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Hydrogen is of critical importance in atomic and molecular physics and the development of a simple
and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant
advance. In this study we simulate a recently proposed trap-loading mechanism for trapping
hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported
of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering
cross sections that control the energy transfer of initially cold atoms are obtained. They are then used
to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical
solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution
function. Based on the simulations we discuss the prospects of the technique. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3180822�

I. INTRODUCTION

In the last decade there have been intense efforts to cool
atoms leading to the study of states of the matter such as
Bose–Einstein condensates and Bardeen–Cooper–Schrieffer
behavior in dilute gases.1,2 After the advent of buffer-gas
loading3 many atomic species have been trapped and cooled
to ultracold temperatures. Hydrogen is an exception because
the current techniques suffer from a variety of experimental
limitations and high technical cost.4 However, ultracold hy-
drogen is very important in the advanced spectroscopy field
and can offer high precision measurements of the Rydberg
constant.5 Furthermore, it can lead to the development of
highly stable atomic clocks, and it is critical for comparison
with cold antihydrogen atoms which are of fundamental in-
terest in tests of CPT symmetry.6,7

Recently an interesting proposal8 has been advanced for
using a trap-loading technique to capture hydrogen atoms
released from a solid neon matrix, grown in a cell that con-
tains a cold sapphire substrate. It consists of magnetically
capturing the low energy fraction of the released paragmag-
netic hydrogen atoms while the host �Ne� atoms stick to the
walls. The binding energy of hydrogen to the walls is very
low. The main problem is the continuous thermalization of
the low energy trapped atoms by the neon, which acts as a
temporary buffer gas and causes rapid evaporation of the
sample. An approximate estimate of the H atom energy re-
laxation has been given in the proposal based on artificial
Ne–H scattering cross sections and simplified kinetic theory.

The proposed trapping technique depends essentially on
the energy transfer rate from the thermal bath to the hydro-
gen atoms which is the inverse problem of fast atoms relax-
ing in a thermal bath.9–11 Both of these processes are deter-
mined by the energy exchange between the projectile

particles and the thermostat gas and governed by the same
kinetic theory, the classical linear Boltzmann equation. Most
of the temperature range in the proposed experiment is in the
classical or quasiclassical regime of atomic motion and the
classical kinetic Boltzmann equation should be adequate for
a description of the energy transfer processes.

II. THEORY

A. Elastic cross sections

The energy relaxation of hydrogen atoms in neon gas
occurs due to elastic collisions. The radial part of the
Schrödinger equation for center of mass �CM� scattering en-
ergy � satisfies the Schrödinger equation,

� d2

dR2 + k2 − U�R� −
��� + 1�

R2 �u��R� = 0, �1�

where � is the reduced mass, � is the angular momentum, R
is the internuclear distance, U�R�=2�V�R� /�2 is the mo-
lecular potential, and k2=2�� /�2. The asymptotic solution
of Eq. �1� can be written in terms of the spherical Bessel �j��
and Neumann �n�� functions,

u��R� = kR�j��kR�cos�� − n��kR�sin��� , �2�

where �� is the phase shift. At large R,

u��R� = sin�kR − ��/2 + ��� , �3�

and the differential cross section is given by

d����
d�

=
1

k2 ��
�=0

�

�2� + 1�sin��ei��P��cos	��2, �4�

where P� denotes the �th Legendre polynomial and 	 is the
CM scattering angle. Atomic units are used throughout this
paper.
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B. Kernel of Boltzmann equation

The energy evolution of atoms due to elastic and inelas-
tic collisions with a uniform bath gas has been considered by
Kharchenko et al.10,11 The rate of energy transfer of the pro-
jectile atoms from initial energy E� to final energy E in the
laboratory frame �LF� is given by the kernel of the Boltz-
mann equation B�E �E��. In a uniform bath gas, whose den-
sity is much higher than that of the projectile atoms, colli-
sions and energy exchange between projectile particles is
negligible and the energy distribution f�E , t� of the projectile
can be described by the linear Boltzmann equation,

�

�t
f�E,t� =	 B�E�E��f�E�,t�dE� − f�E,t�	 B�E��E�dE�

− 
�E�f�E,t� + Q�E,t� , �5�

where Q�E , t� is the rate of production of the atoms with
energy E and 
�E , t� is the rate of the sink reactions that
remove them. For binary elastic and inelastic collisions,
B�E �E�� can be derived analytically through the double dif-
ferential cross section d2� /d�d� �Refs. 10 and 11�, and in
the case of elastic scattering, d2� /d�d�=���−���d�d� and
the energy relaxation B�E �E�� can be calculated using the
differential cross section given by Eq. �4�,

