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Abstract 
 

This essay examines one of the cornerstones of Leibniz’s defense of teleology within the 

order of nature.  The first section explores Leibniz’s contributions to the study of 

geometrical optics, and argues that his introduction of the “Most Determined Path 

Principle” or “MDPP” allows him to bring to the fore philosophical issues concerning the 

legitimacy of teleological explanations by addressing two technical objections raised by 

Cartesians to non-mechanistic derivations of the laws of optics.  The second section 

argues that, by drawing on laws such as the MDPP, Leibniz is able to introduce a thin 

notion of teleology that gives him the resources to respond to the most pressing charges 

of his day against teleological explanations within natural philosophy.  Finally, the third 

section argues that contemporary philosophers have been overly hasty in their dismissal 

of Leibniz’s account of natural teleology, and indeed that their own generally thin 

conceptions of teleology have left them with few well-motivated resources for resisting 

his elegant position.   

 
 

Introduction 

At a first pass, a teleological explanation is an explanation that attempts to explain 

a behavior or event by appealing to an outcome or consequence of that behavior or event.  

“Betty is going to law school in order to get rich;” “The bear is swatting at the beehive in 
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order to get honey;” “The heat-seeking missile swerved left in order to hit its target;” and 

“Stones fall in order to reach their natural resting place at the center of the earth” are thus 

all at least candidates for teleological explanations.  The likely or expected outcomes 

appealed to in putatively teleological explanations such as these are often called “goals,” 

“ends,” and, although less commonly today, “final causes.”    

It is well known that the use of teleological explanations in the domain of physics 

underwent a massive reevaluation during the early modern period.  Prior to the scientific 

revolution, explanations in terms of final causes were widely accepted, and even thought 

to be necessary for an adequate account of the natural world.  After the scientific 

revolution, teleological explanations were generally shunned in the practice of physics, 

and eventually became viewed with suspicion even in relation to biological phenomena.  

Understandably curious about this dramatic shift in explanatory mores, scholars of the 

early modern period have devoted a great deal of attention to Cartesian and Spinozistic 

critiques of the use of final causes, and have significantly increased our understanding of 

the grounds, implications, and limitations of those criticisms.1   

It is also well-known that Leibniz was one of the most important early modern 

opponents of the wholesale rejection of teleology and teleological explanations as applied 

to the physical world.  Although committed at least in broad terms to the project of the 

new science, Leibniz insists that final causes may be “useful not only for admiring the 

ingenuity of the great workman, but also for discovering something useful in physics and 

                                                 
1 See, for example, Bennett (1983; 1984, 213-230; 1990), Curley (1990), Della Rocca 

(1996, 252-257), Gabbey (1980), Garrett (1999), Rice (1985), and Simmons (2001).    

 2



medicine” (DM 22/FW 74).2   In spite of the remarkable contrast between Leibniz’s 

position and the growing consensus of his day, however, there has been relatively little 

attention devoted to Leibniz’s defense of teleology.   This neglect is all the more striking 

given that Leibniz is much more interested in wrestling with issues surrounding teleology 

and teleological explanations than are Descartes and Spinoza.  Whereas his two 

distinguished predecessors limit their discussions of final causes to a mere handful of 

passages, Leibniz returns to the topic with an almost obsessive regularity. 

 The present essay examines one of the cornerstones of Leibniz’s defense of 

teleology within the order of nature, namely, his derivation of the two central laws of 
                                                 
2 I use the following abbreviations for Leibniz’s and Descartes’s standard texts (full 

references are provided in the bibliography):  A=German Academy of Sciences (ed.) 

Gottfried Wilhelm Leibniz:  Sämtliche Schriften und Briefe, 1926-; AG=R. Ariew and D. 

Garber (eds. and trans.) G. W. Leibniz:  Philosophical Essays, 1989; AT= C. Adam and 

P. Tannery (eds.) Oeuvres des Descartes, 12 Volumes, 1964-76; CSM=J. Cottingham, R. 

Stoothoff, and D. Murdoch (eds.) The Philosophical Writings of Descartes, Volumes 1 

and 2, 1985; DC= G. W. Leibniz, “Definitiones Cogitationesque Metaphysicae,” 1678; 

DM=G. W. Leibniz, “Discourse on Metaphysics,” 1686; FW= R. Franks and R. 

Woolhouse (eds.) G. W. Leibniz:  Philosophical Texts, 1998; G=C. I. Gerhardt (ed.) Die 

Philosophischen Scriften von Gottfried Wilhelm Leibniz, 1978; L=L. Loemker (ed. and 

trans.), Gottfried Wilhelm Leibniz:  Philosophical Papers and Letters 2nd Edition, 1969; 

LC=Richard Arthur, ed. and trans. G. W. Leibniz, The Labyrinth of the Continuum, 

Writings on the Continuum Problem, 2001; SD= G. W. Leibniz, “Specimen of 

Dynamics,” 1695; TA=G. W. Leibniz, “Tentamen Anagogicum,” 1696; UO=G. W. 

Leibniz, “On the Ultimate Origination of Things,” 1697.   
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geometrical optics from his “Most Determined Path Principle” or “MDPP”.  The first 

section places the MDPP in its historical context, and argues that it allows Leibniz to 

bring to the fore philosophical issues concerning the legitimacy of teleological 

explanations by addressing two technical objections raised by Cartesians to non-

mechanistic derivations of the laws of optics.  The second section argues that, by drawing 

on laws such as the MDPP, Leibniz is able to introduce a thin notion of teleology that 

gives him the resources to respond to the most pressing charges of his day by showing 

how teleology within the order of nature may be stripped of problematic Scholastic 

commitments, fitted to accepted explanatory structures, and successfully applied to a 

wide and promising range of natural phenomena.  Finally, the third section argues that 

contemporary philosophers have been overly hasty in their dismissal of Leibniz’s account 

of natural teleology, and indeed that their own generally thin conceptions of teleology 

have left them with few well-motivated resources for resisting Leibniz’s elegant position. 

 

Leibniz’s Most Determined Path Principle and Its Historical Context 

 

One of the milestones in the history of optics is marked by Descartes’s 

publication in 1637 of the two central laws of geometrical optics.3  The law of reflection 

– known at least since the time of Euclid - states that the angle at which a ray of light 

strikes a reflective surface equals the angle at which it is reflected - or, more succinctly, 

that the angle of incidence is equal to the angle of reflection.  The law of refraction – first 

published by Descartes - states that the ratio between the sine of the angle at which a ray 
                                                 
3 See, especially, the first two discourses of his Optics (AT 81-105/CSM 1:152-164).  For 

an unabridged edition of Descartes’s Optics in English, see (Olscamp 1965, 65-173).  
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of light strikes a refractive surface and the sine of the angle at which it is refracted is a 

constant determined by the mediums involved.    

 In keeping with the spirit of his mechanistic program for natural philosophy, 

Descartes attempts to show how both the laws of reflection and refraction may be derived 

in an essentially uniform manner by considering broadly mechanical models under 

idealized conditions.  Towards this end, he first argues that the phenomena of light may 

be modeled on the behavior of moving bodies, insisting that “the action or tendency to 

move (which, I have said, should be taken for light) must in this respect obey the same 

laws as motion itself” (AT VI 88/CSM 1:155).  He then proposes to derive the law of 

reflection by considering the behavior of tennis balls being hit by rackets and rebounding 

off of hard surfaces, and the law of refraction by considering the behavior of tennis balls 

being hit through thin sheets of cloth (AT VI 93-108).4   

 Descartes’s mechanical derivations of the laws of optics received a decidedly 

mixed response in his own day.  On the one hand, the general approach of his project - to 

explain optical phenomena in broadly mechanical terms – was widely emulated.  Inspired 

largely by Descartes’s work, Newton began his famous experiments with prisms around 

1665,5 and his early theory of colors, published less than ten years later, owed much to 
                                                 
4 A more detailed discussion of Descartes’s mechanical derivations of the laws of optics 

is provided in McDonough (2004, 72-77).      

5 John Conduitt reports that “In August 1665, Sir Isaac who was then not twenty-four 

bought at Sturbridge fair a prism to try some experiments upon Descartes’s book of 

colours and when he came home he made a hole in his shutter and darkened the room and 

put his prism between that and the wall found instead of a circle the light made [a shape] 

with straight sides and circular ends … which convinced him immediately that Descartes 
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the impetus of Descartes’s pioneering project. 6  Likewise, Huygens’s rival wave theory 

of light, presented to the Académie des Sciences in 1678, grew out of his early 

acquaintance with Descartes’s derivations, and took shape against the background of the 

general Cartesian framework that he had long since absorbed in his youth (see Sabra 

1967, 198-230).   

On the other hand, in spite of their undeniable ingenuity, Descartes’s particular 

derivations of the laws of optics met with widespread dissatisfaction.  In a letter to an 

unknown correspondent, Fermat relates that Descartes’s account of the laws of optics 

struck him immediately as “a veritable paralogism” (Fermat 1888-1950, 2: 485).  An only 

slightly moderated sentiment is expressed by Leibniz’s complaint that “the way in which 

Descartes has tried to explain the law of refraction by efficient causes or by the 

composition of directions in imitation of the reflection of balls is extremely forced and 

not intelligible enough” (TA 274/L 480).  Indeed, many of Descartes’s contemporaries 

took what they saw as the implausibility of Descartes’s proofs as evidence that he had, 

while living in Holland, stolen his results from Willebrord Snell, and tailored his 

derivations to match the conclusions he had pirated.7     
                                                                                                                                                 
was wrong and he then found out his own hypothesis of colours …” (quoted in Westfall 

1986, 157).   

