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Quantum theory of molecular collisions in a magnetic field: Efficient
calculations based on the total angular momentum representation

T. V. Tscherbula� and A. Dalgarno
Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA and Institute for
Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics,
Cambridge, Massachusetts 02138, USA

�Received 25 June 2010; accepted 28 September 2010; published online 9 November 2010�

An efficient method is presented for rigorous quantum calculations of atom-molecule and
molecule-molecule collisions in a magnetic field. The method is based on the expansion of the wave
function of the collision complex in basis functions with well-defined total angular momentum in
the body-fixed coordinate frame. We outline the general theory of the method for collisions of
diatomic molecules in the 2� and 3� electronic states with structureless atoms and with unlike 2�
and 3� molecules. The cross sections for elastic scattering and Zeeman relaxation in
low-temperature collisions of CaH�2�+� and NH�3�−� molecules with 3He atoms converge quickly
with respect to the number of total angular momentum states included in the basis set, leading to a
dramatic ��10-fold� enhancement in computational efficiency compared to the previously used
methods �A. Volpi and J. L. Bohn, Phys. Rev. A 65, 052712 �2002�; R. V. Krems and A. Dalgarno,
J. Chem. Phys. 120, 2296 �2004��. Our approach is thus well suited for theoretical studies of
strongly anisotropic molecular collisions in the presence of external electromagnetic fields. © 2010
American Institute of Physics. �doi:10.1063/1.3503500�

I. INTRODUCTION

The advent of state-of-the-art experimental techniques
for the production of cold molecular gases has opened new
avenues of research into the mechanisms of molecular colli-
sions and chemical reactions.1–3 Capable of delivering
high-density samples of cold polar molecules, techniques
such as buffer-gas cooling,4 Stark deceleration,5 and
photoassociation6 provide direct access to a previously unex-
plored low-temperature regime, where the quantum nature of
molecular collisions becomes important and external electro-
magnetic fields may be used to control chemical reactions.7,8

The possibility to fine-tune molecular interactions with ex-
ternal fields has far-reaching implications not only in chemi-
cal physics, but also precision spectroscopy, condensed-
matter physics, and quantum information processing.1

Following the first observation of collisions between
CaH molecules and He atoms in a magnetic trap,4 cold col-
lision experiments have now been carried out with more than
half a dozen molecular species including CaF�2�+�,9

NH�3�−� and ND�3�−�,10 CrH�6�+� and MnH�7�+�,11

OH�2��,12,13 and TiO�3��.14 Vibrationally inelastic colli-
sions and chemical reactions of translationally cold Cs2 and
RbCs molecules assembled by photo- and magnetoassocia-
tion from laser-cooled alkali-metal atoms were studied
experimentally.15–17 Very recently, hyperfine relaxation in
collisions of KRb�1�+� molecules in the ground rovibrational
state with K atoms and the chemical reaction KRb+KRb
→K2+Rb2 were observed at a temperature of 250 nK.18

The need for a theoretical interpretation of these pioneer-
ing experiments stimulated the development of theoretical

tools to elucidate the mechanisms of molecular collisions at
low temperatures in the presence of external electromagnetic
fields. Volpi and Bohn19 and Krems and Dalgarno20 were the
first to develop a rigorous quantum mechanical formalism
for atom-molecule and molecule-molecule collisions in the
presence of external magnetic fields based on a fully un-
coupled representation of the scattering wave function in the
space-fixed �SF� coordinate frame. The fully uncoupled SF
formalism was initially implemented to provide insight into
the mechanisms of spin depolarization of 2� and 3� mol-
ecules induced by collisions with He atoms.21,22 More re-
cently, several authors extended this formalism23 to study
inelastic and reactive atom-molecule collisions in the pres-
ence of electric8,24,25 and microwave26 fields, molecule-
molecule collisions in a magnetic field,27 collisions of mo-
lecular ions,28 and energy levels of van der Waals
complexes.29

A commonly stated disadvantage of the fully uncoupled
SF formalism is that the dimension of the uncoupled basis
grows dramatically as more rotational states and partial
waves are added to it, thereby making scattering calculations
on strongly anisotropic collision systems extremely
challenging.30 A recent coupled-channel calculation of
O2�3�g

−�+O2�3�g
−� collisions in a magnetic field included as

many as 2526 uncoupled SF basis functions to produce con-
verged cross sections at a collision energy of 0.1 K.27 At
higher collision energies more partial waves become in-
volved and the fully uncoupled SF approach becomes com-
putationally impractical. The same problem occurs in quan-
tum reactive scattering calculations in the presence of
external electromagnetic fields.8

In 1960, Arthurs and Dalgarno31 pointed out that becausea�Electronic mail: tshcherb@cfa.harvard.edu.
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the total angular momentum J of the collision complex is
conserved in the absence of external fields, the scattering
problem can be factorized into smaller problems, which can
be solved independently for each J. This factorization dra-
matically reduces the number of scattering channels, thereby
facilitating quantum scattering calculations on molecular col-
lisions to a great extent. External fields, however, break the
isotropy of free space and induce couplings between differ-
ent J. It is therefore not obvious whether the total angular
momentum representation can be used to reduce the dimen-
sionality of molecular collision problems in the presence of
external fields.

In this work, we develop the theory of atom-molecule
and molecule-molecule collisions in a magnetic field using
the total angular momentum representation of Arthurs and
Dalgarno.31 We apply our theory to calculate the cross sec-
tions for CaH�2��+He and NH�3��+He collisions, obtain-
ing excellent agreement with the previous theoretical
results21,22 over a wide range of collision energies and mag-
netic fields. We find that the cross sections calculated at low
collision energies converge quickly with increasing the num-
ber of total angular momentum states in the basis, leading to
a substantial reduction in the number of scattering channels
and more than a tenfold increase in computational efficiency.

