 

possibilities and deep post-success benefit streams.   

 A further contribution was made by Abernathy and 

Rosenbloom, who explicitly modeled the choice between a 

                                                 
20  F.M. Scherer, "Time-Cost Tradeoffs in Uncertain Empirical Research Projects," Naval Research 
Logistics Quarterly, March and September 1966; reprinted as  Ch. 4 in F.M. Scherer, Innovation and 
Growth  Schumpeterian Perspectives, MIT Press, 1984, pp. 67-82.  Sensitivity to mixtures of parallel and 
sequential strategies is analyzed in F.M. Scherer, "Parallel Paths Revisited," John F. Kennedy School of 
Government working paper RWP07-040, September 2007, pp. 1-24. 
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parallel strategy, defined as “the simultaneous pursuit of 

two or more distinct approaches to a single task,” and the 

alternative sequential strategy, which involves selecting 

“the best evident approach, taking up other possibilities 

only if the first proves unsuccessful.”21  They emphasized 

that “initial judgments of cost, performance, and value are 

[generally] highly inaccurate,” so that a parallel 

development strategy serves as an important hedge “against 

the consequences of failure.”22 

 

A Dartboard Experiment 

 To explore how uncertainty about payoff magnitudes 

affects parallel path strategy choices, we extend here 

Scherer’s earlier and more limited simulation analysis.23  

The selection of R&D projects supported to their final 

outcomes is modeled as throwing darts at a dartboard, the 

cells of which are the varying payoffs contingent upon 

research and marketing success.  We assume that the returns 

from introducing new pharmaceuticals are highly skew and 

can be represented by a log normal distribution. That is, 

                                                 
21   William J. Abernathy and Richard S. Rosenbloom, “Parallel Strategies in Development Projects,” 
Management Science, Vol. 18, June 1969, p. 486.  
22   Ibid., pp. 488, 502. 
23  F.M. Scherer, "Schumpeter and the Micro-Foundations of Endogenous Growth," in Horst Hanusch and 
Andreas Pyka, eds., The Elgar Companion to Neo-Schumpeterian Economics, Edward Elgar: 2007, pp. 
682-685. 
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where N(0,1) is a random variable distributed normally with 

mean of zero and variance of 1, the distribution of payoffs 

is given by: 

 

(1) D(P) = k X N(0,1) 

 

where D(P) is the distribution function; k and X are 

scaling parameters; and X is arbitrarily set at 10 and k at 

1000 (e.g., dollars, multiplied by whatever further scaling 

parameter is suited to reflect market realities).   

To represent the considerable uncertainty associated 

with the research process, “throws” cannot be directed 

specifically at the cells with the highest payoffs but 

instead are randomly distributed, with equal probability, 

to any of 100 possible cells.  R&D costs per "throw" are 

also permitted to vary, from zero to $12,000.  The 

strategies are purely parallel; no allowance is made for 

strategies in which a smaller number of throws is attempted 

at the start but then followed by more throws if the 

objectives are not attained. 

Under conditions of certainty, equivalent here to 

having a perfect aim, the decision-maker would throw a 

single dart at each cell for which the payoff exceeds the 

cost of the throw.  With the assumed log normal payoff 
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distribution, the average number of such throws varied with 

R&D cost as follows: 

 

 R&D Cost   No. of Throws  
  
 $12,000    15 
  10,000    17 
   8,000    19 
   6,000    22 
   4,000    29 
   2,000    39 
  0       100  

 

As expected, when costs are zero, dart-throwing with 

perfect aim continues until all hundred cells are covered. 

In each experiment, additional "hits" on the same 

payoff cell are considered to add no incremental value. 

This reflects the real-world case that when, say, two 

virtually identical products are launched with the same 

product characteristics, the two share the anticipated 

payoff.  In experiments with 100 trials, the average number 

of duplicated "hits" was on the order of 36, and even with 

only five trials, occasional double hits were recorded.  