6 See, Newton’s letter to Oldenburg reprinted in Newton (1959 1:92-102).     

7 It is clear that Snell had discovered the law of refraction before his death in 1626.  His 

results, however, were not made public until 1632 when his manuscript was found by 

Jacobus Golius, and after Descartes had made arrangements to have his own formulation 

of the law tested empirically.  Isaac Vossius was the first to publicly accuse Descartes in 

1662 of having learned of the law from Snell’s work while he was residing in Holland 
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 Fermat’s own dissatisfaction with Descartes’s proofs eventually led him to pursue 

a radically different approach to the laws of optics.  It was already well known in 

Fermat’s day that for standard situations the law of reflection could be derived from the 

principle that light always takes the shortest reflected path between any two points.8  The 
                                                                                                                                                 
(Vossius 1662, 36).  Huygens, however, had already expressed reservations about the 

priority of Descartes’s discovery (Huygens 1888-1950, 8:9; see also 10:405).  Huygens’s 

reservations were clearly shared by Leibniz who remarks in the Tentamen Anagogicum 

that “ … I have no doubt whatever that this law [of refraction] was first discovered by 

this method [of Snell and Fermat].  It is known that Willebrord Snell, one of the greatest 

geometricians of his time … invented it, having even written a work which was not 

published because of its author’s death.  But since he had taught it to his disciples, all 

appearances point to the conclusion that Descartes, who had come to Holland a little later 

and who was most interested in this problem, learned it there” (TA 274/L 479-80; see 

also DM 22/L 317-18).  For discussion of the originality and priority of Descartes’s 

discovery see especially Sabra (1967, 99-116), who concurs with D. J. Korteweg that 

“neither the question of Descartes’ originality nor that of priority can be settled on the 

evidence available:  he may well have discovered the law of refraction independently of 

Snell (indeed this is more likely than the contrary supposition), and his discovery may 

have antedated that of Snell” (Korteweg 1896, 489-501; Sabra 1967, 102-103).  The law 

of refraction is still referred to today as both “Snell’s Law” and “The Snell-Descartes 

Law.”     

8 Heron of Alexandria (ca. A.D. 75) had used essentially the same principle to derive the 

law of reflection (Herons von Alexandria 1900, IV, 324-9).  For discussion see especially 

Sabra (1967, 71f).       
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principle of the shortest path, however, obviously could not be applied directly to cases of 

refraction, for if a ray of light traveled along the shortest path between two points in 

different mediums, it should never be bent by the refracting medium, but should rather 

always travel along a straight line.  It was Fermat’s insight to realize that although the 

path of a ray of light could not always be the shortest, it might nonetheless always be the 

quickest route between two given points.  Since in standard cases of reflection, the 

shortest reflected route coincides with the quickest reflected route, Fermat faced no 

difficulty in deriving the law of reflection from his new principle.  He was also able to 

easily prove that if light travels faster in one medium than in another, a straight line 

would not necessarily represent the quickest path since a ray of light might travel more 

quickly by covering a greater distance in the less resistant medium and a correspondingly 

shorter distance in the more resistant medium (see, Fermat to La Chambre, 1 January 

1662, Fermat 1891-1912, 2:457-63).9   

Although discovering a general method of directly calculating the shortest path 

for a refracted ray of light turned out to be mathematically very challenging, Fermat was 

eventually able to prove – to his own astonishment – that his principle of least time yields 

essentially the same sine law of refraction as offered by Descartes, which he had 

originally set out to refute (Fermat 1891-1912, 2:460f).  In an at least superficially 

conciliatory letter, Fermat therefore finally granted that Descartes had published the 

correct laws of optics, and reserved for himself the claim only to have revealed “the proof 
                                                 
9 Sabra (1967, 141).  In the limiting case where an unreflected ray of light remains always 

in the same medium, it will travel along a straight line, which of course is both the 

shortest and quickest path (at least under the standard conditions presently being 

considered).   

 8



of this truth, so important, and which must produce consequences so admirable” (Fermat 

1891-1912, 2:462).     

The apparent possibility of deriving the laws of optics from two radically different 

approaches should have immediately raised a host of intriguing methodological and 

philosophical issues.  What sense might be made of Fermat’s obviously non-mechanical 

derivations of the laws of optics?  How might they be reconciled with the broadly 

mechanical approach favored by Cartesians, or, for that matter, with the general 

metaphysical and explanatory framework of the new science?  Investigation into such 

pressing philosophical questions, however, was stalled by two technical issues that still 

separated Fermat and his Cartesian adversaries.    

 The first issue arises most saliently in cases of reflection off of concave surfaces.  

It had long been know that in certain non-standard cases, a ray of light might take the 

longest, rather than the shortest, reflected path between its source and sink.  Recognizing 

the challenge to his own quickest path principle, Fermat proposes introducing “another 

indisputable principle that everything that depends or which is made determinate on a 

curved line is of such a nature that it is supposed to depend on or be made determinate by 

a straight line which touches the curve at the point where they touch” (Fermat 1891-1912, 

2:354-55).  By appealing to tangent planes to reflective surfaces, Fermat is indeed able to 

make his principle yield the correct results even in non-standard cases of reflection.  To 

his Cartesian adversaries, however, such appeals could only appear as ad hoc attempts to 

fix a defective principle.10  They thus continued to view cases of reflection off of concave 

                                                 
10 Notably, Leibniz was himself much more sympathetic to Fermat’s further assumption 

concerning the appeal to tangent planes (TA 273/L 479 and TA 277/L 483).  For 
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surfaces as providing a clear source of counterexamples to Fermat’s quickest path 

principle.   

 Second, in deriving the sine law of refraction, Fermat assumes that light travels 

faster in rarer materials – so, for example, that it travels faster in air than in water.  That 

assumption, however, contradicts the Cartesian view that light travels faster in denser 

materials.  Although seemingly counter-intuitive – real tennis balls, of course, slow down 

in moving from, say, air to water – Cartesians believed that their position could be 

conclusively defended on broadly mechanistic grounds.  Thus Descartes, for example, 

after reminding his readers that light is “nothing but a certain movement or an action 

received in a very subtle matter which fills the pores of other bodies,” insists that “the 

action of this subtle matter can be impeded much more by the parts of the air (which, 

being as it were soft and badly joined, do not offer it much resistance) than by those of 

water, which offer it more resistance; and still more by those of water than by those of 

glass or crystal” (AT VI 103/CSM 1:163).  The point of contention here is not merely 

academic.  For, as Clerselier himself notes in response to Fermat’s semi-conciliatory 

letter, the issue of the speed of light relative to its medium is a crucial one for the 

applicability of Fermat’s principle to cases of refraction (Fermat 1891-1912, 2:470).  If 

light were to travel faster in air than in water, as the Cartesians maintained, then it would 

not generally take the quickest path even in standard cases of refraction.11  

                                                                                                                                                 
discussion of some of the broader implications that this commitment has for Leibniz’s 

philosophy of physics, see Bernstein (1984) and Stein (1977).   

11 The question as to whether light travels faster in water or air was not settled 

experimentally until the mid-nineteenth century when Fizeau (1849) and Foucault (1862) 
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Leibniz’s most significant contributions to the development of optics all arise out 

of his attempts to reconcile the two approaches to optics represented by the work of 

Descartes and Fermat.  In attempting to improve upon Descartes’s broadly mechanical 

derivations, Leibniz characteristically emphasizes considerations of continuity and 

elasticity.12  In order to improve upon Fermat’s patently non-mechanical approach, 

Leibniz attempts to address the two technical objections raised by Cartesians to the great 

mathematician’s derivations.  

At the center of Leibniz’s efforts to improve upon Fermat’s derivations lies his 

“Most Determined Path Principle” or “MDPP”.  He introduces it as “another principle 

which supersedes” the principle that “the greatest ease be obtained in relation to planes” 

insisting that “it remains always universally true that a ray is directed in the most 

determined or unique path, even in relation to curves” (TA 274/L 479).  Put simply, 

Leibniz’s principle is tantamount to the claim that from among all the possible paths 

between a source and a sink, a ray of light will travel along the path which is unique with 

respect to ease; where “ease” is understood as the quantity obtained by multiplying the 

distance of the path by the resistance of the medium(s).   

Using his infinitesimal calculus, and the MDPP, Leibniz is able to offer new 

derivations of the now familiar laws of reflection and refraction.  In his most 

sophisticated treatment – that of the Tentamen Anagogicum - Leibniz begins by first 

illustrating the use of his calculus to find local maxima and minima, asking his readers to 

                                                                                                                                                 
proved that light does indeed travel faster in air as Fermat had predicted (Ronchi 1970, 

259).   

12 See, for example, DC 1404/LC 253f.   
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consider “a curve AB, concave or convex, and an axis ST to which the ordinates of the 

curve are referred:”13   

 
Leibniz somewhat confusingly states the problem of finding the point C, which is unique 

with respect to its ordinate (i.e. y-axis) value, in terms of the “union of twins.”  The 

intuitive idea behind Leibniz’s terminology, however, is simply that C is the only point 

on AB which does not have a corresponding point of the same ordinate value a finite 

distance away, i.e. C is the only point on AB whose “twin” with respect to ST would 

have to be “infinitely close.”  Put in contemporary terms, C is therefore the only point on 

AB where the derivative of the line with respect to ST equals zero.  As an immediate 

consequence, given the equation of the line AB, one can therefore find the point C by 

taking the derivative of the equation and setting it equal to zero.  With good justification, 

                                                 
13 This is a simplified version of Leibniz’s own figure 1 (TA 275/L 480).  Those 

interested in Leibniz’s derivations of the laws of optics, should also see his (1682).   
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Leibniz insists that this now standard operation for determining local maxima and 

minima greatly simplifies the calculations used in his derivations of the laws of reflection 

and refraction.14     

In the Tentamen Anagogicum, Leibniz next shows how the law of reflection can 

be derived from the MDPP with the aid of his calculus.  He asks his readers to consider a 

ray of light traveling between the fixed points F and G via a mirror ACB which could be 

                                                 
14 For some sense of how much Leibniz’s calculus facilitates his proof, it may be worth 

noting that it took Fermat more than four years to see how to apply his own method to the 

problem of refraction (Sabra 1967, 145).  See also Fermat’s, “Analysis ad Refractiones” 

(Fermat 1891-1912, 1:170-72); in French translation (Fermat 1891-1912, 3: 149-51).   
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plane, concave, or convex:15 

  

Tacitly assuming that the medium through which the light travels is homogenous and 

isotropic, Leibniz reduces the problem of finding the unique path with respect to distance 

times resistance to the problem of finding the point C such that the path FCG is unique 

with respect to its length.  He then (i) constructs an equation for the length of the path 

from F to G via some point C on ACB, (ii) uses the technique previously illustrated to 

                                                 
15 This is a simplified, and slightly modified, version of Leibniz’s own “figure 1” (TA 

275/L 480).  It should be noted that a potentially very confusing typo occurs in 

Loemker’s translation.  The sentence that appears as “Let ACB be any mirror whatever, 

plane, concave, or convex; and let two points F and G be given (Figure 34)” should read 

“Let ACB be any mirror whatever, plane, concave, or convex; and let two points F and G 

be given (Figure 33)” (L 481). 
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find the value of the equation of the path such that the value is unique or “stationary,” and 

then (iii) uses elementary trigonometry to show that for such a path the angle of incidence 

FCA must be equal to the angle of reflection GCB.16     

 Leibniz uses essentially the same strategy in proving the law of refraction.  He 

asks his readers to consider a refracting surface ACB which, again, could be planar, 

concave, or convex, and to let F and G represent source and sink points for a ray of light 

(so that the refracted ray of light will be represented by GCF): 17

 

                                                 
16 More precisely, Leibniz lets, HF = HG = a, HB = x, CB = y, CB ┴ FG, CP ┴ ACB.  

Since CBP is a right triangle, dy = PB/CB.  Substituting y for CB, dy = PB/y.  

