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Abstract

The quality of file system benchmarking has not im-
proved in over a decade of intense research spanning
hundreds of publications. Researchers repeatedly use a
wide range of poorly designed benchmarks, and in most
cases, develop their own ad-hoc benchmarks. Our com-
munity lacks a definition ofwhatwe want to benchmark
in a file system. We propose several dimensions of file
system benchmarking and review the wide range of tools
and techniques in widespread use. We experimentally
show that even the simplest of benchmarks can be frag-
ile, producing performance results spanning orders of
magnitude. It is our hope that this paper will spur seri-
ous debate in our community, leading to action that can
improve how we evaluate our file and storage systems.

1 Introduction

Each year, the research community publishes dozens of
papers proposing new or improved file and storage sys-
tem solutions. Practically every such paper includes an
evaluation demonstrating how good the proposed ap-
proach is on some set of benchmarks. In many cases,
the benchmarks are fairly well-known and widely ac-
cepted; researchers present means, standard deviations,
and other metrics to suggest some element of statistical
rigor. It would seem then that the world of file system
benchmarking is in good order, and we should all pat
ourselves on the back and continue along with our cur-
rent methodology.

We think not.
We claim that file system benchmarking is actually a

disaster area—full of incomplete and misleading results
that make it virtually impossible to understand what sys-
tem or approach to use in any particular scenario. In
Section 3, we demonstrate the fragility that results when
using a common file system benchmark (Filebench [10])
to answer a simple question, “How good is the random
read performance of Linux file systems?”. This seem-
ingly trivial example highlights how hard it is to answer
even simple questions and also how, as a community, we
have come to rely on a set of common benchmarks, with-
out really asking ourselveswhat we needto evaluate.

The fundamental problems are twofold. First, accu-
racy of published results is questionable in other scien-
tific areas [8], but may be even worse in ours [11, 12].
Second, we are asking an ill-defined question when we
ask, “Which file system is better.” We limit our discus-
sion here to the second point.

What does it mean for one file system to be better
than another? Many might immediately focus on perfor-
mance, “I want the file system that is faster!” But faster
under what conditions? One system might be faster for
accessing many small files, while another is faster for
accessing a single large file. One system might perform
better than another when the data starts on disk (e.g., its
on-disk layout is superior). One system might perform
better on meta-data operations, while another handles
data better. Given the multi-dimensional aspect of the
question, we argue that the answer canneverbe a single
number or the result of a single benchmark. Of course,
we all know that—and that’s why every paper worth the
time to read presents multiple benchmark results—but
how many of those give the reader any help in interpret-
ing the results to apply them to any question other than
the narrow question being asked in that paper?

The benchmarks we choose should measure the aspect
of the system on which the research in a paper focuses.
That means that we need to understand precisely what
information any given benchmark reveals. For example,
many file system papers use a Linux kernel build as an
evaluation metric [12]. However, on practically all mod-
ern systems, a kernel build is a CPU bound process, so
what does it mean to use it as a file system benchmark?
The kernel build does create a large number of files, so
perhaps it is a reasonable meta-data benchmark? Per-
haps it provides a good indication of small-file perfor-
mance? But it means nothing about the affect of file
system disk layout if the workload is CPU bound. The
reality is that it frequently reveals little about the perfor-
mance of a file system, yet many of us use it nonetheless.

We claim that file systems are multi-dimensional sys-
tems, and we should evaluate them as such. File systems
are a form of “middleware” because they have multiple
storage layers above and below, and it is the interaction
of all of those layers with the file system that really af-
fects its behavior. To evaluate a file system properly
we first need to agree on the different dimensions, then
agree on how best to measure those different dimensions
and finally agree on how to combine the results from the
multiple dimensions.

In Section 2 we review and propose several file sys-
tem evaluation criteria (i.e., a specification of the various
dimensions) and then examine commonly used bench-
marks relative to those dimensions. In Section 3 we ex-
amine 1–2 small pieces of these dimensions to demon-
strate the challenges that must be addressed. We con-
clude and discuss future directions in Section 4.
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Related Work. In 1994 Tang et al. criticized sev-
eral file system benchmarks in wide-spread use at that
time [11]. Surprisingly, some of these benchmark are
still in use today. In addition, plenty of new benchmarks
have been developed, but quantity does not always mean
quality. Traeger and Zadok examined 415 file system
benchmarks from over 100 papers spanning nine years
and found that in many cases benchmarks do not provide
adequate evaluation of file system performance [12]. Ta-
ble 1 (presented later in Section 2) includes results from
that past study. We omit discussing those papers here
again, but note that the quality of file system benchmark-
ing does not appear to have improved since that study
was published in 2008. In fact, this topic was discussed
at a BoF [13] at the FAST 2005, yet despite these efforts,
the state of file system benchmarking remains quite poor.