That some payoff cells are not exploited explains why the 

optimal number of trials can exceed 100 with low R&D costs 

per trial: one keeps trying in the hope of hitting untapped 

payoffs. 

A key assumption in the analysis was that each trial's 
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"hit" location was statistically independent of other 

trials.  This assumption could be violated in reality when 

the targeting of individual trials is positively 

correlated, e.g., when a single company launches multiple 

parallel trials but favors certain broad technical 

approaches over others.  If the number of multiple "hits" 

is increased for this reason, average net payoffs are lower 

for any given number of trials. 

To achieve reasonably general results in the face of 

widely varying payoffs, forty full experiments were carried 

out.  For each experiment, a new set of 100 payoffs 

distributed according to equation (1) was generated, taking 

care to choose a different normal distribution "seed" for 

each iteration.  As expected, right-hand tail values varied 

widely across experiments.  The largest single extreme 

payoff value was $1,065,124; the minimax (i.e., the lowest 

maximum across 40 experiments) was $58,010; the mean among 

the 40 experiments' maxima was $334,532.  At the other 

extreme, many payoffs were minimal; and the average payoff 

across all forty experiments was $7,032.24   

Figure 9 summarizes the results for the 40 complete 

experiments, with the number of trials per experiment 

                                                 
24  For those who doubt that random sampling from skew distributions can generate such widely varying 
results, see the whole-pharmaceutical industry simulation in Scherer and Dietmar Harhoff, supra note 11, 
pp. 562-564; and William Nordhaus, "Comment," Brookings Paper on Economic Activity: Microeconomics 
(1989), pp. 320-325. 
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ranging from 5 to 100.  The values graphed are total 

payoffs for a given number of trials, averaged across all 

40 experiments, less total R&D costs, measured by the 

assumed cost per trial times the number of trials. 

Consistent with expectations, the net value-maximizing 

number of “throws” was higher, the lower the R&D cost per 

“throw,” with optima ranging from 25 “throws” to more than 

100 “throws” at zero R&D costs.   

At low R&D costs -- $4,000 per trial or less -- 

average net payoffs are also maximized by extending the 

number of trials to more than 100, which means attempting 

(given duplicates, unsuccessfully) to hit every cell on the 

dartboard.  With R&D costs of $6,000, two local maxima 

emerged -- one with 20 trials and an average net payoff of 

$120,650, and a maximum maximorum at 50 trials with an 

average net payoff of $149,829 after deducting the $300,000 

total R&D cost per experiment.25  With still higher R&D 

costs, the 20-trial strategy dominates, so that at R&D 

costs of $8,000 per trial, there are mean net payoffs of 

$80,650 with 20 trials as compared to $62,979 with 40 

trials. 

Given the substantial variability of payoffs stemming 

                                                 
25 This duality results from the considerable variability of outcomes even with 40 experiments.  The 20-
throw experiments were apparently unusually lucky.  Asymptotically, a single optimum would emerge.    
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from the log normal distribution, whose use we justify 

below, what we conclude from this experiment is as follows: 

when R&D payoffs per trial approach R&D costs, leading to 

break-even returns, the strategy that maximizes the 

expected value of net payoffs lies somewhere between 15 and 

40 trials. 

To be sure, the optimal number of parallel paths 

hinges on our assumption that the payoff matrix contains 

one hundred payoff possibilities.  In reality, the number 

of plausible opportunities even at the clinical development 

stage could be larger or smaller.  Therefore, this analysis 

only demonstrates that parallel paths are desirable under 

certain circumstances.  It cannot show, without appropriate 

adaptation, how many parallel paths are optimal in a 

specific real-world situation.  However, the optimal number 

will expand with the number of possible technological 

opportunities.  

 

The Structure of Pharmaceutical Research and Development  

    We turn now to features of pharmaceutical research and 

development that relate to the parameters assumed in the 

simulation analysis.  Of particular relevance is the 

striking shift that has occurred in the degree of vertical 

integration.  Since the biotechnology revolution in 
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pharmaceutical research,26 an increasing fraction of 

exploratory (molecule discovery) research has been carried 

out in small, often single-project, firms.  Frequently, 

these smaller research entities are start-up biotech firms.  