Multiplying through by y and taking the distance from B to P to be negative, -ydy=BP.  

Now since CBF is also a right triangle, CF = √((CB)2 + (BF)2).  Substituting y for CB 

yields CF = √(y2 + (BF)2).  But BF = a –x, so by substitution, CF = √(y2 + (a- x)2) = √(y2 

– 2ax + a2 +x2).  Similar considerations show that CG = √(y2 + (a+x)2) = √(y2 + 2ax + a2 

+x2).  In order to find the path FCG = CF + CG which is unique with respect to length, 

Leibniz differentiates and sets the resulting equation equal to zero: d • CF + d • CG = d • 

√(y2 – 2ax + a2 +x2) + d • √(y2 + 2ax + a2 +x2) = (ydy + xdx – adx)/ CF + (ydy + xdx + 

adx)/CG = 0.  Rearranging terms yields: CF/CG = (a – x – ydy)dx/(a + x + ydy)dx.  

Substituting a-x for BF, and a+x for GB in turn yields: CF/CG =BF +BP/GB – BP = 

PF/PG.  Trigonometry is now sufficient to show that if CF/CG = PF/PG, then CP bisects 

FCG, and that the angle of incidence is therefore equal to the angle of reflection. 

17 “Figure 2” (TA 276)=“Figure 34” (L 481)   
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Here Leibniz once again (i) constructs an equation for the path of the ray of light  - this 

time taking into account the different resistances of the two mediums, (ii) applies his 

calculus to find the path that is unique with respect to ease (i.e. length times resistance), 

and (iii) uses trigonometry to show (a) that the ratio of the sine of incidence to the sine of 

refraction is inversely proportional to the ratio of incident velocity to the refractive 

velocity, and (b) that the ratio between the sine of the angle at which a ray of light strikes 

a refractive surface and the sine of the angle at which the ray is refracted is a constant 

determined by the mediums involved.18  

                                                 
18 In more detail, Leibniz lets HF = HG = a, HB = x, CB = y, CB ┴ FG, CP ┴ ACB 

As before, FCG = CF + CG = √(y2 + (a- x)2) + √(y2 + (a+x)2) = √(y2 – 2ax + a2 +x2) +  

√(y2 + 2ax + a2 +x2).  Taking the resistance of the upper medium to the lower medium to 

be as f to g, then the measure of the ease of the path FCG =  f • CF + g • CG = f • √(y2 – 
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It is perhaps worth noting explicitly here that Leibniz’s derivations of the laws of 

optics illustrate – in a somewhat elementary fashion – the central idea of what has 

become know as the method of variations.  Leibniz’s equations, in effect, allow him to 

represent a family of possible paths that a ray of light might take between its source and 

its sink.  Using his calculus, he is then able to identify a uniquely distinguishing property 

of the actual path, namely, that it makes extremal – i.e. locally maximal or minimal – the 

quantity of “ease.”  He is then able to pick out, as it were, the one actual path taken by a 

ray of light from the infinitely many possible paths – or “variations” – described by his 

initial equations.  Although the modern “calculus of variations” generally requires a 

higher degree of mathematical sophistication (in part because it typically represents the 

class of “variations” in terms of functionals) it is nonetheless essentially a development 

of the fundamental strategy already on display in Leibniz’s optical derivations.19   

Armed with his Most Determined Path Principle, and his novel derivations of the 

laws of optics, Leibniz is able to address both of the technical objections raised by 

Cartesians against Fermat’s proofs.  Unlike Fermat’s principle, Leibniz’s principle 

requires no special assumptions in order to be applied to non-standard cases of reflection.  
                                                                                                                                                 
2ax + a2 +x2) + g• √(y2 + 2ax + a2 +x2).  In order to find the path FCG = CF + CG which 

is unique with respect to its ease (i.e. distance times length), Leibniz once again 

differentiates and sets the resulting equation equal to zero: f(d • CF) + g(d • CG) = f (d • 

√(y2 – 2ax + a2 +x2 )) + g (d • √(y2 + 2ax + a2 +x2))  = f • (ydy + xdx – adx)/ CF + g • 

(ydy + xdx + adx)/CG = 0.  Calculating as above, yields: CF/CG = (f • PF)/ (g • PG).  

Trigonometry is now sufficient to complete the proof.   

19 For more on the history of the development of the calculus of variations, see Goldstine 

(1980), Mach (1989), and Woodhouse (1810).    
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For Leibniz, the characteristic feature of actual paths of rays of light is not that they 

always minimize some quantity, but rather that they are (locally) unique with respect to 

some quantity.  As a result, the possibility that a ray of light might maximize distance, 

speed, or ease does not present even a prima facie difficulty for his treatment, and he thus 

has no need to appeal to planes tangent to reflecting surfaces in order to handle non-

standard cases of reflection.   

By selecting “ease” as the quantity that is made locally determinate by the actual 

paths of rays of light, Leibniz is also able to address the objection raised by Cartesians 

concerning the speed of light in refractive mediums.  Although it is natural to see that 

hypothesis today as rather counterintuitive, in Leibniz’s day, it was, in fact, widely 

thought to be essential to a corpuscular analysis of the behavior of light.  It is therefore 

crucial to Leibniz’s reconciliation project that his principle allows him to side with the 

Cartesians in maintaining that light travels faster in denser materials, while still insisting 

that light always takes the most determinate path with respect to ease.  In this way, 

Leibniz again effectively removes a crucial barrier separating proponents of the Cartesian 

and Fermatian approaches to the laws of optics.   

Through his novel derivations, Leibniz was thus able to remove the most 

important obstacles separating the Cartesian and Fermatian approaches to the laws of 

optics.  In doing so, he was thereby able to shift the focus of discussion from technical 

matters to the more philosophical issues surrounding the legitimacy of non-mechanical 

explanations in the natural sciences, and their relationship to more familiar explanatory 

models.  He was, in short, able to raise once again the question of the legitimacy of 

teleological explanations and their compatibility with the “mechanistic” explanations 

more generally favored by proponents of the new science.   
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The Most Determined Path Principle and Natural Teleology 

 

While the MDPP clearly represents an important contribution to the development 

of early modern optics, its greatest significance for Leibniz is to be found in his defense 

of teleological explanations.  Throughout his mature period, Leibniz repeatedly 

emphasizes that principles such as the MDPP provide new grounds not only for linking 

God’s benevolent intentions to the laws of nature, but also for recognizing the utility of 

non-mechanistic explanations cast in terms of final causes:  

 

In fact (as I have shown by a quite remarkable example of a principle in optics, 

which the famous Molyneux greatly approved of in his Dioptrics), final causes 

can sometimes also be introduced to great effect in particular problems in physics 

– not only so that we can better admire the most beautiful works of the supreme 

Creator, but also sometimes in order to find out things which by consideration 

only of efficient causes would be less obvious, or only hypothetical.  (SD 24/FW 

164) 

 

For I believe that God considered principles of wisdom and reasons of order when 

he established the laws which are observed in nature.  And I think that this makes 

it clear (as I once pointed out when discussing the laws of optics, and which the 

famous Molyneux later accepted in his Dioptrics) that consideration of final 

causes is useful not only to virtue and piety – in ethics and natural theology – but 

also for discovering and detecting hidden truths in physics itself.  (NI 4/FW 212) 
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What is more, our thinking sometimes furnishes us with considerations revealing 

the value of final causes, not merely in increasing our admiration for the supreme 

Author, but also in making discoveries among his works.  Some day I shall show 

this in a special case in which I shall propose as a general principle of optics … 

(TA 273/L 479) 

 

As these passages suggest, principles like the MDPP enter into Leibniz’s general defense 

of teleology in two very different ways.20  First, he maintains that, like the laws of 

motion, principles such as the MDPP can be related to God’s intentions to create the best 

of all possible worlds.  In this way, he sees his work in optics as being related to his 

defense of divine teleology – an important topic for understanding Leibniz’s mature 

philosophy of physics, but one that will not be pursued further in this essay.21  Second, 

Leibniz maintains that principles such as the MDPP can be used to show that teleological 

explanations have an important role to play even in the thick of doing physics.  In order 
                                                 
20 A contemporary reader might be surprised that Leibniz should place such emphasis on, 

and try to draw far reaching conclusion from, his work in optics, an area that might seem 

today to be a rather narrow and specialized sub-field of physics.  For that reason, it is 

perhaps worth recalling that no one in Leibniz’s time doubted that optics was one of the 

central sciences and deserved to share the scientific stage with astronomy and mechanics.  

It is no accident, for example, that Descartes’s first systematic account of nature was 

titled The World or Treatise on Light, and that Newton was as much known in his own 

day for his Optics as he was for the Principia.   

21 This topic is discussed in McDonough (2007) and (2004, 113-140).     
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to better appreciate Leibniz’s suggestion that the laws of optics lend support to a kind of 

natural teleology, or teleology within the order of nature, it will be helpful to first take a 

closer look at what Leibniz sees as a contrast between efficient and teleological laws of 

nature.   

As part of the general metaphysical and explanatory framework of the new 

science, mechanistic philosophers had long countenanced explanations in terms of 

general efficient laws that straightforwardly link prior events to later events.  So, for 

example, it was widely thought that the laws of motion should relate the speeds and 

directions of a pair of bodies before a collision to their speeds and directions after the 

collision.  As part of this picture, it was, of course, also accepted that by citing the initial 

speeds and directions of the bodies together with the laws of motion, one could explain 

the speeds and directions of the bodies after the collision.     

For Leibniz this widely accepted model of explanation also holds out the 

possibility of a kind of teleological explanation.  Leibniz suggests that in addition to 

seeing the world as being governed by efficient mechanical laws, it might also be viewed 

as being governed by teleological laws such as the MDPP.  Such laws would be 

teleological in that they would link prior events to subsequent events by appealing to 

consequences of those subsequent events.  Leibniz suggests that if an event could be 

deduced from a teleological law together with initial conditions and outcome conditions, 

then one would have a teleological explanation of that event. 

