

Unconditional Relationships within Zero Knowledge

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation No citation.

Accessed February 19, 2015 8:54:15 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5128473

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28937922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/5128473&title=Unconditional+Relationships+within+Zero+Knowledge
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5128473
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Unconditional Relationships within Zero Knowledge

A dissertation presented

by

Shien Jin Ong

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2007

Copyright c© 2007 by Shien Jin Ong

All rights reserved.

Dissertation Advisor: Professor Salil P. Vadhan Shien Jin Ong

Unconditional Relationships within Zero Knowledge

Abstract

Zero-knowledge protocols enable one party, called the prover, to convince another
party, called the verifier, the validity of a mathematical statement such that the verifier
learns nothing other than the fact that the proven statement is true. The different ways of
formulating the terms “convince” and “learns nothing” give rise to four classes of
languages having zero-knowledge protocols, which are: statistical zero-knowledge proof
systems, computational zero-knowledge proof systems, statistical zero-knowledge
argument systems, and computational zero-knowledge argument systems.

We establish complexity-theoretic characterizations of these four zero-knowledge
complexity classes, of which our characterizations for argument systems are novel. Using
these characterizations, we show that for languages in NP, the following hold.

I Instance-dependent commitment schemes are necessary and sufficient for
zero-knowledge protocols. Instance-dependent commitment schemes for a given
language are commitment schemes that can depend on the instance of the language,
and where the hiding and binding properties are required to hold only on the YES
and NO instances of the language, respectively.

I Computational zero knowledge and computational soundness (a property held by
argument systems) are symmetric properties. Namely, we show that the class of
languages in NP ∩ co-NP having zero-knowledge arguments is closed under
complement, and that a language in NP has a statistical zero-knowledge argument
system if and only if its complement has a computational zero-knowledge proof
system.

I Any zero-knowledge argument system that is only guaranteed to be secure against
the honest verifier that follows the prescribed protocol can be transformed into one
that is secure against malicious verifiers that can deviate from the protocol. In
addition, our transformation gives us zero-knowledge argument systems with
desirable properties like public coins, perfect completeness, a black-box simulator,
and an efficient prover.

The novelty of our results above is that they are unconditional, meaning that they do
not rely on any unproven complexity assumptions such as the existence of one-way
functions. Moreover, in establishing our complexity-theoretic characterizations, we give
the first construction of statistical zero-knowledge argument systems for all of NP based
on any one-way function.

iii

� �

CONTENTS

Abstract . iii
Previously Published Work . vi
Acknowledgements . vii

1 Introduction 1
1.1 An Overview of Zero Knowledge . 2
1.2 Contributions of this Dissertation . 7

1.2.1 Necessity of instance-dependent commitments 7
1.2.2 Symmetry between zero knowledge and soundness 8
1.2.3 Honest-verifier equals malicious-verifier zero-knowledge arguments . 9
1.2.4 New characterizations of zero-knowledge argument systems 9
1.2.5 Statistical zero-knowledge arguments for NP from one-way functions 11

1.3 Motivation and Other Related Works . 11
1.4 Structure of this Dissertation . 13

2 A Tour of Zero Knowledge 15
2.1 An Example: Graph Isomorphism . 15
2.2 Preliminaries . 19

2.2.1 Basic notations . 19
2.2.2 Indistinguishability of probability ensembles 21
2.2.3 Promise problems . 22

2.3 Zero-Knowledge Protocols . 23
2.3.1 Interactive proofs and interactive arguments 23
2.3.2 Efficient provers . 25
2.3.3 Flavors and variants of zero knowledge 26
2.3.4 Remarks on the definitions . 29

2.4 Cryptographic Primitives and Instance-Dependent Analogues 31
2.4.1 One-way functions . 31
2.4.2 Commitment schemes . 31

iv

CONTENTS v

2.4.3 Instance-dependent one-way functions 33
2.4.4 Instance-dependent commitment schemes 34

2.5 Zero-Knowledge Protocols from Instance-Dependent Commitments 37

3 Statistically-Hiding Commitments 41
3.1 A Complexity-Theoretic History . 42
3.2 From One-Way Permutations . 44

3.2.1 The NOVY commitment scheme . 44
3.2.2 Interactive hashing . 45

3.3 From Regular One-Way Functions with Known Preimage Size 48
3.3.1 Hashing and randomness extraction 49
3.3.2 The commitment scheme . 49

3.4 From Regular One-Way Functions with Unknown Preimage Size 51
3.4.1 2-phase commitment schemes . 51
3.4.2 Our 2-phase commitment scheme . 55

3.5 From Any One-Way Function . 59
3.5.1 Overview . 60
3.5.2 Weakly-hiding and 1-out-of-2-binding commitments 63
3.5.3 Converting weakly-hiding to strongly-hiding commitments 72
3.5.4 A collection of 1-out-of-2-binding commitments 89
3.5.5 Standard commitments from 1-out-of-2-binding commitments 93

3.6 Instance-Dependent Variant . 108
3.6.1 Instance-dependent commitments for SZKP 110

4 Unconditional Characterizations of Zero Knowledge 121
4.1 The Characterization Theorems . 122
4.2 Proof of the Characterization Theorems . 124

4.2.1 From zero-knowledge protocols to the Vadhan condition 125
4.2.2 From the Vadhan condition to instance-dependent commitments . . 131
4.2.3 From instance-dependent commitments to zero-knowledge protocols 135
4.2.4 Putting it all together . 136

4.3 Symmetry between Zero Knowledge and Soundness 136

5 Future Research 139

A Deferred Proofs 141
A.1 Interactive Hashing with Multiple Outputs 141
A.2 Collision Probability Lemmas . 149
A.3 Establishing the Vadhan Condition . 152

Bibliography 164

� �

PREVIOUSLY PUBLISHED WORK

Most of the research results in this dissertation have appeared in conference proceedings.
Large portions of Chapter 3 are based on a joint with Minh-Huyen Nguyen and Salil Vadhan,
which appeared as:

“Statistical Zero-Knowledge Arguments for NP from Any One-Way Function,”
in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pages 3–14, IEEE Computer Society, 2006. Invited to
SIAM Journal on Computing Special Issue on FOCS 2006.

Section 3.6 in Chapter 3 is joint work with Iftach Haitner, Omer Reingold, and Salil Vadhan,
but has not been published.

Chapter 4 is based on a joint work with Salil Vadhan, and appeared as:

“Zero Knowledge and Soundness are Symmetric,” in Advances in Cryptology
– EUROCRYPT 2007, 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 187–209, Lecture Notes in
Computer Science 4515, Springer, 2007. Winner of the Best Paper Award.

In addition, parts of Chapters 1 and 2 are also based on the above EUROCRYPT 2007
paper.

vi

� �

ACKNOWLEDGEMENTS

I am grateful to:

Salil Vadhan, my research advisor, mentor, and friend—much that I learned about research,
I learnt from Salil;

Michael Sipser, my MIT undergraduate advisor, who through his lucidly written book,
Introduction to the Theory of Computation [Sip], and excellent teaching, sparked my
interest in theoretical computer science;

Silvio Micali, the master of “cryptographic” intuition, who illustrated the beauty of cryp-
tography through his engaging lectures;

my research collaborators: Boaz Barak, Yevgeniy Dodis, Daniele Micciancio, Minh-Huyen
Nguyen, David Parkes, Manoj Prabhakaran, Alon Rosen, Amit Sahai, and Salil Vad-
han;

members of my dissertation examining committee: Harry Lewis, Michael Rabin, Salil
Vadhan, and Leslie Valiant;

fellow theoretical computer science graduate students and postdoctoral fellows at Harvard:
Kai-Min Chung, Eleni Drinea, Vitaly Feldman, Dan Gutfreund, Alexander Healy,
Shaili Jain, Adam Kirsch, Loizos Michael, Minh-Huyen Nguyen, Alon Rosen, and
Emanuele Viola;

Susan Wieczorek, my school’s amazingly dedicated graduate program administrator, who
is an oracle for all obscure and not-so-obscure matters of graduate school bureaucracy;

my caring parents, Ong Chong Wee and Ooi Poh Yean, who instilled in me the love of
knowledge;

my girlfriend, Liu Lian, for her support through this lengthy dissertation writing process.

vii

viii DEDICATION

To my parents who taught me the meaning of life,

and

to my dearest girlfriend, Lian, who gave me meaning to life.

1
� �

INTRODUCTION

Suppose you solved a famous mathematical problem—like the P versus NP problem, one of
the seven Millennium Prize Problems proposed by the Clay Mathematics Institute.1 Will
you be able to convince someone of the proof without letting the person steal your idea and
claim entitlement to your proof?

The answer, surprisingly, is yes; zero-knowledge protocols, introduced by Goldwasser,
Micali, and Rackoff [GMR1], provide a way for one party, called the prover, to convince
another party, called the verifier, the validity of a statement such that the verifier learns
nothing other than the fact that the proven statement is true. In particular, even after
interacting with the prover, the verifier does not gain the ability to reprove the statement
to other parties!

In this dissertation, we study zero-knowledge protocols in a complexity-theoretic frame-
work; in other words, we investigate the classes of languages2 having zero-knowledge pro-
tocols. We study zero-knowledge protocols because in addition to being fascinating mathe-
matical objects of study, zero-knowledge protocols have vast applicability in cryptography
and complexity theory; for their vast applicability, we refer the reader to a comprehensive
survey on zero knowledge by Goldreich [Gol3]. Furthermore, the study of zero knowledge
has led to many developments in seemingly unrelated areas of theoretical computer science
like the field of inapproximability. For instance, it can be shown that no polynomial-time

1The P versus NP problem, arguably the most important unsolved problem in computer science, asks
whether the class P of languages that can be solved efficiently equals the class NP of languages that can be
verified efficiently. It is widely believed that P 6= NP; indeed most results in cryptography and complexity
theory would be either trivial or be not applicable if P = NP.

2A language is used to describe a collection of valid statements that relate to a certain algorithmic task.
Refer to Section 1.1 for an informal description, and to Section 2.2.1 for a formal description.

1

2 CHAPTER 1 / INTRODUCTION

algorithm can always find a vertex cover3 of a given graph that is at most 1.37 times larger
than the minimum vertex cover, unless P = NP [DS]. On the other hand, a simple greedy
algorithm will always find a vertex cover that is at most twice the size of the optimal. The
way these inapproximability results, like the one for vertex cover, come about was through
the study of probabilistically checkable proofs (cf., [FGL+, AS, ALM+]), which in turn was
inspired by zero-knowledge protocols (cf., [BOGKW, FRS]). In conclusion, zero knowl-
edge has—and we predict will continue to—serve as a bridge between complexity theory,
cryptography, and other areas of theoretical computer science.

Chapter organization. An overview of zero-knowledge protocols is provided in the next
section. In Section 1.2, we highlight the main contributions of this dissertation. In Sec-
tion 1.3, we state our work in perspective with previous results. We conclude this chapter
with Section 1.4, detailing our agenda for the remaining chapters.

1.1 An Overview of Zero Knowledge

In this section, we give an overview of zero knowledge protocols; a more detailed and formal
discussion is provided in Section 2.3. The material presented in this section is inspired by
Vadhan’s thesis [Vad1] and survey [Vad2], and by Sipser’s book [Sip].

Languages

In theoretical computer science, a language is used to describe a collection of valid state-
ments that relate to a certain algorithmic task. For example, the task of determining
whether two graphs are isomorphic4 can be formulated by the following language:

Graph Isomorphism = {(G,H) : G and H are isomorphic} .

Thus, we can think of a language L as defining the following algorithmic task: given a string
x, determine if x ∈ L or x /∈ L.

NP proof systems

Recall the brief discussion we had earlier about the P versus NP problem. The class P
is the set of languages L such that the algorithmic task of determining if x ∈ L can be
done efficiently : taking a polynomial number of computation steps. It is not known if the
language Graph Isomorphism is in P; the naive method of trying all possible permutations
of the nodes in the graph G and then comparing it to H is very inefficient. Nevertheless, if
we are given a permutation that reorders the nodes of G so that it matches H, then we can

3A vertex cover of a graph is a subset of nodes where every edge of that graph touches one of those
nodes. Finding the minimum-size vertex cover in a given graph is NP-hard [Kar].

4Graphs G and H are isomorphic if the nodes of G may be permuted so that it is identical to H.

1.1 AN OVERVIEW OF ZERO KNOWLEDGE 3

easily verify that G and H are indeed isomorphic graphs. We classify languages possessing
this efficient verifiability property as the class NP.

We can therefore think of NP languages as having two entities: a prover that finds a
valid proof for a given statement, and an efficient verifier that checks the proof. While
the verifier must be efficient, the prover is allowed to be computationally unbounded since
finding a valid proof might be tedious. More precisely, a language L is in NP if there exists
a prover P and an efficient verifier V satisfying the following two conditions.

I Completeness: for every x ∈ L (valid statement), the proof provided by prover P
makes verifier V accept.

I Soundness: for every x /∈ L (invalid statement), no proof, even ones concocted by
cheating provers, will convince verifier V to accept.

We call (P, V) satisfying the above conditions an NP proof system for the language L.

Zero-knowledge protocols

Putting this in context of Graph Isomorphism, the NP proof system that we hinted to
above is a prover P that sends a permutation π of the nodes in G so that it matches
H, and a verifier V that accepts only if π(G) = H.5 The permutation π provided by P ,
however, reveals a lot of knowledge: it gives the verifier V the ability to prove to some
other party that G and H are isomorphic graphs since V now knows a valid permutation.
This limitation is inherent in all traditional mathematical proofs—where a static proof is
written down to be checked—since knowing that static proof would allow one to reprove
it to some other party. Therefore, in order to get around this bottleneck, Goldwasser,
Micali, and Rackoff [GMR1], in their original treatise on zero knowledge, provided two
additional features to the prover and the verifier. First, these two entities are allowed to
be interactive : the prover and the verifier exchange messages in multiple rounds, after
which the verifier decides to accept or reject. Second, these two entities are allowed to be
probabilistic: the verifier can send random challenges to the prover, and the prover can
respond with random answers. Hence, in this setting, the verifier will be convinced of a
correct proof only with a high degree of confidence, but not with absolute certainty. If either
of these two features—interactive or probabilistic—is missing, it is impossible to achieve
zero knowledge for nontrivial languages [GO]. To accommodate these two features, the
completeness and soundness conditions for zero-knowledge protocols are made probabilistic
as follows.

I Completeness: for every x ∈ L (valid statement), prover P interacting with verifier
V will make V accept with at least 99% probability.

5π(G) denotes the graph obtained by reordering the nodes of graph G according to permutation π.

4 CHAPTER 1 / INTRODUCTION

I Soundness: for every x /∈ L (invalid statement), no cheating prover P ∗ can make V
accept with probability greater than 1%. In other words, V will reject with at least
99% probability, no matter what strategy the prover pursues.

The above two conditions by themselves do not yet capture the essence of a zero knowl-
edge, which is the magical property of the verifier learning nothing from its interaction with
the prover, other than the fact that the statement proven is true. This guarantee of learning
nothing is formalized in [GMR1] by requiring the existence of an efficient algorithm, called a
simulator, whose output is indistinguishable from the verifier’s view of the interaction

with the prover, where the verifier’s view consists of all messages exchanged between the
prover and verifier and the verifier’s random coins. (Unlike the verifier, the simulator does
not have access to the prover.) Intuitively, the verifier learns nothing because it could run
the simulator instead of interacting with the prover. Thus, (P, V) is said to be a zero-

knowledge protocol if it satisfies the completeness and soundness conditions above, and
an additional condition below.