The remainder of the paper is structured as follows. Sec-
tion II A outlines the theory for diatomic molecules in the
electronic states of 2� and 3� symmetry colliding with struc-
tureless particles. In Sec. II B, the theory is generalized to
describe collisions of 2� and 3� molecules. Section III pre-
sents the numerical results demonstrating the feasibility and
efficiency of our approach compared to those used earlier by
other authors.19,20 A summary of the results and an outline of
future research directions follow in Sec. IV.

II. THEORY

A. Atom-molecule collisions

In this section, we consider nonreactive collisions of di-
atomic molecules in the electronic states of 2� and 3� sym-
metry with structureless atoms �such as He or the alkaline-
earth atoms� in a magnetic field. The Hamiltonian for the
atom-molecule system may be written as �in units of ��

Ĥ = −
1

2�R

�2

�R2R +
�̂2

2�R2 + V̂�R,r� + Ĥas, �1�

where R is the atom-molecule separation vector, � is the

reduced mass of the collision complex, �̂ is the orbital angu-

lar momentum for the collision, and V̂�R ,r� is the atom-
molecule interaction potential. The asymptotic Hamiltonian

Ĥas describes the rotational structure of a 2� molecule in its
electronic and vibrational ground state in the presence of a
uniform magnetic field B,20,32

Ĥas = BeN̂
2 + �SRN̂ · Ŝ + 2�0BŜZ, �2�

where Be is the rotational constant, N̂ is the rotational angu-

lar momentum, Ŝ is the electron spin, ŜZ is the projection of

Ŝ on the magnetic field axis �which is the same as the quan-

tization axis Z of the SF frame�, �0 is the Bohr magneton,
and �SR is a phenomenological spin-rotation constant.32 The
rigid-rotor approximation used to derive Eq. �2� is valid if
the vibrational frequency of the molecule is large compared
to collision energy, which is true for low-temperature colli-
sions considered in this work.

The asymptotic Hamiltonian for a 3� molecule may be
obtained by adding to Eq. �2� a term describing the spin-spin
interaction32

2

3
	SS�24


5
�1/2

�
q=−2

2

�− �qY2,−q�r̂��Ŝ � Ŝ�q
�2�, �3�

where 	SS is the spin-spin constant and �Ŝ � Ŝ�q
�2� is a spheri-

cal tensor product of Ŝ with itself.
We now introduce a body-fixed �BF� coordinate frame.

The z-axis of the BF frame is chosen to coincide with the
vector R and the y-axis is chosen to be perpendicular to the

collision plane. The orbital angular momentum �̂ can be for-
mally expressed via the total angular momentum of the col-

lision complex as �̂= Ĵ− N̂− Ŝ and the Hamiltonian �1� can be
rewritten30,33

Ĥ = −
1

2�R

�2

�R2R +
1

2�R2 �Ĵ − N̂ − Ŝ�2 + V̂�R,�� + Ĥas,

�4�

where R= 	R	, r= 	r	, and � is the angle between R and r. The
BF Hamiltonian �4� is identical to its SF analog �1� except
for the centrifugal term, which is now expressed in terms of

the angular momentum operators Ĵ, N̂, and Ŝ.
The wave function of the collision complex can be ex-

panded in a direct product basis30,33

� =
1

R
�

,J,�
FJ�

M �R�	
	JM�
 , �5�

where

	
 = 	NKN
	S�
 �6�

are the BF basis functions, �, KN, and � are the projections

of Ĵ, N̂, and Ŝ on the BF quantization axis z ��=KN+��,
and M is the projection of Ĵ on the SF quantization axis Z.
We note that M is conserved for collisions in a magnetic
field. The Wigner D-functions 	JM�
=��2J+1� /8
2

�DM�
J� �̄ , �̄ , �̄� depend on the Euler angles which specify

the position of BF axes x, y, and z in the SF frame. The
functions 	NKN
=�2
YNKN

�� ,0� and 	S�
 describe the rota-
tional and spin degrees of freedom of the diatomic molecule
in the BF frame. We note that the basis functions 	
	JM�

with positive and negative � can be combined to form the
eigenfunctions of the parity operator. Because inversion par-
ity is conserved in the presence of a magnetic field, the scat-
tering problem can be factorized into different parity blocks,
leading to a reduction in the number of basis functions. We
do not consider the factorization procedure in this work.

The radial expansion coefficients FJ�
M �R� satisfy a sys-

tem of coupled-channel �CC� equations
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� d2

dR2 + 2�EFJ�
M �R�

= 2� �
�,J�,��

�J�	V̂�R,�� +
1

2�R2 �Ĵ − N̂ − Ŝ�2

+ Ĥas	�J���
F�J���
M �R� , �7�

where E is the total energy. The CC equations are param-
etrized by the matrix elements of the interaction potential,
angular momentum coupling, and the asymptotic Hamil-
tonian, all of which can be evaluated in closed form as de-
scribed below.

The atom-molecule interaction potential V�R ,r� is a
function of the atom-molecule separation R and the Jacobi
angle �, and can be expanded in Legendre polynomials

V�R,�� = �
	

V	�R�P	�cos �� . �8�

The Legendre polynomials depend on the same angle � as
the BF rotational functions 	NKN
, so the angular integrals
can be readily evaluated in terms of the radial expansion
coefficients V	�R� and 3-j symbols �¯

¯

� to give30,33

�JM�	�NKN	�S�	V�R,��	J�M���
	N�KN� 
	S��


= �JJ��MM����� � ��2N + 1��2N� + 1��1/2

��− �KN�
	

V	�R�� N 	 N�

− KN 0 KN�
��N 	 N�

0 0 0
� .

�9�

Because the interaction potential does not depend on the Eu-
ler angles and molecular spin variables, the matrix elements
�9� are diagonal in J, M, �, and KN and independent of J, M,
and �.