In contrast, the major pharmaceutical companies have 

retained their long-standing dominance in preparing New 

Drug Applications (NDA) for the FDA along with the detailed 

and highly expensive clinical testing required for new 

drugs.27   

 This pattern is apparent in Scherer’s study of the 

origins of 85 new medical entities approved by the Food and 

Drug Administration between 2001 and 2005.
  
Examining the 

patents associated with NDAs submitted for regulatory 

approval, he finds that 47 percent were issued to firms or 

non-profit entities with names different from those of the 

ultimate FDA approval recipient. An even higher 54 percent 

of the earliest patents originated from outsiders. Although 

some may have involved subtle cross-ownership ties, he 

concludes that the leading pharmaceutical companies have 

come to rely heavily on outsiders for the pharmaceutical 

innovations they eventually bring to market.28  

                                                 
26   Alexander Scriabine, “The Role of Biotechnology in Drug Development,” in Ralph Landau et al. eds., 
Pharmaceutical Innovation, Chemical Heritage Press, 1999, pp. 271-297.  
27  William S. Comanor, “The Economics of Research and Development in the Pharmaceutical Industry,” in 
Frank A. Sloan and C.R. Hsieh, Pharmaceutical Innovation, Cambridge University Press, 2007, pp. 54-72.  
28  F.M. Scherer, 2010, p. 552.    
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 In their interactions with these smaller research-

oriented firms, Big Pharma companies fill an essential 

economic role. Biotech firms typically enjoy the advantages 

of a rapidly advancing scientific base, Ph.D.-intensive 

staffs, and a vast trove of unexploited medical 

possibilities, all in sharp contrast to the apparently 

growing obsolescence of the small-molecule discovery 

techniques on which Big Pharma companies have traditionally 

focused. On the other hand, the large companies commonly 

have the resources and expertise needed to support large-

scale clinical trials.  They also have the ability to 

shepherd the results through the labyrinthine Food and Drug 

Administration approval process. 

These complementarities offer strong incentives for 

collaborations.  Some are organized through outright 

mergers, although there can be difficulties in assimilating 

the loosely-structured, basic science-oriented researchers 

of biotech companies into the more bureaucratic and 

applications-oriented laboratories of traditional large 

pharmaceutical companies.  Many of these collaborations 

take the form of alliances, under which the major companies 

provide financial support for on-going research efforts in 

return for some form of licensing arrangement on new drugs 

resulting from the process.   
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The decisions of the major pharmaceutical companies on 

which biotech advances to support can have a major effect 

on whether particular new drugs are introduced.  To be 

sure, there are circumstances where a large company will 

support more than a single independent biotech research 

program in the hope that one is successful.29  However, even 

though numerous research efforts may be carried on within 

smaller companies at any moment in time, only a relatively 

few receive the follow-on industry funding and support 

needed for large-scale testing and commercialization and an 

unknown but not unsubstantial number of promising molecules 

left unsupported.  For this reason, as the number of 

companies available to assist and support biotech companies 

R&D efforts declines, so will the number of independent 

paths likely to be supported. 

 At the same time, the large drug companies have 

continued to pursue some discovery activities in their own 

laboratories, sometimes concurrently with externally 

supported efforts.  In path-breaking research, Cockburn and 

Henderson provide detailed descriptions of the internal 

discovery activities pursued in ten large companies during 

the 1980s.30  They report that large companies pursue on 

                                                 
29  Iain Cockburn, Personal communication of February 15, 2011 and email message of March 25, 2011. 
30  Iain Cockburn and Rebecca Henderson, “Racing to Invest? The Dynamics of Competition in Ethical 
Drug Discovery,” Journal of Economics and  Management Strategy, Vol. 3, Fall 1994,  pp. 481-519; 
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average about ten substantial discovery programs per year, 

directed towards particular medical or therapeutic 

objectives that might span the entire range of 

biopharmaceutical research.31  Such programs cost on average 

about $600,000 annually in 1986 dollars.  In addition, the 

respondent companies also tended to support on average six 

smaller programs, which could cost roughly $10,000 per 

year.32 

 In the discovery phase of pharmaceutical R&D, the 

critical factor for innovation is the number of molecules 

carried forward into succeeding stages.  Although much of 

this scientific work is carried out within smaller biotech 

companies, the decisions of the larger companies as to 

which research projects to provide financing and support 

can largely determine their outcomes.           