In order to see more clearly how Leibniz’s distinction between efficient and 

teleological laws of nature grounds his position on natural teleology, it might be helpful 

to consider two alternative explanations for a ray of light’s passing through a particular 
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point of reflection, B, in a simple case of reflection (as depicted in the following 

diagram): 

 
 

 
 

A typical efficient explanation of the sort offered by Descartes would explain the ray of 

light’s passing through the point B by appealing to its initial speed and direction at point 

A, and using the laws of motion to derive its position at the next instant.  In this way, 

Cartesians would, in effect, trace the progress of the light infinitesimal piece by 

infinitesimal piece from point A through to point B, and then onto point C.  In spite of his 

dissatisfaction with Descartes’s actual proofs, Leibniz is confident – perhaps overly 

confident – that some such efficient explanation of the behavior of rays of light is always 

at least in principle possible.   

 In addition to such efficient explanations, however, Leibniz suggests that there is 

also available a more readily accessible teleological explanation of the same event.  

Leibniz takes as given that the ray starts at point A and ends at point C.  He then uses his 

Most Determined Path Principle – which in this case is equivalent to the claim that the 

ray of light will take the easiest reflected path – to deduce that the ray passes through 
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point B.  In this example, “reaching its endpoint by the easiest path” serves as the goal of 

the process by which the ray passes through point B, and we could say in common terms 

that the ray passes through B in order to get to C by the easiest path.22  

In Leibniz’s day no one seems to have doubted that explanations such as those 

involving the MDPP involve final causes, and thus Leibniz never bothers to spell out 

explicitly why he thinks they are teleological.  Nonetheless it is not hard to see, even in 

the simple case just presented, at least two prominent features that must have lent 

considerable support to the consensus.  The first such feature – almost too obvious to 

mention - is that Leibniz’s explanation makes essential appeal to an outcome or “goal” of 

the process by which the ray of light comes to pass through point B.  In this way it is 

similar to other commonly accepted teleological explanations such as that the bear is 
                                                 
22 The description of the goal of the ray as “reaching its endpoint by the easiest path” 

might initially strike one as odd.  Shouldn’t the goal simply be “reaching its endpoint” or 

“reaching point C”?  If the stated goal seems long-winded, it is because it fills in some 

detail that might reasonably be taken for granted in many contexts.  “Reaching its 

endpoint” would do, but only if it is assumed that it reaches its endpoint by an efficient 

route, which, of course, is commonly assumed and might therefore go without saying, as 

when we explain that the heat-seeking missile turned right in order to hit its target (and 

thus take for granted that it doesn’t, say, take three lefts, or circle the globe).  “Reaching 

point C” would likewise do, but only if we assume that some features of the set-up are 

constant, for example, that the mirror isn’t rotated, and the medium remains isotropic.  

But, again, such features are often assumed to be constant, and therefore again might go 

without saying, as they typically do, for example, in problem sets commonly assigned to 

undergraduates.      
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swatting at the beehive in order to get honey, which purports to explain the bear’s earlier 

behavior of swatting at the beehive in terms of the result or goal of its swatting at the 

beehive, namely, its getting the honey.23

 The second feature of Leibniz’s explanation that must have supported its 

characterization as teleological is that the behavior of the ray of light is shown to be 

responsive to changes in its environment in exactly the sorts of ways necessary to bring 

about the goal specified in the explanation.  If the ray of light had started at a different 

origin, passed through a different medium, or been reflected off of a differently 

configured mirror, it would have behaved differently but still in such a way as to take the 

easiest path between it source and sink.  In this, Leibniz’s explanation is again similar to 

other commonly accepted teleological explanations.  Part of what makes the explanation 

of the bear’s behavior convincingly teleological, for example, is that under different 

circumstances, the bear would have behaved differently – perhaps going around a barrier, 

or climbing a tree - but still in such a way as to obtain the honey.24   
                                                 
23 Should it be objected that the two explanations offered here differ in the fact that while 

rays of light always reach their endpoints by easiest paths, bears (for example) do not 

always succeed in obtaining honey by the means available to them?  I think doing so 

would be misguided, for surely it is not part of our concept of a teleological explanation 

that it must sometimes fail.  Certainly, when theists appeal to divine ends, there is no 

assumption that God’s teleology must be fallible, and if, for example, we built guided-

missiles that never missed their targets, their reliability would hardly seem to undermine 

teleological explanations of their behavior.     

24 Conversely, we would not normally say that the bear is swatting at the beehive in order 

to get stung even if that is a consequence of his swatting at the beehive precisely because 

 24



While Leibniz’s characterization of his proposed explanations as teleological was 

thus embraced by his contemporaries – who typically objected to them precisely because 

they agreed that they are teleological – it is worth noting that the notion of teleology at 

play in Leibniz’s explanations is significantly thinner than those of his Aristotelian 

predecessors in at least two important respects.  First, it was one of the hallmarks of 

Aristotle’s position on teleology that final causes are metaphysically immanent in nature 

– that they are the immediate result of robust formal natures that are intrinsically directed 

towards their own appropriate ends.25  To be sure, such teleological natures are not 

entirely foreign to Leibniz’s mature metaphysics, and simulacra of them are found in his 

construal of monads as primitive entelechies, and play an important role in his rejection 

of occasionalism.26  Nonetheless, the final causes that arise in connection with laws such 
                                                                                                                                                 
he would presumably not have modified his behavior in order to reliably bring about his 

getting stung.  This consideration highlights an important difference between the kinds of 

explanations Leibniz is defending, and “explanations” that would try to take advantage of 

the temporal “reversibility” of the laws of nature in order to deduce prior states of a 

process from later states of that processes.  Although one could deduce the velocity and 

position of a billiard ball at t1 from its velocity and position at t2, we would not normally 

deem this to amount to a teleological explanation at least in part because we do not think 

that the billiard ball would have adjusted it behavior in order to arrive at that position, 

with that velocity, at t2.  These sorts of considerations will resurface more prominently in 

the third section.   

25 On this point, see, especially, Hull (1981, 282). 

26 For further discussion of the connection between Leibniz’s postulation of active 

natures and his rejection of occasionalism, see, Rutherford (1993).  
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as the MDPP, and that, according to Leibniz, are of concern to the practicing physicist, 

are grounded immediately only in the structure of the laws of nature.  As a consequence, 

Leibniz’s conception of teleology is not directly tied to any metaphysical picture of goal-

directed strivings, and is at least consistent with any view – including occasionalism and 

“Humeanism” – that attributes law-like regularities to the natural world. 

 Second, in keeping with his primary focus on the biological realm, Aristotle 

suggests that genuine teleology must not only reliably bring about a given end state, but 

that the end state in question must be related to the good of the relevant substance.27  For 

Aristotle, it is therefore not enough for genuine teleology that a tree should consistently 

act in such a way as to develop leaves, but rather it must develop leaves for the sake of 

protecting its fruit, and thus for the sake of contributing to its own flourishing.  On 

Leibniz’s view, however, it is not necessary to suppose that rays of light take optimal 

paths for the sake of their own good; it is sufficient that they reliably act in such a way as 

to consistently bring about a particular end state.  Considerations of goodness enter only 

at one step removed, when the contribution of rays of light to the overall perfection of the 

universe is brought into the picture.  In this respect, Leibniz’s position is something of an 

intermediary between Aristotle’s – where considerations of the good must play an 

immediate role - and the accounts of contemporary philosophers, which typically attempt 

to divorce altogether evaluative judgments from teleological attributions.28   

If Leibniz’s contemporaries were happy to agree that his proposed explanations 

are teleological, they were less convinced about the legitimacy of those explanations.  

Much of their resistance stemmed from the association of teleological explanations with 
                                                 
27 On this point, see, especially, Cooper (1987). 

28 For important dissent from this general trend, see Bedau (1992a and 1992b).   
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Scholasticism.  As part of the metaphysical and explanatory framework of Scholastic 

natural philosophy, final causes typically entered into their scientific accounts of natural 

phenomena in two importantly different ways.  First, Scholastic philosophers generally 

analyzed all natural changes as being inherently directed towards specific goals as 

determined by their relevant forms.  In virtue of their elemental forms, heavy bodies, for 

example, were taken to be naturally directed towards their final resting place at the center 

of the universe, while in virtue of their substantial forms, acorns and fawns, for example, 

were taken to be naturally directed towards their mature development as oak trees and 

deer.  Insofar as teleological explanations of Scholastic natural philosophers relied upon 

such irreducible, qualitative, forms, they were seen as being of a piece with what 

mechanical philosophers viewed as the bankrupt explanatory and metaphysical 

framework of Scholastic natural philosophy more generally.   

Second, Scholastic philosophers not infrequently made bald appeals to God’s 

ends in attempting to explain particular natural phenomena.  A striking example of 

teleology used in this way is provided by Abra de Reconis’s account of the saltiness of 

the sea, which he explains in terms of “the two most important ends to which the sea is 

instituted,” namely, “first, that it should be the common domicile of fish, and second that 

in it there should be navigation to provide commerce and necessary goods” both of which 

are promoted by salinity “since saltiness keeps the sea from putrefying and makes it 

stronger and denser so as to hold the greater weight of ships.”29  For many seventeenth 

century mechanical philosophers, such teleological explanations not only smacked of the 

                                                 
29 I borrow the example, as well as the translation, from Des Chene (1996, 168).  The 

original text may be found in Abra de Raconis (1651, 384).   
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idle, and non-confirmable, speculations that plagued Scholastic philosophy in general, 

but also involved presumptuous speculation concerning God’s ends.30

 Leibniz is clearly sympathetic with the reservations of mechanist philosophers 

concerning Scholastic attempts to introduce final causes into scientific explanations.  

Although he defends the existence of immaterial entelechies as part of his fundamental 

metaphysics, he nonetheless denies that such formal natures should be appealed to in 

scientific explanations of particular natural phenomena.  Thus in the Specimen 

Dynamicum, for example, he writes: 

Meanwhile, although I hold that there exists everywhere in bodies an active or, as 

we might say, vital principle which stands above all material concepts, I do not 

agree with Henry More and other men of outstanding piety and intelligence who 

appeal to some kind of unheard of archeus or hylarchic principle in explaining the 

phenomena – as if not everything can be explained mechanically, and as if those 

who attempt to give such an explanation were to be suspected of impiety for 

trying to deny incorporeal things; or as if we ought to assign intelligences that 

were required to rotate the spheres, as Aristotle did, and say that the rising and 

falling of the elements is due to their forms – a theory which covers a great deal, 

but which tells us nothing.  (SD 22/FW 163; see also SD 6/FW 156, and DM 

10/FW 61) 

Likewise, although Leibniz grants that every physical event must ultimately be 

determined by God’s ends in creating the best of all possible worlds, he nonetheless 

insists that in physics, God’s direct influence should only be appealed to in explanations 

                                                 
30 See Descartes’s Principles 1:28, and Bacon (1858, 1:151).   
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of general principles and not of particular phenomena.31  He thus maintains that “it is 

empty to resort to the first substance, or God, in explaining the phenomena of his 

creatures, unless his means or ends are, at the same time, explained in detail, and the 

proximate efficient or even the pertinent final causes are correctly assigned, so that he 

shows himself through his power and wisdom” (G IV 397-398/AG 254).  

