

Collecting Provenance via the Xen Hypervisor

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Macko, Peter, Marc Chiarini, and Margo Seltzer. Forthcoming.
Collecting provenance via the Xen hypervisor. In Proceedings of
3rd USENIX Workshop on the Theory and Practice of Provenance
(TaPP '11), June 20-21, 2011, Heraklion, Crete, Greece. Berkeley,
CA: USENIX Association.

Published Version http://www.usenix.org/event/tapp11/tech/final_files/MackoChiarin
iSeltzer.pdf

Accessed February 19, 2015 8:59:35 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5168855

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28937986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/5168855&title=Collecting+Provenance+via+the+Xen+Hypervisor
http://www.usenix.org/event/tapp11/tech/final_files/MackoChiariniSeltzer.pdf
http://www.usenix.org/event/tapp11/tech/final_files/MackoChiariniSeltzer.pdf
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5168855
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Collecting Provenance via the Xen Hypervisor

Peter Macko
Harvard University

Marc Chiarini
Harvard University

Margo Seltzer
Harvard University

Abstract

The Provenance Aware Storage Systems project (PASS)
currently collects system-level provenance by intercept-
ing system calls in the Linux kernel and storing the
provenance in a stackable filesystem. While this ap-
proach is reasonably efficient, it suffers from two sig-
nificant drawbacks: each new revision of the kernel re-
quires reintegration of PASS changes, the stability of
which must be continually tested; also, the use of a stack-
able filesystem makes it difficult to collect provenance
on root volumes, especially during early boot. In this pa-
per we describe an approach to collecting system-level
provenance from virtual guest machines running under
the Xen hypervisor. We make the case that our approach
alleviates the aforementioned difficulties and promotes
adoption of provenance collection within cloud comput-
ing platforms.

1 Introduction

The PASS project [9] has successfully addressed the
task of collecting and processing system-level prove-
nance [8]. While the implementation of PASS has served
as a useful prototype, its continued evolution is unsus-
tainable, because the implementation requires reintegra-
tion and testing with every new Linux kernel version. For
example, our stackable filesystem, Lasagna, is mounted
on top of a traditional filesystem such as Ext3. Lasagna
transparently interfaces with the Linux Virtual FileSys-
tem (VFS) to pass analyzed provenance back and forth
from/to the lower filesystem. This is convenient be-
cause it enables operations on provenance without the
need to modify the kernel implementation of the under-
lying filesystem. However, Lasagna remains sensitive to
changes in the VFS interface and other kernel facilities
upon which it relies. One of the most important goals for
provenance collection is to be certain that provenance is
true and reliable. PASS users can ill afford to have a

collection mechanism that records partial or erroneous
information (or worse, causes a crash) simply because
the system was upgraded to a new kernel. Continuing
this research makes finding a portable method of prove-
nance collection vital. To that end, we are exploring
hypervisor-based provenance collection.

In this paper, we propose an approach for extending
Xen [6] to transparently collect operating system-level
provenance from its guest VMs, without requiring any
modifications to the guest kernel. Although we expect
our approach to be implementable across a variety of
hypervisors, we chose to prototype in Xen because it
is a mature virtualization technology that is under ac-
tive development; its code is fairly clean and minimal;
it is licensed under GNU GPLv2, which allows it to be
changed and distributed freely; and it is already used by
several increasingly popular providers of Infrastructure
as a Service (IaaS). Our implementation is still a work in
progress, but it has already exhibited great promise.

2 Background

2.1 The PASS Architecture
Figure 1 shows the PASS architecture1. The intercep-
tor is a set of system call hooks that extract arguments
and other necessary information from kernel data struc-
tures, passing them to the observer. Currently, PASS
intercepts execve, fork, exit, read, readv, write,
writev, mmap, open, pipe, and the kernel operation
drop inode. These calls are sufficient to capture the
rich ancestry relationships between Linux files, pipes,
and processes. This raw “proto-provenance” goes to the
observer, which translates proto-provenance into prove-
nance records. For example, when a process P reads a
file A, the observer generates a record that includes the
fact that P depends on A. The analyzer then processes

1We strongly urge the reader to consult our previous paper [9] that
describes the PASS project in more detail.

Lasagna

Log

Interceptor

User
Kernel

VFS Layer

Observer

Analyzer

Distributor

App
libpass

App Waldo
Indexing
& Query

Figure 1: A diagram of the PASS Architecture

the stream of provenance records to eliminate duplicates,
ensuring that cyclic dependencies do not arise.

