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Abstract: 1	
  

 Differences in gene expression are thought to be an important source of 2	
  

phenotypic diversity, so dissecting the genetic components of natural variation in gene 3	
  

expression is important for understanding the evolutionary mechanisms that lead to 4	
  

adaptation. Gene expression is a complex trait that, in diploid organisms, results from 5	
  

transcription of both maternal and paternal alleles. Directly measuring allelic expression 6	
  

rather than total gene expression offers greater insight into regulatory variation. The 7	
  

recent emergence of high-throughput sequencing offers an unprecedented opportunity to 8	
  

study allelic transcription at a genomic scale for virtually any species. By sequencing 9	
  

transcript pools derived from heterozygous individuals, estimates of allelic expression 10	
  

can be directly obtained. The statistical power of this approach is influenced by the 11	
  

number of transcripts sequenced and the ability to unambiguously assign individual 12	
  

sequence fragments to specific alleles on the basis of transcribed nucleotide 13	
  

polymorphisms. Here, using mathematical modeling and computer simulations, we 14	
  

determine the minimum sequencing depth required to accurately measure relative allelic 15	
  

expression and detect allelic imbalance via high-throughput sequencing under a variety of 16	
  

conditions. We conclude that, within a species, an minimum of 500 to 1000 sequencing 17	
  

reads per gene are needed to test for allelic imbalance, and consequently, at least five to 18	
  

10 millions reads are required for studying a genome expressing 10,000 genes. Finally, 19	
  

using 454 sequencing, we illustrate an application of allelic expression by testing for cis-20	
  

regulatory divergence between closely related Drosophila species. 21	
  



	
   4	
  

 A major challenge in evolutionary biology today is understanding the genetic and 1	
  

molecular mechanisms that give rise to phenotypic differences within and between 2	
  

species. Such differences can arise from mutations affecting the function of gene products 3	
  

(i.e., proteins or RNAs) or mutations that affect expression of these genes. Historically, 4	
  

researchers have looked almost exclusively for (and often found) changes in protein 5	
  

coding regions that appeared to contribute to phenotypic evolution; however, during the 6	
  

last decade, there has been a dramatic increase in the number of studies showing that 7	
  

changes affecting gene regulation can also bring about diversity in ecologically relevant 8	
  

traits that affect behavior, physiology, and morphology (e.g. Duda & Remigio 2008; 9	
  

Giger et al. 2008; Voelckel et al. 2008; see also for reviews Wray 2007: Hoekstra & 10	
  

Coyne 2007; Stern & Orgogozo 2008; Pennisi 2008). 11	
  

 Studies of gene expression have become routine with the development of 12	
  

techniques that quantify transcript abundance in a high-throughput way. Microarray 13	
  

studies, in particular, have produced valuable catalogs of differences in transcript levels 14	
  

between individuals (Oleksiak et al. 2002; Whitehead & Crawford 2006), between 15	
  

species in diverse taxa (Rifkin et al. 2003), and between ecological conditions (Reymond 16	
  

et al. 2000; Carsten et al. 2005; Derome et al. 2006). Such studies also show that inter-17	
  

individual differences in gene expression are often highly heritable (Wayne et al. 2004; 18	
  

Gibson & Weir 2005; Hugues et al. 2006; Lemos et al. 2008; Ayroles et al. 2009). 19	
  

 Because of this heritability, quantitative trait locus (QTL) mapping can be 20	
  

combined with microarray analysis to investigate the genetic basis of variable gene 21	
  

expression (Vasegami & Primmer 2005). When a QTL affecting a gene’s transcription 22	
  

maps close to the affected gene it can be classified as cis-acting, while a QTL that maps 23	
  



	
   5	
  

further away on the same chromosome, or to another chromosome, can be classified as 1	
  

trans-acting (Brem et al. 2002). However, strictly speaking, “cis” describes mutations 2	
  

that affect expression of only the allele on the same chromosome as the mutation, 3	
  

whereas “trans” describes mutations that affect allelic expression on both homologous 4	
  

chromosomes. Examples of cis-acting sequences include promoters and enhancers, which 5	
  

are typically located close to the gene that they regulate, while examples of trans-acting 6	
  

regulators include genes that encode transcription factors, which may be located 7	
  

anywhere in the genome. Classifications of expression QTLs as cis- or trans-acting based 8	
  

solely on their proximity to the affected gene are therefore only an approximation -- and 9	
  

one that comes with many caveats (Rockman & Kruglyak 2006).  10	
  

Nevertheless, studies mapping expression QTLs suggest that both cis- and trans-11	
  

regulatory mutations contribute to transcriptional variation, with a preponderance of 12	
  

expression QTLs appearing to be cis-acting (Wayne et al. 2004; Hughes et al. 2006; 13	
  

Osada et al. 2006; Bergen et al. 2007; Genissel et al. 2008; Gilad et al. 2008; Price et al. 14	
  

2008; Lemos et al. 2008; but see Morley et al. 2004), although his methodology generally 15	
  

has less statistical power to detect trans-acting than cis-acting variants (Cookson et al. 16	
  

2009). In addition, QTL mapping studies of variable gene expression require microarrays 17	
  

suitable for studying the species of interest, molecular markers that cover its complete 18	
  

genome, and resources for genotyping these markers in a segregating population. The 19	
  

lack of any one of these things can be a significant impediment for mapping expression 20	
  

QTLs outside of well established genetic model systems.  21	
  

 An alternative strategy for studying regulatory variation uses allelic transcript 22	
  

abundance and the fact that cis-regulatory mutations have allele-specific effects on gene 23	
  



	
   6	
  

expression while trans-regulatory mutations affect expression of both alleles in a diploid 1	
  

cell (Cowles et al. 2002; Wittkopp et al. 2004). One or more transcribed differences in 2	
  

nucleotide sequence are used to discriminate between transcripts produced by each allele. 3	
  

Asymmetric expression of two alleles, also known as allelic imbalance (AI), that is 4	
  

observed between alleles present in the same cell (i.e., exposed to the same trans-5	
  

regulatory environment) provides direct evidence of cis-regulatory differences. 6	
  

Expression differences observed between individuals homozygous for two different 7	
  

alleles that are not also observed between these same alleles in heterozygotes are 8	
  

attributed to trans-regulatory differences (Wittkopp et al. 2004).  9	
  

 This allele-specific approach has now been used to decompose variable gene 10	
  

expression into its cis- and trans-regulatory component parts for flies (e.g., Wittkopp et 11	
  

al. 2008), humans (e.g., Pant et al. 2006; Serre et al. 2008), plants (e.g., deMeaux et al. 12	
  

2005, Guo et al. 2008), and yeast (Tirosh et al. 2009). With the exception of Tirosh et al. 13	
  

(2009), who developed custom microarrays, the methods used to measure allelic 14	
  

expression in these studies are not readily scalable to an entire genome. Furthermore, 15	
  

methods used in these studies, including Tirosh et al. (2009), require polymorphic sites 16	
  

that differentiate alleles to be known a priori. For these reasons, studying allelic 17	
  

expression genome-wide has been impractical for non-model (as well as most model) 18	
  

species.  19	
  

 Next generation sequencing technologies have the potential to revolutionize 20	
  

studies of allelic expression. Because they obviate the need for a priori sequence 21	
  

information, molecular markers, and locus-specific genotyping assays, next generation 22	
  

sequencing methods can measure allelic abundance at a genomic level in virtually any 23	
  