2 File System Dimensions

A file system abstracts some hardware device to provide
a richer interface than that of reading and writing blocks.
It is sometimes useful to begin with a characterization of
the I/O devices on which a file system is implemented.
Such benchmarks should report bandwidth and latency
when reading from and writing to the disk in various-
sized increments. IOmeter [9] is an example of such a
benchmark; we will call theseI/O benchmarks.

Next, we might want to evaluate the efficacy of a file
system’s on-disk layout. These should again evaluate
read and write performance as a function of (file) size,
but should also evaluate the efficacy of the on-disk meta-
data organization. These benchmarks can be challenging
to write: applications can rarely control how a file sys-
tem caches and prefetches data or meta-data, yet such
behavior will affect results dramatically. So, when we
ask about a system’s on-disk meta-data layout, do we
want to incorporate its strategies for prefetching? They
may be tightly coupled. For example, consider a sys-
tem that groups the meta-data of “related files” together
so that whenever you access one object, the meta-data
for the other objects’ meta-data is brought into mem-
ory. Does this reflect a good on-disk layout policy
or good prefetching? Can you even distinguish them?
Does it matter? There exist several benchmarks (e.g.,
Filebench [10], IOzone [2]) that incorporate tests like
this; we will refer to these benchmarks ason-disk bench-
marks. Depending on how it is configured, the Bonnie
and Bonnie++ benchmarking suites [1, 4] can measure
either I/O or on-disk performance.

Perhaps we are concerned about the performance of
meta-data operations. The Postmark benchmark [7] is
designed to incorporate meta-data operations, but does
not actually provide meta-data performance in isolation;
similarly, many Filebench workloads can exercise meta-
data operations but not in isolation.

As mentioned above, on-disk meta-data benchmarks
can become caching or in-memory benchmarks when
file systems group meta-data together; they can also be-
come in-memory benchmarks when they sweep small
file sizes or report “warm-cache” results. We claim that
we are rarely interested in pure in-memory execution,
which is predominantly a function of the memory sys-
tem, but rather in the efficacy of a given cachingap-
proach; does the file system pre-fetch entire files, blocks,
or large extents? How are elements evicted from the
cache? To the best of our knowledge, none of the ex-
isting benchmarks consider these questions.

Finally, we may be interested in studying a file sys-
tem’s ability to scale with increasing load. This was the
original intent behind the Andrew File System bench-
mark [5], and while sometimes used to that end, this
benchmark, and its successor, the Linux kernel compile
are more frequently cited as a good benchmark for gen-
eral file system performance.

We surveyed the past two years’ publications in file
systems from the USENIX FAST, OSDI, ATC, HotStor-
age, ACM SOSP, and IEEE MSST conferences. We
recorded what benchmarks were used and what each
benchmark measures. We reviewed 100 papers, 68 from
2010 and 32 from 2009, eliminating 13 papers, because
they had no evaluation component relative to this dis-
cussion. For the rest, we counted how many papers used
each benchmark. Table 1 shows all the benchmarks that
we encountered and reports how many times each was
used in each of the past two years. The table also con-
tains similar statistics from our previous study for 1999–
2007 years. We were disappointed to see how little con-
sistency there was between papers. Ad-hoc testing—
making one’s own benchmark—was, by far, the most
common choice. While several papers used microbench-
marks for random read/write, sequential read/write and
create/delete operations, they were all custom generated.
We found this surprising in light of the numerous exist-
ing tests that can generate micro-benchmark workloads.

Some of the ad-hoc benchmarks are the result of new
functionality: three papers provided ad-hoc deduplica-
tion benchmarks, because no standard benchmarks exist.
There were two papers on systems designed for stream-
ing, and both of those used custom workloads. However,
in other cases, it is completely unclear why researchers
are developing custom benchmarks for OLTP or paral-
lel benchmarking. Some communities are particularly
enamored with trace-based evaluations (e.g., MSST).
However, almost none of those traces are widely avail-
able: of the 14 “standard” traces, only 2 (the Harvard
traces and the NetApp CIFS traces) are widely avail-
able. When researchers go to the effort to make traces, it
would benefit the community to make them widely avail-
able by depositing them with SNIA.
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Benchmark Benchmark Type Used in papers
I/O On-disk Caching Meta-data Scaling 1999-2007 2009-2010