 The discovery phase of the R&D process consumes a 

minority share of R&D dollars spent by Big Pharma 

companies.  According to Cockburn and Henderson, about two-

thirds of R&D dollars are used for drug development rather 

                                                                                                                                                 
“Scale, Scope, and Spillovers: the Determinants of Research Productivity in Drug Discovery,” RAND 
Journal of Economics, Vol. 27, Spring 1996, pp. 32-59; “Scale and Scope in Drug  Development: 
Unpacking the Advantages of Size in Pharmaceutical Research,” Journal of Health Economics, 2001, pp. 
1-25.       
31  Discovery programs are defined by three conditions:  a separate budget unit, a designated collection of 
people engaged in the research work, and a specified objective.  Although different companies may use 
different terminology, all three conditions must be met for the designation of a research program.  These 
programs may include more than one target molecule and are generally disease-specific efforts.   Cockburn, 
2011. 
32  Cockburn and Henderson, 1996, p. 43. 
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than drug discovery,33 where development entails the 

translation of promising new molecules into marketable 

products.  Costs are greater there because marketability 

requires regulatory approval, which demands up to four 

phases of very costly testing procedures.  In 1990, the 

average development program34 lasted just under five years 

and cost about $200 million.35  Cockburn and Henderson find 

that development projects can be quite risky, with 

on average, only one in five of the compounds that 
begun substantial clinical testing in our data 
resulting in the filing of an application for new drug 
approval (NDA), and even fewer were granted an NDA and 
reached the marketplace.36   

 
 On a per-firm basis, the average firm in their sample 

of ten companies had underway nearly sixteen development 

programs per year.  Therefore, the typical drug company in 

the sample must have originated between three and four new 

programs per year.37  Moreover, the average firm had 

programs in more than fourteen therapeutic areas.38  

Dividing their 16 programs by 14 therapeutic areas, we 

conclude that the large companies have tended to limit 

                                                 
33  Cockburn and Henderson, 2001, p. 5. 
34  Development programs are typically molecule-specific, or limited to a closely related set of molecules.  
Cockburn, 2011. 
35  Cockburn and Henderson, 2001, p. 4. 
36  Ibid. 
37  Development programs last about 5 years and the average firm is engaged in 16 of them; then dividing 
16 by 5 suggests the average number that need be started each year to maintain this level of activity. 
38  Cockburn and Henderson, 2001, pp. 8-9. 
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their development activities to a single program within any 

given therapeutic area. 

 To test this finding, we examined the disease areas 

subject to Phase III clinical trials for the five largest 

U.S. companies for the years 2009 and 2010.  Our results 

are as follows: 

 
Merck engaged in 25 trials, of which 2 were for the same 
condition; thus 92 percent were not duplicated. 
 
Johnson & Johnson engaged in 21 trials, of which 2 were for 
the same condition; thus 90 percent were not duplicated. 
 
Pfizer engaged in 12 trials, of which 2 were for the same 
condition; thus 83 percent were not duplicated. 
 
Lilly engaged in 13 trials, of which 7 were for the same 
condition; thus 46 percent were not duplicated. 
 
Bristol-Myers Squibb engaged in 8 trials, of which 2 were 
for the same condition; thus 75 percent were not 
duplicated.39 
 
 
The five companies together engaged in 79 trials, of which 

15 represented parallel efforts.  Thus, 81 percent were not 

duplicated in terms of their therapeutic goals.  While this 

suggests some degree of parallelism at the development 

stage, it is relatively modest.     