The rotational energy and the spin-rotation interaction
are also independent of the Euler angles, so the matrix ele-
ments of the asymptotic Hamiltonian �2� can be simplified as
follows:

�	�JM�	Ĥas	�
	J�M���


= �JJ��MM������	BeN̂
2 + �SRN̂ · Ŝ	�


+ �	�JM�	2�0BŜZ	�
	J�M���
 . �10�

The first matrix element on the right-hand side can be readily
evaluated by expressing the spin-rotation interaction via the

shift operators34 N̂� and Ŝ�,

�NKN	�S�	BeN̂
2 + �SRN̂ · Ŝ	N�KN� 
	S��


= �NN���BeN�N + 1� + �SRKN���KNKN�
����

+
�R

2
�N�N + 1� − KN� �KN� � 1��1/2

��S�S + 1� − ����� � 1��1/2�KN,KN��1��,���1 .

�11�

The spin-rotation interaction couples the states with different
KN and �, but conserves the sum �=KN+�.

In order to evaluate the matrix elements of the molecule-

field interaction, we transform the operator ŜZ in Eq. �2� to
the BF frame

ŜZ = �
q

D0,q
1� �̄,�̄,�̄�Ŝq

�1�, �12�

where the spherical tensor operators Ŝq
�1� are referred to the

BF axes. Applying the Wigner–Eckart theorem to the matrix

element �S�	Ŝq
�1�	S��
 and evaluating the angular integral

over three D-functions,34 we find

�JM�	�NKN	�S�	2�0BŜZ	J�M���
	N�KN� 
	S��


= 2�0B�NN��KNKN�
��2J + 1��2J� + 1��1/2

���2S + 1�S�S + 1��1/2

��
q

�− �M�−��−q+S−�� J 1 J�

M 0 − M�
�

�� J 1 J�

� − q − ��
�� S 1 S

− � q ��
� . �13�

By summing Eqs. �11� and �13�, we obtain the matrix ele-
ments of the asymptotic Hamiltonian in the BF basis. A few
important properties of the matrix elements are worth noting:
�i� the asymptotic Hamiltonian for a 2� molecule does not
contain couplings between different N, �ii� the spin-spin in-
teraction in 3� molecules �Eq. �3�� induces couplings be-
tween the ground �N=0� and the second excited �N=2� ro-
tational states, �iii� an external magnetic field induces
couplings between states of different J and �, and �iv� basis
functions with the same J and � but different � are coupled
by the spin-rotation �for N�0� and spin-spin interactions.

To evaluate the matrix elements of the orbital angular
momentum in Eq. �4�, we make use of the identity

�Ĵ − N̂ − Ŝ�2 = Ĵ2 + N̂2 + Ŝ2 − 2ĴzN̂z − Ĵ+N̂− − Ĵ−N̂+ − 2ĴzŜz

− Ĵ+Ŝ− − Ĵ−Ŝ+ + 2N̂zŜz + N̂+Ŝ− + N̂−Ŝ+,

�14�

where we have defined the shift operators Ĵ�= Ĵx� iĴy, N̂�

= N̂x� iN̂y, and Ŝ�= Ŝx� iŜy. The BF components of Ĵ
satisfy anomalous commutation relations, which we take into
account by adopting the following convention34 for

the matrix elements �JM�	Ĵ�	JM��
= �J�J+1�
−������1��1/2��,���1. The matrix elements on the right-
hand side can be evaluated using the properties of shift
operators34 to yield
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�JM�	�NKN	�S�	�Ĵ − N̂ − Ŝ�2	J�M���
	N�KN� 
	S��


= �JJ��MM��NN� � �J�J + 1� + N�N + 1� + S�S + 1� − 2�KN − 2�� + 2KN�������KNKN�
����

− �J�J + 1� − ����� � 1��1/2�N�N + 1� − KN� �KN� � 1��1/2��,���1�KN,KN��1����

− �J�J + 1� − ����� � 1��1/2�S�S + 1� − ����� � 1��1/2��,���1�KN,KN�
��,���1�

+ �N�N + 1� − KN� �KN� � 1��1/2�S�S + 1� − ����� � 1��1/2�����KN,KN��1��,���1� . �15�

The BF basis functions with different �, KN, and � are
coupled by the off-diagonal Coriolis terms.

At large R, where the atom-molecule interaction poten-
tial is negligible compared with the collision energy, scatter-
ing boundary conditions may be applied to the radial expan-
sion coefficients FJ�

M �R� in Eq. �5� to yield the S-matrix
elements, which contain all the information about the dy-
namics of collision-induced transitions between different
Zeeman states. To facilitate the application of the boundary
conditions, it is convenient to transform the wave function to
the SF basis

	��
 = 	n�JM�
 . �16�

The SF basis functions are the eigenfunctions of �̂2 with
eigenvalues given by ���+1�. In Eq. �16�, n� stands for all
other quantum numbers which depend on a particular angu-
lar momentum coupling scheme used. We emphasize that the
SF basis defined by Eq. �16� is not the same as the fully
uncoupled SF basis used by Volpi and Bohn19 and Krems
and Dalgarno,20 but can be obtained from the latter by cou-

pling the angular momenta N̂, Ŝ, and �̂ to produce the result-

ant Ĵ. The orthogonal transformation between the BF and SF
representations may be written35

	��
 = �
,�

WJ�,��	J�
 , �17�

where the transformation coefficients WJ�,�� form the ma-
trix W, which satisfies WT�2W=�, where �2 is the matrix

representation of �̂2 in the BF basis �15�. The matrix W can
be thought of as a collection of eigenvectors of �2 arranged
in columns, each corresponding to the diagonal matrix ele-
ment of � given by ���+1�. We note that since �2 �and
hence W� are diagonal in J, M, and N, these quantum num-
bers are not changed by the frame transformation �17�.