The distributor caches provenance for objects that
are not persistent from the kernel’s perspective, such as
pipes, processes and application-specific objects (e.g., a
browser session or data set) until they need to be materi-
alized on disk. Lasagna is the provenance-aware file sys-
tem that stores provenance records along with the data.
Internally, it writes provenance to a log. The log format
ensures consistency between the provenance and data ap-
pearing on disk. Finally, Waldo is a user-level daemon
that reads provenance records from the log and stores
them in a database. Waldo is also responsible for access-
ing the database on behalf of a provenance query engine.

2.2 The Xen Architecture

The Xen hypervisor (Figure 2) is a minimal kernel that
normally runs on the “bare metal” of a system. The
hypervisor oversees multiple virtual machines known as
domains, with one domain (Dom0) having special privi-
leges. Dom0 serves as the administrative center of a Xen
system, is the first domain started on boot, and is the only
domain with direct access to real hardware. It runs an
operating system (usually Linux) that has been modified
to communicate with the hypervisor. Guest VMs, also
referred to as DomUs, rely on the hypervisor for privi-
leged operations such as communicating with devices. A
DomU can run an operating system with one of two kinds
of kernels: a para-virtualized (PV) kernel or an unmod-
ified kernel. A PV kernel is modified to perform privi-
leged operations (e.g., a page table update) only via hy-
percalls. Similar to an application issuing a system call,
a hypercall is a software trap from a domain to the hy-
pervisor. If the CPU supports virtualization extensions,

Dom0 DomU Guest
(PV)

Xen Mgmt Interface

Emulated Devices

Device
Drivers

Backend
Drivers

Frontend
Drivers

vCPU vMem Scheduler

DomU Guest
(HVM)

Device
Drivers

Applications

Xen
Hypervisor

CPU Memory Network
Physical

Hardware

Applications

Blk Devs

Hypercalls

Figure 2: A diagram of the Xen Architecture

such as Intel VT-x, the DomU can use an unmodified
kernel, which we refer to as a Hardware Virtual Machine
(HVM).

3 Approach

In this section we describe our approach to modifying
the Xen hypervisor such that we can collect provenance
from running guest kernels.

3.1 Assumptions

Our approach assumes that the target VM (the one from
which we will collect provenance) is running a PV ker-
nel, but targeting an unmodified kernel (such as Win-
dows) should be possible as well. Linux, Minix, GNU
Hurd, OpenSolaris, NetBSD, and FreeBSD all have of-
ficially supported PV kernels. The remainder of this pa-
per assumes that we are running a Linux guest kernel;
the same approach is easily adapted to the other types of
guests. We also assume that the Dom0 and DomU ker-
nels and the Xen hypervisor itself are uncompromised,
such that we may trust and verify any generated prove-
nance. Finally, we assume that the debug symbols for
the given build of the kernel are available. The reason
for this will become apparent in the design section.

3.2 Design

Our approach intercepts DomU system calls by placing
an appropriate hook in Xen’s syscall enter mecha-
nism. This hook provides the interceptor with the system

2

call number and its numerical arguments. The intercep-
tor in turn determines which of the arguments are num-
bers and which are pointers to data structures and strings
in user space by looking up the system call in a table.
It then proceeds to create a system call record with the
following fields:

• system call number
• numerical arguments
• referenced strings and structs
• a placeholder for the return value
• the task group ID (TGID) of the calling process as

returned by the getpid() system call.
• the current working directory (CWD), including its

volume ID, if the system call references a string that
contains a file name, such as in the case of creat()
and open()

• the environment variables, if necessary

The interceptor determines fields such as TGID or CWD
by using the supplied kernel debug symbols in order to
traverse the guest kernel’s internal data structures and to
pull out the appropriate values. Similarly, it uses the de-
bug information to determine the sizes of the referenced
structs that it needs to copy out of user space. The inter-
ceptor places the record in a ring buffer, blocking if there
is not enough free space. Finally, another hook in Xen’s
do iret() code places the return value of the system
call into the appropriate field.

Concurrently, a user space daemon runs in a privileged
domain (Dom0 or a special “provenance-processing do-
main”) to periodically:

1. consume records from the ring buffer,
2. process them using a provenance analyzer,
3. output provenance logs,
4. and feed the logs into Waldo (the online provenance

database).

We can run this process on a dedicated CPU/core in a
multiprocessor/multicore system to improve guest per-
formance. The user space daemon, as well as other sup-
porting software, communicates with Xen’s provenance
subsystem via a dedicated hypercall, which is accessible
only in the privileged domain.

4 Advantages

Our proposed design starts to collect provenance imme-
diately after the guest is powered on. This provides us
with provenance from the root filesystem and from the
early stages of the boot process, which is currently dif-
ficult to do with our in-kernel PASS approach. Early
provenance can then be used for diverse tasks such as

system configuration troubleshooting, startup optimiza-
tion, and intrusion analysis. This is in addition to the ben-
efits of system-level provenance already demonstrated in
previous research [8, 9].