	
   7	
  

species. Only transcribed nucleotide differences between alleles and sufficient 1	
  

sequencing depth for detecting AI are required. For these reasons, we expect 2	
  

measurements of allelic expression based on next generation sequencing will soon be 3	
  

acquired by many researchers, not only to disentangle cis- and trans-regulatory variation, 4	
  

but also to quantify the heritability of gene expression, examine dominance among 5	
  

regulatory alleles, evaluate their contribution to morphological, physiological, or 6	
  

behavioral changes, and reveal patterns of allelic variation within and between species.  7	
  

Not surprisingly, the benefits of next generation sequencing come with a price – 8	
  

and often a high one. A single “run” of high-throughput sequencing can provide up to 9	
  

hundreds of millions of sequences, but currently costs thousands of dollars. The precise 10	
  

cost per base differs among technologies, as does the length of each sequenced fragment 11	
  

and the total number of sequences collected. Because of this cost, careful experimental 12	
  

design that maximizes the data per dollar for allelic expression studies using next 13	
  

generation sequencing is critical. Optimal experimental design is particularly paramount 14	
  

for studies in molecular ecology that seek to examine allelic expression in multiple 15	
  

individuals, species, or environmental conditions.  16	
  

 In this paper, we use mathematical modeling and computer simulations to identify 17	
  

critical parameters affecting measurements of allelic expression and the detection of AI 18	
  

with high-throughput sequencing. We show that the statistical power of this method 19	
  

depends upon four crucial parameters (Fig. 1): sequence divergence between alleles, the 20	
  

relative transcript abundance, the average read length (i.e. amount of transcript 21	
  

sequenced), and sequencing depth (i.e. average number of reads per gene). The latter two 22	
  

parameters determine the number of sequencing reads expected to map to each gene. The 23	
  



	
   8	
  

former two parameters determine the proportion of sequence reads per gene that are 1	
  

informative for allelic expression (i.e., contain one or more single nucleotide 2	
  

polymorphisms (SNPs) that allow reads to be unambiguously assigned to an allele). We 3	
  

show that this probability is strongly affected by the location of SNPs within an mRNA 4	
  

as well as by the way in which the cDNA library is prepared for sequencing. Here, we 5	
  

derive a mathematical model that determines the minimum number of reads required to 6	
  

test for significant AI given various levels of sequence divergence, read lengths, and 7	
  

distributions of relative transcript abundance, and we compare these results with 8	
  

simulations. Finally, to illustrate the potential of this approach, we describe an empirical 9	
  

study using measurements of allelic expression in F1 hybrids between Drosophila 10	
  

melanogaster and D. simulans obtained using 454 sequencing (Roche 454 Life Sciences).11	
  



	
   9	
  

Quantifying allelic expression using short-read sequencing: expectations and 1	
  

statistical power 2	
  

 3	
  

 Despite significant improvements in read length since their release, current high-4	
  

throughput sequencing technologies (e.g., Illumina Solexa, Roche 454 Life Sciences, ABI 5	
  

Solid) remain “short-read” (i.e., < 500 bp) sequencing methods. The length of sequences 6	
  

is particularly important for studying allelic expression because, to be informative, a 7	
  

sequencing read must include one or more SNPs that discriminate between alleles. If the 8	
  

distance between heterozygous sites within a transcript is greater than the average 9	
  

sequence length, many reads will include only invariant sites and thus be uninformative 10	
  

for allelic expression. A single “run” of next generation sequencing generates hundreds of 11	
  

thousands to millions of sequencing reads, but only the subset of reads that are 12	
  

informative contribute to estimates of allelic expression. The relative frequency of 13	
  

informative and uninformative reads has a major impact on the statistical power for 14	
  

detecting AI in a given experiment.  15	
  

 In the following section, we derive the probability of obtaining informative and 16	
  

uninformative sequences depending on the number of total sequencing reads, the read 17	
  

length, and the sequence divergence between alleles. The model assumes that informative 18	
  

reads could be assigned unambiguously to alleles: it implies that allelic reference 19	
  

sequences are known and read mapping procedures are without errors. For very short 20	
  

reads, alignments against reference genome can be sensitive to mismatches but a large 21	
  

number of new algorithms have been recently released to deal with this issue (see 22	
  

Bateman & Quackenbush 2009; Kofler et al. 2009). Nevertheless, in our model, 23	
  

confidence of allele assignment can be controlled for by the number of SNP required (see 24	
  



	
   10	
  

below). We then relax the model assumptions and discuss possibilities of measuring 1	
  

allelic expression without reference genomes or a priori sequences. We show that the 2	
  

total number of sequence reads, in combination with the distribution of transcript 3	
  

abundance among genes, determines the sequencing depth (i.e., number of reads) needed 4	
  

per gene. The read length and sequence divergence define the likelihood of sampling one 5	
  

or more transcribed SNPs, which in turn determines the proportion of informative reads. 6	
  

We explore a wide range of parameter values that should encompass most biological 7	
  

comparisons within and between closely related species. These conditions also reflect the 8	
  

current and anticipated output of multiple high-throughput sequencing technologies. The 9	
  

ultimate goal of this work is to provide guidance for researchers designing allelic 10	
  

expression experiments in their favorite system. 11	
  

  12	
  

The relationship between sequence divergence and read length 13	
  

 14	
  

 When quantifying total levels of transcript abundance by sequencing cDNA, reads 15	
  

from anywhere within the transcript are informative as long as they are long enough to 16	
  

map unambiguously to a single site in the genome (Torres et al. 2008; Wang et al. 2009). 17	
  

By contrast, when measuring allelic expression, only the subset of these reads containing 18	
  

one or more SNPs that distinguish transcripts derived from different alleles of the same 19	
  

gene are informative. Therefore, read length is a critical parameter for sequencing-based 20	
  

studies of allelic expression: longer reads increase the probability of sequencing a 21	
  

polymorphic site. Sequence divergence between the two alleles under study must also be 22	
  

considered: greater divergence increases the probability of sequencing polymorphic sites 23	
  

for a given read length. 24	
  



	
   11	
  

 More formally, the probability of sampling at least x SNPs in a read of length l 1	
  

can be approximated by: 2	
  

€ 

Pr(X ≥ x) =
l
k
# 

$ 
% 
& 

' 
( 

k= x

l

∑ dk 1− d( )l−k ,     (1) 3	
  

where d is the sequence divergence (i.e. the probability of observing a SNP at each 4	
  

nucleotide position). The probability of obtaining exactly n informative reads with at least 5	
  

x SNPs in s randomly sampled reads from a heterozygous gene is given by the probability 6	
  

mass function: 7	
  

€ 

Pr(Y = n) =
s
n
" 

# 
$ 
% 

& 
' Pr(X ≥ x)n 1−Pr(X ≥ x])( )s−n .    (2) 8	
  

The mean and the variance of this distribution are 9	
  

€ 

E(Y ) = sPr(X ≥ x)       (3) 10	
  

and, 11	
  

€ 

Var(Y ) = sPr(X ≥ x)(1−Pr(X ≥ x)).     (4) 12	
  

Consequently, 

€ 

Pr(X ≥ x)  is the expected proportion of informative reads in a random 13	
  

sample.  14	
  

 If only one SNP is required to assign alleles unambiguously, Eq. 1 becomes: 15	
  

€ 

Pr(X ≥1) =1− (1− d)l .       (5) 16	
  

For this special case, the minimum read length required to observe a minimum proportion 17	
  

of Pr(X ≥ 1) reads with at least one SNP is  18	
  

€ 

l =
Log(1−Pr(X ≥1))