As follows from Eq. �13�, the asymptotic Hamiltonian
�10� has off-diagonal matrix elements in the BF basis �6�,
which arise due to the spin-rotation interaction and external
field couplings. In order to apply the asymptotic boundary
conditions, we need to transform the wave function �5� to a
representation in which the asymptotic Hamiltonian is
diagonal20

	��
 = �
�,��

C���,��	���
 , �18�

where � labels the eigenvalues of Has, and the transformation
coefficients C���,�� correspond to the columns of the matrix
C, which satisfies CTHasC, where Has is the matrix of the
asymptotic Hamiltonian in the SF basis �17�. Because the
asymptotic Hamiltonian �2� does not contain terms which
couple basis functions with different �, we have C���,��

=����C��. The transformation �18� is similar to that de-
scribed previously by Krems and Dalgarno.20 By combining
Eqs. �17� and �18�, we can express the asymptotic SF basis
functions directly via the BF basis functions

	��
 = �
�,��

�
,J,�

WJ�,���C���,��	J�
 . �19�

After transforming the wave function to the asymptotic SF
basis �18� and applying the boundary conditions

F����
M �R� → �������� exp�− i�k�R − �
/2��

− � k�

k��
�1/2

S��;����
M exp�i�k��R − ��
/2�� ,

�20�

we obtain the S-matrix elements or transition amplitudes be-
tween the Zeeman states � and ��. The integral cross sec-
tions can be evaluated from the S-matrix elements as20

��→�� =



k�
2 �

M
�
�,��

	�������� − S��;����
M 	2, �21�

where k�
2 =2��E−���=2�EC is the wave vector for the chan-

nel � and EC is the collision energy. As a result of applying
the asymptotic transformations described above, the channel
� has a well-defined asymptotic energy ��.

The CC equations �7� were solved numerically on a ra-
dial grid extending from 2 to 100a0 with a grid step of 0.04a0

using the improved log-derivative method.36 The BF basis
set included six rotational states of CaH �Nmax=5�, five rota-
tional states of NH �Nmax=4�, and total angular momentum
states up to Jmax=7 /2 �for CaH+He� and Jmax=4 �for NH
+He�. We used the same molecular constants and interaction
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potentials for CaH+He and NH+He as the previous theoret-
ical studies.10,22,24 The resulting cross sections were con-
verged to better than 10% for all magnetic fields and colli-
sion energies studied in this work. The accuracy of the
calculated cross sections for collision energies below
0.01 cm−1 is limited by uncertainties in the ab initio interac-
tion potentials.21,22

B. Molecule-molecule collisions

The Hamiltonian for a nonreactive collision of two 2�
molecules A and B may be written20,27,37,38

Ĥ = −
1

2�R

�2

�R2R +
�̂2

2�R2 + V̂�R,rA,rB� + Ĥas, �22�

where R is the molecule-molecule separation vector, r̂A and
r̂B describe the orientation of molecules A and B in the SF

frame, � is the reduced mass of the collision complex, �̂ is
the orbital angular momentum for the collision, and

V̂�R , r̂A , r̂B� is the interaction potential for two molecules fro-
zen in their respective equilibrium geometries �rA= r̂A and
rB= r̂B�. The asymptotic Hamiltonian

Ĥas = ĤA + ĤB �23�

describes noninteracting molecules in the presence of an ex-
ternal magnetic field and the Hamiltonians of individual mol-
ecules A and B are given by Eq. �2�.

The orientation of vectors r̂A and r̂B in the BF frame
�with z-axis along R� is specified by the angles �A ,�A and
�B ,�B. The BF Hamiltonian takes the form

Ĥ = −
1

2�R

�2

�R2R +
1

2�R2 �Ĵ − N̂A − ŜA − N̂B − ŜB�2

+ V̂�R,�A,�B,�� + Ĥas. �24�

Following the same strategy as described in Sec. II A,
we expand the wave function of the molecule-molecule col-
lision complex in the BF basis

� =
1

R
�

A,B

�
J,�

FABJ�
M �R�	A
	B
	JM�
 , �25�

where the internal basis functions

	A
	B
 = 	NAKNA

	SA�A
	NBKNB


	SB�B
 �26�

describe the rotational and spin degrees of freedom of two
unlike molecules. The notation 	A
	B
 implies that the ba-
sis function written first refers to molecule A and the basis
function written next refers to molecule B. For collisions of
identical molecules, the basis set �26� should be modified to
account for the effects of permutation symmetry.27 This can
be accomplished by applying the symmetrization operator

1+ P̂AB to the right-hand side of Eq. �25�, where P̂AB is the
permutation operator defined by rA→rB, rB→rA,
R→−R.20,39

Taking into account the orthogonality of basis functions
	A
 and 	B
, the matrix elements of the asymptotic Hamil-
tonian �23� can be separated in two contributions

�A	�B	�JM�	Ĥas	A�
	B�
	J�M���


= �BB�
�A	�JM�	ĤA	A�
	J�M���


+ �AA�
�B	�JM�	ĤB	B�
	J�M���
 . �27�

The matrix elements of individual molecule Hamiltonians on
the right-hand side can be evaluated following the proce-
dures described in Sec. II A.

The spin-dependent interaction potential between the
molecules can be expanded as

V̂�R,�A,�B,�� = �
S,�

VS�R,�A,�B,��	S�
�S�	 , �28�

where 	S�
 are the spin functions, Ŝ= ŜA+ ŜB is the total spin
of the collision complex, and �=�A+�B is its projection on
the z-axis. The individual PESs VS�R ,�A ,�B ,�� can be ob-
tained as functions of BF angles �A and �B and �=�A−�B

from ab initio calculations.
The BF scattering basis �26� is composed of direct prod-

ucts of spin functions for molecules A and B, so it is conve-
nient to re-express the spin-dependent interaction potential in
terms of these functions. Using the identity

	S�
 = �
�A,�B

�− �SA−SB+��2S + 1�1/2�SA SB S

�A �B − �
�

�	SA�A
	SB�B
 , �29�

we obtain an expansion equivalent to Eq. �28�,

V̂�R,�A,�B,�� = �
S,�

VS�R,�A,�B,��

��− �2�SA−SB+�� �
�A,�B

�
�A��B�

�2S + 1�

��SA SB S

�A �B − �
��SA SB S

�A� �B� − �
�

�	SA�A
	SB�B
�SA�A� 	�SB�B� 	 . �30�

The matrix elements of the interaction potential can now be
evaluated in compact form

�A	�B	JM�	V̂�R,�A,�B,��	A�
	B�
	J�M���


= �JJ��MM������
S,�

�− �2�SA−SB+���2S + 1�

��SA SB S

�A �B − �
��SA SB S

�A� �B� − �
�

��NAKNA
	�NBKNB

	VS�R,�A,�B,��	NA�KNA
� 
	NB�KNB

� 
 .