I Zero Knowledge: for every x ∈ L (valid statement), and every efficient (cheating)
verifier V ∗, there exists an efficient simulator S whose output is indistinguishable
from the V ∗’s view of the interaction with the prover P .

The zero-knowledge condition is required to hold only when x ∈ L because the prover
only provides proofs for valid statements. In addition, we have required that even verifiers
deviating from the prescribed protocol will learn nothing. This requirement is generally
what is needed in cryptography because we cannot assume parties to act as prescribed.
There is a weaker notion of zero knowledge, called honest-verifier zero knowledge,
which guarantees that only an honest verifier that follows the prescribed protocol learns
nothing; we explore this notion in Section 2.3.

Flavors of zero-knowledge protocols

Zero-knowledge protocols come in several flavors, depending on how one formulates the two
security conditions: (i) the zero-knowledge condition, which says that the verifier learns
nothing other than the fact the assertion being proven is true, and (ii) the soundness
conditions, which says that the prover cannot convince the verifier of a false assertion.
We call these security conditions because they these two conditions need to hold even
against cheating parties; the former against cheating verifiers, and the latter against cheating
provers. In contrast, the completeness condition is not considered a security condition
because it only refers to honest provers and verifiers that follow the prescribed protocol.

In statistical zero knowledge, the zero-knowledge condition holds regardless of the
computational resources the verifier invests into trying to learn something from the interac-

1.1 AN OVERVIEW OF ZERO KNOWLEDGE 5

tion (except with small probability).6 In computational zero knowledge, we only require
that efficient, probabilistic polynomial-time verifiers learn nothing from the interaction.7

Similarly, for soundness, we have statistical soundness, giving rise to proof systems,
where even a computationally unbounded prover cannot convince the verifier of a false state-
ment, and computational soundness, giving rise to argument systems [BCC], where
we only require that an efficient, probabilistic polynomial-time prover cannot convince the
verifier of a false statement. Using a prefix of S or C to indicate whether the zero knowledge
is statistical or computational and a suffix of P or A to indicate whether we have a proof
system or argument system, we obtain four complexity classes corresponding to the different
types of zero-knowledge protocols: SZKP, CZKP, SZKA, and CZKA.

We return to our question of whether the NP-language Graph Isomorphism has a
zero-knowledge protocol. If we make complexity assumptions, then it turns out that every
language in NP has zero-knowledge protocols where at least one of the security conditions is
computational: namely, NP ⊆ CZKP [GMW2] and NP ⊆ SZKA [BCC].8 (This also implies
that NP ⊆ CZKA since CZKA has the weakest securities properties, and hence contains
all the other zero-knowledge complexity classes.) In other words, assuming widely believed
but unproven complexity assumptions, every traditional mathematical proof can be argued
convincingly in a way that does not leak knowledge.

Our goal in this dissertation is to conduct a study on these four zero-knowledge com-
plexity classes—SZKP, CZKP, SZKA, and CZKA—without relying on unproven complexity
assumptions. For example, if a language L is in CZKA, what can be said of its comple-
ment L = {x : x /∈ L}? This will be answered in Section 1.2, where we also present
our main contributions, but before going there, we highlight the close relationship between
zero-knowledge protocols and a cryptographic primitive called commitment schemes.

Commitment schemes

A commitment scheme is a two-stage protocol between a sender and a receiver. In the
first stage, called the commit stage, the sender commits to a private message m. In the
second stage, called the reveal stage, the sender reveals m and proves that it was the mes-
sage to which she committed in the first stage. We require two properties of commitment
schemes. The hiding property says that an adversarial receiver learns nothing about m in
the commit stage. The binding property says that after the commit stage, an adversarial

6There is a third flavor of zero knowledge which is the strongest of all: perfect zero knowledge, where
the verifier cannot learn anything even with negligible probability. In this dissertation, we do not study
the distinction between perfect zero knowledge and statistical zero knowledge. See Section 2.3.4 for a more
detailed discussion.

7More precisely, in statistical zero knowledge, we require that the verifier’s view of the interaction can be
efficiently simulated up to negligible statistical distance, whereas in computational zero knowledge, we only
require that the simulation be computationally indistinguishable from the verifier’s view.

8While statistical zero-knowledge proofs are most desirable to have, it is unlikely that every language in
NP has them [For, AH, BHZ].

6 CHAPTER 1 / INTRODUCTION

sender is bound to a particular value of m: namely, she cannot successfully open the com-
mitment to two different bits in the reveal stage. Like the zero knowledge and soundness
conditions, the hiding and binding properties each come in two flavors: (i) statistical,
where the property holds regardless of the adversary’s computational resources, and (ii)
computational, where the property holds only for efficient, probabilistic polynomial-time
adversaries.

Earlier we mentioned that if we make complexity assumptions, then every language in
NP has a zero-knowledge protocol. This result was first proven by Goldreich, Micali, and
Wigderson [GMW2], who constructed computational zero-knowledge proof systems for ev-
ery language in NP. Their zero-knowledge protocol uses commitment schemes—specifically,
of the computationally-hiding and statistically-binding flavor—and their usage of commit-
ment schemes is precisely the reason why their protocol requires complexity assumptions;
commitment schemes are not known to exist unconditionally, and indeed the existence of
commitment schemes implies the existence of one-way functions [IL].9

Nevertheless, as observed by Itoh, Ohta, and Shizuya [IOS], zero-knowledge protocols
based on commitment schemes actually do not require the hiding and binding properties
of commitments to hold at the same time. In the Goldreich, Micali & Wigderson proto-
col [GMW2], and many other zero-knowledge protocols, the hiding and binding properties
of the commitment schemes used translate to the zero knowledge and soundness conditions,
respectively. Hence, the hiding property is only required when x ∈ L, and the binding
property is only required when x /∈ L.

Based on this observation, Itoh, Ohta, and Shizuya defined instance-dependent com-

mitment schemes to be analogues of commitments schemes that are tailored specifically
to a given language.10 More precisely, the sender and receiver of an instance-dependent
commitment scheme receive an instance x of a language L as auxiliary input, and the
scheme is required to be hiding when x ∈ L and be binding when x /∈ L. Thus, instance-
dependent commitment schemes are a relaxation of standard commitment schemes, since
we do not require that the hiding and binding properties hold at the same time. This
relaxation, however, is still useful in constructing zero-knowledge protocols for L ∈ NP,
due to the following two observations: (i) the hiding and binding properties of the commit-
ment schemes used in some zero-knowledge protocols translate to the zero knowledge and
soundness conditions, respectively, and (ii) the zero knowledge and soundness conditions
are only required when x ∈ L and x /∈ L, respectively. Therefore, we conclude this section

9One-way functions are functions that are easy to compute but are computationally infeasible to
invert. Assuming that factoring large integers is computationally infeasible, the multiplication function
f(x, y) = x · y is a one-way function. Although many researchers believe that one-way functions exist, a
proof of their existence who give a proof that P 6= NP, resolving arguably the most important unsolved
problem in computer science. A formal definition of one-way functions is given in Section 2.4.1.

10There were various terms used to describe instance-dependent commitment schemes. Itoh, Ohta, and
Shizuya [IOS] called these language-dependent cryptographic primitives, Micciancio and Vadhan [MV] called
these problem-dependent commitment schemes, and the present usage traces to Vadhan [Vad3].

1.2 CONTRIBUTIONS OF THIS DISSERTATION 7

by stressing that having an instance-dependent commitment scheme for a language L ∈ NP
suffices to unconditionally construct a zero-knowledge protocol for L.

1.2 Contributions of this Dissertation

In this section, we highlight several new research results contained in this dissertation.

1.2.1 Necessity of instance-dependent commitments

At the end of the previous section, we saw that an instance-dependent commitment for a
language L ∈ NP suffices to construct a zero-knowledge protocol for L, based on techniques
from [GMW2, IOS]. In this dissertation, we show that the converse holds: an instance-
dependent commitments for a language L ∈ NP is necessary to obtain a zero-knowledge
protocol for L.

THEOREM 1.2.1

1. The SZKP case: a language L ∈ NP has a statistical zero-knowledge proof system if and

only if L has an instance-dependent commitment scheme that is statistically hiding when

x ∈ L and statistically binding when x /∈ L.

2. The CZKP case: a language L ∈ NP has a computational zero-knowledge proof system

if and only if L has an instance-dependent commitment scheme that is computationally

hiding when x ∈ L and statistically binding when x /∈ L.

3. The SZKA case: a language L ∈ NP has a statistical zero-knowledge argument system if

and only if L has an instance-dependent commitment scheme that is statistically hiding

when x ∈ L and computationally binding when x /∈ L.

4. The CZKA case: a language L ∈ NP has a computational zero-knowledge argument

system if and only if L has an instance-dependent commitment scheme that is computa-

tionally hiding when x ∈ L and computationally binding when x /∈ L.

This theorem will be proven in Chapter 4; specifically, it will follow from Theorems 4.1.1,
4.1.2, 4.1.4, and 4.1.5 in Section 4.1. This theorem can be viewed as demonstrating the
centrality of commitment schemes in zero-knowledge protocols of NP. To paraphrase
Damg̊ard [Dam2, p. 19], many researchers intuitively believe that commitment schemes
are fundamental to the construction of zero-knowledge protocols. Hence, we made this
intuition—held by many researchers—precise.

Prior to our work, Vadhan [Vad3] constructed instance-dependent commitments, albeit
with an inefficient (i.e., exponential time) sender, for languages with zero-knowledge proofs.
For these same languages, Nguyen and Vadhan [NV] constructed instance-dependent com-
mitments, whose sender and receiver algorithms are efficient (i.e., polynomial time), but

8 CHAPTER 1 / INTRODUCTION

paid a price of obtaining commitments with a weaker and nonstandard 1-out-of-2 bind-
ing property. Instance-dependent commitments for a restricted class of zero-knowledge
proofs, namely 3-round public-coin zero-knowledge proofs, were implicit in the works of
Damg̊ard [Dam2, Dam3]. Indeed, Kapron, Malka, and Srinivasan [KMS] used Damg̊ard’s
techniques to show that 3-round public-coin zero-knowledge proofs where the verifier just
sends a random bit—called V-bit protocols—exactly characterize noninteractive instance-
dependent commitments.11 Finally, we note that Ostrovsky and Wigderson [OW] showed
that zero-knowledge proofs for hard-on-average languages imply one-way functions, and
hence standard commitment schemes [Nao, HILL]. Consequently, our results are the first
to achieve instance-dependent commitments with standard properties—such as an efficient
sender and a standard binding property—from general zero-knowledge complexity classes.

1.2.2 Symmetry between zero knowledge and soundness

Recall that the two security conditions for zero-knowledge protocols are the zero-knowledge
condition and the soundness condition. These two security conditions have different traits;
zero knowledge is a secrecy condition, whereas soundness is more like an unforgeability
condition. Nevertheless, in a remarkable paper, Okamoto [Oka] established a symmetry
between statistical zero knowledge and statistical soundness by proving that a language
L ∈ SZKP if and only if its complement L ∈ SZKP.12 We view this as a symmetry
result because the statistical zero knowledge property for L—which holds when x ∈ L or
equivalently, when x /∈ L—translates to a statistical soundness property for L, and vice-
versa. Thus, by showing that SZKP is closed under complement, Okamoto established a
symmetry between zero knowledge and soundness, in the case when both security conditions
are statistical.

We ask whether an analogous theorem holds when the security conditions are compu-
tational, namely when considering computational zero-knowledge arguments. If we make
complexity assumptions, then the answer is yes, because all languages in NP ∩ co-NP and
their complements have computational zero-knowledge arguments [GMW2, BCC]. In this
dissertation, we establish an unconditional symmetry between computational zero knowl-
edge and computational soundness.

11Noninteractive commitments are commitments where the sender commits to a message in the commit
stage by sending a single message to the receiver; hence, the receiver does not send any message, both in
the commit and reveal stages.

12Okamoto’s result was actually for the class of languages having honest-verifier statistical zero-knowledge
proofs, but Goldreich, Sahai, and Vadhan [GSV1] showed that this is the same as the class of languages
having general, malicious-verifier statistical zero-knowledge proofs.

1.2 CONTRIBUTIONS OF THIS DISSERTATION 9

THEOREM 1.2.2
(Symmetry Theorem.)

I CZKA versus co-CZKA: a language L ∈ NP∩co-NP has a computational zero-knowledge

argument system if and only if its complement L has a computational zero-knowledge

argument system.

I SZKA versus CZKP: a language L ∈ NP has a statistical zero-knowledge argument

system if and only if its complement L has a computational zero-knowledge proof system.

The above Symmetry Theorem will be proven in Section 4.3 of Chapter 4.

Remark. On page 5, we asked if a language L is in CZKA, what can be said of its
complement L = {x : x /∈ L}? The Symmetry Theorem answers this affirmatively, by
placing L ∈ CZKA if L ∈ NP ∩ co-NP.

1.2.3 Honest-verifier equals malicious-verifier zero-knowledge arguments

We show that for every language L ∈ NP, any zero-knowledge argument system for L that is
only guaranteed to be secure against the honest verifier that follows the prescribed proto-
col can be unconditionally transformed into one that is secure against malicious verifiers

that can deviate from the protocol. In addition, our transformation gives us zero-knowledge
argument systems with desirable properties like public coins, perfect completeness, a black-
box simulator, and an efficient prover.13 Previously, such results were only known under
unproven complexity assumptions [GMW2, BCC], or were known unconditionally for the
case of zero-knowledge proof systems [Oka, GSV1, Vad3, NV].

This result will be established in Chapter 4; specifically, it will be stated in Theo-
rems 4.1.1, 4.1.2, 4.1.4, and 4.1.5 in Section 4.1.

1.2.4 New characterizations of zero-knowledge argument systems

All our unconditional results highlighted in the previous subsections are obtained by new
characterizations of the classes of languages in NP having zero-knowledge argument systems.
These characterizations are a generalization of the “SZK/OWF Characterization Theorem”
of Vadhan [Vad3], which states that any language L having a computational zero-knowledge
proof system can be described as having a statistical zero-knowledge proof plus a set of
instances I ⊆ L from which we can construct a one-way function. To characterize zero-
knowledge argument systems, we will also allow some additional instances in the complement
set L from which we can construct a one-way function. We honor the pioneering work

13The properties—efficient prover, perfect completeness, public coins, and black-box simulation—are de-
fined in Section 2.3

10 CHAPTER 1 / INTRODUCTION

of Vadhan that provides this useful method for characterizing zero-knowledge complexity
classes by calling it the Vadhan condition.

DEFINITION 1.2.3
A language L satisfies the Vadhan condition if there exists a set of instances I such that:

I the promise problem14 (L \ I, L \ I) is in SZKP, and

I there exists a polynomial-time computable function fx : {0, 1}n(|x|) → {0, 1}m(|x|), with
n(·) and m(·) being polynomials and instance x given as an auxiliary input, which acts
like a one-way function on every x ∈ I. That is, for every nonuniform probabilistic
polynomial-time adversary A, and for every constant c > 0, we have

Pr
y←{0,1}n(|x|)

[
A(fx(y)) ∈ f−1

x (fx(y))
]
≤ 1
|x|c

,

for every sufficiently long x ∈ I.