Log(1− d)
.      (6) 19	
  

Hence, for mRNA sequences that differ at 0.5% of sites, sequence reads longer than 138 20	
  

bp are needed in order to obtain ≥ 50% of reads with at least one SNP. However, in some 21	
  



	
   12	
  

cases, more than one SNP may be required to unequivocally discriminate between the 1	
  

two alleles. For example, depending on the specific experiment, ancestral polymorphism, 2	
  

recombination, homoplasy, or errors in transcription or sequencing could lower the 3	
  

confidence of assignments only based on a single SNP. Therefore, we also calculated the 4	
  

expected proportion of informative reads when more than one SNP is required for allele 5	
  

assignment. By applying Eq. 2, we show that this parameter diminishes rapidly when the 6	
  

minimum number of required SNPs increases (Fig. 2A, B). Sequences with little genetic 7	
  

divergence (i.e., < 1%) are particularly sensitive to the minimum number of SNPs 8	
  

required to discriminate between alleles. 9	
  

 To determine how well this mathematical model predicts the proportion of 10	
  

informative reads, we randomly sampled reads in silico with lengths ranging from 35 to 11	
  

800 bp from pairs of virtual mRNA sequences 2000 bp long that contained various levels 12	
  

of sequence divergence. SNPs were distributed uniformly across the length of each 13	
  

hypothetical mRNA sequence. In each simulation, we counted the number of informative 14	
  

reads, that is, the number containing one or more polymorphic sites. As shown in Figure 15	
  

2C and 2D, predictions from our model are most accurate for sequence reads that are ≤ 16	
  

300 bp. For longer reads, our model underestimates the mean as well as the variance. 17	
  

Large means are inaccurately estimated because Eq. 1 assumes that mRNA molecules 18	
  

have infinite length and consequently, that SNPs can be sampled with replacement. When 19	
  

read lengths converge to mRNA lengths, this assumption then becomes invalid and Eq. 1 20	
  

should be replaced by a hypergeometric form that includes a parameter for mRNA length 21	
  

(see legend for Fig. S1). Although this hypergeometric model is indeed more accurate 22	
  

(compare Fig. 2 to Fig. S1), it is also more complex mathematically. For most 23	
  



	
   13	
  

experimental design applications, we anticipate that the simpler binomial model will be 1	
  

sufficient.  2	
  

 Note that both the binomial (Fig. 2) and hypergeometric (Fig. S1) models 3	
  

underestimate the variance observed in the simulation study. This is because these models 4	
  

do not take into account the location of polymorphic sites within each mRNA. The 5	
  

probability of sampling a SNP dependent upon its position in the mRNA (Supplementary 6	
  

Fig. S2) can be described as: 7	
  

€ 

Pr(B = i) =
wi

(lg − l +1)l
,  

€ 

1≤ i < lr :wi = i
lg − lr +1< i ≤ lg :wi = lg − i
lr ≤ i ≤ lg − lr +1:wi = lr

$ 

% 
& 

' 
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  (7) 8	
  

where i is the nucleotide position in the mRNA sequence, lg the mRNA length, and 9	
  

€ 

l ≤ lg
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l >
lg
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$ 
% 
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' & 
.  10	
  

The mean of this probability distribution is 11	
  

€ 

E(B) = 1
lg

,        (8) 12	
  

and its variance is 13	
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Hence, considering the location of a SNP requires a much more complex model and only 15	
  

special cases can be easily derived. For instance, for the simple situation of an mRNA 16	
  

sequence containing one and only one SNP, the probability of sampling informative reads 17	
  

becomes  18	
  

€ 

Pr(X =1) =
l
lg

.        (10) 19	
  



	
   14	
  

The model described above treats the read length l as a fixed value even though 1	
  

(after filtering for base quality) all sequencing technologies produce reads with a range of 2	
  

alignable	
  lengths. To incorporate this element of the data, we represent the distribution of 3	
  

l as Pr(l), and incorporate this new assumption into Eq. 1, resulting in  4	
  

€ 

Pr(X ≥ x) = Pr(l)
l=1

+∞

∑
l
k
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& 
' 
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) 
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k= x

l

∑ dk 1− d( )l−k
.    (11) 5	
  

Surprisingly, incorporating variable read lengths into the model had little effect on the 6	
  

probability of sampling x SNPs in a read. For instance, assuming a Poisson distribution of 7	
  

read lengths, Eq. 5 becomes 8	
  

! 

Pr(X "1) =1# e
#dl .       (12) 9	
  

 Finally, the proportion of genes with more than n informative reads can be 10	
  

estimated by: 11	
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where Pr(T = t) is the distribution of transcript levels t across genome. This distribution 13	
  

can be empirically determined or approximated by either discrete decay or power law 14	
  

functions (e.g. Ogasawara et al. 2003). Assuming a geometric decay and using Eq. 5, we 15	
  

can rewrite Eq. 13 as: 16	
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where 

! 

T  is the mean number of transcripts per gene (i.e. the sequencing depth) and 

€ 

d  is 18	
  

the mean sequence divergence. Although Eq. 14 lacks some of the variance in parameter 19	
  

values discussed above (i.e., read length and sequence divergence distributions as well as 20	
  



	
   15	
  

SNP location within a sequence), the model nevertheless does an excellent job of 1	
  

predicting the simulated proportion of genes with more than n informative reads (Fig. 3).  2	
  

Therefore, for a given number of transcribed genes and total number of 3	
  

sequencing reads (from which 

! 

T  is derived), as well as a particular mean sequence 4	
  

divergence and mean read length, the number of genes expected to have more than n 5	
  

informative reads can be robustly predicted. This number (n) is critical for designing 6	
  

allelic expression experiments using next generation sequencing because it directly 7	
  

determines the statistical power for detecting AI.  8	
  

 9	
  

Allelic imbalance and statistical power 10	
  

 11	
  

 If we specifically define AI as the ratio of allelic transcript abundance (i.e. 12	
  

number of transcripts from allele 1 divided by the number of transcripts from allele 2), 13	
  

then the probability of observing na1 reads from allele 1 in a sample of n informative 14	
  

reads is given by: 15	
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Using this equation, we can determine whether an observed AI value for a gene is 17	
  

significantly different from a null hypothesis of no difference in allelic expression (AI = 18	
  

1). As shown in Figure 4, statistical power rises quickly when the true value of AI is ≥  2 19	
  

(e.g., a sample of only 50 informative reads provides 60% statistical power). On the other 20	
  

hand, small imbalances (< 1.25-fold) require more than 500 informative reads to reach 21	
  

this same power. Although statistical power to detect significant AI can be achieved 22	
  

easily with small samples, large samples are generally required to produce reasonably 23	
  