�31�

In order to evaluate the matrix element on the right-hand
side, we expand the interaction potential in BF angular
functions27,37,38,40
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VS�R,�A,�B,�� = �4
�3/2 �
	A,	B,	

��2	 + 1

4

��1/2

V	A	B	
S �R��

m
�	A 	B 	

m − m 0
�Y	Am��A,�A�Y	B,−m��B,�B� , �32�

where Y	�m��� ,��� are the spherical harmonics. The angular functions depend on the same angles as the BF basis functions
�26�, so the matrix element in Eq. �31� can be evaluated analytically34 to yield

�NAKNA
	�NBKNB

	VS�R,�A,�B,��	NA�KNA
� 
	NB�KNB

� 


= � �2NA + 1��2NA� + 1��2NB + 1��2NB� + 1� � 1/2 �
	A,	B,	

V	A	B	
S �R��

m
�	A 	B 	

m − m 0
�

���2	A + 1��2	B + 1��2	 + 1��1/2�− �KNA
+KNB�NA 	A NA�

0 0 0
�� NA 	A NA�

− KNA
m KNA

� ��NB 	B NB�

0 0 0
�� NB 	B NB�

− KNB
− m KNB

� � .

�33�

This expression in combination with Eq. �31� defines the
matrix elements of the interaction potential for two distin-
guishable molecules. As in the atom-molecule case, the ma-
trix elements are diagonal in J, M, and � and independent of
J and M. We note that Eqs. �31� and �33� are considerably
simpler than the corresponding expressions arising in the SF
formulation of the collision problem.20,27

To complete the derivation of CC equations, we need to
evaluate the matrix elements of the centrifugal kinetic energy
in Eq. �22�. This can be accomplished by expanding the or-

bital angular momentum �̂2 in terms of the ladder operators
as described in Sec. II A. The final expression is only slightly
more complicated than Eq. �15� and is presented in the Ap-
pendix.

The application of scattering boundary conditions for
molecule-molecule collisions involves the same sequence of
asymptotic transformations as described in Sec. II A for
atom-molecule collisions. The first transformation uses the
eigenvectors of �2, whose matrix elements are presented in
the Appendix. The second transformation requires the matrix
C, which can be obtained by diagonalizing the matrix of the
asymptotic Hamiltonian �23� in the SF basis.

Although in this work we focus on collisions of unlike
molecules, the matrix elements for indistinguishable mol-
ecules can be obtained in the same way as described above
using the definition of the symmetrized basis.39

III. RESULTS

In this section, we apply the methodology developed in
Sec. II to evaluate the cross sections for elastic scattering and
Zeeman relaxation in CaH+He and NH+He collisions in the
presence of an external magnetic field. Low-temperature col-
lisions of CaH�2�� with 3He have been studied both
experimentally4 and theoretically using the fully uncoupled
SF representation.21,25 Similarly, cold collisions of NH mol-
ecules with He atoms were the subject of several experimen-
tal and theoretical studies.10,22 We use these benchmark cal-
culations below to verify our numerical results and gauge the
efficiency of our theoretical approach.

A. CaH„

2�+
…+He

1. Asymptotic energy levels

An external magnetic field splits the ground rotational
state of a 2� molecule like CaH into a doublet of Zeeman
levels with MS= �1 /2, where MS is the projection of the
electron spin on the Z-axis. In the following, we will con-
sider collisions of He atoms with CaH molecules initially in
the low-field-seeking Zeeman sublevel MS=1 /2 of the
ground rotational state �collisions of rotationally excited CaD
molecules with He atoms in external fields were considered
elsewhere�.25 Figure 1 shows the lowest eigenvalues of the
asymptotic Hamiltonian �2� as functions of the applied mag-
netic field for M =1 /2. The eigenvalues corresponding to the
upper and lower Zeeman levels of CaH have energies ��0B.
A third eigenvalue �shown in Fig. 1 by the red line� does not
correspond to a physical Zeeman state.

The reason for the appearance of the unphysical eigen-
values is as follows. In the absence of external fields,
the Hamiltonian matrix expressed in the basis �6� has a
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FIG. 1. Magnetic field dependence of the eigenvalues of the asymptotic
Hamiltonian �2� is the BF basis with Nmax=3 and Jmax=7 /2 �solid lines�.
Also shown are the Zeeman shifts of CaH in its N=0 rotational ground state
�dashed lines�. The unphysical state is shown by the red �light gray� line.
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block-diagonal structure illustrated schematically in the left
panel of Fig. 2. An external magnetic field induces couplings
between the adjacent blocks with J−J�= �1. For a given M,
the number of BF projections � increases with J and so does
the dimension of each J-block. When the Hamiltonian matrix
is truncated at J=Jmax, the couplings between the Jmaxth and
�Jmax+1�th blocks drop out, altering the eigenvalues and
eigenvectors of the asymptotic Hamiltonian and leading to
the appearance of unphysical states.

Table I lists the first few eigenvalues and eigenvectors of
the asymptotic Hamiltonian for CaH calculated in the BF
basis with Nmax=3 and Jmax=7 /2 for M =1 /2. The physical
states have the same energies as the Zeeman levels of CaH
and their eigenvectors contain contributions from many val-
ues of J. In contrast, the eigenvector of the unphysical state
shown in Fig. 1 is dominated by the largest value of J in-
cluded in the basis set �J=7 /2�.

