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Collision-induced spin depolarization of alkali-metal atoms in cold 3He gas
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We present a joint experimental and theoretical study of spin depolarization in collisions of alkali-metal
atoms with 3He in a magnetic field. A rigorous quantum theory for spin-changing transitions is developed and
applied to calculate the spin exchange and spin relaxation rates of Li and K atoms in cryogenic 3He gas.
Magnetic trapping experiments provide upper bounds to the spin exchange rates for Li-3He and K-3He, which
are in agreement with the present theory. Our calculations demonstrate that the alkali-metal atoms have
extremely slow spin depolarization rates, suggesting a number of potential applications in precision spectros-
copy and quantum optics.

DOI: 10.1103/PhysRevA.78.060703 PACS number�s�: 34.50.�s

Spin-polarized atoms and molecules are key components
of research in many areas of physics ranging from atomic
magnetometry �1,2� and cryogenic cooling �3,4� to nuclear
physics �5� and medical imaging �6�. Collisions of spin-
polarized atoms with background gas or other atoms may
lead to spin depolarization, causing loss of coherence �7�,
reduction of the lifetime of trapped atoms �3�, and collisional
frequency shifts in atomic clocks and magnetometers �1,2�.
A particularly important mechanism in which spin polariza-
tion is not destroyed but is transferred from one atom to
another is known as spin exchange �1,8�. This process under-
lies the powerful technique of spin exchange optical pump-
ing �8�, which is used to polarize the nuclear spins of rare-
gas atoms for studies in magnetic resonance imaging �6� and
neutron spin structure �5�. Collisions may also lead to spin
relaxation which, unlike spin exchange, is always undesir-
able �1�. A large ratio of the cross sections for spin exchange
and spin relaxation is therefore essential for the efficiency of
spin exchange optical pumping �8,9�.

The potential and versatility of the buffer-gas cooling
method �3� in producing cold trapped ensembles of atoms
and molecules at temperatures below 1 K have been demon-
strated by a number of recent experiments �4�. The cooling
starts by introducing hot atoms in a cell filled with cryogenic
3He gas. Elastic collisions quickly refrigerate the atoms to
subkelvin temperatures, so they can be confined in a mag-
netic trap �3�. The lifetime of atoms in the trap is limited by
spin relaxation due to collisions with the buffer-gas atoms. A
large ratio of the cross sections for elastic collisions and spin
relaxation is required for efficient cryogenic cooling. There-
fore, understanding the mechanisms of collision-induced
spin exchange and spin relaxation is essential for the success
of both cryogenic cooling and spin exchange optical pump-
ing, even though the two techniques may operate in different
temperature regimes.

Previous theoretical work has shown that spin exchange
in collisions of alkali-metal atoms �M� with 3He occurs due
to the Fermi contact hyperfine interaction between the elec-
tron spin of the alkali-metal atom and the nuclear spin of 3He
�8,10�. The strength of the hyperfine interaction is propor-

tional to the unpaired spin density at the He nucleus defined
as ��R�= ���re ,� ;R� ���re� ���re ,� ;R��, where ��re� is the
Dirac delta function, ��re ,� ;R� is the adiabatic electronic
wave function for the ground 2� electronic state of M-3He,
and the averaging is performed over the spatial �re� and spin
��� coordinates of the electrons defined in the frame with the
origin at the 3He nucleus at a fixed internuclear distance R
�10�. Herman �10� proposed a model linking the spin density
of the M-3He complex to that of the isolated alkali-metal
atom

��R� = ���n�R��2, �1�

where �n�R� is the wave function of the alkali-metal valence
electron and � is an enhancement factor due to the exchange
interaction between the valence electron of M and the He
core �10�. The most recent estimates for ���=5.8−12.6 are
based on the frequency shift measurements for Na, K, and
Rb in a gas of 3He �11–13�. The accuracy of these estimates
is, however, limited by the uncertainties in the M-He inter-
action potentials used to extract � from the measured fre-
quency shifts �11�.