	
   16	
  

precise estimates of AI, especially when the true value of AI is very large (Fig. S3). Prior 1	
  

studies comparing allelic expression within and between Drosophila species observed a 2	
  

median AI of 1.4 for all genes and samples examined and a median AI of 1.7 for cases 3	
  

classified as having significant AI (Wittkopp et al. 2008). This suggests that 200 or more 4	
  

informative reads will generally be required to detect a significant and precise AI values 5	
  

using high-throughput sequencing. 6	
  

 7	
  

Read sampling strategies 8	
  

 9	
  

 The number of transcribed genes and the mean sequence divergence are both 10	
  

dictated by the species and genotypes under study and cannot be altered. Furthermore, the 11	
  

researcher can affect the average length of sequence reads only in a limited way by 12	
  

choosing one next generation sequencing technology instead of another. The aspect of a 13	
  

sequencing-based allelic expression experiment that the researcher has the most control 14	
  

over is the preparation of cDNA (or equivalent) libraries used for sequencing. Two 15	
  

general types of cDNA libraries can be used for measuring allelic expression. The first is 16	
  

essentially a shotgun library, in which fragments are randomly sampled from the 17	
  

transcriptome. The second is more targeted, containing fragments only from a 18	
  

predetermined region of each transcript. For instance, the 5' or 3' end can be 19	
  

systematically sampled from each transcript (e.g. Gowda et al. 2006). The sampling 20	
  

strategy should be chosen carefully because, as shown in Eq. 7 and Supplementary Fig. 21	
  

S2, the location of SNPs within the cDNA template used for sequencing affects the 22	
  

probability of collecting sequence reads informative for allelic expression.  23	
  



	
   17	
  

For a given sequence divergence and read length, the sampling strategy does not 1	
  

affect the expected mean proportion of informative reads; however it has a large effect on 2	
  

the variance among genes in the proportion of informative reads (Fig. 5C). With a 3	
  

targeted sampling approach all reads for a given gene will either be informative or 4	
  

uninformative, depending on the position of SNPs in the transcript. Consequently, 5	
  

targeted sampling maximizes the statistical power to detect AI for genes that have at least 6	
  

one polymorphic site in the targeted region, but provides no information about relative 7	
  

allelic expression for genes that lack variation in this region. With random sampling, the 8	
  

situation is reversed: estimates of allelic expression can be obtained for more genes, but 9	
  

the power to detect significant AI for any given gene is reduced. Additionally, under 10	
  

random sampling, gene length affects the relative estimated expression among genes (i.e., 11	
  

more reads should come from longer genes), but has a negligible effect on measures of 12	
  

relative allelic expression because transcripts from both alleles of a gene are usually the 13	
  

same length. (For this reason, we did not include gene length in the mathematical models 14	
  

described above.)  15	
  

To compare the power of random and targeted sampling, we simulated the 16	
  

proportion of genes with more than 200 informative reads under different conditions. As 17	
  

described above, 200 informative reads per gene provides reasonable statistical power to 18	
  

detect reasonably small difference in allelic expression (see Fig. 4). Results from this 19	
  

simulation show that random sampling generally performs better than targeted sampling, 20	
  

except when sequence divergence and the number of sequences per gene are low, and 21	
  

especially when sequencing reads are short (Fig. 5A, B). As an alternative, a “mixed” 22	
  

sampling scheme that included 50% targeted and 50% randomly located sequence reads 23	
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produced results most similar to targeted sampling (Fig. 5C). Such a “mixed” sampling 1	
  

strategy could be employed by pair-end sequencing a cDNA library containing fragments 2	
  

of variable length that all share the same 5' or 3' end.  3	
  

 Based on these results, we conclude that, for allelic expression experiments with 4	
  

at least moderate sequence depth in species with reference genomes available (that can be 5	
  

used to map sequencing reads to particular genes), a random sampling strategy will 6	
  

almost always provide the most information per unit cost. However, if no reference 7	
  

genome sequence is available, or if sequencing depth is limited, targeted sampling may 8	
  

have advantages that offset the loss of information on a genomic scale. For example, 9	
  

targeted sampling simplifies the process of determining which sequence reads come from 10	
  

the same gene. In the absence of a reference genome, this is especially important because 11	
  

sequence reads must be assembled into (hopefully, gene-specific) contigs de novo and all 12	
  

reads from the same gene generated by targeted sampling should overlap. Alternatively if 13	
  

a reference genome is available, but only low depth sequencing is possible, a targeted 14	
  

strategy would provide more accurate estimates of allelic expression for the subset of the 15	
  

genes with SNPs in the targeted regions than random sampling. Finally, although there 16	
  

may be some cases for which “mixed” sampling would be the best choice, in the two 17	
  

scenarios considered above, reducing coverage in the targeted region and distributing 18	
  

some of the reads more evenly across the transcriptome does not offer any clear 19	
  

advantages.  20	
  

  21	
  

Allelic expression in Drosophila hybrids 22	
  

 23	
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 To illustrate one application of allelic expression measurements, we quantified 1	
  

allelic expression in cDNA pools derived from interspecific F1 hybrids and used these 2	
  

data to test for significant AI (i.e., differences in expression between the maternal and 3	
  

paternal alleles). F1 hybrids used for this study were produced by crossing D. 4	
  

melanogaster females and D. simulans males, collecting virgin female progeny, and 5	
  

aging them for 5-6 days. After extracting mRNA from these flies, a cDNA pool 6	
  

containing random fragments from the transcriptome was constructed and analyzed using 7	
  

the high-throughput sequencing technology developed by 454 Life Sciences (Roche).  8	
  

 9	
  

Analysis of sequencing statistics, informative reads, and allelic expression 10	
  

 11	
  

In all, 36,855 high-quality 454 sequencing reads were obtained from the random 12	
  

interspecific hybrid cDNA library (Table 1). The average length of these reads was 170 13	
  

bp, with 74 and 250 bp for the 2.5 and 97.5% percentile, respectively. 88% of these reads 14	
  

had at least one homologous sequence in either the D. melanogaster or D. simulans 15	
  

genome (BLAST, E-value < 10-4), 5% of which showed homology to only one of the two 16	
  

parental genomes. These reads mapped to 5591 genes and 975 intergenic regions. 17	
  

Sequences derived from intergenic regions accounted for 7% of the mapped reads, and 18	
  

might have resulted from transcription of unannotated genes or exons, abnormal splicing 19	
  

that generated unexpected splice junctions, transposable elements, or spurious 20	
  

transcription (e.g. Stolc et al. 2004). More than 10 reads matched each of 577 genes, 21	
  

while more than 50 reads matched each of 83 genes. Despite this relatively low 22	
  

sequencing depth, our data appear to correctly, albeit crudely, measure total levels of 23	
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gene expression: estimates of transcript abundance in F1 hybrids measured using 454 1	
  

sequencing correlated significantly (Spearman correlation, Rho = 0.45, P < 0.001) with 2	
  

expression levels reported for female D. melanogaster that were obtained using 3	
  

microarrays (Harbison et al. 2005).  4	
  

In order to assign each read to a specific parental allele, we determined the 5	
  

number of variable sites among 454 reads for a particular gene (i.e., SNPs) that were 6	
  

identical to the D. melanogaster and D. simulans reference genomes. This analysis was 7	
  

performed only for reads that showed a significant alignment with both reference 8	
  

genomes. Sequences were assigned to the species with the highest number of identical 9	
  