To further characterize the unphysical states, we con-
sider the matrix of the asymptotic Hamiltonian in a truncated
basis including only the ground rotational state of CaH�2�+�
molecule �N=0� augmented with two spin states ��
= �1 /2� and two J-blocks with J=1 /2 and J=3 /2. Using
Eqs. �11� and �13�, we obtain a 4�4 matrix representation of
the asymptotic Hamiltonian for M =1 /2,

�
� 2� − �2� − �2�

2� � �2� �2�

− �2� �2�
1

5
�

4

5
�

− �2� �2�
4

5
�

1

5
�
� , �34�

where �=�0B /3 and the BF basis functions 	J�
 labeling the
columns of the matrix are arranged as follows �from left to
right�: 	1 /2,−1 /2
, 	1 /2,1 /2
, 	3 /2,−1 /2
, and 	3 /2,1 /2
.
For M =1 /2, N=KN=0, and �=�, so we can use the nota-
tion 	J�
 as a shorthand for 	JM�
	NKN
	S�
, omitting the
basis functions 	NKN
 and 	S�
 for brevity. The matrix �34�
can be diagonalized analytically to yield

	1 = − 3� = − �0B ,

	2 = −
3

5
� = −

1

5
�0B ,

	3 = 	4 = 3� = �0B . �35�

The eigenvalues 	1, 	3, and 	4 correspond to the MS

= �1 /2 Zeeman states of CaH�N=0� with magnetic mo-
ments �1 �0 �see Fig. 1�. The eigenvalue 	2 has a magnetic
moment of −1 /5 �0 and the corresponding eigenvector is
given by

	2
 =
1
�2

	J = 3/2,� = − 1/2
 −
1
�2

	J = 3/2,� = 1/2
 . �36�

Again, we see that the unphysical state is dominated by a
single value of J, which is the larger of the two included in
the basis set. This observation, together with the results listed
in Table I, suggests that transitions to and from the unphysi-
cal states are strongly suppressed at low temperatures be-
cause of the long-range centrifugal barriers associated with
the diagonal matrix elements of the Hamiltonian �15� be-
tween the basis functions with J�0.

FIG. 2. Schematic representation of the matrix of the asymptotic Hamil-
tonian. Blue squares denote diagonal matrix elements, green squares denote
couplings induced by the anisotropy of the interaction potential, and red
squares �left panel� and stars �right panel� denote couplings induced by an
external magnetic field.

TABLE I. The lowest eigenvalues �in units of 10−2 cm−1� and eigenvectors of the asymptotic Hamiltonian �2�
calculated by numerical diagonalization of the matrix �10� in the BF basis with Nmax=3 and Jmax=7 /2. The
eigenvalues are arranged in the order of increasing energy. The eigenvectors are presented in terms of their
expansion coefficients over the 	J�
 basis with N=0 �see text for details�. The unphysical eigenvalue shown in
Fig. 1 by the red �light gray� line is highlighted in bold. The magnetic field is 0.1 T.

Energy 	 1
2 ,− 1

2 
 	 1
2 , 1

2 
 	 3
2 ,− 1

2 
 	 3
2 , 1

2 
 	 5
2 ,− 1

2 
 	 5
2 , 1

2 
 	 7
2 ,− 1

2 
 	 7
2 , 1

2 


�4.668 623 0.577 �0.577 0.414 0.403 0.005 0.005 0.0 0.0
�4.668 595 0.006 �0.006 �0.544 0.552 �0.452 �0.443 �0.004 �0.004
�4.668 572 0.0 0.0 0.005 �0.005 �0.531 0.538 �0.463 �0.463
�0.518 655 0.0 0.0 0.0 0.0 0.0 0.0 �0.707 0.707

4.668 656 0.732 0.679 �0.038 �0.037 0.0 0.0 0.0 0.0
4.668 674 �0.361 0.454 0.582 0.570 �0.008 �0.008 0.0 0.0
4.668 697 �0.006 0.006 �0.439 0.455 0.552 0.543 �0.005 �0.005
4.668 718 �0.0 0.0 �0.004 0.004 �0.458 0.468 0.535 0.535
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2. Cross sections for Zeeman relaxation

Figure 3 shows the cross sections for Zeeman relaxation
in CaH+ 3He collisions as functions of collision energy cal-
culated with different numbers of J-states in the basis set �6�.
The cross sections calculated for Jmax=7 /2 are in perfect
agreement with the fully uncoupled SF results21 over the
whole range of collision energies from 10−4 to 1 cm−1. The
calculations employing the total angular momentum repre-
sentation accurately reproduce both the broad maximum at
EC�2�10−2 cm−1 and the �=3 shape resonance near EC

=0.5 K21. The cross sections for Jmax=5 /2 agree well with
the benchmark values at low collision energies, but do not
reproduce the shape resonance near 0.5 K. This might be due
to an improper description of the �=3 centrifugal barrier in
the entrance collision channel caused by the truncation of the
basis set. The cross sections obtained in the calculation with
Jmax=3 /2 approach the benchmark values only at very low
collision energies.

Table II compares the dimensions of scattering basis sets
required to produce completely converged cross sections in
the fully uncoupled SF and BF representations. The dimen-
sion of the uncoupled SF basis varies between 89 �for M
=13 /2� and 315 �for M =1 /2�. The number of scattering
channels required in the BF formalism is notably smaller,
ranging from 48 �for M =7 /2� to 140 �for M =1 /2�. Because
the computational cost of coupled-channel calculations

scales as N3 with the number of channels N, the BF approach
is more than an order of magnitude more computationally
efficient than its SF analog.19,20 The gain in computational
efficiency is even larger at lower collision energies, where
the BF method gives qualitative results with only three
J-states in the basis set �Jmax=5 /2�. As shown in Table II, the
ratio of the efficiency of the BF and SF methods increases
rapidly with M.