B�E�E�� =
nbm3/2

2
2��2

E	 d�

d�
��pb��dpb�d�pd�p�, �6�

where m is the mass of the projectile, �p� and �p are the
solid angles of the initial and final momenta in the LF for
fixed �p��=
2mE� and �p�=
2mE, nb is the density of the
bath gas, and ��pb�� is the Maxwellian–Boltzmann distribu-
tion function of the bath gas. The solution of Eq. �5� may be
written as

f�E,t� = 	
0

t 	
0

�

K�E,t�E�,t��Q�E�,t��dE�dt�, �7�

where the propagator K�E , t �E� , t�� describes the energy evo-
lution of the projectile atoms created at the time t� with
energy E�. The propagator can be obtained from the solution
of Eq. �5� in which the source function Q�E� , t�� is a delta
function ��E−E����t− t�� and there is no sink reaction to
remove the projectile. If the initial function f�E� , t�=0� is
given, Q�E� , t��= f�E� , t�=0���t− t��, f�E , t� at a later time t
may be calculated from the propagator K�E , t �E� , t�� accord-
ing to

f�E,t� =	 K�E,t�E�,0�f�E�,0�dE�. �8�

Equation �8� can be solved numerically12,13 by defining the
function f�E , t� in a given energy range �0,Emax� and using a
discretized kinetic equation for the kernel, defined as a N
�N matrix14 with the energy grid of �E,

Aij = �E�B�i�E�j�E� − �ij�i�E�� , �9�

where �ij is the Kronecker delta and

�E� = 	
0

�

B�E�E��dE�. �10�

In the present study, Emax=0.5 eV and there are 20 energy
grid points within 1kT. The time-dependent distribution
function is generated from the initial distribution function
f�E ,0�,

f�E,t� = etAf�E,0� , �11�

and the time-dependent average translational energy is ob-
tained from

�E�t�� =	 f�E,t�EdE . �12�

For an arbitrary time-dependent bath gas density, no general
analytical expression for the solution of Boltzmann equation
can be obtained. Nevertheless, a solution in closed form may
be written for specific time dependence. Thus, for a time-
dependent density N�t�=g�t�N�t=0�, Eq. �11� can be modi-
fied to a form with effective time �=0

t dt�g�t��,

f�E,t� = e�A0f�E,0� , �13�

where g�t� describes the time variation of the relative bath
gas density and A0 is constructed with the density at t=0. No
sink reaction is involved in the H trapping process and

�E , t�=0.

C. Molecular potential: Ab initio calculations

The interaction potential between Ne and H atoms has
been evaluated using the partially spin restricted coupled
cluster single and double15 method, augmented with triple
excitations noniteratively,16 denoted as ROHF-RCCSD�T�.
All electrons were correlated in the RCCSD�T� calculation.
A series of Dunning’s augmented polarized core/valence
aug-cc-pCVnZ basis sets was used in the ab initio calcula-
tion �n=Q,5 ,6�. Basis set superposition errors were cor-
rected using the standard counterpoise approach of Boys and
Bernardi.17 The final potential energies were extrapolated to
the complete basis set limit by using the mixed exponential/
Gaussian function,18

E�n� = ECBS + Be−�n−1� + Ce−�n − 1�2
. �14�

The MOLPRO2006.1 suite of programs19 was used throughout
these electronic structure calculations.

The computed potential energies at selected internuclear
distances R were then fitted to an analytical expression of the
Degli Espositi–Werner20 form composed of the short-range
term �Vsh� and the asymptotic long-range part �Vas�,

V�R� = Vsh�R� + Vas�R� , �15�

where

Vsh�R� = �
i=0

8

aiR
ie−��R−��. �16�

The long-range part was represented by the damped disper-
sion term,
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Vas�R� = −
1

2
�1 + tanh�� + �R���

n=0

4
C2n+6

R2n+6 . �17�

The nonlinear �, �, �, and � and the linear ai and Cn param-
eters were optimized using the Levenberg–Marquardt nonlin-
ear least square algorithm with no constraints imposed. The
maximum root-mean-square �rms� error is 0.3 cm−1, and the
rms error averaged over the internuclear distance does not
exceed 0.1 cm−1.