Beyond distancing himself from what were seen as Scholastic excesses, Leibniz is 

also able to use his optical explanations to address two specific mechanistic objections to 

the use of teleological explanations in natural philosophy.  The first of these objections is 

that the postulation of final causes within the order of nature commits one to attributing 

thought or intentionality to unintelligent entities. 32  In a neglected discussion of 

reflection, Leibniz remarks that 

[C]ertain people of more recent times have been wont to object that the ray 

coming from A is not endowed with cognition, nor does it inquire whether it will 

go to C and which is the best rout for it to get there, but with blind impetus comes 

down on a point on the reflecting surface, to which it is carried in the direction 

already conceived, and from there rebounds according to mechanical laws.  (DC 

1405/LC 255f)   

As Leibniz goes on to note, however, this objection fails to appreciate the nature of the 

teleological explanations being offered.  According to Leibniz, the path of a ray of light is 

determined not by any decision or foresight on the part of the ray, but rather because its 
                                                 
31 See, for example, SD 23/FW 163.   

32 Cf. Nagel (1961, 402):  “because of the association of teleological explanations with 

the doctrine that goals or ends of activity are dynamic agents in their own realization, it 

[i.e. modern physics] tends to view such explanations as a species of obscurantism.”     
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behavior is controlled by a law of nature from which it follows that the ray will pass 

through some point B such that its total path will be optimal.  Such laws no more require 

thought on the part of unintelligent entities than do mechanical laws governing the 

behavior of material bodies.  Indeed, if foresight is required here at all, it will be the 

foresight of God who is responsible, according to Leibniz, for all the laws of nature, 

mechanical and teleological alike.   

 The second specific objection common among mechanists to the use of 

teleological explanations in natural philosophy is that such explanations must introduce 

explanatory gaps in the network of non-teleological, efficient, causal explanations, and 

thus undermine the universal applicability of mechanical explanations.  Against this 

criticism, Leibniz insists that the way of final causes in no way undercuts the 

completeness of the way of efficient causes.  Indeed, he shrewdly recognizes that 

justifying teleological explanations by the failure of mechanical explanations leaves the 

defender of teleology unnecessarily open to easy refutation:  

We know that … learned and zealous theologians who, shocked at the corpuscular 

philosophy and not content with checking its misuse, have felt obliged to maintain 

that there are phenomena in nature which cannot be explained by mechanical 

principles; as for example, light, weight, and elastic force.  But since they do not 

reason with exactness in this matter, and it is easy for the corpuscular 

philosophers to reply to them, they injure religion in trying to render it a service, 

for they merely confirm those in their error who recognize only material 

principles.  (TA 272/L 478; see also DC 1403/253, and G III 607/L 655) 

Leibniz, in fact, accepts the dogma of his day that “all natural phenomena could be 

explained mechanically if we understood them well enough” (TA 272/L 478), and even 
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insists that explanations in terms of efficient causes are “deeper and in some way more 

immediate and a priori” (DM 22/FW 74).  Nonetheless, he also sensibly maintains both 

that the existence of non-teleological explanations in no way rules out the possibility of 

teleological explanations (properly understood), or vice versa, and that if justification for 

the postulation of teleological laws is required it can be had by the fact that “the way of 

final causes is easier, but is nevertheless frequently of use in discovering important and 

useful truths, truths which one would take a long time to find by the other, more physical 

route” (DM 22/FW 74).   

 Although Leibniz thus makes a strong case for the compatibility of teleological 

laws and mechanism, his boast that the way of final causes is “frequently of use in 

discovering important and useful truths” points towards what was no doubt the de facto 

greatest obstacle to his proposed revival of teleological explanations within physics, 

namely, the need to discover a wide and promising range of natural phenomena that 

could be explained by teleological laws similar to the MDPP.  While it must be admitted 

that the laws of optics occupy a privileged place in seventeenth century physics – with 

their investigation playing a prominent role in the work of Descartes, Huygens and 

Newton among others – Leibniz’s ambitious proposal might well appear rash if it were 

based solely on the basis of the MDPP.33  It is therefore significant that – although 

Leibniz tirelessly draws attention to the teleological significance of his own optical 
                                                 
33 Cf. Bennett’s remark: “Leibniz is not here merely repeating his point that patterns in 

nature bring in teleology because they reveal God’s purposes.  He says that asking a 

teleological question could help one to discover Snell’s law.  Every time he reiterates that 

teleology can (‘frequently’) help one to do physics, he adduces this one example” 

(Bennett 2001, 1:269).   
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explanations – he is also able to point towards at least three other classes of problems that 

could be solved using essentially the same techniques that he had used in deriving the 

laws of optics, and which thereby invited similar teleological interpretations.   

The first such class of problems involves the maximization of an area or volume 

for a given perimeter or enclosing surface area.  Problems of this kind were already well 

known to the ancient Greeks, who gave them physical import by suggesting that nature 

must implicitly solve them in some of its works.  So, for example, it was claimed that the 

hexagonal structure of honeycomb could be explained by the fact that nature attempts to 

maximize the storage capacity of the cells of the honeycomb while minimizing the 

amount of wax needed to construct it.  In a similar fashion, Leibniz suggests that the 

spherical shape of a drop of liquid suspended in another liquid can be explained by 

appealing to “a principle of determination in nature which must be sought by maxima and 

minima; namely, that a maximum effect should be achieved with a minimum outlay, so to 

speak” (UO 303-304/L 487-88; see also Leibniz (1697b), 10).  (Essentially the same 

strategy is still employed today in explaining the shape of physical phenomena ranging 

from soap bubbles to galaxies.34)     

 In 1690, Leibniz was introduced to a second class of problems by James Bernoulli 

who proposed as a challenge the determination of the shape of the catenary – that is of a 

uniform, heavy, flexible, freely hanging cord, e.g. a freely hanging chain suspended at 

both ends.35  Clearly impressed by the significance of Bernoulli’s problem, Leibniz 
                                                 
34 For a more general discussion of this first class of problems, see Mach (1989, 479-515) 

as well as Hildebrandt and Tromba (1985).   

35 For a helpful discussion of James Bernoulli’s role in stimulating investigation of the 

problem of the catenary, see Hofmann (1970-1980, 47f).  For general discussion of 
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solved it immediately by drawing upon the resources of his newly developed calculus.  

The solution he provided, as well as those proposed by Huygens and Johann Bernoulli 

(James’s younger brother), was published in 1691 in the Acta Eruditorum.  Subsequent 

work (especially by the Bernoulli brothers) showed how solutions could be similarly 

obtained for more complex cases such as those of elastic and non-uniform chains, as well 

as bent elastic beams.  By 1697, Leibniz was comfortable enough with this class of 

problems to simply assert without argument that “when many heavy bodies pull upon 

each other, the resulting motion is such that the maximum possible total descent is 

secured” (UO 304/L 488).   

In 1696, Johann Bernoulli introduced Leibniz to yet another class of problems 

when he first published “the problem of the brachistochrone” in the June edition of the 

Acta Eruditorum, and then – at Leibniz’s request - republished it as a leaflet for quicker 

distribution.36  The challenge it presented to “the most acute mathematicians flourishing 

in the whole world” was to find the path of quickest descent between two points in the 

vertical plane for a freely falling body.  Again using his infinitetesimal calculus, Leibniz 

was able to solve the problem on the day he received it, and correctly predicted that only 

four other solutions would be provided – one from each of the Bernoulli brothers, one 

from Newton, and one from L’Hopital.  Of these four responses, Johann Bernoulli’s drew 

the most explicit connection between the brachistochrone and the laws of optics.  Indeed, 
                                                                                                                                                 
problems connected with the catenary, see Mach (1989, 86-89) and Lemons (1997, 55-

56).   

36 For a brief, but interesting discussion of the Bernoulli brothers’ work on the problem of 

the brachistochrone, see Fellmann and Fleckenstein (1970-1980).  For a general 

discussion of the problem, see Mach (1989, 520-26) and Lemons (1997, Chapter 2).   

 33



his brilliant insight was to see that the path of quickest descent could be discovered by 

treating a falling body as a ray of light traveling through a medium in such a way that it 

accelerates at the same rate as would a freely falling body.  James Bernoulli’s solution, 

while less elegant in some respects, nonetheless highlighted a feature of the problem that 

would ultimately lead to the development of the calculus of variations proper.  His proof 

emphasized the fact that any portion of a path of quickest descent must itself be a path of 

quickest descent, and as a consequence such a path can be thought of as the path which is 

such that any sub-path of it is unique with respect to quickest descent.  It is this feature of 

James Bernoulli’s solution that is echoed in Leibniz’s remark in the Tentamon 

Anagogicum that “in these forms or figures the optimum is found not only in the whole 

but also in each part, and it would not even suffice in the whole without this.  For 

example, if in the case of the curve of shortest descent between two given points, we 

choose any two points on this curve at will, the part of the line intercepted between them 

is also necessarily the line of shortest descent with regard to them”  (TA 272/L 478).   

Leibniz’s work on problems such as finding the shape of the catenary and the 

brachistochrone lie behind his confidence that the techniques he employed in his optical 

discoveries could be extended to a wide range of phenomena.  Given that those 

techniques were still in their infancy, his conviction was no doubt both optimistic and 

bold.  Nonetheless, it can hardly be denied that Leibniz had a strong hand to play against 

his early modern opponents:  Everyone was willing to concede that his explanations were 

teleological; he had convincing responses to the standard objections of his day to the use 

of teleological explanations; and – although it would perhaps not be fully appreciated by 

his less mathematically sophisticated opponents - he had at his disposal growing evidence 

that his favored explanations would generalize successfully.   
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An Old Myth about Teleology? 

 

The development of mathematical physics since Leibniz’s day would seem to 

have only strengthened his hand further.  In 1747, Maupertuis introduced his famous 

principle of least action according to which “in all the changes that take place in the 

universe, the sum of the products of each body multiplied by the distance it moves and by 

the speed with which it moves is the least possible” (Maupertuis1698-1759, 2:274).  