Figure 4 shows the cross sections for Zeeman relaxation
in CaH+He collisions calculated as functions of collision
energy for different magnetic fields. The cross sections ob-
tained using the present approach with Jmax=7 /2 are in ex-
cellent agreement with fully uncoupled SF calculations for
magnetic fields 0.1, 1, and 5 T and collision energies be-
tween 10−4 and 1 cm−1. The variation of the Zeeman relax-
ation cross sections with the applied magnetic field is plotted
in Fig. 5 at a fixed collision energy of 10−3 cm−1. Our results
are again in good agreement with the previous calculations,
accurately reproducing the rapid increase of the cross section
at low magnetic fields.
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FIG. 3. Cross sections for Zeeman relaxation in CaH+He collisions calcu-
lated as functions of collision energy using the BF representation for a
magnetic field of 0.1 T. The benchmark results obtained using the fully
uncoupled SF representation are shown as symbols.

TABLE II. The number of channels in fully uncoupled SF and BF basis sets
for different M and Jmax. Each basis set includes five rotational states of
CaH�2�+�. The ratio �NSF /NBF�3 quantifies the extent to which the BF cal-
culations are more computationally efficient. The ratio is calculated for
Jmax=7 /2.

	M	 Fully uncoupled SF BF �Jmax=5 /2� BF �Jmax=7 /2� �NSF /NBF�3

1/2 315 92 140 11.4
3/2 297 74 122 14.4
5/2 265 42 90 25.5
7/2 223 48 100.3
9/2 176
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B. NH„

3�−
…+He

Figure 6 shows the magnetic field dependence of the
eigenvalues of the asymptotic Hamiltonian for NH�3�−� for
M =0. As in the case of CaH�2��+He collisions considered
above, we observe unphysical states arising from the trunca-
tion of the BF basis set at finite Jmax. The unphysical states in
3� molecules occur in pairs. The magnetic moments of the
states within each pair are similar in magnitude but opposite
in sign.

Figure 7 shows the cross section for Zeeman relaxation
in collisions of NH molecules initially in the fully spin-
stretched state MS=1 with 3He atoms. The cross sections are
summed over all final Zeeman states of NH and plotted as
functions of collision energy. The triple peak around
0.5 cm−1 arises due to shape resonances in the incoming and
outgoing collision channels.10 The BF calculations with
Jmax=4 are in remarkable agreement with the benchmark re-
sults obtained using the SF uncoupled representation.10,22 At
EC�0.1 cm−1, the agreement deteriorates with decreasing
number of J states in the basis set; in particular, the details of

the resonant structure are not properly reproduced in BF cal-
culations with Jmax�3. Nevertheless, the agreement at EC

�0.01 cm−1 remains extraordinarily good even for the
smallest BF basis with Jmax=2. Such a basis includes only
105 scattering channels for M =0, as opposed to the fully
uncoupled SF basis, which includes 470 channels. The
Wigner upturn in the dependence of the cross sections on
collision energy that occurs at EC�0.02 cm−1 is also accu-
rately reproduced by the BF calculations.

IV. SUMMARY AND CONCLUSIONS

We have developed an efficient method for rigorous
quantum mechanical calculations of atom-molecule and
molecule-molecule collisions in a magnetic field based on
the expansion of the scattering wave function in basis func-
tions with well-defined total angular momentum in the BF
frame. We first outline the theory of the method for collisions
of diatomic molecules in the 2� and 3� electronic states and
then apply it to evaluate the cross sections for elastic energy
transfer and inelastic Zeeman relaxation in low-temperature
collisions of CaH�2�� and NH�3�� molecules with He atoms.
Our calculated cross sections are in excellent agreement with
the previous theoretical results20,22 over a wide range of col-
lision energies and magnetic fields �Figs. 3–5 and 7�.

The main advantage of our proposed approach lies in its
fast convergence rate with respect to basis set size. As shown
in Figs. 2 and 7, converged results at low collision energies
can be obtained with only a few J-states in the basis set. The
reason for this remarkably high convergence rate is as fol-
lows. In the total angular momentum representation, there
are no couplings due to the interaction potential between the
states of different J, so different J-blocks are only coupled by
an external magnetic field �red squares in the left panel of
Fig. 2�. The long-range centrifugal barriers corresponding to
BF basis states with J�0 suppress collisions at low kinetic
energies, leading the cross sections to converge quickly with
increasing J. By contrast, in the fully uncoupled SF
representation,19,20 basis functions of different � are coupled
by the anisotropy of the interaction potential �green squares
in the right panel of Fig. 2�. The anisotropic couplings lower
the height of the centrifugal barriers associated with ��0
basis states, making it necessary to include a large number of
�-blocks to achieve convergence even at ultralow collision
energies.41

The results presented in Table II demonstrate that quan-
tum scattering calculations based on the total angular mo-
mentum representation in the BF frame are 10–50 times
more computationally efficient than the previous calculations
based on the fully uncoupled SF representation.19,20 Thus,
our approach can be used to elucidate the effects of external
electromagnetic fields on collisions of heavy atoms and mol-
ecules, which are often characterized by strongly anisotropic
interaction potentials. Collisional properties of atom-
molecule and molecule-molecule mixtures are important in
the context of current experimental work on sympathetic and
evaporative cooling of molecules in external field traps.1–3

The Hamiltonian matrix in the total angular momentum
representation has a block-diagonal structure in the absence
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of external fields. As shown in the left panel of Fig. 2, exter-
nal fields induce couplings across different J-blocks, which
leads to the appearance of unphysical eigenstates when the
Hamiltonian matrix is truncated at a finite J=Jmax. We have
shown that the unphysical states are characterized by the
highest value of J included in the basis set �Table I�. As a
result, the unphysical states do not matter for scattering cal-
culations at low collision energies studied in this work �from
10−4 to 1 cm−1�.