We call I the set of OWF instances, I ∩ L the set of OWF YES instances, and I ∩ L
the set of OWF NO instances.

We use the Vadhan condition to characterize the four zero-knowledge complexity classes
as follows.

THEOREM 1.2.4

1. The SZKP case (trivial): a language L ∈ NP has a statistical zero-knowledge proof

system if and only if L satisfies the Vadhan condition without OWF instances, namely

I = ∅.

2. The CZKP case ([Vad3]): a language L ∈ NP has a computational zero-knowledge proof

system if and only if L satisfies the Vadhan condition without OWF NO instances, namely

I ∩ L = ∅.

3. The SZKA case (new): a language L ∈ NP has a statistical zero-knowledge argument

system if and only if L satisfies the Vadhan condition without OWF YES instances, namely

I ∩ L = ∅.

4. The CZKA case (new): a language L ∈ NP has a computational zero-knowledge argu-

ment system if and only if L satisfies the Vadhan condition.

14A promise problem Π consists of a pair (ΠY, ΠN) of disjoint sets of strings, corresponding to YES
and NO instances of Π, respectively [ESY]. All of the complexity classes that we consider—for instance,
SZKP, CZKP, SZKA, and CZKA—generalize to promise problems in a natural way: completeness and zero
knowledge are required for YES instances, and soundness is required for NO instances. A language L is a
special case of a promise problem, by taking Π = (L, L).

1.3 MOTIVATION AND OTHER RELATED WORKS 11

This theorem will be proven in Chapter 4; specifically, it is a succinct version of Theo-
rems 4.1.1, 4.1.2, 4.1.4, and 4.1.5 in Section 4.1.

1.2.5 Statistical zero-knowledge arguments for NP from one-way

functions

We give the first construction of statistical zero-knowledge arguments for NP based on any
one-way function, as stated in the following theorem.

THEOREM 1.2.5
If one-way functions exist, then every language in NP has a statistical zero-knowledge argument

system.

This theorem will be established in Section 3.5 of Chapter 3. Although this theorem is
a conditional result, it is used to establish the SZKA and CZKA cases of Theorem 1.2.4,
which gives unconditional complexity-theoretic characterizations of zero-knowledge argu-
ment systems.

Previous constructions of statistical zero-knowledge arguments for NP, starting from
the construction of Brassard, Chaum, and Crépeau [BCC], require stronger complexity as-
sumptions. Our result can be viewed as settling the complexity of statistical zero-knowledge
arguments for NP because the existence of one-way functions is essentially the minimal com-
plexity assumption needed [Ost].15

1.3 Motivation and Other Related Works

The research presented in this dissertation was inspired by the seminal work of Vad-
han [Vad3] on the unconditional study of computational zero-knowledge proofs, and by the
work of Nguyen and Vadhan [NV] who show that zero-knowledge proofs can be uncondi-
tionally converted into ones with efficient provers. Vadhan’s work is the first unconditional
study done on an entire zero-knowledge complexity class where at least one of the security
conditions is computational (in his case, the zero knowledge condition is computational).
Prior to Vadhan, the unconditional works in zero knowledge centered around statistical
zero-knowledge proofs, where both the zero knowledge and soundness conditions are statis-
tical; examples of these works include [BP, DDPY1, DC, Oka, DOY, DDPY2, SV, GSV1,
GV, GSV2, Vad1, MV]. In this dissertation, we extend work of Vadhan [Vad3] and Nguyen
and Vadhan [NV] to unconditionally study the more general classes of languages having
zero-knowledge arguments, where the soundness condition is computational.

Vadhan’s work, in turn, was motivated by the work of Ostrovsky and Wigderson [OW],
“who gave the first hint that it might be possible to prove unconditional results about zero

15The result of Ostrovsky [Ost] is stated only for proof systems, but it also holds for argument systems.

12 CHAPTER 1 / INTRODUCTION

knowledge” [Vad3, p. 1161]. They showed that if hard-on-average16 languages have com-
putational zero-knowledge proofs, then one-way functions exists. With one-way functions,
we know that all languages in NP have computational zero-knowledge proofs [GMW2, Nao,
HILL]. Thus, if we can show that NP * BPP implies NP has hard-on-average languages,
then we can conclude—without assuming any unproven complexity assumptions—that ev-
ery language in NP has computational zero-knowledge proofs. The reason for this is that
we can do the following case analysis: (i) if NP ⊆ BPP, then every language L in NP
is also in BPP, and hence L has a trivial zero-knowledge proof system where the verifier
decides the language on its own; (ii) if NP * BPP, then by the above hypothesis, NP has
hard-on-average languages, and hence by [OW], one-way functions exist. As argued above,
one-way functions imply that NP ⊆ CZKP.

Unfortunately, our current knowledge of complexity theory does not exclude the possi-
bility of both NP * BPP and NP having no hard-on-average language happening simul-
taneously. Indeed, this possibility is often referred to as the Heuristica world of Impagli-
azzo [Imp].

Our research aims to overcome this gap in our understanding of zero knowledge even
if we live in the Heuristica world. To achieve this objective, we follow Vadhan [Vad3] and
characterize zero-knowledge protocols on a language-by-language basis instead of analyzing
consequences of zero knowledge for an entire complexity class like NP. In other words, we
study implications of a zero-knowledge protocol for a language L that are directly related
to the language L itself. To get a more concrete taste of what this means, refer to the
statements in Theorems 1.2.1 and 1.2.4.

Other unconditional works in cryptography. Our unconditional results should also
be contrasted with some other works that do not rely on complexity assumptions, but work
in less standard models of cryptography. For example, the works of Maurer [Mau], Cachin
and Maurer [CM], and Ding and Rabin [DR] offer unconditionally secure cryptographic
protocols against memory-bounded adversaries. In contrast, we only limit our adversaries
in terms of its running time (to be probabilistic polynomial time), which is more standard in
cryptography. In a different setting, Pass and Shelat [PS] constructed noninteractive zero-
knowledge proof systems17 in the secret parameter setup model for NP, where in this model
the prover and the verifier is assumed to be able to obtain correlated private information.

16A language L is hard on average if it is hard to decide whether a random instance is in L or out of L.
For a precise definition, refer to [Vad3, Def. 7.2].

17Noninteractive zero-knowledge proofs, introduced by Blum et al. [BDMP], are zero-knowledge proofs
that consists only of a single message from the prover to the verifier. Zero knowledge is achievable in this
setting because both prover and verifier is assumed to have access to a common random string, uniformly
chosen by a trusted third party.

1.4 STRUCTURE OF THIS DISSERTATION 13

1.4 Structure of this Dissertation

We provide an outline for the remaining chapters in this dissertation as follows.

Chapter 2 (A Tour of Zero Knowledge) is designed to provide the necessary defini-
tions in order to understand the results in this dissertation.

Chapter 3 (Statistically-Hiding Commitments) has two main focuses. The first is to
construct a statistically-hiding and computationally-hiding commitment scheme based
on any one-way function. The second is to show that every language L in SZKP has
an instance-dependent commitment scheme that is statistically hiding when x ∈ L

instances and statistically binding when x /∈ L.

Chapter 4 (Unconditional Characterizations of Zero Knowledge) provides the main
unconditional results of this dissertation, which were highlighted in Section 1.2. It
does so by establishing an expanded version of Theorem 1.2.4 that gives characteri-
zations of zero-knowledge protocols in terms of the Vadhan condition.

Chapter 5 (Future Research) explores a direction for future research.

Appendix A (Deferred Proofs) presents the proofs that are absent in the main text.

14 CHAPTER 1 / INTRODUCTION

2
� �

A TOUR OF ZERO KNOWLEDGE

In this chapter, we provide the necessary definitions in order to understand our results in
Chapters 3 and 4. In general, unless noted otherwise, we use standard notations from com-
plexity theory and cryptography; Sipser’s textbook [Sip] provides an excellent introduction
to complexity theory, and Vadhan’s survey [Vad2] provides an illuminating introduction to
zero-knowledge proofs and interactive proofs. For a comprehensive reference on the topics
covered in this chapter, we refer the reader to a book by Goldreich [Gol2].

Chapter organization. In Section 2.1, we illustrate the concepts of zero knowledge
through the elegant example of Graph Isomorphism. After that, we review basic com-
plexity theory and cryptographic notions in Section 2.2.

In Section 2.3, we define the various flavors and variants of zero knowledge protocols.
And then, in Section 2.4, we introduce one-way functions and commitments schemes, and
their instance-dependent analogues. We conclude this chapter, in Section 2.5, by showing
that instance-dependent commitments for a language in NP can be used to construct zero-
knowledge protocols for that language.

2.1 An Example: Graph Isomorphism

Recall the algorithmic task of determining whether two graphs are isomorphic from Sec-
tion 1.1. To recap, graphs G and H are isomorphic if the nodes of G may be permuted
so that it is identical to H, and the language

Graph Isomorphism = {(G,H) : G and H are isomorphic} .

We have seen that given an permutation π of the nodes in G, one can easily check if

15

16 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

π(G) = H, in which case, G and H are isomorphic graphs.1 Furthermore, if G and H are
not isomorphic, then no permutation π will give rise to π(G) = H. We classify these types
of languages into the class NP, which is formally defined next.

DEFINITION 2.1.1
A language L is in NP if there exists a deterministic polynomial-time verifier V and a
constant c > 0 satisfying the following two conditions.

I Completeness: for every x ∈ L (valid statement), there exists a string w of length less
than |x|c that makes the verifier accept. In other words, ∃w such that |w| ≤ |x|c and
V (x,w) = 1.

I Soundness: for every x /∈ L (invalid statement), every string w of length less than |x|c

will make the verifier reject. In other words, ∀w such that |w| ≤ |x|c it is the case
that V (x,w) = 0.

We can think of the string w as being supplied by another entity called a prover P . The
reason why we bound the length of w to a polynomial in the length of x is so that V can
check the supplied proof w efficiently.

Note that if we prove that G andH are isomorphic graphs by sending over a permutation
π such that π(G) = H, then the verifier would learnt a reordering of the nodes of G
that makes it equal to H. Hence, is there a way to prove that G and H are isomorphic
graphs in a way that the verifier learns nothing? The answer is yes, and we present the
following zero-knowledge protocol for Graph Isomorphism due to Goldreich, Micali, and
Wigderson [GMW2].

PROTOCOL 2.1.2 �

Zero-knowledge protocol for Graph Isomorphism [GMW2].

Common input: pair of graphs (G,H). (We assume that the number of nodes in G and
H are equal; otherwise, these graphs are not isomorphic.)

Auxiliary input for P : a permutation π such that π(G) = H.

P → V : Select a uniformly random permutation π′ over the nodes of H, and send graph
J = π′(H).

V → P : Send a uniformly random bit c.

P → V : If c = 0, send permutation π′′ = π′ ◦ π. Otherwise, if c = 1, send permutation
π′′ = π′.

V : Accept if c = 0 and π′′(G) = J , or if c = 1 and π′′(H) = J . Otherwise, reject.

� �

1π(G) denotes the graph obtained by reordering the nodes of graph G according to permutation π.

2.1 AN EXAMPLE: GRAPH ISOMORPHISM 17

In the protocol above, it is useful to think of the verifier’s bit c as a challenge for the
prover to show a permutation of G, when c = 0, or a permutation of H, when c = 1, that
makes it match J .

We informally argue the completeness and soundness of Protocol 2.1.2 as follows:

Completeness. If G and H are isomorphic graphs, and the auxiliary input π to P is
such that π(G) = H, then it is straightforward to check that the verifier V will
always accept (with probability 1). Hence, Protocol 2.1.2 is said to have perfect

completeness.

Soundness. On the other hand, if G and H are not isomorphic, then any (cheating) prover
P ∗ will not be able to convince V on both challenges c = 0 and c = 1 after graph
J has been sent over in the first round. This is because in order to convince V on
both c = 0 and c = 1, there must be permutations of both G and H that match J ,
implying that G and H isomorphic—and this is a contradiction. Therefore, in the
case when G and H are not isomorphic, V will reject with probability at least 1/2,
giving a soundness error of 1/2. To reduce the soundness error to 2−k, we can repeat
the protocol, sequentially or in parallel, k times.

Intuitively, verifier in Protocol 2.1.2 learns nothing because all it sees are a randomly
permuted graph J from either G or H, and a permutation π′′ that establishes it. It could
have, without the help of a prover, toss a coin to decide whether to pick graph G or H,
and then randomly permute the chosen graph on its own. To make our intuition precision,
as stated in Section 1.1, this zero-knowledge guarantee of learning nothing is formalized
in [GMR1] by requiring the existence of an efficient algorithm, called a simulator, whose
output is indistinguishable from the verifier’s view of the interaction with the prover, where
the verifier’s view consists of all messages exchanged between the prover and verifier and
the verifier’s random coins. As a first cut, we present a simulator for the honest verifier

that follows the prescribed protocol.

ALGORITHM 2.1.3 �

Simulator S1 for the honest verifier V in Protocol 2.1.2.

Input: pair of graphs (G,H). (As in Protocol 2.1.2, we assume that the number of nodes
in G and H are equal; otherwise, these graphs are not isomorphic.)

1. Select a uniformly random permutation π′ over the nodes of H, and a uniformly
random bit b.

2. If b = 0, output (π′(G), 0, π′). Otherwise, if b = 1, output (π′(H), 1, π′).

� �

18 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

It is important to realize that the simulator is only required to work in the case when
G and H are isomorphic graphs. This is because the prover only provides proofs for valid
statements. With this in mind, we informally argue the honest-verifier zero knowledge
property of Protocol 2.1.2 as follows.

Honest-verifier zero knowledge. With probability 1/2, the verifier’s view in Proto-
col 2.1.2 is (π′(H), 0, π′ ◦ π) = (π′ ◦ π(G), 0, π′ ◦ π), noting that π′ ◦ π is a uniformly
random permutation over the nodes of G (since π′, a uniformly random permutation,
composed with π, a fixed permutation, yields a uniformly random permutation, i.e.,
π′ ◦ π). With the remaining probability of 1/2, the verifier’s view in Protocol 2.1.2 is
(π′(H), 1, π′), where π′ is a uniformly random permutation over the nodes of H.

With the same probabilities, the simulator S1 outputs identical distributions to the
above; namely, with probability 1/2, S1 outputs (π′(G), 0, π′), and with the remaining
probability 1/2, S1 outputs (π′(H), 0, π′), where in both cases, π′ is a uniformly ran-
dom permutation. Therefore, the output of S1 is identically distributed to verifier’s
view in Protocol 2.1.2.

Parties in cryptography are usually malicious; in our case, a malicious verifier could bias
the bit c in hope of learning something, or could base the value of c on the graph J sent
in the first round. To guarantee that no verifiers, even malicious ones, can gain knowledge
from the prover, we present the following simulator that handles arbitrary behaviors of
malicious verifiers.

ALGORITHM 2.1.4 �

Simulator S2 for any malicious verifier V ∗ in Protocol 2.1.2.

Input: pair of graphs (G,H). (As in Protocol 2.1.2, we assume that the number of nodes
in G and H are equal; otherwise, these graphs are not isomorphic.)