Here, we present an experimental and theoretical analysis
of spin exchange and spin relaxation in collisions of the
alkali-metal atoms with 3He. The 7Li or 39K atoms are con-
fined in a magnetic trap, and an upper limit to the spin-
changing cross section is determined by monitoring the de-
cay of atoms in the trap. For Li-3He, we carry out accurate
calculations of the electronic structure and collision dynam-
ics without any adjustable parameters. For heavier alkali-
metal atoms, we propose a refined estimate for � based on ab
initio interaction potentials �14� and recent precision mea-
surements of the frequency shift enhancement factors �13�.
Our quantum scattering calculations show that collision-
induced M-3He spin exchange and spin relaxation are
strongly suppressed at temperatures below 1 K. This sug-
gests that the alkali-metal atoms in a cryogenic bath of 3He
may be used in a number of applications in precision spec-
troscopy, quantum optics, and quantum information process-
ing.
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We measure the ratio of the thermally averaged diffusion
cross section �̄D to the relaxation cross section �̄R by con-
fining a cloud of Li or K within a magnetic trap using the
apparatus described in �4�. A large density of 3He is present
within the trap, at the same temperature as the trapped alkali-
metal atoms. Atoms can be lost due to evaporation over the
trap edge or from any number of inelastic loss processes. A
lower limit for �̄D / �̄R is set by assuming that all inelastic
loss is due to collisional spin depolarization. With this as-
sumption, the lifetime of atoms in the trap is �4�

�trap =
�0

e−0.31�̄−0.018�̄2
+ gv̄	

2 �̄R�0
2/�̄D

, �2�

where �̄�	BBtrap /kBT is the ratio of the trap depth to the
atom temperature, v̄	 is the average relative collision veloc-
ity, �0 is the lifetime of atoms diffusing through the helium
gas when the trap is turned off, and g is a geometric factor,
equal to 0.17 cm−2 in our experiment. The probability for
spin depolarization is small, and the trap lifetime is limited
by evaporative loss rather than inelastic collisions. The upper
limit to �̄R is therefore determined by the temperature �or �̄�
and lowest M-3He mean free path at which the atoms can be
seen with acceptable signal-to-noise ratio. The minimum
temperature and maximum helium density will vary with the
alkali-metal atom due to variations in both the M-3He elastic
cross section and the amount of energy necessary for abla-
tion. To find the lower limit for �̄D / �̄R, we first measure �0
with the trap turned off. We then energize and reload the trap
to measure �trap. Temperature is measured using a thermom-
eter in thermal contact with 3He. We solve �2� for �̄D / �̄R.
Taking into account our measurement uncertainties, we are
able to derive lower limits to the ratios. They are given in
Table I. We note that the experimental results are entirely
consistent with �̄R=0, and the larger ratio of �0 to �trap for Li
is due to the lower trapping temperature used.

The Hamiltonian of the M-3He collision complex in the
presence of an external magnetic field B can be written in
atomic units as �8�

Ĥ = −
1

2	R

�2

�R2R +
�̂2

2	R2 + V�R� + Ĥsd�R� + ĤM + ĤHe,

�3�

where 	 is the reduced mass of the complex, �̂ is the orbital

angular momentum for the collision, and V̂�R� is the spin-
independent electrostatic interaction potential. The Hamil-

tonian for the isolated alkali-metal atom may be written as

ĤM = AÎ · Ŝ + 2	0BŜz − B
	M

IM
Îz, �4�

where A is the hyperfine constant, 	0 is the electron Bohr
magneton, 	M is the nuclear magnetic moment of M, and the

operators Ŝz and Îz yield the z components of the electron and
nuclear spin of M. The interaction of the 3He atom with a

magnetic field is given by ĤHe=−B�	He / IHe�ÎzHe
. For the 7Li

and 39K isotopes considered here, IM =3 /2. The spin-
dependent term in Eq. �3� has the form �8�

Ĥsd = AF�R�ÎHe · Ŝ + 
�R��̂ · Ŝ + �A�R�Î · Ŝ , �5�

where the terms on the right-hand side describe the Fermi
contact hyperfine interaction, the spin-rotation interaction,
and the hyperfine frequency shift. In Eq. �5�, we neglect the
anisotropic part of the hyperfine interaction. This assumption
is consistent with the procedure used to analyze experimental
data �9,15�. The Fermi contact hyperfine constant is �10�

AF�R� =
16�	0	He

3IHe
��R� . �6�

In order to parametrize the spin-dependent Hamiltonian
�5�, we performed ab initio calculations of the Li-3He spin
density using the coupled cluster method with single, double,
and noniterative triple excitations �CCSD�T�� and unre-
stricted Hartree-Fock reference functions �16�. All calcula-
tions were performed using the ACES II package of programs
�17�. The spin densities at the nuclei were computed with the
�-function formalism from the CC relaxed density matrix. In
order to ensure the correct behavior of the electronic wave
function near the nuclei, we used a modified augmented cor-
relation consistent polarized valence quintuple-zeta �aug-cc-
pV5Z� basis for He obtained by fully decontracting the s
functions and adding a sequence of three tight s functions
with exponents forming a geometric progression. For Li, we
adopted an aug-cc-pCVQZ �polarized core-valence
quadruple-zeta� basis set with completely decontracted s
functions augmented with four tight s functions. In both
cases, the tight s functions were obtained by multiplying the
largest s exponent of the parent basis set by a factor of 4. The
calculated spin density at the Li nucleus is in close agree-
ment with the value obtained from highly accurate calcula-
tions in Hylleraas coordinates �18�.

Figure 1�a� compares the ab initio spin density of Li-3He
with that computed using Herman’s model �10� parametrized
by �=9.5 �19�. Although Eq. �1� overestimates the absolute
magnitude of the spin density, its variation with R is repro-
duced surprisingly well. This is illustrated in Fig. 1�b�, where
we plot the refined estimate for the enhancement factor �
obtained by substituting the ab initio spin density into Eq.
�1�. The ab initio enhancement factor varies slowly with R,
and we find that ��R�	��Rtp�=2.5, where Rtp is the zero-
energy turning point of the Li-3He interaction potential, de-
noted by the arrow in Fig. 1. In order to evaluate � for
heavier alkali-metal atoms, we performed calculations of
the frequency shift enhancement factor 0 using Eq. �24� of

TABLE I. Measured lower limits for the ratio of diffusion to
spin depolarization cross sections for Li-3He �T=240�20 mK� and
K-3He �T=320�20 mK�. The confidence limit for the ratios is
97%. The theoretical ratios are for a magnetic field of 2 T.

Atom �0 �s� �trap �s�
�̄D / �̄R

Expt.
�̄D / �̄R

Theory

Li 0.027�0.001 5.6�0.5 �5.4�105 1.2�1011

K 0.89�0.03 28.6�0.7 �1.1�108 3.7�1011
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Ref. �11� and accurate ab initio interaction potentials �14�.
The electronic wave functions of the alkali-metal atoms were
constructed from a numerical propagation of the Schrödinger
equation, in which the interaction of the valence-core elec-
trons was parametrically modeled �20�. The parameter � was
varied until the calculated 0 reproduced the measured val-
ues �13�. We obtain �=1.85 for K-3He and �=2.0 for
Na-3He. These values are smaller than the lowest previous
estimate of 5.8 �11�. We attribute the discrepancy to a differ-
ent set of interaction potentials used to evaluate 0 in this
previous work.

In order to evaluate the rate constants for spin-changing
transitions, we solve the multichannel scattering problem by
expanding the total wave function of the collision complex in
the basis �IMI��SMS��IHeMIHe

���m��, where �SMS� are the
electron spin functions of the alkali-metal atom, �IMI� and
�IHeMIHe

� are the nuclear spin basis functions of M and 3He,
and the functions ��m�� describe the orbital motion of the
collision partners. Substitution of the expansion into the
Schrödinger equation leads to a system of close-coupled
equations, which is solved at fixed values of the collision
energy and magnetic field.

Table I presents the calculated ratios of the rate constants
for diffusion and spin exchange in collisions of Li and K
atoms with 3He. The spin exchange occurs through the hy-
perfine transitions �F=2,mF=2�→ �F�=2,mF� =1� and
�F=2,mF=2�→ �F�=1,mF� =1� accompanied by the nuclear
spin-changing transition in 3He �MIHe

=−1 /2�→ �MIHe
� =1 /2�.

For both Li-3He and K-3He, the calculated ratios are much
larger than the measured lower limits. The extremely slow
spin exchange in M-3He collisions reflects the exponential
decay of the Fermi contact interaction with R. The repulsive
interactions at short range prevent the collision partners from

reaching the region of strong Fermi contact interaction, caus-
ing suppression of spin exchange transitions.