The BF formulation of collision problem presented in
this work provides a meaningful starting point for the devel-
opment of approximate methods of molecular collision
theory.30,33,42 In particular, it may be possible to neglect mag-
netic field couplings between certain J-blocks without com-
promising the accuracy of numerical results. Another way to
simplify the scattering problem is to neglect the off-diagonal
Coriolis couplings between different �-states within the
same J-block, thereby invoking the coupled states �CS�
approximation.33,42 While the CS approximation allows for a
substantial reduction of computational cost in coupled-
channel calculations on low-temperature collisions of Rb at-
oms with NH3 molecules,43 and chemical reactions of F at-
oms with HCl molecules,44 it remains to be seen whether this
approximation can provide accurate results for molecular
collisions in the presence of external fields.

As our BF approach does not rely on a particular angular

momentum coupling scheme, it should be generalizable to
collisions and chemical reactions of complex molecules with
many degrees of freedom, which have so far remained unex-
plored due to the enormity of coupled-channel basis sets re-
quired for convergence in the uncoupled SF formalism. In
particular, the effects of hyperfine structure and internal an-
gular momenta �such as the electronic orbital angular mo-
mentum in �-state molecules or rotational motion in poly-
atomic molecules� can be easily incorporated into the BF
formalism. By combining our approach with hyperspherical
coordinate methods,8 it may be possible to create highly ef-
ficient hybrid techniques for elucidating the dynamics of
chemical reactions8,17,18 and three-body recombination45 in
cold molecular gases in the presence of external electromag-
netic fields.
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APPENDIX: MATRIX ELEMENTS OF �̂2 FOR TWO DIATOMIC MOLECULES IN THE BF BASIS

To evaluate the matrix elements of �̂2 in the BF basis, we first use the identity

�Ĵ − N̂A − ŜA − N̂B − ŜB�2 = Ĵ2 + N̂A
2 + ŜA

2 + N̂B
2 + ŜB

2 − 2ĴzN̂Az
− Ĵ+N̂A− − Ĵ−N̂A+ − 2ĴzŜAz

− Ĵ+ŜA− − Ĵ−ŜA+ − 2ĴzN̂Bz
− Ĵ+N̂B−

− Ĵ−N̂B+ − 2ĴzŜBz
− Ĵ+ŜB− − Ĵ−ŜB+ + 2N̂Az

ŜAz
+ N̂A+ŜA− + N̂A−ŜA+ + 2N̂Az

ŜBz
+ N̂A+ŜB− + N̂A−ŜB+

+ 2N̂Bz
ŜAz

+ N̂B−ŜA+ + N̂B+ŜA− + 2N̂Bz
ŜBz

+ N̂B−ŜB+ + N̂B+ŜB− + 2NAz
N̂Bz

+ N̂A+N̂B− + N̂A−N̂B+

+ 2ŜAz
ŜBz

+ ŜA+ŜB− + ŜA−ŜB+.

The matrix elements of all the 35 terms on the right-hand side can be evaluated using the properties of the shift operators. The
final result is as follows:

�JM�	�AB	�Ĵ − N̂A − ŜA − N̂B − ŜB�2	J�M���
	A�B� 


= �JJ��MM��NANA�
�NBNB�

���J�J + 1� + NA�NA + 1� + SA�SA + 1� + NB�NB + 1� + SB�SB + 1� − 2�KNA
− 2��A

− 2�KNB
− 2��B + 2KNA

�A + 2KNA
KNB

+ 2KNA
�B + 2�AKNB

+ 2�A�B + 2KNB
�B������KNA

KNA
� ��A�A�

�KNB
KNB
� ��B�B�

− �J�J + 1� − ����� � 1��1/2�NA�NA + 1� − KNA
� �KNA

� � 1��1/2��,���1�KNA
,KNA

� �1��A�A�
�KNB

KNB
� ��B�B�

− �J�J + 1� − ����� � 1��1/2�SA�SA + 1� − �A���A� � 1��1/2��,���1�KNA
KNA
� ��A,�A��1�KNB

KNB
� ��B�B�

− �J�J + 1� − ����� � 1��1/2�NB�NB + 1� − KNB
� �KNB

� � 1��1/2��,���1�KNA
KNA
� ��A�A�

�KNB
,KNB

� �1��B�B�

− �J�J + 1� − ����� � 1��1/2�SB�SB + 1� − �B���B� � 1��1/2��,���1�KNA
KNA
� ��A�A�

�KNB
KNB
� ��B,�B��1

+ �NA�NA + 1� − KNA
� �KNA

� � 1��1/2�NB�NB + 1� − KNB
� �KNB

� � 1��1/2�����KNA
,KNA

� �1��A�A�
�KNB

,KNB
� �1��B,�B�
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+ �NA�NA + 1� − KNA
� �KNA

� � 1��1/2�SA�SA + 1� − �A���A� � 1��1/2�����KNA
,KNA

� �1��A�A�1� �KNB
,KNB

� ��B,�B�

+ �NA�NA + 1� − KNA
� �KNA

� � 1��1/2�SB�SB + 1� − �B���B� � 1��1/2�����KNA
,KNA

� �1��A�A�
�KNB

KNB
� ��B�B��1

+ �NB�NB + 1� − KNB
� �KNB

� � 1��1/2�SA�SA + 1� − �A���A� � 1��1/2�����KNA
KNA
� ��A,�A��1�KNB

,KNB
� �1��B�B�

+ �NB�NB + 1� − KNB
� �KNB

� � 1��1/2�SB�SB + 1� − �B���B� � 1��1/2�����KNA
KNA
� ��A�A�

�KNB
,KNB

� �1��B�B��1

+ �SA�SA + 1� − �A���A� � 1��1/2�SB�SB + 1� − �B���B� � 1��1/2�����KNA
KNA
� ��A,�A��1�KNB

KNB
� ��B�B��1� .
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