SNPs. For instance, if 3 SNPs within a given read were identical to the D. melanogaster 10	
  

reference genome and 2 (different) SNPs were identical to the D. simulans reference 11	
  

genome, the read was assumed to be derived from the D. melanogaster allele. Reads were 12	
  

expected to differ from the reference genomes because the strains of D. melanogaster and 13	
  

D. simulans used to generate the F1 hybrids analyzed by 454 sequencing were not the 14	
  

same as the strains sequenced to assemble these reference genomes. As mentioned above, 15	
  

shared recombination, homoplasy, or errors in transcription or sequencing might also 16	
  

complicate the assignment of individual reads to one species or the other. In all, 26,039 17	
  

reads, which is 71% of all high-quality reads, were assigned to one species or the other. 18	
  

At least 10 informative reads were identified for each of 465 genes, with 58 of these 19	
  

genes having more than 50 informative reads each (Fig. 6B). As shown in Figure 4, genes 20	
  

with 50 informative reads had 60% power to detect significant AI of at least 2-fold, while 21	
  

genes with 10 reads had only 20% power to detect changes of the same magnitude. 22	
  

Consistent with both intuitive and mathematical predictions, long reads were more often 23	
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informative for allele-specific expression than short reads (Fig. 6A), with the average 1	
  

length of uninformative reads only ~70% that of informative reads (Table 1).  2	
  

 Intriguingly, more informative reads (53%) were assigned to the D. melanogaster 3	
  

allele than to the D. simulans allele (13,770 and 12,269 reads, respectively; binomial test: 4	
  

P < 0.001). The excess of D. melanogaster alleles was greater among sequences from 5	
  

genomic regions annotated as genic than those annotated as intergenic (53.0% vs 50.3%), 6	
  

although this difference was not significant (Chi2 = 3, P = 0.08) and may be an artifact of 7	
  

the much smaller number of reads classified as intergenic (93% vs 7%). The 8	
  

overabundance of D. melanogaster alleles was observed not only across the whole 9	
  

transcriptome analysed but also for subsets of genes with different expression levels (Fig. 10	
  

6C). The one (surprising) exception to this was the subset of genes with the highest 11	
  

overall expression levels, which showed an excess of D. simulans alleles (Fig. 6C). This 12	
  

shows that the greater abundance of D. melanogaster reads observed in F1 hybrids cannot 13	
  

be explained by higher expression of the D. melanogaster allele of only a few highly 14	
  

expressed genes. In addition, this pattern is unlikely to result from poor quality sequences 15	
  

or alignments because (1) BLAST hit lengths are on average identical in both reference 16	
  

genomes, (2) there were on average 4.5 discriminating SNPs per informative read, in both 17	
  

species, which makes nearly all assignments unambiguous, and (3) the trend remained 18	
  

after applying a higher stringency cutoff (≥ 2 SNPs, see Table 1). Based on all of these 19	
  

observations, we conclude that the preferential expression of D. melanogaster alleles 20	
  

observed in F1 hybrids is a real (biological) property of these flies and likely results from 21	
  

a process that affects allelic transcription on a genomic-scale. This expression bias does 22	
  

not appear to be caused by a particular tissue, a particular biological function, or a 23	
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particular chromosomal location (data not shown); however, deeper sequence coverage is 1	
  

required to test these hypotheses definitively. 2	
  

 3	
  

Allelic imbalance in Drosophila hybrids 4	
  

 5	
  

 As described in the introduction, quantifying AI in F1 hybrids provides a direct 6	
  

readout of relative cis-regulatory activity. We tested for significant AI of the 891 genes 7	
  

that show more than 6 informative reads because it is impossible to reach significance (P 8	
  

< 0.05) with a binomial test and less than 6 observations. 107 of these 891 genes (12%) 9	
  

showed significant AI based on our data (Supplementary Table S1). For this analysis, we 10	
  

estimate the false discovery rate (i.e. FDR) to be about 17% by resampling our observed 11	
  

distribution of informative read abundance assuming observed AIs are true or equal to 1. 12	
  

On the other hand, we estimated about 13% of false negative AI. Consequently, the 13	
  

analysis suggests that more than 190 genes could show true AI (21% of tested genes). In 14	
  

fact, despite the low level of sequencing depth, we detected significant AI for 35% of 15	
  

genes with more than 50 informative reads and for 14% of genes with more than 10 16	
  

informative reads. On average, the more abundant allele of a gene was observed 5 times 17	
  

more than the less abundant allele, with a minimum of 1.6 and a maximum of 15 18	
  

(Supplementary Fig. S4). Finally, and perhaps not surprisingly given the overall excess of 19	
  

reads most similar to D. melanogaster, the D. melanogaster allele was more abundant 20	
  

than the D. simulans allele for 73 (68%) of these 107 genes (binomial test: P < 0.001, 21	
  

Fig. 6C).  22	
  

 23	
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454 sequencing and pyrosequencing produce similar estimates of allelic expression 1	
  

 2	
  

 To determine whether 454 sequencing produces accurate estimates of allelic 3	
  

expression, we used pyrosequencing to independently quantify AI in 14 genes and 4	
  

compared the results to estimates obtained using 454 sequencing. The 14 genes selected 5	
  

for this analysis had allelic expression differences that spanned the range of AI values 6	
  

observed with 454 sequencing (compare Fig. 6D to Fig. S4). Pyrosequencing permits 7	
  

quantifications of allelic expression for individual genes and produces estimates of AI 8	
  

that are consistent with those obtained using both quantitative real-time PCR and 9	
  

microarrays (Wittkopp et al. 2006). Pyrosequencing allows high levels of replication for 10	
  

a modest cost, thus very precise estimates of AI can be obtained. Despite the small 11	
  

number of informative 454 sequencing reads for some of the genes analyzed 12	
  

(Supplementary Table S2), we found a significant correlation between estimates of allelic 13	
  

expression obtained using these two techniques (Fig. 6D; Spearman’s Rho = 0.65, P < 14	
  

0.05). The effect of sequencing depth for individual genes on the precision of allelic 15	
  

expression estimates is readily visible by examining the gene-specific binomial sampling 16	
  

confidence intervals shown in Figure 6D. Because precision improves with deeper 17	
  

sequencing coverage, we also examined the correlation between measures of allelic 18	
  

expression for the 8 genes with at least twenty informative reads each. This subset of the 19	
  

data showed a stronger correlation (Spearman’s Rho = 0.74, P < 0.05), as expected.  20	
  

21	
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 1	
  

Discussion 2	
  

 3	
  

 Less than a decade ago, Gibson (2002) predicted that microarrays would have a 4	
  

tremendous impact on molecular and genetic research at the interface of organismal and 5	
  

population biology. Since then, this methodology has proven to be a formidable tool for 6	
  

examining the extent of gene expression polymorphism within species and divergence 7	
  

between species, as well as for studying the evolutionary processes that generate and act 8	
  

upon regulatory variation. Microarray studies have revealed extensive inter-individual 9	
  

variation in gene expression and showed that this variation is often heritable and its 10	
  

segregation within and between species is primarily affected by neutral drift and 11	
  

stabilizing selection (see for review Whitehead & Crawford 2006). Perhaps surprisingly, 12	
  

very little adaptive regulatory variation has been identified. This may be because it is 13	
  

uncommon or because we do not yet have the correct theoretical framework for 14	
  

distinguishing the effects of neutral and non-neutral evolution (Fay & Wittkopp 2008). 15	
  