 These findings can be interpreted in light of our 

earlier analysis of parallel research paths.  Although the 

larger companies sometimes adopt a parallel path strategy 

                                                 
39  These findings are compilations from the data available on the www.clinicaltrials.gov web site.   
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at the discovery stage by supporting one or more external 

programs along with an internal one, that rarely occurs at 

the development stage.  In particular, the data indicate 

that large companies, with the apparent exception of 

Lilly,40 rarely pursue more than a single program in any 

given therapeutic area. 

One explanation is that introducing a second product 

in the same therapeutic area is not likely to increase a 

company’s sales proportionately.  Except in rare 

breakthrough cases, patented products within a therapeutic 

area compete with each other,41 and therefore will draw a 

proportion of their sales from the firm’s other products.  

The incentive to bear the high costs of development 

programs is therefore attenuated as compared with research 

efforts carried out in separate firms.42   

From this brief discussion of pharmaceutical R&D 

activities, we infer the following conclusion:  the number 

of paths pursued at the development stage of pharmaceutical 

R&D in individual therapeutic areas is not likely to exceed 

by much the number of large pharmaceutical companies.     

                                                 
40   On Lilly’s deviant strategy, see Bernard Munos, “Lessons from 60 Years of Pharmaceutical 
Innovation,” Nature Reviews/ Drug Discovery, Vol. 8, December 2009.  
41 Z. John Lu and William S. Comanor, “Strategic Pricing of New Pharmaceuticals,” Review of Economics 
and Statistics, Vol. 80, Feb. 1998, pp. 114-115. 
42  This argument is hardly new, as a variation of it appeared sixty years ago.  See William J. Fellner, “The 
Influence of Market Structure on Technological Progress,” Quarterly Journal of Economics, Vol. 65, 
November 1951, pp. 556-577.  See also F.M. Scherer and David Ross, Industrial Market Structure and 
Economic Performance, 3rd ed., 1990, Ch. 17, pp.    
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 Even when development projects succeed and lead to new 

product introductions, considerable uncertainty remains 

about the returns that follow.  In a series of papers 

applicable to the 1970s, 1980s and 1990s, Grabowski and 

colleagues have investigated the distribution of net 

economic returns from new drugs.43  Most recently, they 

report net product quasi-rents before deduction of R&D 

costs for the 118 new chemical entities introduced between 

1990 and 1994, ordered by deciles from highest to lowest.  

The distribution is highly skew, with the top decile alone 

accounting for 52 percent of the aggregate present values 

across all 118 new drugs.44  This degree of skewness, 

moreover, is not exceptional.  They also find that “the top 

decile has accounted for between 46 and 54 percent of the 

overall returns over the four sample cohorts … analyzed.”45 

 This evidence supports our use of the log normal 

distribution to describe the payoffs from innovation, even 

though that distribution is more skew than the distribution 

of quasi-rents reported by Grabowski and colleagues.  The 

top ten percent cohort in the log normal distribution of 

                                                 
43  Henry Grabowski, John Vernon and Joseph A. DiMasi, “Returns on Research and Development for 
1990s New Drug Introductions,” Pharmacoeconomics, Vol. 20, 2002,  pp. 11-29; Henry G. Grabowski and 
John M. Vernon, “Returns to R&D on New Drug Introductions in the 1980s,” Journal of Health 
Economics, Vol. 13, 1994, pp. 383-406; and “A New Look at the Returns and Risks to Pharmaceutical 
R&D,” Management Science, Vol. 36, July 1990, pp. 804-821. 
44  Grabowski, Vernon and DiMasi, 2002, p. 22.  
45  Ibid., p. 23. The four cohorts examined are 1970-74, 1975-79, 1980-84 and 1990-94. 
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equation (1) captures roughly 80 percent of total payoffs.  