The decoupling of the interceptor from the provenance
analyzer allows us to move the CPU-intensive analysis
onto another CPU or core, so that the single-thread per-
formance of the guest will be only minimally affected.
This is important because average performance of the
hypervisor is certain to be affected negatively by prove-
nance collection, especially if the guest VMs are hosting
I/O-intensive applications. Once we have implemented
a provenance-aware Xen prototype, we will be in a bet-
ter position to evaluate and address any resulting impact
upon performance.

We expect that adapting the interceptor to new guest
kernel releases will not be difficult, because we will have
to account only for major changes to basic kernel data
structures. We will not need to worry about most other
changes that are tangential to the kernel paths from which
we collect provenance. More important, we will be pro-
tected from worrying about changes to the API refer-
enced by stackable filesystems; these changes tend to
happen often and to be fairly substantial. Also, while
the Xen implementation is sure to increase in complex-
ity, changes occur at a slower rate than that of UNIX-
derived kernels. The execution path for trapping system
calls in Xen is relatively insulated even from fundamen-
tal changes to the guest kernels; this will remain true for
as long as operating systems offer services via a system
call interface.

5 Pitfalls

One obstacle of our approach is that the interceptor re-
quires a large ring buffer to hold the records of all system
calls that have not yet been consumed by the analyzer. A
typical Linux guest generates several tens of read/write
system calls per second that involve standard input and
output streams. We cannot easily filter them out at the
interceptor, because these streams may have been redi-
rected previously to a file or a pipe. In addition to con-
suming a large amount of memory, buffer operations typ-
ically increase the pressure on processor caches and add
traffic to the CPU interconnect (due to cache coherence
if the provenance is processed on a different CPU than
the one on which the provenance was collected). The
amount of recorded data can be vastly reduced by mov-
ing the analysis process from the proposed user space
daemon directly into the path of the intercepted system
calls. The tradeoff for a reduction in space and cache
pressure would be a reduction in single-thread perfor-
mance. This balance will be the subject of future study.

Another difficulty with our design comes from the fact

3

that the interceptor can see file paths only as strings. A
path can cross multiple mount points, and include any
number of symbolic links and hard links. As a result,
multiple distinct path strings can refer to the same object.
We can address this issue by examining the file system
state before the guest is powered on and then updating
the state by simulating the effect of relevant system calls
(e.g., mkdir() and link()). This is an expensive solu-
tion that would not be suitable for most environments.

PASS solves this problem by using inode numbers to
uniquely identify files in the filesystem, making sure that
if an inode number is reused, the given file has a dif-
ferent associated provenance identifier. We may be able
to implement this solution by mapping file paths to in-
odes using data structures in the guest kernel’s VFS layer,
which we can access using the kernel’s debug symbols.
This would be done on a per-mounted-filesystem basis,
because inodes are only meaningful in the context of a
specific filesystem.

Finally, a hardware failure or a software bug in Xen
or the Dom0 kernel could cause an irreversible loss of
system call records that have not yet been processed -
and thus a loss of several seconds of provenance. In our
PASS implementation we used a write-ahead protocol to
prevent any loss of provenance. There is currently no
elegant way of handling this issue. This might be fixed
by placing the ring buffer into NVRAM (battery-backed
RAM should be sufficient), or by adding a UPS system
and flushing the buffer to disk on a power failure or a
system panic as done in the Panasas Parallel File Sys-
tem [12].

6 Adoption

There are several arguments to be made in favor of
adopting hypervisor-based provenance collection meth-
ods. The strongest argument is the growing demand for
cloud computing services, most of which use virtualiza-
tion to achieve economies of scale and to improve re-
source utilization efficiency. Many cloud providers cur-
rently use Xen or allow Xen as their virtualization layer.
These include Amazon EC2 [1], Rackspace Cloud [4],
Cloud.com, Flexiant (Flexiscale) [3], and Eucalyptus [2].

Another key to adoption is reduced complexity, both
on the developer and the client side. For developers,
working inside the Xen hypervisor will be easier and less
error-prone than modifying multiple native kernels to
collect provenance. Developers will still require knowl-
edge of kernel data structures but they will only be de-
bugging code in a single hypervisor and its associated
modules, instead of debugging frequently changing ker-
nel code. For system administrators and other users, con-
figuration of provenance collection and the subsequent
querying and presentation of provenance from multiple

virtual machines can be controlled from a unified inter-
face.

7 Related Work

As of this writing, the authors are unaware of any pub-
lished work that describes attempts to collect provenance
using a hypervisor. However, there have been several
projects that enable resource introspection of a virtual-
ized guest, often for security purposes.