IOmeter • 2 3
Filebench • ◦ ◦ ◦ • 3 5
IOzone ◦ ◦ • 0 4
Bonnie/Bonnie64/Bonnie++ ◦ ◦ 2 0
Postmark ◦ ◦ ◦ • 30 17
Linux compile ◦ ◦ ◦ 6 3
Compile (Apache, openssh, etc.) ◦ ◦ ◦ 38 14
DBench ◦ ◦ ◦ 1 1
SPECsfs ◦ ◦ ◦ • 7 1
Sort ◦ ◦ • 0 5
IOR: I/O Performance Benchmark ◦ ◦ • 0 1
Production workloads ⋆ ⋆ ⋆ ⋆ 2 2
Ad-hoc ⋆ ⋆ ⋆ ⋆ ⋆ 237 67
Trace-based custom ⋆ ⋆ ⋆ ⋆ 7 18
Trace-based standard ⋆ ⋆ ⋆ ⋆ 14 17
BLAST ◦ ◦ 0 2
Flexible FS Benchmark (FFSB) ◦ ◦ ◦ • 0 1
Flexible I/O tester (fio) ◦ ◦ ◦ • 0 1
Andrew ◦ ◦ ◦ 15 1

Table 1: Benchmarks Summary. “•” indicates the benchmark can be used for evaluating the corresponding file system dimension;
“ ◦” is the same but the benchmark does not isolate a corresponding dimension; “⋆” is used for traces and production workloads

In summary, there is little standardization in bench-
mark usage. This makes it difficult for future researchers
to know what tests to run or to make comparisons be-
tween different papers. There must be a better approach.

3 A Case Study

We performed a simple evaluation of Ext2 using
Filebench 1.4.8 [10]. We picked Filebench because it
seems to be gaining popularity: it was used in 3 papers
in FAST 2010 and 4 in OSDI 2010. (Nevertheless, the
problems outlined by this paper are common to all other
benchmarks we surveyed.) The range of the workloads
that Filebench can generate is broad, but we deliberately
chose a simple, well-defined workload: one thread ran-
domly reading from a single file. It is remarkable that
even such a simple workload can demonstrate the multi-
dimensional nature of file system performance. More
complex workloads and file systems will exploit even
more dimensions and consequently will require more at-
tention during evaluation. Ext2 is a relatively simple
file system, compared to, say, Btrfs; more complex file
systems should demonstrate more intricate performance
curves along performance dimensions.

In our experiments we measured the throughput and
latency of the random read operation. We used an In-
tel Xeon 2.8GHz machine with a single SATA Maxtor
7L250S0 disk drive as a testbed. We artificially de-
creased the RAM to 512MB to facilitate our experi-
ments. Section 3.1 describes our observations related
to the throughput, and Section 3.2 highlights the latency
results.

3.1 Throughput
In our first experiment we increased the file size from
64MB to 1024MB in steps of 64MB. For each file size
we ran the benchmark 10 times. The duration of the run
was 20 minutes, but to ensure steady-state results we re-
port only the last minute. Figure 1 shows the throughput
and its relative standard deviation for this experiment.
The sudden drop in performance between 384MB and
448MB is readily apparent. The OS consumes some of
the 512 MB of RAM and the drop in performance corre-
sponds to the point when the file size exceeds the amount
of memory available for the page cache.

So, what should a careful researcher report for the ran-
dom read performance of Ext2? For file sizes less than
384MB, we mostly exercise the memory subsystem; for
file sizes greater than 448MB, we exercise the disk sys-
tem. This suggests that researchers should either publish
results that span a wide range or make explicit both the
memory- and I/O-bound performance.

It was surprising, at first, that such a sudden per-
formance drop happens within a narrow range of only
64MB. We zoomed into the region between 384MB and
448MB and observed that performance drops within an
even narrower region—less than 6MB in size. This
happens because even a single rare read operation that
induces I/O lasts longer than thousands of in-memory
operations—a worsening problem in recent years as
the gap between I/O and memory/CPU speeds widens.
More modern file systems rely on multiple cache levels
(using Flash memory or network). In this case the per-
formance curve will have multiple distinctive steps.

Figure 1 also shows the relative standard deviation
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Figure 1: Ext2 throughput and its relative standard deviation
under random read workload for various file sizes

for the throughput. The standard deviation is not con-
stant across the file sizes. In the I/O-bound range, the
standard deviation is up to 5 times greater than it is in
the memory-bound range. This is unsurprising given
the variability of disk access times compared to the rel-
ative stability of memory performance. We observed
that in the transition region, where we move from being
memory-bound to being disk-bound, the relative stan-
dard deviation skyrockets by up to 35% (not visible on
the figure because it only depicts data points with a
64MB step). Just a few megabytes more (or less) avail-
able in the cache affect the throughput dramatically in
this boundary region. It is difficult to control the avail-
ability of just a few megabytes from one benchmark run
to another. As a result, benchmarks are very fragile: just
a tiny variation in the amount of available cache space
can produce a large variation in performance.