 High-throughput sequencing technologies are now poised to replace microarrays 16	
  

for measuring gene expression on a genomic scale, especially for evolutionary and 17	
  

ecological studies that require analysis of many species and/or individuals with divergent 18	
  

genotypes. Compared to microarrays, a high-throughput sequencing approach is more 19	
  

complex technologically, yet much simpler statistically and methodologically. 20	
  

Furthermore, it does not require taxon-specific probes or any a priori sequence 21	
  

information, making it suitable for measuring expression profiles of virtually any species. 22	
  

Arguably, its greatest advantage relative to microarrays is that both total and allelic 23	
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measures of gene expression are obtained simultaneously. With measures of allelic 1	
  

expression, there is a closer relationship between an allele’s sequence and its activity, 2	
  

making it easier to study the inheritance of gene regulation phenotypes within and 3	
  

between species.  4	
  

Indeed, using allelic expression rather than total gene expression not only 5	
  

facilitates studies exploring the evolutionary consequences of naturally occurring 6	
  

regulatory variation, but also simplifies mapping of regulatory mutations variation, which 7	
  

is necessary to elucidate the genetic architecture of gene expression. Such studies allow 8	
  

researchers to more efficiently identify loci, genes, and molecular processes that play 9	
  

important roles in adaptation. We fully anticipate that studies of allelic expression will 10	
  

soon produce novel insights for the field of molecular ecology, as well as many other 11	
  

fields. We hope that the theoretical and empirical information provided by this study 12	
  

helps researchers design experiments that test specific hypotheses efficiently and cost-13	
  

effectively.  14	
  

 To this end, we have developed a mathematical model that allows researchers to 15	
  

estimate the minimum sequencing depth needed to detect significant AI, based on the 16	
  

average sequence read length of their chosen next generation sequencing technology, the 17	
  

average genetic divergence between alleles under study, the approximate number of 18	
  

transcribed genes, and the anticipated distribution of transcript levels across the genome. 19	
  

For instance, Eq. 14 shows that, for an experiment that uses reads averaging 150 bp and 20	
  

compares allelic expression in a polymorphic species with 0.1% sequence divergence, 21	
  

more than 4,000 sequence reads per gene are needed to achieve 60% statistical power for 22	
  

detecting significantly AI larger than 1.5-fold (see Fig. 3 and 4). For a genome containing 23	
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10,000 transcribed genes (and assuming an exponential decay distribution for expression 1	
  

levels), such a study would require approximately 40 million reads (Fig. 3). If the average 2	
  

sequence length were increased to 500 bp, the number of sequence reads required would 3	
  

be decreased 4-fold to approximately 10 million reads. With only three million reads, a 4	
  

statistical power of ~20% would be achieved.  5	
  

 6	
  

Caveats and considerations 7	
  

 8	
  

 We stress that these predictions should be treated as approximate guidelines only 9	
  

because a number of features of real transcriptomes violate our model and cause our 10	
  

equations to over- or underestimate the requisite number of sequence reads. In the 11	
  

following paragraphs, we discuss four such features and their impact on study design. 12	
  

We modeled the distribution of transcript levels using a standard decay function, 13	
  

yet the distribution of transcript abundances in real organisms will virtually never fit such 14	
  

as function perfectly. In particular, strong deviations in distribution tails, such as many 15	
  

more genes with extremely high or low expression levels, will cause the model to 16	
  

underestimate the required minimum sequencing depth. If the precise distribution of 17	
  

transcript levels is known a priori for a particular organism, however, this information 18	
  

can easily be incorporated into Eq. 13 to improve the accuracy of the predictions.  19	
  

Another potential caveat comes from the imprecise construction of cDNA pools. 20	
  

We found that the way sequences are sampled from mRNA transcripts affects the 21	
  

statistical power for a given set of parameters (Fig. 5). We modeled cases only in which 22	
  

cDNA pools contain completely random fragments and perfectly targeted fragments; 23	
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however, one or more of the technical steps used to create cDNA libraries for sequencing 1	
  

may often introduce imperfections. For example, an unexpected bias may arise during the 2	
  

production of “random” cDNA libraries caused by factors such as the preferential ligation 3	
  

of adapters used for sequencing. Alternatively, targeted libraries may include unwanted 4	
  

sequence fragments that result from reads in untargeted regions. However, our analysis of 5	
  

the “mixed” sampling strategy suggests that small errors in the ultimate composition of 6	
  

cDNA libraries will have little effect on the power to detect AI for most genes. Paired-7	
  

end sequencing, which is an option now available for some technologies, has no clear 8	
  

advantages for AI analyses, although it could be used to evaluate read and sample quality. 9	
  

Yet another factor to consider carefully is which genes (with respect to expression 10	
  

level) are of utmost interest. For example, if highly transcribed genes are of primary 11	
  

concern, shallow sequencing may be sufficient; increasing sequencing depth has little 12	
  

impact on the statistical power to detect significant AI in these genes. By contrast, if 13	
  

lowly transcribed genes are of most interest, sequencing the entire transcriptome may 14	
  

require such high coverage as to make the experiment impractical. Removing transcripts 15	
  

from genes with the highest expression by subtraction or normalization is one way to 16	
  

increase coverage of the more lowly expressed genes, however, care must be taken not to 17	
  

alter the relative abundance of alleles for the genes of interest. Methods such as 18	
  

quantitative PCR or pyrosequencing may be much more cost-effective and reliable for 19	
  

measuring allelic expression of a few lowly expressed genes. 20	
  

Finally, computer simulations showed that the position of SNPs within a 21	
  

transcript increases variance in the expected number of informative reads per gene. The 22	
  

model assumes however that SNPs are distributed randomly across the length of each 23	
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mRNA. In reality, polymorphic sites are rarely distributed randomly within a transcript. 1	
  

For instance, they are known to be more frequent in 5' or 3' UTRs than non-synonymous 2	
  

sites (Andolfatto 2005). Differences also exist in the amount of sequence polymorphism 3	
  

and divergence among genes. In general, regions of transcripts with greater sequence 4	
  

variation are more likely to produce informative reads than regions with fewer 5	
  

polymorphic or divergent sites. Finally, our model assumes that transcript abundance and 6	
  

sequence divergence are independent, but in fact, they are often correlated (Subramanian 7	
  

& Kumar 2004). 8	
  

 9	
  

Properties of allelic expression in Drosophila hybrids 10	
  

 11	
  

Interspecific hybrids between D. melanogaster and D. simulans show extensive 12	
  

misexpression relative to either parental species (Ranz et al. 2004). The primary cause of 13	
  

this misexpression is unknown, but it is generally attributed to incompatibilities between 14	
  

genomes that disrupt gene regulatory networks (Landry et al. 2007). Consistent with this 15	
  

idea, prior work suggests that the co-evolution of cis- and trans-regulatory factors may 16	
  

contribute to misexpression when divergent alleles meet in interspecific hybrids (Landry 17	
  

et al. 2005). 18	
  

 To compare the activity of homologous cis-regulatory sequences between species, 19	
  

we used estimates of allelic expression in interspecific F1 hybrids obtained using 454 20	
  

sequencing. We measured allelic expression for over 5500 of the most highly expressed 21	
  

genes and we were able to test AI in ~900 of these genes. Overall, we detected significant 22	
  