1. Select a uniformly random string r so that we can fix the random tape of V ∗ to be r.

2. Select a uniformly random permutation π′ over the nodes of H, and a uniformly
random bit b.

3. If b = 0, set graph J = π′(G). Otherwise, if b = 1, set graph J = π′(H).

4. Let c = V ∗(J ; r).

5. If c = b, then output (J, c, π′, r) and halt. Otherwise, if c 6= b, then output fail.
� �

We informally argue the zero knowledge property (i.e., secure against malicious verifiers)
of Protocol 2.1.2 as follows.

2.2 PRELIMINARIES 19

Zero knowledge (secure against malicious verifiers). We first argue that condition-
ing on simulator S2 not outputting fail, its output is identically distributed to V ∗’s
view of the interaction with the prover in Protocol 2.1.2. This is because, even if graph
J is set as π′(G) by S2, J is still a uniformly random isomorphic copy of H since G
and H are isomorphic graphs. Hence, the first-round message, namely J , produced
by either S2 or P is identically distributed. The second-round message, namely the
bit c, produced by either S2 or V ∗ is also identically distributed conditioned on any
J , since both S2 and V ∗ set the value of c to be equal V ∗(J ; r). The third round
message produced by by either S2 or V ∗ is also identically distributed conditioned on
any J and c, since c = b (we are in the case where S2 does not output fail).

Next, we argue that S2 outputs fail with probability at most 1/2. This is because
the bits c and b are independent, and b is a uniform bit. (The only way V ∗ can
make c be dependent on b is by correlating c with J , but since J does not reveal any
information about b, the values of c and b cannot be correlated.) So the probability
that c 6= b, which corresponds to S2 outputting fail, is exactly 1/2. This probability
can be made exponentially small to 2−k by running the simulator k times.

It is interesting to note that parallel repetition of Protocol 2.1.2 preserves the honest-
verifier zero knowledge property, but does not necessarily preserve the zero knowledge
(against malicious verifiers) property. This is because in the honest verifier case, a sim-
ulator can toss coins and determine the value of c in advance, whereas in the malicious
verifier case, a simulator must guess the value of c. So if the protocol is repeated k times
in parallel, the simulator for a malicious verifier might get all k values of the c’s correctly
only with probability 2−k. This is an exponentially small value and cannot be increased to
a constant by a polynomial number of repetitions. The zero knowledge (against malicious
verifiers) property, however, is preserved under sequential repetition, at a cost of increas-
ing the number of rounds. See Remark 2.3.6 for a further discussion on parallel versus
sequential repetitions in the context of zero-knowledge protocols.

2.2 Preliminaries

2.2.1 Basic notations

Strings. Inputs of an algorithmic task are normally modeled as finite sequences of ele-
ments that come from a finite set. To be precise, we define an alphabet to be any finite set,
a string to be any finite sequence of elements from that alphabet, and a language to be
any set of strings. A computation process is normally thought of as manipulations of bits,
so in this regard, the natural alphabet is the binary alphabet {0, 1}. The binary alphabet
can be used without loss of generality since it is easy to encode strings over a non-binary
alphabet as a binary string without expanding the length of the string too much. At times,

20 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

especially when considering security parameters, we use a unary alphabet, and denote a
unary string of length k as 1k.

Random variables. A random variable, formally stated, is a measurable function map-
ping a probability space into a measurable space. Since we are dealing with only finite spaces
in this dissertation, we can treat a random variable X as a function from a finite set S to
the nonnegative reals R≥0 with the property that

∑
S∈S X(S) = 1. Hence, we can think

of random variable X taking on value S with probability X(S). A random variable X is
uniform over a finite set S if it has equal weights on every element in S, i.e., X(S) = 1/ |S|
for all S ∈ S. Because a random variable can be thought of as representing a probability
distribution, we sometimes use these two terms interchangeably.

We write x ← X to indicate that x is selected according to X. For a subset T of S,
we write x ← T to mean that x is selected according to the uniform random variable over
T . We adopt the convention that when the same random variable occurs several times in
an expression, they refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when x ← X, we have f(x) = x. We write Un to denote the random
variable that is uniform over {0, 1}n.

Polynomially-small and negligible functions. A function µ : N → [0, 1] is polyno-

mially small if µ(n) = n−Ω(1). A function ε : N → [0, 1] is negligible if ε(n) = n−ω(1).
Let neg(n) denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n)
we mean that there exists a negligible function ε(n) such that for every n, f(n) < ε(n)).
Likewise, poly(n) denotes any function f(n) = nO(1).

Probabilistic algorithms. For a probabilistic algorithm A, we write A(x; r) to denote
the output of A on input x and coin tosses r. In this case, A(x) is a random variable
representing the output of A for uniformly selected coin tosses. The term PPT refers
to probabilistic algorithms (i.e., Turing machines) that run in strict polynomial time. A
nonuniform PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite sequence of
strings where |zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the
form (x, z|x|). (The string zn is the called the advice string for A for inputs of length n.)
Nonuniform PPT algorithms are equivalent to (nonuniform) families of polynomial-sized
Boolean circuits.

Statistical measures. The statistical difference, also known as variation distance,
between random variables X and Y taking values in U is defined to be

∆(X,Y) = max
S⊂U
|Pr [X ∈ S]− Pr [Y ∈ S]| .

Random variables X and Y are ε-close if ∆(X,Y) ≤ ε. Conversely, random variables X
and Y are ε-far if ∆(X,Y) > ε. For basic facts about this metric, see [SV, Sec. 2.3].

2.2 PRELIMINARIES 21

Entropy. The entropy of a random variable X is

H(X) = E
x←X

[
− log Pr[X = x]

]
,

where here and throughout all logarithms are of base 2. This notion of entropy corresponds
to Shannon entropy or information entropy in the information theory literature. Intuitively,
H(X) measures the amount of randomness in X on average (in bits). For a worst-case
measure of randomness, the min-entropy of X is most often used, and is defined as

H∞(X) = min
x

[
− log Pr[X = x]

]
.

In general H∞(X) ≤ H(X), but when X is flat (that is, uniform on its support), then
H(X) = H∞(X) = log |Supp(X)|.

2.2.2 Indistinguishability of probability ensembles

Recall that the zero-knowledge guarantee of learning nothing is formalized in [GMR1] by
requiring the existence of an efficient simulator whose output is indistinguishable from the
verifier’s view of the interaction with the prover. Now, we formalize the notion of being
indistinguishable.

DEFINITION 2.2.1
A probability ensemble, or just an ensemble, is a set of random variables {Ax}x∈{0,1}∗ ,
where Ax takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble
samplable if there is a probabilistic polynomial-time algorithm M such that for every x,
the output M(x) is distributed according to Ax.

DEFINITION 2.2.2
Ensembles {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are computationally indistinguishable on I ⊆
{0, 1}∗ if for every nonuniform PPT D, there exists a negligible function ε such that for all
x ∈ I,

|Pr [D(x,Ax) = 1]− Pr [D(x,Bx) = 1]| ≤ ε(|x|) .

Similarly, ensembles {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistinguishable

on I ⊆ {0, 1}∗ if the above is required for all functions D, instead of only nonuniform PPT
ones. Equivalently, {Ax}x∈{0,1}∗ and {Bx}x∈{0,1}∗ are statistically indistinguishable on I if
and only if Ax and Bx are ε(|x|)-close for some negligible function ε and all x ∈ I. We use
≈c and ≈s to denote computational and statistical indistinguishability, respectively.

22 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

2.2.3 Promise problems

In Section 1.1, we mentioned that a language L can be thought of as defining the following
algorithmic task: given a string x, determine if x ∈ L or x /∈ L.

We now consider a wider class of algorithmic tasks than those represented by languages.
Specifically, we allow some input strings to be excluded. This new algorithmic task is
formalized by a promise problem [ESY], which is specified by two disjoint sets of strings
Π = (ΠY,ΠN), where ΠY is the set of YES instances and ΠN is the set of NO instances.
Such a promise problem is associated with the following algorithmic task: given an input
string that is promised to lie in ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN. Note that
languages are a special case of promise problems (namely, a language L over alphabet Σ
corresponds to the promise problem (L,Σ∗ \ L)). Thus working with promise problems
makes our results more general. Moreover, even to prove our results just for languages, it
turns out to be extremely useful to work with promise problems along the way.

The complement of a promise problem Π = (ΠY,ΠN) is the promise problem Π =
(ΠN,ΠY). The union of two promise problems Π and Γ is the promise problem Π ∪ Γ =
(ΠY ∪ ΓY,ΠN ∩ ΓN). The intersection of two promise problems Π and Γ is the promise
problem Π ∩ Γ = (ΠY ∩ ΓY,ΠN ∪ ΓN). A class of promise problems is a set of promise
problems. If C is a class of promise problems, then the complement class is defined as
co-C = {Π : Π ∈ C}.

Most complexity classes, typically defined as classes of languages, extend to promise
problems in a natural way, by translating conditions on inputs in the language to be
conditions on YES instances, and conditions on inputs not in the language to be con-
ditions on NO instances. For example, a promise problem Π is in BPP if there is a
probabilistic polynomial-time algorithm A such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and
x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3.

A promise problem Π = (ΠY,ΠN) polynomial-time reduces, or just reduces, to
another promise problem Γ = (ΓY,ΓN) if there is a polynomial-time computable function
f satisfying f(x) ∈ ΓY for every x ∈ ΠY and f(x) ∈ ΓN for every x ∈ ΠN. That is, we work
with polynomial-time mapping reductions (i.e., Karp reductions), unless otherwise specified.
If Π reduces to Γ and vice versa, then Π and Γ are polynomial-time equivalent. If C
is a class of promise problems, then Π is complete for C (or C-complete) if Π ∈ C and
every promise problem in C reduces to Π.

REMARK 2.2.3
Some theoretical computer science papers do make a distinction between BPP, the class
of languages that are decidable in probabilistic polynomial time, and prBPP, the promise
variant of BPP. This is mainly because their results do not apply to both classes: for
example, prBPP = prP implies BPP = P, but the converse is not known.

We, however, do not make this distinction because all our results apply to promise

2.3 ZERO-KNOWLEDGE PROTOCOLS 23

classes as well as classes of languages. Hence, throughout this dissertation, all complexity
classes are classes of promise problems. In addition, we often use the term problem Π to
mean the promise problem Π.

2.3 Zero-Knowledge Protocols

Our goal in this section is to build up the necessary machinery to understand the various
flavors and variants of zero-knowledge protocols. Throughout our discussions, it will be
helpful to keep the example of Graph Isomorphism from Section 2.1 in mind.

2.3.1 Interactive proofs and interactive arguments

In Protocol 2.1.2 for Graph Isomorphism the prover exchange messages with the verifier
in order to prove that the two graphs are isomorphic. We model this interaction between
the prover and verifier in a setting of an interactive protocol.

DEFINITION 2.3.1
An interactive protocol (A,B) consists of two algorithms A and B that compute the next-
message function of the (honest) parties in the protocol. Specifically, for even values of k,
A(x, a,m1, . . . ,mk; rA) denotes the next message mk+1 sent by party A when the common
input is x, A’s auxiliary input is a, A’s coin tosses are rA, and the messages exchanged so
far are m1, . . . ,mk. Analogously for party B, B(x, b,m1, . . . ,mk; rB), for odd values of k,
denotes the next message mk+1 sent by party B when the common input is x, B’s auxiliary
input is b, B’s coin tosses are rB, and the messages exchanged so far are m1, . . . ,mk. There
are two special messages, accept and reject, which immediately halt the interaction.

Party A (resp. B) is polynomial-time computable if its next-message function can
be computed in polynomial time (in |x|+ |a|+ |m1|+ · · ·+ |mk|).

The number of rounds in an execution of the protocol is the total number of messages
exchanged between A and B, not including the final accept/reject message.

Interactive protocol (A,B) is public coin if all of the messages sent by B are simply the
output of its coin-tosses (independent of the history), except for the final accept/reject
message which is computed as a deterministic function of the transcript. (Such protocols
are also sometimes known as Arthur-Merlin games [BM].)

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random pro-
cess obtained by having A and B interact on common input x, (private) auxiliary inputs a
and b to A and B, respectively (if any), and independent random coin tosses for A and B.
We call (A,B) polynomially bounded if there is a polynomial p such that for all x, a, b, the
total length of all messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability
1. Moreover, for any algorithm B∗, A will immediately halt and reject in (A(a), B∗(b))(x)

24 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

if the total length of the messages ever exceeds p(|x|), and similarly for B interacting with
any A∗.

View of the interaction. To denote A’s view of the interaction, we use random
variable viewA(A(a), B(b))(x) to mean (x, a,m1,m2, . . . ,mt, rA), where the mi’s are all
the messages exchanged and rA is A’s coin tosses. Similarly, to denote B’s view of the
interaction, we use random variable viewB(A(a), B(b))(x) to mean (x, b,m1,m2, . . . ,mt, rB),
where the mi’s are all the messages exchanged and rB is B’s coin tosses. When dealing with
interactive protocols (P, V) involving a prover P and a verifier V , it is common to write
〈P, V 〉(x) to denote V ’s view of the interaction, that is 〈P, V 〉(x) = viewV (P, V)(x).

Transcripts and outputs. A transcript of interactive protocol (A,B), denoted by the
random variable transcript(A(a), B(b))(x), is the messages exchanged in the protocol includ-
ing the common input x, i.e., (x,m1,m2, . . . ,mt). Let random variables outputA(A(a), B(b))
and outputB(A(a), B(b))(x) denote A’s and B’s private output after the interaction, re-
spectively. At times, we will refer to protocols with a joint output; such an output is specified
by a deterministic, polynomial-time computable function of the messages exchanged.

Statistical versus computational soundness. Recall that in Section 1.1, we discussed
two flavors of soundness: statistical soundness, giving rise to interactive proof sys-

tems, where even a computationally unbounded prover cannot convince the verifier of a
false statement, and computational soundness, giving rise to interactive argument

systems [BCC], where we only require that an efficient, probabilistic polynomial-time
prover cannot convince the verifier of a false statement.

First, we give a formal definition of statistical soundness, which gives rise to interactive
proof systems.

DEFINITION 2.3.2
An interactive protocol (P, V) is an interactive proof system for a promise problem Π
if exist functions c, s : N → [0, 1] such that 1 − c(n) > s(n) + 1/poly(n) and the following
conditions hold.

I Efficiency : (P, V) is polynomially bounded, and V is polynomial-time computable.

I Completeness: if x ∈ ΠY, then V accepts in (P, V)(x) with probability at least
1− c(|x|),

I Statistical soundness: if x ∈ ΠN, then for every P ∗, V accepts in (P ∗, V)(x) with
probability at most s(|x|).

We call c(·) the completeness error and s(·) the soundness error. Interactive protocol
(P, V) has negligible error if both c and s are negligible; it has perfect completeness

if c = 0.

2.3 ZERO-KNOWLEDGE PROTOCOLS 25

Let IP be the class of promise problems possessing interactive proof systems. An equiva-
lent definition of IP is the class of problems possessing public-coin interactive proof systems
with perfect completeness and negligible soundness error [GS, FGM+].

Let MA be the class of promise problems possessing single-round interactive proof sys-
tems: in such protocols, the prover P sends a single message to V , and V decides whether
to accept or reject based on the prover’s message and its own random coins. Thus, we can
think of MA as a generalization of NP where the verification of witnesses is probabilistic.

Remark. Protocol 2.1.2 for Graph Isomorphism is an interactive proof system with
perfect completeness and soundness error 1/2.