III. RESULTS AND DISCUSSION

A. Potential energy curve

The calculated ground state potential energy curve is
shown in Fig. 1 and the corresponding spectroscopic data are
listed in Table I with other available experimental21 and
theoretical22–27 results. The system is weakly bound and
shows a minimum around 6.47 bohrs. The long-range disper-
sion coefficient C6=5.80 derived from the ab initio potential
agrees closely with other theoretical values ranging from
5.688 to 6.2 and obtained by the dipole oscillator strength
distribution,23 MBPT,22 and linear response density func-
tional theory24 methods. One bound state with energy of
−0.035 cm−1 relative to the dissociation limit is found for
the system with rotational angular momentum J=0 corre-
sponding to masses of 19.992 440 175 9 and 1.007 825 amu
for Ne and H, respectively.

B. Elastic differential and total cross sections

The calculated differential cross sections at selected en-
ergies are shown in Fig. 2. The system starts to enter the cold
and ultracold regimes for collision energies below 10−3 eV.
For energies smaller than 10−5 eV s-wave scattering domi-
nates and the scattering length a may be obtained by fitting
the effective range formula,28

k cot �0 = −
1

a
+

1

2
rek

2 + O�k3� . �18�

The derived a and re are 50.3 and 13.6 a.u., respectively.
With increasing scattering energies more partial waves con-
tribute and the differential cross sections demonstrate a de-
tailed angular dependence which determines the energy
transfer process. With further increase in energy, small angle
scattering dominates.

The total and the momentum transfer cross sections as a
function of the projectile energy are shown in Fig. 3. The
momentum transfer cross section is defined as
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FIG. 1. Diatomic potential of H–Ne.

TABLE I. Spectroscopic data for the diatomic molecule HNe.

Re

�bohr�
De

�meV�
C6

�a.u.�

6.466 1.497 5.80 Present
6.54 1.346 25
6.48 1.49 26
6.42 1.46 21 �expt.�
6.52 1.36 27

5.71�0.07 23
6.227 24
5.688 22
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FIG. 3. Total and transport cross sections as a function of CM collision
energy.
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�transport��� =	 d���,	�
d�

�1 − cos 	�d� , �19�

where d��� ,	� /d� is the differential cross section for scat-
tering into the solid angle d� given by Eq. �4�. The classical
diffusion coefficient DAB can be evaluated from the momen-
tum transfer cross sections,

DAB =
3kBT

16��A,B

1

�nA + nB�
, �20�

where the transport integral �A,B is given in terms of binary
collisions between species A and B by

�AB =
2


��
� 1

2kBT
�5/2	

0

�

�2 exp�−
�

kBT
�����d� , �21�

where kB is the Boltzmann constant, ���� is given by Eq.
�19�, and �nA+nB� is the total molecular number density.
DHNe can be reproduced within 1% by the following expres-
sions:

DHNe =
1 � 1016

nH + nNe
� �39.505 − 13.817 � e−0.046 561T

− 33.071 � e−0.552 08T��cm2 s−1�, T � 40 K,

DHNe =
1 � 1016

nH + nNe
� �38.641 − 0.011 209 � T + 1.1869

� 10−7 � T2.5624 + 18.681 � ln�0.008 229 9T�

+ 29.29 � e−0.011 038T��cm2 s−1�, T � 40 K.

C. Energy transfer kinetics

The calculated differential cross sections were used to
construct B�E �E�� at characteristic bath gas temperatures of
10 and 15 K with various densities of the Ne gas. In Fig. 4
we show the kernel at 15 K for a density of 1015 cm−3 for
initial energies of 8.5�10−4 and 0.28 eV. At both energies,

sharp maxima occur at E�E� because collisions are domi-
nated by small angle scattering involving small energy
losses.

In applications the hard-sphere approximation �HSA� is
often adopted because of its analytical simplicity. Although it
lacks angular and energy dependence, an appropriately se-
lected HS cross section provides a realistic account of the
physical processes. We found that a HS cross section of
18 Å2 reproduces the kernel of the Boltzmann equation at an
initial LF energy of 0.28 eV, whereas the kinetics of the
thermalization were recovered by a HS cross section of
58 Å2. The larger HS cross section for the thermalization is
a consequence of the absence of angular dependence and the
suppression of the peaks in the kernel of the Boltzmann
equation obtained with the HSA, indicated in Fig. 4. At the
lower energy of 8.5�10−4 eV, the difference between the
HSA kernel and the purely quantum mechanic kernel is less
because of the slower variation with scattering angle.

In the proposed experiment the hydrogen is initially held
in a magnetic trap with a thermal energy of about 1 K. The
hydrogen atoms are heated through collisions with the flow-
ing neon gas at temperatures between 13 and 17 K.8 The
density of the neon gas is much larger than that of the hy-
drogen atoms and decays exponentially with time. The fea-
sibility of this trapping proposal depends on the energy trans-
fer rate from neon gas to hydrogen. To gain a better
understanding of the kinetics, we investigated the energy
transfer process at different bath gas densities and tempera-
tures.