Although obscure and incomplete as it stood, the principle of least action was later 

clarified, developed, and set on secure mathematical foundations through the work of 

Euler, Lagrange, Hamilton, and Jacobi among others.  Its descendants – known today as 

“variational principles” – have been successfully applied to optical, dynamical, and 

electromagnetic problems in classical mechanics and continue to play important roles in 

the context of quantum mechanics and the theories of special and general relativity. 37  

In spite of the remarkable success of variational principles within the natural 

sciences, however, contemporary philosophers have been reluctant to follow Leibniz’s 

lead in seeing them as establishing the legitimacy of teleological explanations within the 

domain of physics.  With the explanatory power of principles like the MDPP now being 

beyond doubt, contemporary philosophers have challenged their status as genuinely 

teleological.  Since concepts change and evolve over time, this might well be taken as 

simply a shift in our understanding of teleology and teleological explanation.  (Clearly 

the contrast with mechanistic explanations, for example, plays a less significant role in 
                                                 
37 For general discussions of this development, see Goldstine (1980), Woodhouse (1810), 

and, especially, Yourgrau and Mandelstam (1968).     
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our conception of a teleological explanation today than it did in Leibniz’s time.)  

Nonetheless, it seems to me as though contemporary explications of teleology have, if 

anything, tacked towards Leibniz’s less Aristotelian conception of teleology than away 

from it, and that contemporary philosophers have been rather unfair in their offhand 

dismissals of Leibniz’s view.  Without hoping, or wishing, to give an exhaustive defense 

of Leibniz’s position on natural teleology, it might therefore be worthwhile to consider 

two main strategies for resisting Leibniz’s position.38  Doing so should not only help to 

further bring out the coherence of Leibniz’s view, but also highlight a tension in 

contemporary accounts of teleological explanations which attempt to defend their 

legitimacy in domains such as systematics, biology, and cognitive science, while denying 

that teleological explanations have a role to play within physics itself. 

One initially attractive strategy for resisting Leibniz’s position is to suggest that 

genuine teleology requires a thicker conception than the one with which Leibniz works.  

In particular, one might argue that the concept of teleology requires some reference either 

to the good or intentionality in order to qualify as satisfactorily robust.  While there is no 

denying that notions of goodness and intentionality are strongly associated with 

teleological explanations, making reference to them a necessary condition for teleological 

explanations would, I suggest, lead to serious difficulties that contemporary philosophers 

of science have been understandably eager to avoid.   

                                                 
38 A third strategy would argue that there is something metaphysically incoherent, or at 

least problematic, in the postulation of teleological laws of nature.  This issue is taken up 

in McDonough 2007.  For discussion of some issues raised neither there nor below, see 

Stöltzner (1994, 1999, and 2000). 
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Consider first the suggestion that genuine teleology must involve some reference 

to the good.  This suggestion invites two different sorts of objections.  The first, and I 

think lesser, is a range of plausible counterexamples implying that building the concept of 

the good into the concept of a legitimate teleological explanation would force us to count 

as non-teleological many things that are generally considered to be teleological.  So, to 

take just one example, it is widely assumed that the behavior of heat-seeking missiles is 

teleological, even though it is difficult to see – especially given that they explode on 

impact - how in finding their targets they act for their own good.  To this, it might 

reasonably be suggested that the good referenced to in connection with heat-seeking 

missiles is derived from their designers or users.  But this response invites problems of its 

own, for it would seem that artifacts might be teleological even if used for purposes other 

than those for which they were created (a missile used by the home team is no less 

teleological than a stolen one used by the enemy), and might be teleological even if they 

undermine the purposes to which they are used (a missile fired by the home team that 

strikes a friendly plane is no less teleological than one that strikes an enemy plane).  The 

good of the creator, or user, thus seems to have little to do with whether or not the system 

itself is teleological.39  If all of that is right – and no doubt one could wrangle over the 

details at great length – it would still be possible to suppose that ascriptions of teleology 
                                                 
39 More fancifully, but perhaps with more conceptual clarity, the same point could be 

made by imagining the case of a “swamp-missile” formed by a windstorm in a parts 

factory, which miraculously resembles exactly a human-made missile.  Given their 

identical behaviors, it will be difficult to suppose that one missile, but not the other, is 

teleological even though only one of the missiles could have possibly derived its good 

from a creator.   
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involve metaphorical or projective goods.  But that, of course, is no objection to 

Leibniz’s account of teleology since nothing precludes thinking that in taking the easiest 

or most determinate path a ray of light acts for a good in such an extended sense.   

 The second, and I think more pressing, objection to building a concept of the good 

into the concept of teleology stems from methodological considerations.  Most 

contemporary philosophers working on teleology have tried to get away from building 

evaluative judgments into the meaning of teleology precisely because it would seem to 

undermine the scientific legitimacy of teleological explanations.  To know that the bear is 

swatting at the beehive in order to get honey, we had better not have to know that he is 

acting for The Good or even His Good lest biological descriptions be no more testable, or 

falsifiable, than the pronouncements of moralists.  The point here is perhaps easily 

overlooked since there need not be anything problematic – except for the confusion that it 

tempts – about scientific descriptions appealing to, for example, “the good of the 

organism.”  The presence of evaluative language in such statements is innocuous insofar 

as it can be reduced to ultimately non-evaluative terms such as “increases caloric intake” 

or “is likely to lead to positively differential gene survival” and thus shown not to be 

essentially evaluative at all.  The same, of course, is true for processes studied by 

physicists:  nothing precludes evaluative sounding talk in the description of physical 

processes as long as such talk can ultimately be eliminated in favor of scientifically 

confirmable quantities and the like.40   

 The suggestion that teleology requires intentionality likewise runs into two 

different kinds of objections.  First, it similarly – but more importantly this time - faces a 
                                                 
40 For a recent attempt to defend the centrality of value judgments to teleological 

explanations see Bedau 1992a and 1992b.   
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range of plausible counter-examples.  Although it is generally granted that the behavior 

of relatively primitive organisms can be teleological, most people will be reluctant to 

ascribe intentionality to them.  Plants may grow crooked in order to get more sunlight, 

ants may march up trees in order to escape high-waters, and dogs may defile fire hydrants 

in order to mark their territory, but only on the absolutely barest conceptions of 

intentionality will such behaviors be thought to involve intentionality.  (And, of course, 

on the barest conceptions of intentionality the thesis that teleology must involve 

intentionality would be no threat to Leibniz’s account – if everything from podiums to 

angels can be seen as having intentionality then having intentionality won’t disqualify 

anything from falling under a teleological description.) Not unrelatedly, philosophers of 

biology have also been eager to ascribe teleology to well-functioning organs, but again 

they would clearly be reluctant to ascribe intentionality either to the formation or function 

of these organized systems.  Hearts are thought to pump in order to circulate blood, but 

not (or at least not any longer) because it is assumed that they were created by an 

intelligent being.   

 Second, and perhaps more controversially this time, there are also methodological 

reasons for resisting the temptation to build intentionality into the concept of teleology.  

For, on the one hand, one might well think that intentionality is a more complex, less well 

understood concept than teleology itself, so that leaning on the concept of intentionality 

would be a step backwards in providing an analysis of teleology.  And, on the other hand, 

one might also well think that our best strategy for giving an illuminating – and 

naturalistic – account of intentionality is in terms of complex teleological behavior.  If 
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that is true, defining the latter in terms of former would not merely be a step backwards, 

but would get the explanatory order exactly the wrong way around.41    

 For both philosophical and naturalistic reasons, contemporary philosophers have 

therefore typically defended relatively thin conceptions of teleology – that is conceptions 

which do not make non-eliminable appeals to goods, intentionality, immanent strivings or 

formal natures.  In this way, the conceptions of teleology defended by contemporary 

philosophers have generally had more in common with the conception that Leibniz 

employs in his discussion of the laws of optics than with Aristotelian or Scholastic 

conceptions.  Rather than leading to greater sympathy for Leibniz’s conclusion that 

teleological explanations might have an important role to play even in the domain of 

physics, however, this overlap has instead given birth to a second strategy for resisting 

his position, namely, arguing that there are principled reasons for rejecting Leibniz’s 

explanations as non-teleological even on a thin conception of teleology.  Although this is 

indeed the most common strategy employed by contemporary philosophers working on 

the concepts of teleology and teleological explanations, it is far from clear that they have 

made a convincing case against Leibniz’s position.  In order to see this more clearly, let’s 

briefly consider three relatively recent attempts to highlight a principled reason for 

denying that explanations such as those offered by Leibniz are genuinely teleological 

even on a suitably thin conception of teleology.   

    (1) It is sometimes implied today that counting variational principles as 

teleological would massively violate the dictates of commonsense and linguistic intuition.  

This suggestion has recently been brought out forcefully by a provocative example 
                                                 
41 A helpful overview, as well as a regularly updated bibliography, of such approaches to 

intentionality is available in Neander 2004. 
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offered by Jonathan Bennett.  After struggling to find any good reason for why Snell’s 

law should be considered genuinely teleological – where Snell’s law is understood as 

“the proposition that light passing between different mediums always follows the easiest 

path from A to B” – Bennett finally settles on the following consideration:   

Perhaps, then, the idea is that Snell’s law … speaks of bodies’ behaving in such a 

way that the resultant situation is thus-and-so.  If the body dependably behaves 

now in a manner that leads to the obtaining of a certain state of affairs later, some 

kind of forward-lookingness seems to be involved; and this might seem to smack 

of teleology.  But if this is teleology or an appearance of it, the ordinary behaviour 

of poured water also invites a teleological interpretation: water is poured into one 

end of a pool, someone draws a bucket of water out of the other end, and a beaver 

swims across the middle; millions of water molecules variously move in such 

ways that the final state of the pool’s surface is a smooth plane at right angles to 

the line of gravity.  Yet nobody, so far as I know, has claimed to detect a 

teleological pattern here. (Bennett 2001, 1: 271-2) 

The implied argument here seems to be a species of reductio ad absurdum.  If we were to 

grant that principles such as the MDPP were teleological, we should also be forced to 

grant by parallel reasoning that even the behavior of poured water might be given a 

genuinely teleological explanation.  But something like commonsense, or linguistic 

intuition, is supposed to show us that that would be absurd, and so, we must deny that 

principles such as the MDPP are genuinely teleological after all.  

 Leibniz might, of course, try to respond to such an argument by challenging the 

purported absurdity of the example.  He could, for example, fairly point out that for much 

of the history of western science the suggestion that the behavior of material stuffs might 
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be explained teleologically was not at all considered to be absurd, but rather taken for 

granted.  It is, in fact, only relatively recently that one could even imagine that nobody 

would claim to detect a teleological pattern in the behavior of poured water, or falling 

rocks, or rising fire.  Indeed, Leibniz might even point out that our contemporary 

language is still shot through with talk that at least prima facie appears to be teleological:  

electricity seeking the easiest path, elastic solids trying to regain their original shapes, 

and, yes, even water finding its lowest resting point.  Even if these ways of speaking do 

not constitute much of an argument to the effect that such processes are genuinely 

teleological, Leibniz might nonetheless insist that the idea that the behavior of poured 

water might be explained teleologically is at least not as crazy as Bennett’s example 

seems to imply. 