Next, we give a formal definition of computational soundness, which gives rise to inter-
active argument systems.

DEFINITION 2.3.3
An interactive protocol (P, V) is an interactive argument system for Π if the soundness
condition in Definition 2.3.2 holds against all nonuniform PPT P ∗, instead of every, even
computationally unbounded, P ∗. Specifically, we require interactive argument systems to
satisfy both the efficiency and the completeness conditions in Definition 2.3.2, and to satisfy
a weaker, computational soundness condition below.

I Computational soundness: if x ∈ ΠN, then for every nonuniform PPT P ∗, V accepts
in (P ∗, V)(x) with probability at most s(|x|).

Let IA be the class of promise problems possessing interactive argument systems.

Unlike interactive proofs, the complexity-theoretic aspects of IA are not well-studied.
In particular, we do not know if general interactive arguments can be made to have public
coin or to have perfect completeness. The completeness and soundness error, however, can
be made negligibly small by sequential repetition.

2.3.2 Efficient provers

Although we define interactive arguments without restricting the computational resource
the honest prover P , it is natural to do since the cheating provers P ∗ are restricted to be
PPT. Hence, interactive arguments are most interesting when considering problems in NP,
because for these problems, we can restrict the honest prover to be PPT given a witness of
membership. To formalize this idea, we define witness relations for problems in NP.

Recall that NP, informally stated, is the class of problems that can be verified in polyno-
mial time given a valid witness. To formally define the relationship between an instance and
its corresponding valid witnesses, we consider a relation W and say that W is polynomial

26 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

time if deciding whether an element is in W can be done in polynomial time in the length
of the first component of the input (this is typically the length of the problem instance).
With this in mind, a problem Π = (ΠY,ΠN) is in NP if there exist a polynomial-time binary
relation W ⊆ {0, 1}∗ × {0, 1}∗ such that the following two conditions hold:

I for every x ∈ ΠY, there exists a w with (x,w) ∈W ;

I for every x ∈ ΠY, and for every w, it is the case that (x,w) /∈W .

Any polynomial-time binary relation W that satisfies the above two conditions is said to
be an NP-relation for the problem Π.

For MA, the probabilistic analog of NP, we generalize the relation W to allow for
randomness; specifically, we expand the domain of W ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. To
relate it with the NP case above, we abuse notation and write (x,w) ∈W if Prr[(x,w, r) ∈
W] ≥ 2/3, and write (x,w) /∈ W if Prr[(x,w, r) ∈ W] ≤ 1/3. Then, a problem Π =
(ΠY,ΠN) ∈ MA if there exist a polynomial-time relation W ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗

such that the following two conditions hold:

I for every x ∈ ΠY, there exists a w with (x,w) ∈W , namely Prr[(x,w, r) ∈W] ≥ 2/3;

I for every x ∈ ΠY, and for every w, it is the case that (x,w) /∈W , namely Prr[(x,w, r) ∈
W] ≤ 1/3.

Any polynomial-time relation W that satisfies the above two conditions is said to be an
MA-relation for the problem Π.

In an interactive protocol (P, V) for problem Π ∈ NP [resp., Π ∈ MA], prover P is an
efficient prover if its strategy on problem instance x is computable in polynomial time
given w as auxiliary input, where (x,w) ∈W and W is an NP-relation [resp., MA-relation]
for Π. When this is the case, protocol (P, V) is said to have an efficient prover. By allowing
the relation W to be more general, we could have defined the notion of efficient prover to
languages outside MA. Nevertheless, we did not do so since efficient provers can be defined,
without loss of generality, only for problems in MA [BD, BLV].

Remark. Protocol 2.1.2 for Graph Isomorphism has an efficient prover.

2.3.3 Flavors and variants of zero knowledge

Recall that in Section 1.1, we discussed the two flavors of zero knowledge: statistical

zero knowledge, where the zero-knowledge condition holds regardless of the computational
resources the verifier invests into trying to learn something from the interaction (except
with negligible probability), and computational zero knowledge, we only require that

2.3 ZERO-KNOWLEDGE PROTOCOLS 27

efficient, probabilistic polynomial-time verifiers learn nothing from the interaction.2 For
each of these flavors, there are several variants of zero knowledge, referring to how rich a
class of verifier strategies are considered.

Honest-verifier zero knowledge

We start with the weakest variant of zero knowledge, where only the honest verifier that
follows the prescribed strategy is guaranteed to learning nothing.3

DEFINITION 2.3.4
An interactive proof system (P, V) for a promise problem Π is statistical [resp., compu-

tational] honest-verifier zero knowledge if there exists a probabilistic polynomial-time
simulator S such that the ensembles {〈P, V 〉(x)} and {S(x)} are statistically [resp., com-
putationally] indistinguishable on the set ΠY.

HV-SZKP and HV-CZKP denote the classes of promise problems have honest-verifier
statistical and computational zero-knowledge proofs, respectively. Analogously, HV-SZKA
and HV-CZKA denote the classes of promise problems have honest-verifier statistical and
computational zero-knowledge arguments, respectively.

Malicious-verifier, auxiliary-input zero knowledge

While honest-verifier zero knowledge is already a nontrivial and interesting notion, cryp-
tographic applications usually require that the zero-knowledge condition holds even if a
malicious verifier deviates arbitrarily from the specified protocol. This is captured by
the following definition.

DEFINITION 2.3.5
An interactive proof system (P, V) for a promise problem Π is statistical [resp., com-

putational] auxiliary-input zero knowledge4 if for every PPT V ∗ and polynomial p,
there exists a PPT S such that the ensembles {〈P, V ∗(z)〉(x)} and {S(x, z)} are statistically

2There is a third flavor of zero knowledge which is the strongest of all: perfect zero knowledge, where
the verifier cannot learn anything even with negligible probability. In this dissertation, we do not study
the distinction between perfect zero knowledge and statistical zero knowledge. See Section 2.3.4 for a more
detailed discussion.

3This is an instantiation of what is called an honest-but-curious adversary or passive adversary in the
literature on cryptographic protocols.

4Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to, the
definition in the textbook [Gol2]. We allow V ∗ to run in polynomial time in the lengths of both its input
x and its auxiliary input z, but put a polynomial bound on the length of the auxiliary input. In [Gol2, Sec
4.3.3], V ∗ is restricted to run in time that is polynomial in just the length of the input x, and no bound is
imposed on the length of the auxiliary input z (so V ∗ may only be able to read a prefix of z). The purpose of
allowing the auxiliary input to be longer than the running time of z is to provide additional nonuniformity
to the distinguisher (beyond that which the verifier has); we do this directly by allowing the distinguisher
to be nonuniform in Definition 2.2.2.

28 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

[resp., computationally] indistinguishable on the set {(x, z) : x ∈ ΠY, |z| = p(|x|)}.
SZKP and CZKP are the classes of promise problems possessing statistical and computa-

tional auxiliary-input zero-knowledge proofs, respectively. Analogously, SZKA and CZKA
are the classes of promise problems possessing statistical and computational auxiliary-input
zero-knowledge arguments, respectively. To avoid cumbersome terminologies, we often drop
the prefix “auxiliary input” and just use zero knowledge to mean auxiliary-input zero
knowledge.

REMARK 2.3.6
The auxiliary input z in the above definition allows one to model a priori information that
the verifier may possess before the interaction begins, such as from earlier steps in a larger
protocol in which the zero-knowledge proof is being used or from prior executions of the same
zero-knowledge proof. As a result, auxiliary-input zero knowledge is closed under sequential
composition. That is, if an auxiliary-input zero-knowledge proof is repeated polynomially
many times sequentially, then it remains auxiliary-input zero knowledge [GO]. Plain zero
knowledge (i.e., without auxiliary inputs) is not closed under sequential composition [GK2],
and thus auxiliary-input zero knowledge is the definition typically used in the literature.
We caution that parallel repetition does not, in general, preserve the (auxiliary input) zero
knowledge property [GK2, FS].

Black-box zero knowledge

Typically, a protocol is proven to be zero knowledge by actually exhibiting a single, universal
simulator that simulates an arbitrary verifier strategy V ∗ by using V ∗ as a subroutine. That
is, the simulator does not depend on or use the code of V ∗ (or its auxiliary input), and
instead only requires black-box access to V ∗. This type of simulation is formalized as follows.

DEFINITION 2.3.7
An interactive proof system (P, V) for a promise problem Π is statistical [resp., compu-

tational] black-box zero knowledge if there exists an oracle PPT S such that for every
nonuniform PPT V ∗, the ensembles {〈P, V ∗〉(x)} and {SV ∗(x,·;·)(x)} are statistically [resp.,
computationally] indistinguishable on the set ΠY.

Remark. Protocol 2.1.2 for Graph Isomorphism is statistical black-box zero knowledge
since its simulator S2 in Algorithm 2.1.4 only requires black-box access to the malicious
verifier V ∗, and outputs transcripts that are statistically indistinguishable from V ∗’s view
of the interaction with the prover.

Even though the above Definition 2.3.7 does not explicitly refer to an auxiliary in-
put, the definition encompasses auxiliary-input zero knowledge because we allow V ∗ to be

2.3 ZERO-KNOWLEDGE PROTOCOLS 29

nonuniform (and thus the auxiliary input can be hardwired in V ∗ as advice). The work
of Barak [Bar] demonstrated that non-black-box zero-knowledge arguments can achieve
properties (such as simultaneously being public coin, having a constant number of rounds,
and having negligible error) that were known to be impossible for black-box zero knowl-
edge [GK2]. Nevertheless, our results will show that, when ignoring round efficiency consid-
erations, black-box zero knowledge is as rich as auxiliary-input zero knowledge; for example,
in Chapter 4, we show that every problem in CZKA has a black-box computational zero-
knowledge argument system.

2.3.4 Remarks on the definitions

Our definitions mostly follow the now-standard definitions of zero-knowledge proof and
argument systems as presented in [Gol2], but we highlight the following points.

1. Prover complexity : interactive proofs and interactive arguments, and their zero-
knowledge analogues, allow the honest prover to be computationally unbounded, un-
less we specify efficient prover. It was shown by Nguyen and Vadhan [NV] that for
problems in NP (actually, also MA), any zero-knowledge proof system with an un-
bounded prover can be transformed into one with an efficient prover; we will show the
same for argument systems.

2. Promise problems: as has been done numerous times before (e.g., [GK3, SV]), we
extend all of the definitions to promise problems Π = (ΠY,ΠN) in the natural way, i.e.,
conditions previously required for inputs in the language (e.g., completeness and zero
knowledge) are now required for all YES instances, and conditions previously required
for inputs not in the language (e.g., soundness) are now required for all NO instances.
Similarly, all of our complexity classes (e.g., CZKA, SZKP and BPP) are classes of
promise problems. These extensions to promise problems are essential for formalizing
our arguments, but all the final characterizations and results we derive about CZKA
automatically hold for the corresponding class of languages, simply because languages
are a special case of promise problems.

3. Nonuniform formulation: as has become standard, we have adopted a nonuniform
formulation of zero knowledge, where the computational indistinguishability has to
hold even with respect to nonuniform distinguishers and is universally quantified over
all YES instances. Uniform treatments of zero knowledge are possible (see [Gol1] and
[BLV, Apdx.A]), but the definitions are much more cumbersome. We do not know
whether analogues of our results hold for the uniform formulation of zero knowledge,
and leave that as a problem for future work.

4. Strict polynomial-time simulators: we restrict our attention to zero knowledge with
respect to simulators that run in strict polynomial time; in Definitions 2.3.4, 2.3.5,

30 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

and 2.3.7, the simulator is PPT, which means that in runs in strict polynomial time.
The original Goldwasser, Micali, and Rackoff definition, however, allows the running
time of the simulator to be expected polynomial time; we say that random variable Xn

is expected polynomial if E[Xn] = poly(n). We prefer the strict polynomial time
definition of zero knowledge, because as pointed out by Levin [Lev], the definition of
expected polynomial time is dependent on the model of computation and does not
compose well.5

5. Perfect versus statistical zero knowledge: A third flavor of zero knowledge proposed
by [GMR1], which is the strongest of all, is perfect zero knowledge. This is where
all verifiers cannot learn anything even with negligible probability; that is, the output
of the simulator is required to be identically distributed to the view of the verifier.
Refer to [Gol2, Def. 4.3.1] for a formal definition of perfect zero knowledge.

In this dissertation, we do not study the distinction between perfect zero knowledge
and statistical zero knowledge. We note that perfect zero knowledge is a fragile
property to manipulate and could depend on the model of computation. For instance,
Protocol 2.1.2, the zero-knowledge protocol for Graph Isomorphism, is perfect zero
knowledge with perfect completeness only if we assume that the prover is able to
uniformly select a random permutation. In a model of probabilistic computation with
random bits, selecting a uniform permutation can be achieved only by allowing for a
negligible probability of failure. (This is because the total possible permutations over
n elements, which is n!, is not a power of 2.) Nevertheless, by considering statistical
zero knowledge, we are able to absorb this negligible probability of failure into the
statistical difference between the output of the simulator and the view of the verifier,
and hence achieve a statistical zero knowledge proof system for Graph Isomorphism

with perfect completeness.

Furthermore, if we insist on perfect zero knowledge, the malicious-verifier simulator
for Protocol 2.1.2, such as the one in Algorithm 2.1.4, must be allowed to fail with
small probability; no efficient simulator is known to be able to output a distribution
that is identical to the verifier’s view of the interaction in Protocol 2.1.2 without
failing [Gol2, Sect. 4.3.1.1]. Again by considering statistical zero knowledge, we are
able to absorb this small probability of failure into the statistical difference between
the output of the simulator and the view of the verifier, and obtain a simulator that
does not need to fail.

5For instance, if Xn is expected polynomial time, it is not necessarily the case that X2
n is expected

polynomial time. A counterexample is Xn equaling 2n with probability 2−n and 1 otherwise.

2.4 CRYPTOGRAPHIC PRIMITIVES AND INSTANCE-DEPENDENT ANALOGUES 31

2.4 Cryptographic Primitives and Instance-Dependent

Analogues

In this section, we give formal definitions of one-way functions and commitment schemes,
and their instance-dependent analogues.

2.4.1 One-way functions

The most basic primitive of modern cryptography is a one-way function, which are functions
that are easy to compute but hard to invert.

DEFINITION 2.4.1
Let s : N→ N be any function. A function f : {0, 1}∗ → {0, 1}∗ is a s(n)-secure one-way

function, or equivalently has security s(n), if f is computable in polynomial time and
for every nonuniform PPT A,

Pr
y←{0,1}n

[A(1n, f(y)) ∈ f−1(f(y))] < 1/s(n),

for all sufficiently large n. Function f is a one-way function if f is s(n)-secure for every
polynomial s.

Without loss of generality, we can consider only one-way functions that are length-
preserving, that is for all y ∈ {0, 1}∗, |f(y)| = |y|. This is because general one-way functions
can be converted into ones that are length-preserving (cf., [Gol2, p. 39]).

One-way function f is a regular one-way function with preimage size g(n) if there
exists a function g : N→ N such that ∀z ∈ Supp(f(Un)), |{y ∈ {0, 1}n : f(y) = z}| = g(n).