AI for 12% of these genes; among genes with the most informative reads (i.e., ≥50 reads  23	
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per gene), 35% of genes showed significant AI.  Our study almost certainly 1	
  

underestimates the percentage of genes with differences in expression between species-2	
  

specific alleles in F1 hybrids because even 50 informative reads per gene provides only 3	
  

25% and 60% statistical power to detect significant AI for genes with true allelic 4	
  

expression differences of 1.5- and 2-fold, respectively. Consistent with this interpretation, 5	
  

prior studies of relative cis-regulatory activity between D. melanogaster and D. simulans 6	
  

reported much higher percentages of genes with significant AI (Lemos et al. 2008; 7	
  

Wittkopp et al. 2008).   8	
  

 9	
  

Genomic imbalance in interspecific hybrids 10	
  

 11	
  

Wide-spread misexpression of genes is common in interspecific hybrids, and the 12	
  

genomic imbalance that we observed in F1 hybrids between D. melanogaster and D. 13	
  

simulans alleles may provide insight into the molecular mechanisms responsible for this 14	
  

misexpression. D. melanogaster alleles are repeatedly overexpressed in F1 hybrids 15	
  

despite the fact that both alleles are expected to be regulated by the same pool of maternal 16	
  

and paternal trans-acting factors. Long-range chromatin effects that favor expression of 17	
  

D. melanogaster chromosomes could contribute to this genomic imbalance, as could 18	
  

interactions between the nuclear genome and cytoplasmic components (especially 19	
  

mitochondria), which were inherited from D. melanogaster in the hybrids examined.  It 20	
  

will be interesting to see whether these same expression differences exist between the two 21	
  

alleles if they are compared in cells containing only trans-acting factors from D. 22	
  

melanogaster or D. simulans. Such a comparison would provide a direct test for complex 23	
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interactions among divergent trans-acting factors and cis-regulatory sequences. Although 1	
  

the prevalence of such interactions remains an open question, a small scale study of D. 2	
  

melanogaster found no evidence of such cis-by-trans interactions (Wittkopp et al. 2008). 3	
  

 4	
  

Concluding remarks 5	
  

 6	
  

Comparing the activity of orthologous cis-regulatory alleles, as described here for 7	
  

interspecific Drosophila hybrids, is but one application of sequence-based measures of 8	
  

allelic expression. Quantifying heritability of gene expression, examining dominance 9	
  

among regulatory alleles, or revealing patterns of allelic variation within and between 10	
  

species are some of additional applications for quantitative measures of relative allelic 11	
  

expression. By identifying parameters critical for such experiments and exploring their 12	
  

impact on possible outputs, we anticipate that results from this study will help researchers 13	
  

optimize their available resources and generate datasets that are best suited for addressing 14	
  

their primary question(s) of interest. 15	
  

 16	
  

Materials and Methods 17	
  

 18	
  

Fly strains, rearing, and crosses 19	
  

 20	
  

F1 hybrids were produced by crossing four-day-old virgin D. melanogaster 21	
  

Canton S females with D. simulans C167.4 males. Each mating vial contained 10 females 22	
  

and 10 males. Flies were reared on standard cornmeal medium at 20˚C under a 10/14-h 23	
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light/dark cycle. Hybrid females were collected at emergence and were stored for 5–6 1	
  

days at room temperature and then snap frozen in liquid nitrogen. 2	
  

 3	
  

Preparation of cDNA libraries and 454 sequencing 4	
  

 5	
  

Total RNA was extracted by homogenizing ~500 hybrid females in 4 ml of 6	
  

TRIZOL Reagent (Invitrogen, Carlsbad, CA). We isolated mRNA using an Oligotex 7	
  

Direct mRNA Mini Kit (Qiagen, Valencia, CA). One milligram of mRNA was used for 8	
  

the first-strand cDNA synthesis (Superscript II, Invitrogen, Carlsbad, CA). Reverse 9	
  

transcriptase reactions were performed with biotinylated polyT primer. Second-strand 10	
  

synthesis reactions contained 20 units of DNA ligase, 5 units of RNase H, and 30 units of 11	
  

DNA polymerase I (New England Biolabs, Ipswich, MA). The second-strand reactions 12	
  

were randomly sheared by sonication. The cDNA fragment were blunt-ended with T4 13	
  

polymerase (New England Biolabs, Ipswich, MA). Finally, 3' end cDNA fragments 14	
  

containing the biotinylated polyT primers were removed from cDNA fragment pool by 15	
  

using Dynabeads (Invitrogen, Carlsbad, CA). Sequencing was performed on a GS FLX 16	
  

Instrument following standard protocols (454 Life Science Roche Diagnostics). Sequence 17	
  

deads containing less than 30 bases with high quality score (> 20) were discarded. 18	
  

 19	
  

Data handling and analysis of 454 sequences  20	
  

 21	
  

A custom Perl script was used (a) to BLAST 454 reads against genic and 22	
  

intergenic sequences from D. melanogaster (Flybase release 4.1, http://flybase.org/) and 23	
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against the complete genome of D. simulans (Apr. 2005 assembly, UCSC Genome 1	
  

Bioinformatics, http://genome.ucsc.edu/), (b) to assign to each 454 read to the most 2	
  

probable species (i.e., D. melanogaster or D. simulans) as well as to a specific gene or 3	
  

intergenic region, and (c) to extract descriptive information from each read: number of 4	
  

basepairs (i.e., sequence length), extent of homology identified by BLAST, genomic 5	
  

position in the D. melanogaster and D. simulans genomes, number of gaps in the 6	
  

sequence alignments, number of shared SNPs, and number of species-specific SNPs. The 7	
  

first five of these six parameters describe the quality of 454 reads, while the final 8	
  

parameter was used to classify each sequence read as derived from D. melanogaster or D. 9	
  

simulans or to classify it as having an undetermined origin, which was most common for  10	
  

sequence reads that matched either non-polymorphic or extremely polymorphic regions. 11	
  

All statistical analyses and simulations described in this work were performed using R (R 12	
  

Development Core Team, 2005). 13	
  

 14	
  

Pyrosequencing data collection and analysis 15	
  

 16	
  

 To validate measures of allelic expression based on 454 sequencing, 17	
  

pyrosequencing assays were performed for 14 genes (Supplementary Table S2) using 18	
  

protocols described in Wittkopp et al. (2008). For each gene analyzed, a custom 19	
  

pyrosequencing assay consisting of three unique primers was developed and tested for 20	
  

specificity (primer sequences available upon request). Using these assays, we quantified 21	
  

AI in each of 8 replicate cDNA samples, each independently synthesized from new 22	
  

mRNA extracted from flies collected at the same time as those used for 454 sequencing. 23	
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Genomic DNA was also extracted from flies obtained in the initial collection and 1	
  

analyzed in quadruplicate using pyrosequencing. From each pyrosequencing reaction, the 2	
  

ratio of D. melanogaster to D. simulans alleles was calculated as described in Wittkopp et 3	
  

al. (2008). For each gene, the ratio of relative allelic expression (i.e., D. melanogaster / 4	
  