However, Grabowski and colleagues analyze the returns from 

new molecules approved by the Food and Drug Administration 

and presumably marketed after passing that hurdle.  Our 

analysis deals instead with the development and testing 

activities that precede FDA approval.  As noted above, 

among the molecules carried into clinical testing in the 

United States, fewer than one in five are eventually 

approved.  If the number of molecules that begin rather 

then complete clinical trials is the sample base, the top 

ten percent of NDA recipients is roughly equivalent to the 

top 2.5 percent of the sample entering clinical testing.  

 The top 2.5 percent in our log normal sample account for 

about 54 percent of total sample  payoffs – quite similar 

to the range reported by Grabowski and Vernon.46  The log 

normal distribution employed above therefore tracks the 

empirical evidence well.   

      

Rent-seeking and Social and Private Rates of Return 

 Under a rent-seeking model of R&D investment, rivals 

compete by making R&D “bets” that continue so long as 

                                                 
46  If the sample is extended to the much larger number of molecules not carried into human testing, the 
share of the NDA recipients analyzed by Grabowski et al. falls even more.  Molecules not receiving 
marketing approval might nevertheless have some value in terms of their information spillover value.  The 
median payoff in our full experiment sample was $950 – i.e., in the low range of plausible spillover values.        
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expected rewards exceed expected costs.47  Competitive 

equilibrium is reached when expected rewards approximate 

expected costs.  Compelling evidence suggests that such 

rent-seeking behavior prevails in regard to pharmaceutical 

R&D.   

Henry Grabowski and colleagues studied the 

relationship of average discounted quasi-rent values to R&D 

costs for various periods from 1970 through the 1990s.48  

They found that new product revenues from the 1990s only 

slightly exceeded R&D costs; specifically, that “the IRR 

(internal rate of return) is 11.5% and can be compared with 

our cost-of-capital estimate of 11%.  Hence, the industry 

mean performance is positive but only by a small amount.”49 

A similar conclusion was reached in a government study 

that surveyed new chemical entities introduced between 1981 

and 1983.  Its conclusion was that 

the average revenue per compound was $36 million more 
in NPV (net present value) than was needed to bring 
forth the research on the drugs introduced. … This 
excess would be eliminated if annual revenues per 
compound were reduced by 4.3 percent.50 

 
The study found that large drug companies earned rates of 

                                                 
47  For an early description of this process, see William S. Comanor, “Research and Competitive Product 
Differentiation in the Pharmaceutical Industry in the United States,” Economica, Vol. XXXI, November 
1964, pp. 372-384. 
48  Supra note 51. 
49  Garbowski, Vernon, and DiMasi, op. cit., 2002, p. 20. 
50  U.S. Congress, Office of Technology Assessment, Pharmaceutical R&D: Costs, Risks and Rewards, 
OTA –H-522, Washington, DC: US Government Printing Office, February 1993, p. 94.       
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return on their investment only two or three percentage 

points higher than the real cost of their financial 

capital.51     

Both studies conclude that net revenues from 

pharmaceutical R&D exceeded the associated research costs, 

including those of failures, by only small amounts.  They 

support the inference that a zero net expected profit rent-

seeking process was approximated.  Recall the simulation 

analysis presented earlier.  Along the zero net payoff line 

in Figure 1, we identify the number of “dart throws” or 

research projects required to reach a zero net return 

equilibrium.  Those values describe the numbers of research 

paths needed to reach a competitive equilibrium that is 

based on expected payoffs and costs. 

 These inferences, moreover, reflect the private 

returns from pharmaceutical R&D rather than those that 

accrue more broadly to society.  There can be wide 

differences between private and social returns.  If social 

benefits, including consumer surpluses and the value of 

non-market externalities, exceed their associated private 

benefits, then fewer parallel paths might be pursued by 

private firms than would be socially optimal.  On the other 

                                                 
51  Ibid.  See also Scherer, 2010, p. 562. 
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hand, since rivals confront the same set of opportunities,52 

parallel efforts are likely to occur.  Whether the 

parallelism thus engendered is sufficient to meet the 

requirements for a social optimum is unknown.  What is 

clear, however, is that reducing the number of rival firms 

tends to limit the extent of parallelism.  Therefore, if 

parallelism had reached near optimal levels under rent-

seeking behavior before consolidation, then reducing the 

number of rivals leads to fewer parallel paths and a slower 

rate of pharmaceutical innovation. 