2.4.2 Commitment schemes

Another basic primitive of modern cryptography is a (bit) commitment scheme, which is
a two-stage protocol between a sender and a receiver. In the first stage, called the commit

stage, the sender commits to a private bit b. In the second stage, called the reveal stage,
the sender reveals b and proves that it was the bit to which she committed in the first
stage. We require two properties of commitment schemes. The hiding property says that
the receiver learns nothing about b in the commit stage. The binding property says that
after the commit stage, the sender is bound to a particular value of b; that is, she cannot
successfully open the commitment to two different bits in the reveal stage.

32 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

DEFINITION 2.4.2
An commitment scheme is an interactive protocol Com = (S,R) with the following
properties:

1. Scheme Com proceeds in two stages: a commit stage and a reveal stage. In both
stages, the sender S and the receiver R receive a security parameter 1n as common
input.

2. At the beginning of the commit stage, sender S receives a private input b ∈ {0, 1},
which denotes the bit that S is supposed to commit to. At the end of the commit
stage, both sender S and receiver R output a commitment string c.

3. In the reveal stage, sender S sends a pair (b, d), where d is the decommitment string
for bit b. Receiver R accepts or rejects based on b, d, and c.

4. The sender S and receiver R algorithms are computable in polynomial time in the
security parameter n.

5. R will always accept (with probability 1) if both sender S and receiver R follow their
prescribed strategy.

A commitment scheme is public coin if all messages sent by the receiver are independent
random coins.

Next, we define the hiding and binding properties of commitment schemes.

DEFINITION 2.4.3
Commitment scheme Com = (S,R) is statistically [resp., computationally] hiding

if for every [resp., nonuniform PPT] R∗, the ensembles {viewR∗(S(0), R∗)(1n)}n∈N and
{viewR∗(S(1), R∗)(1n)}n∈N are statistically [resp., computationally] indistinguishable, where
viewR∗(S(b), R∗) denotes the view of R∗ in the commit stage interacting with S(b).

DEFINITION 2.4.4
Commitment scheme Com = (S,R) is statistically [resp., computationally] binding

if for every [resp., nonuniform PPT] S∗, there exists a negligible function ε such that the
malicious sender S∗ succeeds in the following game with probability at most ε(n):

On security parameter 1n, S∗ interacts with R in the commit stage obtaining
commitment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the
reveal stage, R(0, d0, c) = R(1, d1, c) = accept.

In the two next subsections—Sections 2.4.3 and 2.4.4—we consider analogues of one-way
functions and commitments scheme that can depend on the problem instance.

2.4 CRYPTOGRAPHIC PRIMITIVES AND INSTANCE-DEPENDENT ANALOGUES 33

2.4.3 Instance-dependent one-way functions

It will be useful for us to work with cryptographic primitives that may depend on an instance
x of a problem Π = (ΠY,ΠN), and where the security condition will hold only if x is in
some particular set I ⊆ {0, 1}∗. Indeed, recall that the Vadhan condition (Definition 1.2.3)
refers to such a variant of of one-way functions, as captured by Definition 2.4.6 below.

To define instance-dependent one-way functions, we will need to define what it means
for a function to be instance dependent.

DEFINITION 2.4.5
An instance-dependent function is a family F = {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗ ,
where n(·) and m(·) are polynomials. We call F polynomial-time computable if there
is a deterministic polynomial-time algorithm F such that for every x ∈ {0, 1}∗ and y ∈
{0, 1}n(|x|), we have F (x, y) = fx(y).

To simplify notation, we often write fx : {0, 1}n(|x|) → {0, 1}m(|x|) to mean the instance-
dependent function {fx : {0, 1}n(|x|) → {0, 1}m(|x|)}x∈{0,1}∗ .

DEFINITION 2.4.6
For any set I ⊆ {0, 1}∗, a polynomial-time computable instance-dependent function
fx : {0, 1}n(|x|) → {0, 1}m(|x|) is an instance-dependent one-way function on I if for
every nonuniform PPT adversary A, there exists a negligible function ε such that for every
x ∈ I,

Pr
y←{0,1}n(|x|)

[
A(x, fx(y)) ∈ f−1

x (fx(y))
]
≤ ε(|x|) .

Next we consider an instance-dependent variant of distributionally one-way functions,
which are functions that are hard for PPT adversaries to invert in a distributional manner—
that is, given y it is hard for PPT adversaries to output a random preimage f−1(y).
The standard definition of distributionally one-way function is given by Impagliazzo and
Luby [IL]; here we give the instance-dependent analogue.

DEFINITION 2.4.7
For any set I ⊆ {0, 1}∗, a polynomial-time computable instance-dependent function
fx : {0, 1}n(|x|) → {0, 1}m(|x|) is an instance-dependent distributionally one-way func-

tion on I if there exists a polynomial p(·) such that for every nonuniform PPT adversary
A, the random variables (Un(|x|), fx(Un(|x|))) and (A(fx(Un(|x|))), fx(Un(|x|))) are 1/p(|x|)-far
for all sufficiently long x ∈ I.

Asking to invert in a distributional manner is a stronger requirement that just finding
a preimage, therefore distributionally one-way functions might seem weaker than one-way

34 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

functions. Impagliazzo and Luby [IL], however, proved that they are in fact equivalent. Like
almost all reductions between cryptographic primitives, this result immediately extends to
the instance-dependent analogue (using the same proof).

PROPOSITION 2.4.8
(Based on [IL, Lem. 1].) For every set I ⊆ {0, 1}∗, there exists an instance-dependent one-way

function on I if and only if there exists an instance-dependent distributionally one-way function

on I.

2.4.4 Instance-dependent commitment schemes

Recall the standard definition of the commitment schemes from Section 2.4.2. Instance
dependent analogues of commitments schemes are commitments schemes that are tailored
specifically to a specific problem Π. More precisely, instance-dependent commitment

schemes [BMO, IOS, MV] receive an instance x of the problem Π as auxiliary input, and
are required to be hiding when x ∈ ΠY and be binding when x ∈ ΠN.6 Thus, they are a
relaxation of standard commitment schemes, since we do not require that the hiding and
binding properties hold at the same time. Nevertheless, as observed in [IOS], this relaxation
is still useful in constructing zero-knowledge protocols. The reason is that zero-knowledge
protocols based on commitments (for example, the protocol of [GMW2]) typically use only
the hiding property in proving zero knowledge (which is required only when x is a YES
instance) and use only the binding property in proving soundness (which is required only
when x is a NO instance).

We give a definition of instance-dependent commitment schemes that extends the stan-
dard (that is, non-instance dependent) definition of commitment schemes in a natural way.
Note that in our definition below, the reveal stage is noninteractive (that is, consisting of a
single message from the sender to the receiver). This because in the reveal stage, without
loss of generality, we can have the sender provide the receiver the random coin tosses it
used in the commit stage, and the receiver verifies consistency.

DEFINITION 2.4.9
An instance-dependent commitment scheme is a family {Comx}x∈{0,1}∗ with the fol-
lowing properties:

1. Scheme Comx proceeds in two stages: a commit stage and a reveal stage. In both
stages, the sender and receiver receive instance x as common input, and hence we
denote the sender and receiver as Sx and Rx, respectively, and write Comx = (Sx, Rx).

6There were various terms used to describe instance-dependent commitment schemes. Itoh, Ohta, and
Shizuya [IOS] called these language-dependent cryptographic primitives, Micciancio and Vadhan [MV] called
these problem-dependent commitment schemes, and the present usage traces to Vadhan [Vad3].

2.4 CRYPTOGRAPHIC PRIMITIVES AND INSTANCE-DEPENDENT ANALOGUES 35

2. At the beginning of the commit stage, sender Sx receives a private input b ∈ {0, 1},
which denotes the bit that S is supposed to commit to. At the end of the commit
stage, both sender Sx and receiver Rx output a commitment c.

3. In the reveal stage, sender Sx sends a pair (b, d), where d is the decommitment string
for bit b. Receiver Rx accepts or rejects based on x, b, d, and c.

4. The sender Sx and receiver Rx algorithms are computable in polynomial time (in |x|),
given x as auxiliary input.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both sender Sx

and receiver Rx follow their prescribed strategy.

Instance-dependent commitment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ is public coin if for
every x ∈ {0, 1}∗, all messages sent by Rx are independent random coins.

To simplify notation, we write Comx or (Sx, Rx) to denote instance-dependent commit-
ment scheme {Comx = (Sx, Rx)}x∈{0,1}∗ .

The hiding and binding properties of standard commitments—stated in Definitions 2.4.3
and 2.4.4—extend in a natural way to their instance-dependent analogues.

DEFINITION 2.4.10
Instance-dependent commitment scheme Comx = (Sx, Rx) is statistically [resp., compu-

tationally] hiding on I ⊆ {0, 1}∗ if for every [resp., nonuniform PPT] R∗, the ensembles
{viewR∗(Sx(0), R∗)}x∈I and {viewR∗(Sx(1), R∗)}x∈I are statistically [resp., computation-
ally] indistinguishable, where random variable viewR∗(Sx(b), R∗) denotes the view of R∗

in the commit stage interacting with Sx(b). For a problem Π = (ΠY,ΠN), an instance-
dependent commitment scheme Comx for Π is statistically [resp., computationally]

hiding on the YES instances if Comx is statistically [resp., computationally] hiding on
ΠY.

DEFINITION 2.4.11
Instance-dependent commitment scheme Comx = (Sx, Rx) is statistically [resp., compu-

tationally] binding on I ⊆ {0, 1}∗ if for every [resp., nonuniform PPT] S∗, there exists
a negligible function ε such that for all x ∈ I, the malicious sender S∗ succeeds in the
following game with probability at most ε(|x|).

S∗ interacts with Rx in the commit stage obtaining commitment c. Then S∗

outputs pairs (0, d0) and (1, d1), and succeeds if in the reveal stage, Rx(0, d0, c) =
Rx(1, d1, c) = accept.

For a problem Π = (ΠY,ΠN), an instance-dependent commitment scheme Comx for Π
is statistically [resp., computationally] binding on the NO instances if Comx is
statistically [resp., computationally] binding on ΠN.

36 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

For concreteness, we present an instance-dependent commitment scheme for the Graph

Isomorphism problem (cf., [BMO, IOS]).

ALGORITHM 2.4.12 �

Instance-dependent commitment scheme for Graph Isomorphism.

Problem instance: A pair of graphs (G0, G1) (this corresponds to pair (G,H) in the
definition of Graph Isomorphism presented in Section 2.1.)

Commit stage: to commit to a bit b, sender S(G0,G1) selects a uniformly random permu-
tation π over the nodes of Gb, and sends as commitment the graph J = π(Gb) to the
receiver.

Reveal stage: sender S(G0,G1) sends (b, π) to the receiver. Receiver R(G0,G1) accepts if
π(Gb) = J , and rejects otherwise.

� �

This instance-dependent commitment scheme for Graph Isomorphism is statistically
hiding on the YES instances, and statistically binding on the NO instances. For a YES
instance (G0, G1) ∈ Graph Isomorphism, a commitment to b is a uniformly random
permutation over the nodes of Gb. Since G0 and G1 are isomorphic, the commitments to 0
and 1 are identically distributed, thus yielding the statistical hiding (in fact, perfect hiding)
property. For a NO instance (G0, G1) /∈ Graph Isomorphism, a commitment to b is also a
uniformly random permutation over the nodes of Gb. In this case, however, G0 and G1 are
not isomorphic, so distributions of the commitments to 0 and 1 are disjoint. (If not, there
will exist permutations π and π′ such that π(G0) = π′(G1), contradicting the assumption
that G0 and G1 are isomorphic graphs.) This yields the statistical binding (in fact, perfect
binding) property.

As demonstrated by this Graph Isomorphism example, instance-dependent commit-
ments have an edge over standard commitments because they can be both statistically
hiding and statistically binding, and they can be obtained unconditionally; in Section 3.6
and Chapter 4, we prove that instance-dependent commitments can be obtained uncondi-
tionally from every problem having zero-knowledge protocols. On the other hand, standard
commitment schemes do require computational assumptions, and we will see this connection
next.

Constructing standard commitments based on any one-way function

Naor [Nao] constructed computationally-hiding and statistically-binding commitments from
any pseudorandom generator, which in turn can be based on any one-way function [HILL].
The combined results of [Nao, HILL] is viewed as settling the complexity of computationally-
hiding and statistically-binding commitments because the existence of one-way functions is
the minimal complexity assumption needed for these commitments [IL].

2.5 ZERO-KNOWLEDGE PROTOCOLS FROM INSTANCE-DEPENDENT COMMITMENTS 37

PROPOSITION 2.4.13
(From [Nao, HILL].) If one-way functions exist, then there exist commitment schemes that are

computationally hiding and statistically binding. Moreover, the instance-dependent commitment

scheme obtained is public coin and constant round.

It turns out that the statistical binding property of Naor’s scheme does not depend
on the one-way security of the function. Thus, we can construct an instance-dependent
commitment scheme from any instance-dependent function such that the scheme is always
statistically binding, but is guaranteed to be computationally hiding only on the instances
where the function is hard to invert. This is stated in the following proposition, which can
be viewed as an instance-dependent formulation of Proposition 2.4.13.

PROPOSITION 2.4.14
(Follows from [Nao, HILL].) For every set K ⊆ {0, 1}∗, if there is an instance-dependent one-

way function on K, then problem (K,K) has an instance-dependent commitment scheme that is

computationally hiding on the YES instances (namely, instances in K), and statistically binding

on the NO instances (namely, instances in K). Moreover, the instance-dependent commitment

scheme obtained is public coin and constant round.

In Chapter 3, we derive analogous results for the construction of statistically-hiding
and computationally-binding commitments from one-way functions (see Theorem 3.0.4 and
Proposition 3.5.44).

2.5 Zero-Knowledge Protocols from Instance-Dependent

Commitments

In this section, we formalize what we informally concluded at the end of Section 1.1, which
is that having an instance-dependent commitment scheme for a problem Π ∈ NP is sufficient
to unconditionally construct a zero-knowledge protocol for Π.

Following Itoh, Ohta, and Shizuya [IOS], we substitute standard commitments in ex-
isting zero-knowledge protocols with instance-dependent commitments. Specifically, we do
this substitution in the Blum zero-knowledge protocol [Blu]. We use Blum’s protocol for
round efficiency; at a cost of having more rounds for comparable soundness error, we can
also use the Goldreich, Micali & Wigderson protocol [GMW2].

We present a description of Blum’s protocol in Protocol 2.5.1, where we explicitly substi-
tute instance-dependent commitments for standard commitments. Before presenting Pro-
tocol 2.5.1, a few definitions are in place. A Hamiltonian cycle in a directed graph is a
directed path that goes through each and every node exactly once and returns to the start-
ing node. The problem Hamiltonian Path is the task of determining whether a given

38 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

directed graph G has a Hamiltonian cycle, and this problem is NP-complete [Kar]. The
adjacency matrix of a directed graph G is a matrix with rows and columns labeled by
the nodes of G, with 1 or 0 in position (vi, vj) according to whether there is an edge from
vi to vj or not—1 if there is an edge, and 0 if an edge is not present.

PROTOCOL 2.5.1 �

Protocol (P, V) for problem Π ∈ NP using instance-dependent commitment scheme Comx.

Common input: instance x of the problem Π.

Auxiliary input to P : a witness w for x such that (x,w) ∈W , whereW is an NP-relation
for Π.

1. P and V : Reduce the instance x to a directed graph G of the Hamiltonian

Path problem.