The energy distribution functions of hydrogen atoms
were obtained numerically according to Eq. �11�. In Fig. 5
we present the translational energy distribution functions at
selected times for hydrogen atoms in neon gas with a density
of 1015 cm−3 and a temperature of 15 K. At t=0 the energy
distribution function of hydrogen atoms is a delta function
peaked at 1 K. As time progresses its amplitude at high en-
ergies increases only slowly due to the small cross sections.
Gradually the distribution function assumes a Maxwellian-

0.015 0.020 0.025 0.030 0.035

Energy (eV)

10
7

10
8

10
9

10
10

E
i
= 2.8 × 10

-1

eV

HSA � = 18 Å
2

HSA � = 58 Å
2

0.000 0.001 0.002 0.003

Energy (eV)

10
7

10
8

10
9

10
10

B
o
lt
z
m
a
n
n
k
e
r
n
e
l
(
e
V
-
1

s
-
1

)

E
i
= 8.5 × 10

-4

eV

HSA � = 18 Å
2

HSA � = 58 Å
2

FIG. 4. The exact kernels of the Boltzmann equation at two initial LF
energies of Ei=8.5�10−5 and Ei=2.8�10−1 as a function of the final LF
energy �solid line� and the kernels calculated using HSA with constant cross
sections of 18 Å2 �dashed line� and 58 Å2 �dotted line� in a Ne bath gas
with temperature T=15 K and a density of n=1.0�1016 cm−3.
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FIG. 5. Translational energy distribution functions of hydrogen atoms at
selected relaxation times in a Ne bath gas with temperature T=15 K and a
density of 1015 cm−3. The energy distribution function at t=299 �s is
shown in the embedded picture and is overlapped with the theoretical
Maxwell–Boltzmann distribution.
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like shape at some effective temperature Teff= �2 /3�
��Eeff�t� /kB� and then continuously warms to the bath gas
temperature with preservation of the Maxwellian shape, a
behavior that is consistent with our previous study of the
thermalization of nitrogen atoms in helium and argon gases.9

In Fig. 6, we present the average kinetic energy of the
evolving hydrogen atoms at bath gas temperatures of 10 and
15 K and at a bath gas density of 1016 cm−3. For the time-
independent bath gas density, the dependence of the average
kinetic energy on the density can be obtained by a simple
scaling of the time by the inverse of the density. The total
times to reach the bath gas temperatures are both 0.032 ms,
showing a very weak dependence on T. In the right-hand side
panel in Fig. 6, which shows the mean energy of the en-
semble of hydrogen atoms as a function of time in the 15 K
bath gas, we include the energy relaxation curves obtained
by HSA with cross sections of 18 and 58 Å2. The HS cross
section of 58 Å2 was obtained by fitting the resulting energy
evolution curve to the ab initio curve. A very different relax-
ation behavior is obtained with the HS cross section of
18 Å2, which yields a best fit to the kernels of the Boltz-
mann equation. The relaxation kinetics from a time-
dependent density varying as N�t�=1016e−t/t0 cm−3 with t0

=20 �s is given in the left-hand side panel. Because of the
fast decay of the bath gas density, the relaxation curve flat-
tens and slows down substantially after 10 �s. Two addi-
tional relaxation curves for specific densities of 7.5�1015

and 6.5�1015 cm−3 are presented in the left panel of Fig. 6.
The curves cross the relaxation curve from the time-
dependent density at, respectively, 10 and 20 �s. The over-
all relaxation curve from the time-dependent density can be
constructed by connecting the crossing points of the steady-
state curves at different densities. The gas density can be
obtained from the projectile energy by measuring the Dop-
pler profile9 at a given time during the evolution of the ve-
locity distribution.

The energy transfer rate �=−�dE /dt��1 /nb� for hydro-
gen atoms in a neon-gas bath is independent of density. It is
shown as a function of translational energy in Fig. 7. The
higher the temperature, the faster the energy transfer rate.
Between 10 and 15 K the increase in the energy transfer rate
is about 10%.