 There is support for this conclusion from a study that 

correlated the number of new molecular entities (NME) 

approved by the FDA with the number of innovating 

companies.  The author reports that these variables are 

“closely correlated in a nonlinear relationship that 

explains 95% of the changes in expected NME output by 

changes in the number of companies.”53  He observes further 

that the larger pharmaceutical companies “have delivered 

innovations at a constant rate for almost 60 years.”54  In 

that case, reducing the number of innovating companies 

                                                 
52  As suggested by Cockburn and Henderson, 1994, pharmaceutical R&D decisions are driven primarily by 
technological opportunities along with the firm’s specific human capital capabilities.  See also Scherer, 
2010, p. 568. 
53  Munos, op. cit,. p. 963.  
54  Ibid., p. 961. 
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implies fewer innovations, which is consistent with the 

analysis above of parallel research paths.         

 Again, a critical factor is the extent of the gap 

between social and private benefits from pharmaceutical 

research.  In pioneering research, Edwin Mansfield and 

colleagues reported that innovators' median profits from 

their research efforts were 25 percent before tax, while 

the median social return was on the order of 56 percent, or 

roughly twice the private return.55   

 In a more recent study limited to pharmaceutical R&D, 

Frank Lichtenberg studied the impact of new drug approvals 

on reduced mortality.  Using a benchmark estimate of 

$25,000 per life-year saved, he estimated the social rate 

of return from pharmaceutical innovation at approximately 

68 percent per annum.56  This value is nearly six times 

Grabowski’s figure for the private returns from 

pharmaceutical research and development.   

Lichtenberg acknowledges two sets of extenuating 

circumstances.  The first is that if life-years are valued 

instead at $10,000, his estimated return falls to 27 

                                                 
55  Edwin Mansfield et al., "Social and Private Rates of Return from Industrial Innovations," Quarterly 
Journal of Economics, vol. 91, May 1977, pp. 221-240.  See more generally Bronwyn Hall, Jacques 
Mairesse, and Pierre Mohnen, "Measuring the Returns to R&D," in Bronwyn Hall and Nathan Rosenberg, 
eds., Handbook of the Economics of Innovation (North-Holland: 2010), vol. II, pp. 1033-1082. 
56  Frank R. Lichtenberg, “Pharmaceutical Innovation, Mortality Reduction, and Economic Growth,” in 
Kevin M. Murphy and Robert H. Topel, eds., Measuring the Gains from Medical Research, an Economic 
Approach, 2003, University of Chicago Press, p. 102.    
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percent.  His second caveat, however, cuts in the opposite 

direction.  It rests on the fact that new drugs convey many 

social benefits beyond reduced mortality, such as reduced 

sickness and morbidity, fewer workdays and schooldays lost, 

and a generally improved quality of life.57  Given the 

constraining assumptions of his empirical analysis, 

Lichtenberg concludes that the social returns from new drug 

development are probably even higher than the 68 percent 

return obtained in his statistical analysis.   

 These findings have direct implications for the 

optimal number of parallel research paths.  Where the 

social returns from R&D outlays greatly exceed their 

corresponding private returns, the desired number of 

parallel paths is larger than it would be by a strictly 

private calculus.  If parallel paths are mainly induced 

through rent-seeking behavior that carries R&D to the point 

where private returns approximately equal costs, then a 

decline in the number of rival firms could lead to fewer 

parallel approaches and increase the likelihood that the 

number of research paths pursued is socially sub-optimal.  

As a result, recent mergers that led to fewer parallel 

efforts reduced the rate of pharmaceutical innovation. 