In addition to directly challenging the intuitions on display in Bennett’s example, 

however, Leibniz might also reasonably question the significance of those intuitions.  

Any interesting theory of teleology will, of course, both have to agree in some measure 

with our commonsense and linguistic intuitions, and in some measure will have to help 

clarify, revise, or extend our intuitions.  A theory that did not do the former would simply 

not be a theory about teleology, but rather a theory about something else altogether.  One 

that did not accomplish the latter would not be a theory about teleology either, but rather 

something more akin to a dictionary definition or a sociological account of how we use 

words like “teleology” and “teleological.”  Within these parameters, however, a wide 

range of approaches is still available.  In the shadow of logical positivism, and the so-

called “linguistic turn,” contemporary philosophers have often fallen on one end of the 

spectrum, seeking to tailor their accounts rather closely to what they think the person on 

the street, or perhaps in the laboratory, would already count as teleological.  In the wake 

 42



of the scientific revolution, and the development of his own iconoclastic system, 

however, Leibniz not surprisingly falls on the other end of the spectrum, and is clearly 

more stimulated by the prospect of developing a bold new set of teleological explanations 

than in preserving the intuitions of either his scholastic predecessors or his mechanistic 

contemporaries. 

Given Leibniz’s more liberal bent, there is therefore no clear reason why he 

should not simply run an example like Bennett’s in the opposite direction.  Starting with 

the premises that (i) the MDPP is a teleological principle, (ii) the behavior of poured 

water can be explained by appeal to the (so-called) principle of least potential energy, and 

(iii) the suggestion that consistency requires us to treat that principle and the MDPP on a 

par, Leibniz might well draw the conclusion that the behavior of poured water can, after 

all, be explained teleologically.  If that new conclusion cuts against some dictates of 

commonsense, or linguistic intuition, well, then, Leibniz might suppose, so much the 

worse for commonsense and linguistic intuition.  After all, by Leibniz’s lights – and by 

ours! – such intuitions have been at best unreliable friends in the development of a 

systematic account of the natural world.42

(2) A different objection to Leibniz’s characterization of variational principles as 

teleological has been suggested by Ernest Nagel in his influential “system-property” 

account of natural teleology (Nagel 1961, 398-446, and 1979).  According to Nagel, the 

four following characteristics are essential to all teleological processes.  (1) The 

processes must be plastic in the sense that “the goal of such processes can generally be 
                                                 
42 The dispute here is, I think, interestingly mirrored in contemporary debates over the 

legitimate scope of intentional explanations.  See, for example, the first two chapters of 

Dennett (1987), as well as, Bennett (1991). 
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reached by the system following alternate paths or starting from different initial 

positions” (Nagel 1979, 286).  (2) A teleological process must be persistent, i.e. it must 

exhibit “the continued maintenance of the system in its goal-directed behavior, by 

changes occurring in the system that compensate for any disturbances taking place 

(provided these are not great) either within or external to the system, disturbances which, 

were there no compensating changes elsewhere, would prevent the realization of the goal 

(Nagel 1979, 286).  (3) The variables of the processes must be independent or orthogonal 

to one another so that “apart from those situations in which determinate relations hold 

between the variables because of their role in goal-directed processes, the known (or 

assumed) “laws of nature” impose no restrictions on the simultaneous values of the 

variables” (Nagel 1979, 289).  (4) The three preceding conditions must hold not merely 

for some particular situation or other, but also under a range of counterfactual conditions.    

A system should not be considered goal-directed if it “just happens” to satisfy the first 

three conditions.  It must also be the case that it would satisfy those conditions if – within 

certain limits – features of the system or circumstance were altered (Nagel 1979, 287).43

                                                 
43 In introducing this requirement, Nagel writes, “However, for the process to count as 

goal-directed on the system-property view, it is not sufficient that on some given 

occasion (or even on several occasions) the kidneys ‘just happen’ to eliminate excess 

water from the blood and so ‘happen’ to keep constant the concentration of water in it. … 

To be goal-directed, the process must satisfy the much stronger requirement that were the 

blood inundated with water to a greater or lesser extent than was actually the case, the 

activity of the kidneys … would have been appropriately modified.  What this amounts to 

is that for each member of a sequence of possible values (within certain limits) of water 

content of the blood, there is a member of the sequence of possible values of K, such that 
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Three of these characteristics present no difficulties for Leibniz’s position.  A ray 

of light traveling from A to B via a reflecting or refracting surface, for example, satisfies 

the requirement of plasticity due to the fact that it may start from a wide range of initial 

positions, and travel along any number of corresponding paths depending on the relevant 

medium, while always taking the “most determined path” in Leibniz’s technical sense.  A 

ray of light under such circumstances also satisfies the requirement of persistence since 

modifications of the medium, or surface, will generally be compensated for in such a way 

that the path of the ray will continue to be the “most determined” between A and B.   

Furthermore, both of these requirements hold under a suitably wide range of 

counterfactual conditions – the ray would still take the most determined path if the 

medium were different or if the starting point had been altered – thereby satisfying what 

we might call Nagel’s requirement of “counterfactual extendibility.”   

As Nagel is eager to point out, however, the orthogonality condition would brand 

as non-teleological many systems whose behavior can be readily explained in terms of 

variational principles.  To borrow one of Nagel’s own examples, the behavior of a ball in 

a hemispherical bowl can be explained in terms of the (variational) principle of least 

potential energy since, if it is displaced from its resting point at the bottom of the bowl, it 

will act in such a way as to once again minimize (better: “make stationary”) its potential 

energy.  The relevant variables involved, however, are not independent in Nagel’s 

technical sense “since the restoring force is proportional to the magnitude of the 

displacement force, though oppositely directed” (Nagel 1979, 287).  Thus, according to 

Nagel’s account, the behavior of the ball will not count as teleological because it fails to 
                                                                                                                                                 
for each pair of these corresponding values the goal G would be achieved – that is, for 

each such pair, the water content of the blood would be 90 percent” (Nagel 1979, 287).   
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satisfy his “orthogonality” condition.  The same considerations would similarly rule out 

all of the examples that Leibniz offers as evidence of teleological processes in the domain 

of physics.   

Granting that Nagel’s orthogonality condition would deal a devastating blow to 

Leibniz’s account of natural teleology, we might well wonder what reasons Leibniz could 

be given for accepting it.  Setting aside Nagel’s occasional appeals to brute intuitions 

(that straightforwardly beg the question against Leibniz’s position) we find a more 

intriguing line of argument in Nagel’s repeated suggestions that at least something like 

the orthogonality condition must be accepted if the notion of a teleological system is to 

have any basis at all.  In a crucial passage from his seminal piece, “Teleology Revisited,” 

Nagel writes:  

I must briefly explain why this [orthogonality] requirement is important:  in short, 

it is this requirement that serves as a formal criterion for distinguishing processes 

that are goal-directed from those which are commonly held not to be such. … 

When a ball at rest inside a hemispherical bowl is displaced from its equilibrium 

position, restoring forces come into play that in the end bring the ball to rest at its 

initial position.  Is this a goal-directed process, whose goal is the restoration of 

equilibrium?  Were such a process so classified, every process in which some 

equilibrium state is restored would also have to be designated as goal-directed; 

and in consequence, the designation would be applicable to well-nigh all 

processes, so that the concept of being goal-directed would not be differentiating, 

and would therefore be superfluous.  (Nagel 1979, 288)  
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The same idea is on display in an important passage from the Structure of Science where 

a pendulum plays the role of a simple variational system rather than a ball in a 

hemispherical bowl: 

In short, the values of these proposed state variables at any given instant are not 

independent.  It therefore follows that the simple pendulum is not a directively 

organized system in the sense of the definition presented.  Moreover, it is also 

possible to show in a similar manner that a number of other systems, generally 

regarded as nonteleological ones, fail to satisfy that definition. … since there are 

at least some systems not usually characterized as teleological which must also be 

so characterized [as not teleological] on the basis of the definition, the label of 

‘directively organized system’ whose meaning the definition explicates does not 

apply to everything whatsoever, and it does not baptize a distinction without a 

difference. (1961, 420) 

Implicit in these comments, I suggest, is the deep reason for Nagel’s insistence on the 

orthogonality condition.  Nagel’s entire discussion of teleological systems is framed by a 

concern to distinguish teleological systems from non-teleological systems.  Allowing 

variational principles to serve as foundations for teleological explanations threatens that 

distinction by implying that almost any – perhaps every – system might qualify as a 

teleological system.  The orthogonality condition – or at least something like it – is 

thereby seen to be compelling by Nagel’s lights if there is to be any point at all in giving 

an account of teleology and teleological explanations.   

So understood, however, Nagel’s insistence on the orthogonality condition seems 

to be merely an artifact of the contemporary concern to demarcate teleological processes 

and systems from non-teleological processes and systems – an objective that has its roots 
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in the rejection of the Aristotelian-Scholastic tradition, but one that is clearly not shared 

by Leibniz himself.  For Leibniz the central question that an account of natural teleology 

must answer is whether or not teleological explanations can be legitimately employed 

anywhere within the domain of physics.  As a result, the possibility held out by 

variational principles that every physical event might be given a teleological explanation 

no more threatens to undermine his objective in investigating natural teleology than the 

possibility of explaining every physical event in terms of mechanical laws threatens to 

undermine the coherence of mechanism.  Indeed, the prospect of two complete systems 

of explanation – one teleological, one mechanical – according to which every physical 

event might in principle be explained either way is one that Leibniz happily embraces.  

Thus, for example, in the Tentamen Anagogicum, he proudly proclaims that: 

I usually say that there are, so to speak, two kingdoms even in corporeal nature, 

which interpenetrate without confusing or interfering with each other – the realm 

of power, according to which everything can be explained mechanically by 

efficient causes, when we have sufficiently penetrated into its interior, and the 

realm of wisdom, according to which everything can be explained 

architectonically, so to speak, or by final causes when we have understood its 

ways sufficiently. (TA 273/L 479)   

Although Leibniz was in no position to confidently assert that two such systems of 

explanation could actually be realized, the development of variational principles in 

contemporary physics has nonetheless gone a remarkably long way towards vindicating 

his ambitious hypothesis.  I conclude that there is therefore no good reason for Leibniz to 

accept Nagel’s orthogonality condition, and that in the absence of that condition, Nagel’s 

line of objection to Leibnizian natural teleology collapses.   
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(3) Finally, it is sometimes suggested that the possibility of reducing the typically 

integral equations of variational principles to typically differential equations of more 

familiar “efficient laws” undermines any teleological interpretation of those principles.44  

The central thrust of this objection can be illustrated in a less technical context by another 

helpful example introduced by Bennett:   

Stable Lake is a body of water occupying an extinct volcanic crater in the Yukon.  