Figure 2 shows the calculated temperature dependence of
thermally averaged rate constants for spin exchange and spin
relaxation in K-3He collisions. The spin relaxation is medi-
ated by the spin-rotation interaction �21�, and it occurs
through the same �mF= �1 transitions discussed above, but
with no change in the nuclear spin state of 3He. The spin
exchange rate exhibits a shallow minimum near 1 K, in-
creases monotonically at larger temperatures, and shows
little sensitivity to the magnetic field. The calculated spin
exchange rate at T=320 mK is 5.3�10−22 cm3 /s, consistent
with the experimentally derived upper limit of 1.7
�10−18 cm3 /s. Thus the spin depolarization of the alkali-
metal atoms in 3He gas is much slower than in other mag-
netically trappable species, such as the noble-metal atoms �4�
or 2� molecules �3�. At T=463.15 K, our calculated spin
exchange rate of 6.1�10−20 cm3 /s is in excellent agreement
with the experimental value of �6.1�0.4��10−20 �9�.

The temperature dependence of the spin relaxation rate
shown in Fig. 2 is very steep, increasing by 6 orders of
magnitude as the temperature is varied from 1 to 600 K �the
spin exchange rates only gain a factor of 
10�. Such a dra-
matic effect is caused by the very fast exponential increase of
the spin rotation constant 
�R� with decreasing R �8�. In
addition, the matrix elements of the spin rotation interaction
between the different spin states scale as ����+1��1/2 �22�. At
larger collision energies, higher partial waves contribute and
the matrix elements increase considerably. We note that the
Fermi contact interaction also increases exponentially with
decreasing R �see Fig. 1�. However, this dependence is less
steep, so the variation of the spin exchange rates with T is
not as dramatic.

The total spin depolarization rate at low collision energies
is dominated by spin exchange. Since this channel is absent
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FIG. 1. �Color online� �a� The electron spin density for Li-3He,
Eq. �6�, calculated as a function of the interatomic separation R: ab
initio �circles� and Herman’s model �10� �solid line�. �b� The en-
hancement factor � calculated from Eq. �1� using the spin densities
in the upper panel. The arrow marks the zero-energy turning point
of the Li-3He interaction potential �14�.
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FIG. 2. �Color online� The calculated and measured spin ex-
change rates for K-3He collisions as a function of temperature. The
spin relaxation rate is also shown at a magnetic field of 10−4 T. The
upper limit to the spin exchange rate of magnetically trapped K
measured in this work is shown by the triangle. The high-
temperature rates measured in spin exchange optical pumping ex-
periments are represented by the circle �9� and square �15�.
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for the 4He isotope, the results shown in Fig. 2 suggest that
spin changing transitions in collisions with 4He will be fur-
ther suppressed. This observation might explain why no spin
relaxation of Li and Rb atoms was seen in a recent buffer-gas
cooling experiment employing 4He �2�. Figure 2 demon-
strates that transitions induced by the spin rotation interac-
tion begin to take over as the collision energy increases and
both spin exchange and spin relaxation mechanisms contrib-
ute equally for K-3He collisions at 45 K.

In summary, we have carried out a combined experimen-
tal and theoretical study of spin depolarization of the alkali-
metal atoms in collisions with 3He atoms. Our ab initio cal-
culations of the Li-3He electron spin density and the
frequency shift enhancement factors have allowed us to ex-
tract the refined values of �=2.5, 2.0, and 1.85 for collision
complexes of Li, Na, and K atoms with 3He. These values
represent a significant improvement over the previous esti-
mates of 5.8–12.6 �11,19�. Using the improved Fermi contact
interaction parameters, we have calculated the probabilities
for spin exchange and spin relaxation in M-3He collisions.
The calculated spin exchange rate constants for Li-3He and
K-3He are on the order of 10−21 cm3 /s, consistent with the

upper bounds derived from magnetic trapping experiments
with Li and K atoms.

The results presented in Table I and Fig. 2 suggest that
alkali-metal atoms confined in a magnetic trap have ex-
tremely long lifetimes �10–100 s� even in the presence of
strong magnetic fields. This feature can be used to design
high-precision atomic magnetometers based on cold alkali-
metal vapor cells �2�. Another possible application is the use
of buffer-gas-cooled Cs atoms to measure the electric dipole
moment of the electron �23�. In addition, low decoherence
rates of the alkali-metal atoms in a cold gas of 3He can be
exploited in many interesting applications in quantum optics
�7� and quantum information processing �24�.
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