D. simulans) was log (base 2) transformed, and the average value from replicate genomic 5	
  

DNA samples was subtracted from the average value of replicate cDNA samples, 6	
  

effectively correcting for any bias in PCR-amplification between alleles (Wittkopp et al. 7	
  

2004).  8	
  

9	
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Figure captions:  1	
  

 2	
  

Figure 1: High-throughput sequencing technology allows measurement of relative 3	
  

allelic expression genome-wide.  4	
  

The schematic representation shown illustrates the steps require to collect allelic 5	
  

expression data. Key parameters associated with each step that ultimately affect the 6	
  

statistical power for detecting significant AI are also shown.  7	
  

 8	
  

Figure 2: The expected proportion of informative reads increases with genetic 9	
  

divergence and read length.  10	
  

(A, B) Black lines show expected proportions of informative reads (i.e. sequence 11	
  

fragments that could be unambiguously assigned to one allele) predicted by Eq. 3 for 12	
  

transcribed sequences containing 0.1, 0.5, 1, or 5% sequence divergence, as indicated. 13	
  

Predictions are shown in which either one SNP (A) or two SNPs (B) were required for a 14	
  

sequencing read to be informative for measuring allelic expression. (C, D) Predictions 15	
  

based on 0.1% and 1% sequence divergence and requiring only one SNP to be 16	
  

informative are shown again, as they were in (A). Results from simulated datasets are 17	
  

also shown. Each simulation contained either 20 (C) or 200 (D) reads that were generated 18	
  

using a virtual 2000 bp mRNA sequence, 0.1% or 1% sequence divergence, and 19	
  

sequencing reads of 35, 150, 300, and 800 bp. Each scenario was simulated 500 times, 20	
  

and is summarized by boxplots showing the median, lower and upper quartiles, as well as 21	
  

the 1.5 interquartile range. The gray lines are the 95% confidence intervals of the 22	
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expected proportions based on binomial sampling (Clopper-Pearson interval on Eq. 1, 1	
  

Clopper & Pearson 1934).  2	
  

 3	
  

Figure 3: Predicted proportions of genes with more than 200 informative reads for a 4	
  

given sequencing depth are consistent with simulated data. 5	
  

Predicted values (lines) were obtained using Eq. 14, assuming a mean read length of 150 6	
  

bp and sequence divergence of 0.1%, .5%, 1%, and 5%, as indicated. Simulated data 7	
  

(points) used distributions of transcript abundance, read length, and sequence divergence, 8	
  

as shown for the insets within Fig. 3. Two replicate simulations were performed and 9	
  

found to be highly correlated with each other (Spearman's Rho  >  99%). 10	
  

 11	
  

Figure 4: Detecting significant allelic imbalance for genes with small differences in 12	
  

allelic expression requires a large number of informative reads per gene. 13	
  

Statistical power for detecting significant allelic imbalance for a Type I error α = 5% 14	
  

under different conditions is shown. Each line shows the power to detect significant AI, 15	
  

assuming that the true value of AI is 1, 1.25, 1.5, 2, 7, 10, or 100.. 16	
  

 17	
  

Figure 5: Read sampling strategy affects the proportion of informative reads per 18	
  

gene and thus the number of genes for which significant AI can be detected. 19	
  

(A, B) Simulated proportions of genes with more than 200 informative reads using a 20	
  

random or a targeted read sampling strategy are shown for mean read lengths of 35 bp 21	
  

(A) and 150 bp (B), with individual reads sampled from a Poisson distribution. See Fig. 2 22	
  

for a more detailed description of the simulation parameters. (C) The proportion of 23	
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informative reads per gene using random (left), targeted (middle) , and mixed (right) 1	
  

sampling strategies are shown. Each beanplot represents the distribution (500 replicates) 2	
  

of the proportion of informative reads among 500 sampled reads . The horizontal bar 3	
  

shown on each beanplot indicates the mean of these distributions. For the mixed strategy, 4	
  

fragments with sequence lengths drawn from a Poisson distribution with a mean of 500 5	
  

bp were anchored to a fixed, predetermined location (the 3’ end), and sequences of either 6	
  

18 or 75 bp were taken from each end to simulate paired-end sequencing. 7	
  

 8	
  

Figure 6: Analysis of allelic expression and AI in Drosophila F1 hybrids. 9	
  

(A) The distribution of sequence fragment lengths for both informative and uninformative 10	
  

reads is shown. (B) The number of genes in different gene expression level classes (as 11	
  

measured by the abundance of informative reads) are shown along with the number of 12	
  

genes in each class that showed significant AI. (C) The top panel shows the proportion of 13	
  

genes with significant AI (see Supplementary Table S1) for which the  D. melanogaster 14	
  

allele is most abundant. The bottom panel shows the proportion of informative reads in a 15	
  

given expression level class that were assigned to D. melanogaster. In both panels, the 16	
  

dotted line corresponds to a balanced proportion (50%). (D) The relationship between 17	
  

relative allelic expression as measured by 454 sequencing and by pyrosequencing is 18	
  

shown. For pyrosequencing, the average of eight replicates is plotted and the 95% 19	
  

confidence intervals are indicated by the horizontal bars. For 454 sequencing, the relative 20	
  

number of informative reads is shown, with vertical bars indicating the Clooper-Pearson 21	
  

95% confidence intervals derived from binomial sampling (see Supplementary Fig. S3). 22	
  

The dotted line indicates the slope of the non-parametric regression.  23	
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 1	
  

 2	
  

Figure S1: Alternative model for predicting the proportion of informative reads: 3	
  

incorporating the finite length of mRNA sequence .  4	
  

Equations described in the main text treat mRNA length as infinite despite the fact that 5	
  

real mRNA molecules have a finite length. To examine the impact of this assumption on 6	
  

the accuracy of predictions, we replaced the bionimial distribution used for sampling 7	
  

SNPs within an mRNA with a hypergeometric distribution that allows the length of an 8	
  

mRNA to be considered explicitly. Black solid lines show expected proportions of 9	
  

informative reads predicted by Eq. 3 with 
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mRNA length. The black dashed lines are expected proportions of informative reads 11	
  

predicted by Eq. 3 using Eq. 1 (assuming an infinite mRNA length). The gray lines are 12	
  

the 95% confidence intervals of the expected proportions. lg = 2000 bp (see Fig. 2 for 13	
  

details). 14	
  

 15	
  

Figure S2: The location of a SNP within a sequence affects its probability of being 16	
  

sampled in a random sampling strategy. 17	
  

 The sampling probability of each nucleotide position in a 2000 bp mRNA sequence is 18	
  

shown. (A) The figure shows edge effects of read sampling: bases close to the 5' or 3' 19	
  

ends of transcripts had a lower probability of being observed among 10,000 reads, each 20	
  

50 bp length. The red line shows the average probability of sampling a SNP at any site. 21	
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The green line shows the expected maximum probability (see text). Panels (B), (C), and 1	
  

(D) show variable sampling schemes. 2	
  

 3	
  

Figure S3: The number of informative reads per gene, as well as the magnitude of 4	
  

AI, affect the accuracy of AI estimates. 5	
  

 6	
  

Figure S4: Distribution of significant AI in F1 hybrids. 7	
  

Genes showing greater abundance of D. melanogaster and D. simulans alleles are 8	
  

positive and negative, respectively. The X-axis shows the AI values after a log (base 2) 9	
  

transformation.  10	
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