For example, VMWare’s EPSEC [5] provides a library
and API for introspection into file activity at the hyper-
visor layer. Similarly, XenAccess [10] is a monitoring li-
brary for operating systems running on Xen. It provides
virtual memory introspection and virtual disk monitoring
capabilities, allowing monitor applications to safely and
efficiently access the memory state and disk activity of a
virtual machine.

Introspection approaches are not sufficient to collect
provenance from all areas of the operating system. This
requires system call interception that tracks the creation,
access, and destruction of processes, files, pipes, and
(ideally) sockets.

Two projects come closer to providing these capabil-
ities: Lares [11] and Ether [7]. Lares enables a special-
ized security VM to insert hooks inside a Windows guest
VM running under Xen. This allows active monitoring of
guest behavior and interception and denial of proscribed
events. Lares does not specifically intercept the required
system calls outlined above, but could be modified to
do so. Also, insertion of hooks requires installation of
a trusted kernel driver in the guest OS. This may be a
good path to follow in our own implementation.

The Ether project is most similar to our own proposal,
although it is used for malware analysis instead of prove-
nance collection. It resides in two parts of the Xen ar-
chitecture: a hypervisor component detects important
events inside the DomU target, including instruction ex-
ecution, system call execution, memory writes, and con-
text switches; a user space component in Dom0 deter-
mines which processes and events in the guest should be
monitored. This component also contains analysis logic
that can perform tasks such as translating a system call
number into a system call name or extracting the content
of system call arguments based on their type. We expect
that a more thorough study of Ether will yield several
useful techniques.

8 Conclusion

We have proposed a method for collecting system-level
provenance from virtual machines running under the Xen
Hypervisor. We believe that this is the only viable long-

4

term approach to collecting system provenance, and that
it also provides benefits above and beyond those avail-
able from other provenance systems. Some technical
hurdles remain, but provenance collection via hypervisor
is undoubtedly the future.

9 Acknowledgments

The authors would like to thank the other members of the
PASS group at Harvard University for their comments
and insights on this research.

10 Availability

A working prototype is not yet available. However, read-
ers are encouraged to periodically check the website be-
low for news and updates.

http://www.eecs.harvard.edu/syrah/pass/

References
[1] Amazon elastic compute cloud. http://aws.amazon.com/

ec2/. Retreived 2011-04-04.

[2] Eucalyptus enterprise edition 2.0 datasheet. http:

//www.eucalyptus.com/themes/eucalyptus/pdf/

Eucalyptus_EEE_DS.pdf. Retreived 2011-04-04.

[3] Flexiant – utility computing on demand. http://www.

flexiant.com/.

[4] Rackspace cloud computing. http://www.rackspace.com/

cloud/. Retreived 2011-04-04.

[5] Vmware vshield endpoint. http://www.vmware.com/files/
pdf/vmware-vshield-endpoint-ds-en.pdf. Retreived
2011-04-04.

[6] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review 37, 5 (2003), 164–177.

[7] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
malware analysis via hardware virtualization extensions. Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security (2008), 51–62.

[8] HOLLAND, D. A., SELTZER, M. I., BRAUN, U., AND
MUNISWAMY-REDDY, K. PASSing the provenance challenge.
Concurr. Comput. : Pract. Exper. 20 (Apr. 2008), 531–540.

[9] MUNISWAMY-REDDY, K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In 2009 USENIX
Annual Technical Conference (San Diego, California, 2009).

[10] PAYNE, B. D., CARBONE, M., AND LEE, W. Secure and flex-
ible monitoring of virtual machines. In Computer Security Ap-
plications Conference, Annual (Los Alamitos, CA, USA, 2007),
vol. 0, IEEE Computer Society, pp. 385–397.

[11] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.
Lares: An architecture for secure active monitoring using vir-
tualization. In Security and Privacy, IEEE Symposium on (Los
Alamitos, CA, USA, 2008), vol. 0, IEEE Computer Society,
pp. 233–247.

[12] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the panasas parallel file system. Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(2008), 2:1–2:17.

5

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.eucalyptus.com/themes/eucalyptus/pdf/Eucalyptus_EEE_DS.pdf
http://www.eucalyptus.com/themes/eucalyptus/pdf/Eucalyptus_EEE_DS.pdf
http://www.eucalyptus.com/themes/eucalyptus/pdf/Eucalyptus_EEE_DS.pdf
http://www.flexiant.com/
http://www.flexiant.com/
http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/
http://www.vmware.com/files/pdf/vmware-vshield-endpoint-ds-en.pdf
http://www.vmware.com/files/pdf/vmware-vshield-endpoint-ds-en.pdf

	1 Introduction
	2 Background
	2.1 The PASS Architecture
	2.2 The Xen Architecture

	3 Approach
	3.1 Assumptions
	3.2 Design

	4 Advantages
	5 Pitfalls
	6 Adoption
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	10 Availability