                                                 
57  Ibid.  See also Frank R. Lichtenberg, "Pharmaceutical Knowledge -- Capital Accumulation and 
Longevity," in C. Corrado, J. Haltiwanger, and D. Sichel, eds., Measuring Capital in the New Economy,  
University of Chicago Press: 2004; and "The Benefits and Costs of Newer Drugs: Evidence from the 1996 
Medical Expenditure Panel Survey," National Bureau of Economic Research Working Paper No. 8147, 2001. 
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Policy Conclusions  

  In its consideration of the Pfizer-Wyeth merger, the 

Federal Trade Commission found that the merger was 

“unlikely to have an adverse impact on the development of 

human pharmaceutical products.”58  That conclusion runs 

counter to one reported in a statistical study of 

pharmaceutical mergers: 

Another surprising finding is that companies that do 
essentially the same thing can have rates of NME 
output that differ widely.  This suggests there are 
substantial differences in the ability of different 
companies to foster innovation.  In this respect, the 
fact that the companies that have relied on M&A 
(Mergers and Acquisitions) tend to lag behind those 
that have not suggests that M&A are not an effective 
way to promote an innovation culture or remedy a 
deficit of innovation.59 

    
 The analysis offered here also differs from the FTC 

position.  So important is the development of new 

pharmaceuticals for society’s welfare, and so problematic 

is the on-going decline in new drug development, that the 

U.S. government is considering the establishment of a new 

federal research center to pursue drug development.60  There 

is an important public interest in promoting rapid 

pharmaceutical innovation, and policies that foster large 

                                                 
58  Federal Trade Commission, Letter to Drs. Comanor and Scherer, January 25, 2010. 
59  Munos, op. cit., p. 961. 
60  Gardiner Harris, “A New Federal Research Center Will Help to Develop Medicines,’ The New York 
Times, January 23, 2011, pp. A1-21. 
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numbers of parallel paths directed towards the development 

of effective new drugs can be an important step towards 

that objective.   

 To be sure, the pursuit of parallel research paths is 

not limited to major pharmaceutical companies.  However, as 

the Cockburn–Henderson data show, the larger companies 

engage on average in development programs that are 

typically limited to a single therapeutic area.  Although 

smaller biotech firms add parallelism in discovery 

programs, that is not so for development programs, which 

typically require the financial and technical support 

available only in the larger companies.  Big Pharma 

companies play a critical role, particularly in the 

clinical testing process.  

Although one cannot know definitely whether the 

pharmaceutical industry, or individual member firms, were 

investing socially optimal amounts in research and 

development when industry concentration was lower, we can 

observe the effects of recent large mergers.  Even prior to 

these mergers, the amounts allocated to R&D by both Pfizer 

and Merck led to what was generally considered, both 

internally and by outside expert opinion, a disappointing 

yield of new pharmaceutical agents.   

The consequences of the two recent large mergers have 
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been distinctly negative.  Before their merger, Pfizer and 

Wyeth together were investing approximately $11.3 billion in 

R&D annually, while post-merger they spent $9.4 billion in 

2010 and announced plans to reduce spending still further to 

between $6.5 and $7 billion by 2012.61  This implies a 

decline of 57 to 62 percent from prior levels.  At a minimum, 

one major Pfizer R&D laboratory will be closed and another 

substantially downsized.62  Similarly, Merck announced that 

it would close at least three R&D facilities, but with the 

total R&D spending reduction left unspecified.63  The effects 

of these mergers on R&D spending and employment were clearly 

negative, implying a reduction in the degree of parallelism 

in drug development.  

 Permitting horizontal mergers between large 

pharmaceutical companies appears to have limited the 

desirable pursuit of independent parallel paths in 

pharmaceutical development.  And it likely contributed to 

the decline in the rate of pharmaceutical innovation.                

   

   

               

 
           
                                                 
61   Elkind and Reingold, Fortune, August 15, 2011. 
62   Ibid. 
63  “FierceBiotech.com,” April 28, 2010. 
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