We reported only the steady-state performance in the
above discussion; is it correct to do so? We think not. In
the next experiment we recorded the throughput of Ext2,
Ext3, and XFS every 10 seconds. We used a 410MB file,
because it is the largest file that fits in the page cache.
Figure 2 depicts the results of this experiment. In the
beginning of the experiment no file blocks are cached in
memory. As a result all read operations go to the disk,
directly limiting the throughput of all the systems to that
of the disk. At the end of the experiment, the file is
completely in the page cache and all the systems run at
memory speed. However, the performance of these file
systems differs significantly between 4 and 13 minutes.
What should the careful researcher do? It is clear that the
interesting region is in the transition from disk-bound to
memory-bound. Reporting results at either extreme will
lead to the conclusion that the systems behave identi-
cally. Depending on where in the transition range a re-
searcher records performance, the results can show dif-
ferences ranging anywhere from a few percentage points
to nearly an order of magnitude! Only theentiregraph
provides a fair and accurate characterization of the file
system performance across this (time) dimension. Such
graphs span both memory-bound to I/O bound dimen-
sions, as well as a cache warm-up period. Self-scaling
benchmarks [3] can collect data for such graphs.
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Figure 2: Ext2, Ext3, and XFS throughput by time

3.2 Latency

File system benchmarks, including Filebench, often re-
port an average latency for I/O operations. However,
averagelatency is not a good metric to evaluate user
satisfaction when a latency-sensitive application is in
question. We modified Filebench to collect latency his-
tograms [6] for the operations it performs. We ran the
same workload as described in the previous section for
four different file sizes spanning a wide range: 64MB,
1024MB, and 25GB. Figure 3 presents the correspond-
ing histograms. Notice that the X axes are logarithmic
and that the units are in nanoseconds (above) andlog2
bucket number (below). The Y axis units are the per-
centage of the total number of operations performed.

For a 64MB file (Figure 3(a)) we see a distinctive peak
around 4microseconds. The file fits completely in mem-
ory, so only in-memory operations contribute to the la-
tency. When the file size is 1024MB we observe two
peaks on the histogram (Figure 3(b)). The second peak
on the histogram corresponds to the read calls that miss
in the cache and go to disk. The peaks are almost equal
in height because 1024MB is twice the size of RAM and,
consequently, half of the random reads hit in the cache
(left peak), while the other half go to disk (right peak).
Finally, for a file that is significantly larger than RAM—
25G in our experiments—the left peak becomes invisi-
bly small because the vast majority of the reads end up
as I/O requests to the disk ((Figure 3(c)). Clearly, the
working set size impacts reported latency significantly,
spanning over 3 orders of magnitude.

In another experiment, we collected latency his-
tograms periodically over the course of the benchmark.
In this case we used a 256MB file that was located on
Ext2. Figure 4 contains a 3-D representation of the re-
sults. As the benchmark progresses, the peak corre-
sponding to disk reads (located near the2

23 ns) fades
away and is replaced by the peak corresponding to reads
from the page cache (around211ns). Again, depending
on exactly when measurements are taken, even a careful
researcher might draw any of a number of conclusions
about Ext2’s performance—anywhere from concluding
that Ext2 is very good, to Ext2 being very bad, and ev-
erywhere in between. Worse, during most of the bench-
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Figure 3: Ext2 read latency histograms for various file sizes

mark’s run, it is bi-modal: trying to achieve stable results
with small standard deviations is nearly impossible.

Single number benchmarks rarely tell the whole
story. We need to get away from the marketing-driven
single-number mindset to a multi-dimensional contin-
uum mindset.

4 Conclusions and Future Work

A file system is a complex piece of software with lay-
ers below and above it, all affecting its performance.
Benchmarking such systems is far more complex than
any single tool, technique, or number can represent. Yes,
it makes our lives more difficult, but will greatly enhance
the utility of our work. Let’s begin by defining precisely
what dimension(s) of file system behavior we are evalu-
ating. We believe that a file system benchmark should be
a suite of nano-benchmarks where each individual test
measures a particular aspect of file system performance
and measures it well. Next, let’s get away from single-
number reporting. File system performance is extremely
sensitive to minute changes in the environment. In the
interest of full disclosure, let’s report a range of values
that span multiple dimensions (e.g., timeline, working-
set size, etc.). We propose that at a minimum, an encom-
passing benchmark should include in-memory, disk lay-
out, cache warm-up/eviction, and meta-data operations
performance evaluation components.

Our community needs to buy in to doing a better job.
We need to reach agreement on what dimensions to mea-
sure, how to measure them, and how to report the results
of those measurements. Until we do so, our papers are
destined to provide incomparable point answers to subtle
and complex questions.
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