2. P : Reduce the NP-witness w to a Hamiltonian cycle C in the graph G. Select a
uniform permutation π over the nodes of G, and define the graph G′ = π(G).

3. P ↔ V : P commits to V the entire adjacency matrix of G′ (entry by entry)
using Comx.

4. V → P : Send a random bit c← {0, 1}.

5. P → V : If c = 0, reveal the permutation π and decommit all entries of the
adjacency matrix of G′. Otherwise, if c = 1, reveal only the commitments to
entries that correspond to the cycle C, i.e., (π(i), π(j)) where (i, j) ∈ C.

6. V : Accept if c = 0 and π(G) = G′, or if c = 1 and the revealed entries correspond
to a simple cycle of length n. (Also, check that the revealed committed values
are valid.) Otherwise, reject.

� �

The hiding and binding properties of the commitment scheme Comx translates to the
zero knowledge and soundness properties of protocol (P, V), respectively.

PROPOSITION 2.5.2
(Based on [Blu].) If Comx is an instance-dependent commitment scheme for problem Π ∈ NP,

then Protocol 2.5.1 is:

I statistical [resp., computational] zero knowledge if Comx is statistically [resp., computa-

tionally] hiding on the YES instances, and

I a proof [resp., argument] system if Comx is statistically [resp., computationally] binding

on the NO instances.

2.5 ZERO-KNOWLEDGE PROTOCOLS FROM INSTANCE-DEPENDENT COMMITMENTS 39

An immediate corollary of the above proposition is that standard commitments are
also sufficient for zero-knowledge protocols for NP, because standard commitments are
stronger than instance-dependent commitments. Standard commitments, however, require
complexity assumptions, whereas instance-dependent commitments sometimes do not.

COROLLARY 2.5.3

I If there exist commitment schemes that are statistically [resp., computationally] hiding

and statistically binding, then there exist statistical [resp., computational] zero-knowledge

proof systems for all of NP.

I If there exist commitment schemes that are statistically [resp., computationally] hiding and

computationally binding, then there exist statistical [resp., computational] zero-knowledge

argument systems for all of NP.

Because the main ideas behind Proposition 2.5.2 have been presented by Blum [Blu]
and clarified in many other works (e.g., [Gol2, BL, BLV]), we only give a proof sketch of
this proposition.

Proof Sketch of Proposition 2.5.2. It is straightforward to see that Protocol 2.5.1 has perfect
completeness. We argue the zero knowledge and soundness properties as follows.

Zero knowledge. Let us analyze the verifier’s view at the end of the interaction. If c = 0,
then all it sees is a random permutation π of the graph G, which it can clearly generate
on its own. Otherwise, if c = 1, then it just sees a random simple cycle of length n.
This is because the cycle C in G has been permuted into a random cycle π(C) in
G′ = π(G). Again, it can clearly generate a random cycle on its own.

Soundness. Consider a cheating prover P ∗ and the case where x ∈ ΠN, which translates
to the graph G not having a Hamiltonian cycle. We claim that after the prover
P ∗ has committed to the adjacency matrix of any graph G′ (not necessarily one
chosen according to the protocol), then it cannot answer both the verifier’s challenges
c = 0 and c = 1 in a way that makes the verifier accept, unless P ∗ breaks the
binding property of the commitment (which happens with negligible probability). For
simplicity, assume the commitments are always binding. If P ∗ can successfully answer
to c = 0, then there is a permutation π of G such that π(G) = G′, and hence we know
that G and G′ are isomorphic graphs. If P ∗ can also successfully answer to c = 1,
then there is a Hamiltonian cycle in G′. Consequently, graph G, being isomorphic to
G′, has a Hamiltonian cycle too, which contradicts the case where x ∈ ΠN.

To reduce the soundness error while maintaining the zero knowledge property and round
complexity, we repeat Protocol 2.5.1 a total of O(log n) times in parallel (cf., [BL, BLV]).

40 CHAPTER 2 / A TOUR OF ZERO KNOWLEDGE

Conclusion. We conclude this chapter with the following observation based on Proposi-
tion 2.5.2.

An instance-dependent commitment scheme for a problem in NP is sufficient
to unconditionally construct a zero-knowledge protocol for that problem, and
that the hiding and binding properties of the commitment scheme translates
to the zero knowledge and soundness properties of the constructed protocol,
respectively.

In the next chapter, we begin our technical exposition of the results contained in this
dissertation, starting with statistically-hiding commitments and statistical zero-knowledge
protocols.

3
� �

STATISTICALLY-HIDING COMMITMENTS

The two main focuses of this present chapter is the complexity of statistically-hiding commit-
ment schemes, and the relationship between statistically-hiding commitments and statistical
zero-knowledge protocols. For the first, we investigate the minimal complexity assumption
needed to construct statistically-hiding commitments, and prove the following theorem.

THEOREM 3.0.4
(First appeared in [HR2, Thm. 1.1].) If one-way functions exist, then there exist commitment

schemes that are statistically hiding and computationally binding. Moreover, the commitment

schemes obtained are public coin.

For the second, we study the relationship between statistically-hiding commitments and
statistical zero-knowledge protocols. In Section 2.5, we showed that instance-dependent
commitments for a problem Π ∈ NP that are statistical hiding on the YES instances and
statistically binding on the NO instances imply that Π has a statistical zero-knowledge
proof system (i.e., Π ∈ SZKP). Here, we prove the converse.

THEOREM 3.0.5
Every problem in SZKP has an instance-dependent commitment scheme that is statistically

hiding on the YES instances and statistically binding on the NO instances. Moreover, this

instance-dependent commitment scheme is public coin and is constant round.

These are the two main theorems developed in this chapter. It will be helpful to keep
these theorems in mind as they are used to establish the results in Chapter 4.

41

42 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Chapter organization. The complexity of statistically-hiding commitment schemes, the
first focus of this chapter, is explored in Sections 3.1 through 3.5. In Section 3.1, we re-
view the history of the construction of statistically-hiding commitments from a complexity-
theoretic viewpoint. After that, we work progressively towards lowering the complexity as-
sumptions needed to construct statistically-hiding commitments: in Section 3.2, we present
a construction based on one-way permutations; in Section 3.3, we show a construction
based on regular one-way functions with known preimage size; in Section 3.4, we give a
construction based on regular one-way functions with unknown preimage size; and finally
in Section 3.5, we develop a construction based on any one-way function, which is the
minimal complexity assumption needed [IL].

The second focus of this chapter, explored in Section 3.6, is the relationship between
statistically-hiding commitments and statistical zero-knowledge protocols. In that section,
we construct instance-dependent commitment schemes for any problem in SZKP; our con-
struction is unconditional in that it does not rely on any unproven complexity assumptions.

3.1 A Complexity-Theoretic History

Unlike their computational counterpart (namely, computationally-hiding commitments)
whose existence has been shown to be equivalent to the existence of one-way functions
by 1990 [HILL, Nao], the complexity of statistically-hiding commitments was still an open
problem up till very recently. The early constructions of statistically-hiding commitments
were based on specific number-theoretic complexity assumptions like hardness of factor-
ing large integers [BCC] and hardness of discrete logarithm [BKK, CDG, Ped].1 Later
constructions have reduced the complexity assumption to any family of claw-free permuta-
tions [GK1], and then to any collision-resistant hash family [NY] (see also [DPP]).2 All
these assumptions, explicitly or implicitly, have a collision resistance property attached to
them, and for quite a while it seemed that this property might be necessary for statistically-
hiding commitments.

In 1992, Naor, Ostrovsky, Venkatesan and Yung [NOVY] dispelled the idea that a colli-
sion resistance criterion is needed by giving an elegant construction of statistically-hiding (in
fact, perfectly-hiding) commitments from any one-way permutation.3 They left as an open
question whether statistically-hiding commitments can be based on any one-way function,
the minimal complexity assumption needed [IL]. The first progress in the past decade came

1The constructions of Boyar et al. [BKK], Chaum et al. [CDG] and Pedersen [Ped] yield perfectly-hiding
commitments. In perfectly-hiding schemes, commitments to any message are identically distributed.

2The fact that claw-free permutations imply a collision-resistant hash family was shown in [GMR2,
Dam1], and the early constructions of claw-free permutations based on specific number-theoretic complexity
assumptions were given by [GMR2, BKK].

3A one-way permutation is a one-way function that is also a permutation. We note that one-way
permutations and collision-resistant hashing are known to be incomparable under black-box reductions [Sim,
Rud, KSS].

3.1 A COMPLEXITY-THEORETIC HISTORY 43

in 2005 when Haitner et al. [HHK+] constructed statistically-hiding commitments from any
regular one-way function with known preimage size.4 (Actually, their construction is more
general in that in works for any approximable preimage size one-way function, which is a
one-way function where we can efficiently approximate the preimage size of points in the
range.)

�� ���� ��number-theoretic assumptions

[GMR2, BKK]

��

[BCC, BKK, CDG, Ped]

((QQ

�� ���� ��claw-free permutations

[GMR2, Dam1]
��

[GK1]

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

��

�
�

�
�
'
/

7

�� ��
�� ��
collision-resistant

hash family
[NY, DPP]

//
?> =<89 :;statistically-hiding

commitment

�� ���� ��one-way permutation

���
�
�
�

[NOVY]
§ 3.2

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

�� ���� ��regular one-way function

���
�
�
�

[HHK+]
§ 3.3

55kkk ?> =<
89 :;
statistically-hiding
1-out-of-2 binding

commitment

[HR2]
§ 3.5.5

<<zzzzzzzzzzzzzzzzzzzzz

�� ���� ��one-way function
our result
§ 3.5

55jjjjjjjjjjjjjjjj

Figure 3.1: A complexity-theoretic history of statistically-hiding commitments.

Inspired by this recent development, we construct a relaxed variant of statistically-
hiding commitment schemes called 1-out-of-2-binding commitments (a notion introduced
by Nguyen and Vadhan [NV]), based on any one-way function. These commitments have
a weaker 1-out-of-2 binding property, a notion that will be discussed in Section 3.4.1. Up
till very recently, we do not know if these 1-out-of-2-binding commitments would yield
commitments with the standard binding property. Nevertheless, it turns out that 1-out-
of-2-binding commitments suffice for obtaining statistical zero-knowledge arguments for all
of NP, and thus our result shows that statistical zero-knowledge arguments for NP can be
based on any one-way function (Theorem 1.2.5).

Building on our result, Haitner and Reingold [HR2] settled the complexity of statistically-
hiding commitments by providing an elegant transformation technique converting 1-out-

4A regular one-way function is a one-way function where all points in the range have the same preimage
size. Refer back to Section 2.4.1 if needed.

44 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

of-2-binding commitments into commitments with the standard binding property. Their
transformation uses a novel application of a universal one-way hash family, a cryptographic
primitive that can constructed from any one-way function [Rom] (see also [KK]).

Figure 3.1 summarizes the complexity-theoretic history of statistically-hiding commit-
ment schemes as presented in this section. The dotted arrows in Figure 3.1 indicate trivial
implications, and the section numbers, preceded by the symbol §, indicate where those
results are presented in this chapter.

3.2 From One-Way Permutations

Consider a one-way permutation f : {0, 1}n → {0, 1}n. Naor, Ostrovsky, Venkatesan, and
Yung [NOVY] obtained a statistically-hiding commitment scheme based on f by using a
protocol called interactive hashing as a subroutine. Our agenda for this section is as follows:
we will first informally describe interactive hashing and state the two main properties that
we want from it; then, in Section 3.2.1 we give an informal description of the Naor et al.
scheme, henceforth called the NOVY commitment scheme; and finally, in Section 3.2.2, we
give a formal definition of interactive hashing and a protocol satisfying that definition.

Interactive hashing is a protocol between a sender SIH and receiver RIH. The sender
begins with a private input z, and at the end both parties outputs z0 and z1 such that
z ∈ {z0, z1}. Informally, an interactive hashing protocol has the following two properties:

1. Hiding : if the sender’s private input z is uniformly random, then every receiver, even
computationally-unbounded malicious ones, does not learn which of z0 or z1 equals
to z, and

2. Binding : the sender, including PPT malicious ones, can only control the value of at
most one of the two outputs, and the value of the other output that it does not control
is uniformly distributed.

3.2.1 The NOVY commitment scheme

Using an interactive hashing protocol as a subroutine, Naor et al. [NOVY] constructed the
following statistically-hiding commitment scheme.

1. S chooses a uniform x← {0, 1}n, and computes z = f(x).

2. S and R engage in an interactive hashing protocol. Let z0 and z1 be the common
outputs, and let z = zd, for some d ∈ {0, 1}, be S’s private output.

3. To commit to bit b, S sends c = b⊕ d to R.

4. To decommit, S sends b, c, d, and x to R. R verifies the decommitment by checking
if c = b⊕ d and zd = f(x).

3.2 FROM ONE-WAY PERMUTATIONS 45

Let us informally argue why the above scheme constitutes a statistically-hiding and
computationally-binding commitment. First, we argue its hiding property. We have men-
tioned that z is uniform in {0, 1}n because f is a permutation and x is chosen uniformly in
{0, 1}n. By the hiding property of interactive hashing, even a computationally-unbounded
malicious receiver does not know if z = z0 or z = z1, or equivalently, it does not know if
d = 0 or d = 1. Therefore, the scheme is statistically hiding. Next, we argue its binding
property. By the binding property of interactive hashing, at least one of the outputs, say
zα, is uniform in {0, 1}n and outside the sender’s control. Therefore if the sender is able
to decommit to both 0 and 1, it must find a preimage of zα. This is equivalent to find-
ing a preimage of f(Un), and this task is computationally infeasible since f is a one-way
permutation. Hence, the scheme is computationally binding.

3.2.2 Interactive hashing

Interactive hashing was introduced by Ostrovsky, Venkatesan, and Yung [OVY] in the con-
text of oblivious transfer protocols. Although we do not study oblivious transfer, interactive
hashing will prove to be a powerful and useful tool in our construction of statistically-hiding
commitments based on any one-way function. For our application, we will need the sender
to commit to multiple bits in one execution of interactive hashing. Consequently, we ex-
tend the notion of interactive hashing to allow multiple outputs (instead of just two output
strings). Since the number of outputs could be possibly superpolynomial, we succinctly
describe the set of outputs as the image of a polynomial-sized circuit C : {0, 1}k → {0, 1}q,
where k and q are polynomially related to the security parameter.

In addition to allowing for multiple outputs, our application of interaction hashing also
requires a more refined notion of computational binding that the one provided by Naor,
Ostrovsky, Venkatesan, and Yung [NOVY].5 It is for this reason we define the notion of
what it means to be a witness for a given relation W as follows: For a relation W , define the
set of witnesses for z as Wz = {x : W (z, x) = 1}, and we naturally refer to any x ∈ Wz

as a witness for z.

DEFINITION 3.2.1
An interactive hashing with multiple outputs protocol is a polynomial-time protocol
(SIH, RIH) where both parties receive common inputs (1q, 1k) and SIH receives a private
input z ∈ {0, 1}q. At the end of the interaction, the common output is a polynomial-sized
circuit C : {0, 1}k → {0, 1}q, and the private output of SIH is a string d ∈ {0, 1}k. We call
q the input length, and k the output length. The protocol (SIH, RIH) has to satisfy the
following security properties.

5Although the notion of interactive hashing was introduced by Ostrovsky et al. [OVY], it was Naor et al.
[NOVY] who proved a computational binding property of interactive hashing that allows for its application
to statistically-hiding commitments based on any one-way permutation.