The idea in the proposed H trapping experiment is to
trap the fraction of the weak field seeker released from an
initially prepared Ne matrix whose energy lies below the trap
depth.8,29 The depth Etrap for a 1T trap is 0.67 K and for a 3T
trap is 2.01 K. The initial density ratio of H to Ne is �1:103

with a Ne density of 1.22�1015 cm−3. Collision energy
transfer will remove some of the H atoms from the trap. In
our simulation, the initial H distributions were taken as part
of a 15 K Maxwell–Boltzmann distribution with a cutoff
corresponding to the trap depth. The Ne density decays ex-
ponentially with time and can be approximated as29

N�t� = N0e−t/t0, �22�

where t0 is the inverse of the rate of change of the bath gas
density, estimated to be less than 60 �s. Three trial values of
60, 40, and 20 �s are adopted for our simulation for which
we used three initial bath gas densities of 1.22�1015, 0.81
�1015, and 0.41�1015 cm−3. The calculated trapping effi-
ciencies expressed as percentages of the spin-up hydrogen
atoms at times of 60 and 100 �s are listed in Table II. Mul-
tiplication of the percentages by the product of the initial Ne
density, the H to Ne density ratio, and the fraction of the
initially trapped H atoms to total number of atoms yields the
number density of trapped H atoms. The factors of 0.28 and
0.74 correspond to the fractions of initially trapped H atoms
in 1T and 3T traps, respectively. They are given by
0

Etrapf�E�dE, where f�E� is the initial Maxwell distribution
and normalized to unity. After 100 �s, the Ne density for all
three conditions is less than 1014 cm−3, and it continues to
decay with a slower change until 1 ms when the density
becomes 1011 cm−3. The small Ne density in this time period
causes a slow energy transfer between H and Ne atoms and a
slow decrease in the trapping percentage as shown by the
small changes in the trapping percentage from t=60 �s to
t=100 �s. For the fastest decay rate, t0=20 �s, the de-
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FIG. 6. Average kinetic energy evolution of H atoms vs the relaxation time
in milliseconds in a Ne bath gas with a density of 1016 cm−3 and tempera-
tures of T=10 K and T=15 K �solid lines�. The corresponding average
kinetic energy evolution calculated using HSA with two HS cross sections
of 18 Å2 �dotted line� and 58 Å2 �dashed line� in the Ne bath gas with T
=15 K is given in the right panel. The dashed line in the left panel describes
the average kinetic energy relaxation in a bath gas with a time-dependent
density.
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crease is �2%. For the slower density decay rate, the largest
decrease does not exceed 20%, and, in general, it is �15%.
Therefore, the further decrease in trapped H atoms will be
less than 10% even for the slowest density decay rate in our
simulations.

The dependence of the trapping percentage on the initial
density N0 and on the decay rate t0

−1 is not linear. The trapped
percentage increases with the decrease in N0, but the number
density of trapped H atoms decreases from 1.22�1010 to
1.11�1010 cm−3 for a 1T trap with t0=60 �s. On the other
hand, the fastest density decay, t0=20 �s, increases the
number density of trapped H atoms by a factor of �2 for the
same 1T trap. For the intermediate decay rate, t0=40 �s, the
increase is less than 30% for both of the 3T and 1T traps
compared to t0=20 �s. The deeper trap will also help to
retain the H atoms. Compared to the 1T trap, the 3T trap
generally increases the number density of trapped H atoms
by a factor of �4 for the same conditions.

It seems there is no optimal condition such that the
trapped number density is a maximum with respect to the
initial density and decay rate, but the fast density decay and
deeper trap will certainly help to trap the H atoms. Our simu-
lations suggest that a trapped number density on the order of
�109–108 cm−3 could be achieved. No magnetic field is
considered in the Boltzmann equation, but the estimated or-
der of magnitude will not change much.

IV. SUMMARY AND CONCLUSION

Ab initio calculations of the time-dependent thermaliza-
tion of initially cold hydrogen atoms in a buffer gas of neon
atoms were performed. The atomic interaction potential was
constructed at the coupled cluster level of theory with ex-
trapolation to the complete basis limit. Elastic differential
cross sections were evaluated quantum mechanically. The
derived scattering length and effective range are 50.3 and
13.6 a.u., respectively. The diffusion coefficient was evalu-
ated at temperatures between 1 and 1000 K. The kernels of
the Boltzmann equation, describing the rate of energy change
collisions in the LF, were constructed using the elastic dif-
ferential cross sections, and the corresponding time-
dependent solutions of the Boltzmann equation were used to
simulate a proposed experiment for trapping hydrogen at-
oms. A number density of trapped H atoms on the order of
109�108 cm−3 was obtained in our simulation. It supports

the proposed experiment in which a hydrogen density of the
order of 108 cm−3 was estimated, based on approximations
and a simplified kinetic theory.
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