Around its edges, above the water-line, alpine lilies grow; and rocks beneath the 

water harbour a population of fresh-water shell-fish.  The lake loses water only by 

evaporation, and gains it only through rainfall.  The lilies cannot survive 

immersion, nor can the shellfish survive exposure to the air … one may be 

surprised to learn of evidence that Stable Lake protects its flora and fauna from 

the disasters I have mentioned.  In any normal year, the water-level sometimes 

nearly reaches the lilies and sometimes falls almost to the level of the shellfish; 

but in an abnormally rainy year the flowers are still not drowned, nor are the 

shellfish desiccated in an abnormally dry one.  In fact, Stable Lake conforms to 

two teleological laws: (1) Whenever the lake registers that f is required and 

sufficient for not-drowning-the-lilies, it does f [where f ranges over things that the 

lake can do].  (2) Whenever the lake registers that f is required and sufficient for 

not-desiccating-the-shellfish, it does f.  Combining the two: whenever the lake 
                                                 
44 Cf: “The equivalence of a variational principle to its corresponding set of Euler 

equations is also sometimes regarded as an argument against interpreting differential 

equations as indicative of cause and integral principles as attesting purpose, since the 

transformation from the integral to the differential form would then amount, as Margenau 

puts it, to transmuting a purpose into a cause” (Yourgrau and Mandelstam 1968, 176).    
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registers that f is required and sufficient for saving-the-wildlife, it does f.45 

(Bennett 1976, 75-76)   

Bennett, like Leibniz, maintains that teleological explanations do not presuppose 

intentional entities at the level of physics.  He therefore rejects the suggestion that a 

teleological explanation of the lake’s behavior can be ruled out simply because the lake 

lacks intentions and desires (Bennett 1976, 76).  Again, like Leibniz, Bennett also 

believes that the behavior of a particular system or process might be explained both in 

teleological and non-teleological terms (Bennett 1991, 178).  He therefore also denies 

that a teleological explanation of the lake can be ruled out by the fact that its behavior can 

be given a non-teleological explanation (Bennett 1976, 77).     

Nonetheless, Bennett maintains that a teleological explanation in the case of 

Stable Lake would clearly be “fraudulent.”  He locates the difficulty in the fact that “a 

single mechanistic explanation [that relates the surface area of the lake to the rate of 

evaporation] covers exactly what the teleological explanation covers.”  In these 

circumstances, Bennett reasons, the proposed teleological explanation is disqualified by 

the presence of its non-teleological counterpart because no justification can be given for 

using the teleological explanation rather than the non-teleological explanation (Bennett 

                                                 
45 I have modified Bennett’s example slightly by replacing some technical notation 

introduced earlier in his chapter with its non-technical equivalent as described on his 

page 76.  Perhaps, it should also be noted that the term “registers” is generally used in a 

technical sense by Bennett in (1976), but that – as he points out – registration in that 

sense is idle in the Stable Lake example.     
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1976, 77; 2005, 145-6).46  Following this line of thought, one might suppose that the 

same lesson should be applied in the case of variational principles.  Given that 

explanations in terms of variational principles can generally be directly translated into 

explanations in terms of non-variational principles (or “laws”), 47 one might conclude that 

the former are similarly disqualified by the presence of the latter.   

 Here once again Leibniz might well argue the relevant facts of the matter.  He 

could fairly insist that even granting the direct translatability of variational principles into 

non-variational laws, the use of the former is nonetheless justified for two important 

reasons.  First, the equations that result from translating variational principles into non-

variational laws are frequently more cumbersome and difficult to manipulate.  Indeed, in 
                                                 
46 “That mechanistic explanation disqualifies the teleological one – not because each 

thing Stable Lake does can be explained mechanistically, but because a single 

mechanistic explanation covers exactly what the teleological explanation covers.  We do 

not even have a faute de mieux defense of the latter, for the mechanistic explanation is 

known and is easy to apply:  it is no harder to notice that the lake’s surface-area has 

altered than to notice that if the rate of evaporation does not alter the wildlife will suffer” 

(Bennett 1976, 77).   

47 “As a matter of fact, most sets of (mathematically) simple differential equations can be 

so formulated [as variational principles].  Conversely, any variational principle is 

equivalent to a set of differential equations.  It follows immediately that once the laws of 

a physical theory are expressed as differential equations, the possibility of their reduction 

to a variational principle is evident from purely mathematical reasoning and does not 

depend on certain attributes intrinsic to the theory” (Yourgrau and Mandelstam 1968, 

176).   
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their classic discussion of the topic, Wolfgang Yourgrau and Stanley Mandelstam – 

certainly no friends of teleological interpretations of variational principles – concede that 

“This possibility [of reducing differential equations of physical laws to integral equations 

of variational principles] is of pragmatic value … for, other factors aside, … it allows the 

equations to be written in such a way as to be independent of the co-ordinate system.  In 

addition, the transformation of the equations to the Hamiltonian [i.e. variational] form is 

vitally important for quantum mechanics” (Yourgrau and Mandelstam 1968, 176).  

Second, in addition to citing their computational usefulness, Leibniz could point out that 

variational principles earn their keep by highlighting, in at least two different ways, 

common patterns in otherwise disparate physical phenomena:48 (i) they display a single 

mathematical form running implicitly through many of the most important equations of 

classical and contemporary physics;49 (ii) they often allow the unification of several 

different laws – both variational and non-variational – to be subsumed under a single 

unifying principle.  Newton’s second law, the Principle of Least Action, and the Principle 

of Least Potential Energy, for example, can all be treated as special cases of Hamilton’s 

(Extended) Principle (Lemons 1997, 102). 

 These considerations suggest that the use of variational principles is not otiose 

given their non-variational counterparts, and thus that their use may be justified on 
                                                 
48 Cf. Bennett’s “unity condition” as a requirement of intentionality (Bennett 1991, 177).  

49 Lemons, for example, notes that “Given appropriate variational principles each with an 

associated multiple integral and scalar integrand, we can produce all the important partial 

differential equations of physics: the wave equation, the diffusion equation, Poisson’s 

equation, Schrodinger’s equation, and each of Maxwell’s equations” (Lemons 1997, 

111).    
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pragmatic grounds.  But Leibniz could also challenge the lesson Bennett draws from the 

Stable Lake example.  Suppose that the behavior of a particular system could be 

accounted for both in terms of variational principles and non-variational laws.  Suppose 

further that in some particular case the account in terms of variational principles is both 

mathematically less elegant and so singular as to provide little help in bringing out 

similarities between the phenomena under investigation and other physical phenomena.  

Under such circumstances, all parties could presumably agree that an account in terms of 

variational principles might well be unhelpful for practical purposes.  But having granted 

that the account in terms of variational principles is less useful, why should they go on to 

suppose that it is “fraudulent?”  To do so would seem to build not just practical utility, 

but greater practical utility than all possible rivals into the very meaning of “teleological 

explanation.”  But Leibniz might well argue that that would be special pleading.  After 

all, no one, I take it, would suppose that with roles reversed – so that a variational 

account were more useful than its mechanical counterpart – the mechanical account 

would thereby be shown to be counterfeit.50  Leibniz thus seems within his rights in 
                                                 
50 It is important not to confuse the objection being considered here – that the presence of 

suitable non-teleological explanations ipso facto undermines the legitimacy of otherwise 

acceptable teleological explanations – with the more metaphysical objection that the 

interderivability of modern variational principles and more familiar “efficient laws” 

collapses any significant distinction between the two.  Even if successful, the 

metaphysical objection would not impugn Leibniz’s teleological characterization of 

principles like the MDPP (what is at stake here), but would instead suggest that the 

development of physics has shown that both “principles” and “laws” need not be – or 

perhaps cannot be  - counted as explanatory primitives.  I argue elsewhere that Leibniz’s 
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insisting that the legitimacy of teleological explanations need not be undermined by the 

mere availability of equivalent non-teleological explanations.   

Finally, it should be added that Leibniz need not embrace the assumption that a 

teleological account must be more useful than a substitutable mechanical account in order 

to reject the particular teleological explanation offered of Stable Lake’s behavior.  For in 

that example, the lake’s doing what is required and sufficient for saving-the-wildlife 

seems to be merely a coincidental feature of the set-up as witnessed by the fact that if the 

wildlife were simply destroyed the behavior of the lake would remain exactly the same.  

The modest hypothesis that the behavior of a genuinely teleological system must be 

responsive to its purported goal(s) is therefore sufficient for discounting the proffered 

teleological account of the lake’s behavior.  And this is a lesson that Leibniz could easily 

embrace as the examples he prefers are in fact at least minimally responsive in just this 

way.  A freely hanging chain, for example, which has some of its links replaced by 

heavier, lighter, or more elastic links will hang differently than it did before, but will 

nonetheless still maximize its total possible descent.   

   

Conclusion 

 
                                                                                                                                                 
own account of the laws of nature – according to which the laws of nature are 

abstractions from more fundamental derivative forces – affords him the resources for 

resisting the collapse objection.  The issues that objection raises within context of 

Leibniz’s system, however, are rather far reaching and deserve more extensive treatment 

than can be offered here.  For further discussion of the metaphysics of Leibniz’s two 

realms doctrine as applied to the laws of nature, see my (2007).      
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Leibniz’s view that teleological explanations may play an important role within 

the domain of physics is as unpopular today as it was in his own time.  Careful 

consideration of his work in optics, and the notion of natural teleology which that work 

supports, however, suggests that the strengths of Leibniz’s position have been greatly 

underestimated.  Laws like the MDPP, whose discovery and formulation Leibniz helped 

to pioneer, represent an enduring, mathematically precise, and empirically confirmable 

alternative to the mechanistic explanations of his contemporaries, while his teleological 

interpretation of those laws continues to challenge widely accepted views concerning the 

nature and role of teleological explanations in modern physics.  Far from constituting an 

embarrassment to his mature natural philosophy, or an opportunistic concession to his 

predecessors, Leibniz’s defense of natural teleology represents one of his most profound 

attempts to reshape the scientific framework that was emerging in throes of the scientific 

revolution.  
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