46 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

1. Correctness: for all R∗ and all z ∈ {0, 1}q, it is the case that C(d) = z, where
C = (SIH(z), R∗)(1q, 1k) is the common output, and d = outputSIH

(SIH(z), R∗) is the
private output of SIH.6

2. Hiding : for all R∗, random variables (V,Z) and (V,Uk) are identically distributed,
where the view of receiver R∗ is V = viewR∗(SIH(Uq), R∗), and the private output of
SIH is Z = outputSIH

(SIH(Uq), R∗).

3. Binding : there exists an oracle PPT algorithm A such that for every adversary S∗ and
any relation W , denoting the common output as C = (S∗, RIH)(1q, 1k), and private
output of S∗ as ((x0, d0), (x1, d1)) = outputS∗(S∗, RIH), if it is the case that

Pr[x0 ∈WC(d0) ∧ x1 ∈WC(d1) ∧ d0 6= d1] > ε ,

where the above probability is over the coins of RIH and S∗, then it is also the case
that

Pr
z←{0,1}q

[AS∗(z, 1q, 1k, ε) ∈Wz] > 2−k · (ε/q)O(1) .

REMARK 3.2.2
We make three remarks regarding Definition 3.2.1.

1. The security requirements should hold for computationally unbounded R∗ (for cor-
rectness and hiding) and computationally unbounded S∗. In addition, the relation W
need not be polynomial-time computable.

2. To simplify notation, we often write AS∗(z), or even A(z), to denote AS∗(z, 1q, 1k, ε).
Since we are dealing with nonuniform security (see discussion in Section 2.3.4), we
can hardwire the (approximate) value of ε as nonuniform advice.

3. Although the private output of the honest sender SIH is always a string d, the private
output of the cheating sender S∗ is arbitrary; hence, we can assume without loss
of generality that S∗ breaks binding by producing two pairs of strings (x0, d0) and
(x1, d1).

The interactive hashing protocol given in [OVY, NOVY], henceforth called the NOVY
Interactive Hashing, satisfies Definition 3.2.1 with k = 1. To obtain an interactive hashing
with multiple outputs protocol (i.e., the case when k > 1), we simply end the NOVY
Interactive Hashing protocol k − 1 rounds earlier.

6The correctness property of protocols is typically defined for honest parties, in our setting this would
be SIH and RIH. Our applications, however, need a stronger correctness property that would hold against
malicious receivers R∗.

3.2 FROM ONE-WAY PERMUTATIONS 47

PROTOCOL 3.2.3 �

Interactive hashing with multiple outputs (SIH, RIH).

Inputs:

1. Input length 1q and output length 1k, both given as common input.

2. String z ∈ {0, 1}q, given as private input to sender SIH.

Protocol:

RIH: Select h0, h1, . . . , hq−k−1 such that each hi is a random vector over GF[2] of the form
0i1{0, 1}q−i−1 (i.e., i number of 0’s followed by a 1, and random choice for the last
q − i− 1 positions).

For j = 0, . . . , q − k − 1, do the following:

RIH → SIH: Send hj .

SIH → RIH: Send cj = 〈hj , z〉.

Output:

I Common output is a circuit C : {0, 1}k → {0, 1}q computing an affine transformation
whose image is {z : 〈hj , z〉 = cj ∀j = 0, . . . , q − k − 1}.

I Private output of SIH is a string d ∈ {0, 1}k such that C(d) = z. (In fact, d can be
taken to be the last k bits of z.)

� �

We defer the proof that Protocol 3.2.3 satisfies Definition 3.2.1 to Appendix A.1, as it is
just an extension of the proof given in [NOVY]; here we just state the theorem that follows.

THEOREM 3.2.4
There exists an interactive hashing with multiple outputs protocol, namely Protocol 3.2.3.

Information-theoretic bounds

We think of the string d as a k-bit string commitment associated to one of the 2k outputs
strings, namely z = C(d), and a witness x ∈ Wz = WC(d) as a decommitment to d.
Intuitively, the knowledge of x gives the sender the ability to decommit to d. The binding
property, read in its contrapositive, says that if it is hard to find a witness for a uniformly
random string z, then it is hard for a sender to successfully decommit to two different values.
Notice that this property holds even if the set of z’s for which is it hard to find a witness is
not fixed in advance, but depends on the algorithm trying to find a witness for z (namely,

48 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

an element in Wz). In several places, however, we will only need the special case of a static
set of z’s as captured in the following lemma.

LEMMA 3.2.5
(Binding for Static Sets.) For any protocol (SIH, RIH) satisfying the binding condition of Def-

inition 3.2.1, the following holds: For all S∗ and any set Γ ⊆ {0, 1}q, denoting the common

output as C = (S∗, RIH)(1q, 1k), we have

Pr[∃d0 6= d1 such that C(d0), C(d1) ∈ Γ] < (µ(Γ) · 2k)Ω(1) · poly(q) ,

where the above probability is taken over the coins of S∗ and RIH.

Setting k = 1 in the above lemma gives an information-theoretic bound of the NOVY In-
teractive Hashing; information-theoretic bounds on NOVY Interactive Hashing were studied
in the context of memory-bounded oblivious transfer [CCM, DHRS, CS]. Our bound is not
tight, but suffices for our applications. For tighter bounds, we refer the reader to [CCM, CS],
or for a constant-round interactive hashing protocol that is binding for static sets, we refer
the reader to [DHRS].

Compare the bound of the Lemma 3.2.5 to the case where the adversarial sender S∗ had
control of only one output string. This means that the rest of the 2k−1 outputs strings are
distributed uniformly on {0, 1}q, and hence the bound would be µ(Γ) · (2k − 1). The reason
for this is that S∗ will make the string that it controls lie in Γ, and the probability that at
least one of the rest of the 2k−1 strings lie in Γ is at most µ(Γ) · (2k−1), by a union bound
argument. The above bound is almost as good, and in particular if µ(Γ) is negligible and k
logarithmic, both probabilities are negligible.

Proof of Lemma 3.2.5. Define the relation W = {(a, b) : a ∈ Γ}, that is W (a, b) = 1 if a ∈ Γ
(for all values of b), and 0 if a /∈ Γ (no matter what the value of b is). Suppose there exists an
S∗ that with probability ε, produces two elements d0 6= d1 such that both C(d0), C(d1) ∈ Γ.
Then, by the binding condition of Definition 3.2.1, there will be a procedure that is given
a random z ← {0, 1}q makes z ∈ Γ with probability 2−k · (ε/q)O(1). Since Γ is a fixed set,
it must be the case that 2−k · (ε/q)O(1) ≤ µ(Γ). This implies that ε < (µ(Γ) · 2k)c · poly(q),
for some constant c > 0. �

3.3 From Regular One-Way Functions with Known Preimage

Size

Our first hurdle is to relax the permutation structure of f to just assuming that f is a
regular one-way function with known preimage size of say 2n−t, for some known value of
t ∈ {1, 2, . . . , n}. This is the setting considered by Haitner et al. [HHK+], and we review

3.3 FROM REGULAR ONE-WAY FUNCTIONS WITH KNOWN PREIMAGE SIZE 49

ideas from their construction in this section. To simplify the construction and analysis,
we further assume f has a known superpolynomial security s(n) = nω(1). (We stress that
Haitner et al. [HHK+] does not make this assumption.)

Observe that the statistical hiding property of the NOVY commitment scheme based on
one-way permutation f only rely on the fact that f is a permutation because we require that
f(Un) be uniform. Now if f just a regular function, then f(Un) might no longer be uniform,
but instead all we can say is that f(Un) is a flat distribution with support Supp(f(Un)) of
size 2t. We will use pairwise-independent hash functions, a notion to be discussed next, to
obtain an almost-uniform distribution from f(Un).

3.3.1 Hashing and randomness extraction

A family of hash functions H = {h : {0, 1}n → {0, 1}m} is pairwise independent if for
any two x 6= x′ ∈ {0, 1}n and any two y, y′ ∈ {0, 1}m, when we randomly choose h ← H,
we have Pr[h(x) = y and h(x′) = y′] = 2−2m.

An example of a pairwise-independent family of hash functions is the family H =
{ha,b : {0, 1}n → {0, 1}m}, where ha,b(x) = (a · x + b)|m, arithmetic is done in the field
GF(2n), and |m denote taking the first m bits. We define `(n,m) to be the number of bits
required to describe an element of the hash function family H. In our example, it takes
2n bits to describe each hash function ha,b since both a and b are elements of GF(2n);
hence, we now know that a family of pairwise-independent hash functions H mapping n-
bit strings to m-bit strings exists with `(n,m) = 2n. We will use the following property
of pairwise-independent hash functions to obtain an almost-uniform random variable from
a random variable with sufficient min-entropy. (The definition of min-entropy is given in
Section 2.2.1.)

LEMMA 3.3.1
(Leftover Hash Lemma [BBR, ILL].) Let random variable H denote a uniformly random hash

function from a family of pairwise-independent hash functions H mapping n-bit strings to m-

bit strings, and let X be a random variable taking values in {0, 1}n. For any ε > 0, if the

min-entropy H∞(X) ≥ m + 2 log(1/ε), and H is independent from X, then random variable

(H,H(X)) is ε-close in statistical distance to uniform.

3.3.2 The commitment scheme

Let us return to our regular one-way function f : {0, 1}n → {0, 1}n with known preimage
size 2n−t and known security s(n) = nω(1).7 Consider a family of pairwise-independent
hash functions H =

{
h : {0, 1}n → {0, 1}t−∆

}
, where t = H(f(Un)) and ∆ = 1

2 log s(n). Let

7To avoid introducing new parameters, we consider only length-preserving functions, that is |f(x)| = |x|
for all x ∈ {0, 1}∗. Our construction, nevertheless, can be easily generalized to regular one-way functions
that are not length preserving.

50 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

random variableH represent a random hash function selected fromH. By the Leftover Hash
Lemma 3.3.1, random variable Z = (H,H(f(Un))) is (1/s(n))Ω(1)-close to uniform, which in
turn is statistically close to uniform since s(n) = nω(1). So if we designate z = (h, h(f(x)))
as the sender’s private input to the interactive hashing protocol (Protocol 3.2.3), even an
all-powerful receiver will not get more than a negligible advantage to guess which one of
the outputs is z. This hints to the following commitment scheme.

PROTOCOL 3.3.2 �

Commitment scheme (S,R) based on a regular one-way function f : {0, 1}n → {0, 1}n with
known preimage size 2n−t and known security s(n) = nω(1).

Commit stage.

1. Let H =
{
h : {0, 1}n → {0, 1}t−∆

}
, where t = H(f(Un)) and ∆ = 1

2 log s(n). S
selects a uniform x← {0, 1}n and hash function h← H, and computes y = f(x)
and z = (h, h(y)).

2. S and R engage in interactive hashing (Protocol 3.2.3) with S acting as SIH, R
acting as RIH, parameters k = 1 and q = |z|, and SIH having private input z.
Their common output is a circuit C : {0, 1} → {0, 1}q, and the sender receives a
bit d ∈ {0, 1} such that C(d) = z.

3. To commit to the bit b, S sends c = d ⊕ b to R. The commitment of b is
represented as the pair (C, c).

Reveal stage. To decommit, S sends bits b and d, string x, and hash function h to R. R
verifies the decommitment by checking if c = d⊕ b and C(d) = (h, h(f(x))).

� �

As we have argued previously, the sender’s private input z is statistically close to uni-
form, and hence by the hiding property of interactive hashing, this implies that the com-
mitment scheme is statistically hiding. As for the binding property, the one-wayness of f
intuitively guarantees that the set Γ of w’s for which a sender S∗ can compute an element
of f−1(w) is of density at most 1/s(n) in the range of f , that is the size of Γ is at most
2H(f(Un))−log s(n). Thus for any fixed h, the fraction of z = (h, h(w)) such that w ∈ Γ is at
most 2H(f(Un))−log s(n)/2t−∆ = s(n)−1/2 = neg(n). By the binding property of interactive
hashing (refer to Lemma 3.2.5), the probability that S∗ can force both C(0), C(1) ∈ Γ is
negligible and hence, the scheme is computationally binding. The complete argument to
prove the binding property is actually more subtle because the set Γ is not actually fixed
in advance, and so we need to employ the binding property given in Definition 3.2.1.

3.4 FROM REGULAR ONE-WAY FUNCTIONS WITH UNKNOWN PREIMAGE SIZE 51

3.4 From Regular One-Way Functions with Unknown

Preimage Size

Our next hurdle is to remove to the constraint on knowing (i.e., being able to efficiently
compute) the preimage size. For this setting, let us consider a regular one-way function
f : {0, 1}n → {0, 1}n with preimage size 2n−t, for an unknown8 value of t ∈ {1, 2, . . . , n},
but with known security s(n) = nω(1).9 Constructing statistically-hiding commitments even
in this setting was still an open problem prior to our work.

Let us examine why we need to know the correct value of t in the previous scheme of
Protocol 3.3.2. If the value of t is too high, that is t � H(f(Un)), then the scheme is no
longer hiding (but would be binding). This is because the Leftover Hash Lemma 3.3.1 no
longer applies, since in this case the min-entropy H(f(Un)) is too small relative to t. On the
other hand, if the value of t is too low, that is t� H(f(Un)), then the scheme is no longer
binding (but would be hiding). To see this, at least intuitively, observe that when t is very
small, we are hashing f(Un) to a very small set {0, 1}t−∆; in other words, h collapses too
many elements in f(Un). As a consequence, inverting h(f(Un)) could be easy (even though
inverting f(Un) is hard), and this allows us to break the binding property of our scheme.

All hope, however, is not lost. We can still use Protocol 3.3.2, trying all values of
t ∈ {1, 2, . . . , n}, to do our first phase commitments. And to overcome the difficulty of
ensuring both hiding and binding, we will introduce a second phase that will be binding
when t <∼ H(f(Un)), and hiding when t >∼ H(f(Un)); this is obtained by the sender using a
hash of the preimage x as an input to another execution of interactive hashing. This means
that for the right value of t = H(f(Un)), both phases will be hiding, but for any value of
t, at least one phase is binding. What we are describing here is a 2-phase commitment

scheme with a 1-out-of-2 binding property, notions that we formally define in the next
section.

3.4.1 2-phase commitment schemes

As mentioned previously, we will work with 2-phase commitment schemes, an alternate
variant of commitments introduced by Nguyen and Vadhan [NV]. These are commitment
schemes with two sequential and related stages such that in each stage, the sender commits
to and reveals a value.

8What we mean by unknown is that we are not able to compute the preimage size efficiently.

9Like in Section 3.3, we consider only length-preserving functions, that is |f(x)| = |x| for all x ∈ {0, 1}∗,
to avoid introducing new parameters. Our construction can nevertheless be easily generalized to regular
one-way functions that are not length preserving.

52 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

DEFINITION 3.4.1
A 2-phase commitment scheme (S,R), with security parameter n and message lengths
(k1(n), k2(n)), consists of four interactive protocols: the first commitment stage (S1

c , R
1
c),

the first reveal stage (S1
r , R

1
r), the second commitment stage (S2

c , R
2
c), and the second reveal

stage (S2
r , R

2
r). For us, both reveal phases will always be noninteractive, consisting of a

single message from the sender to the receiver.

1. In the first commitment stage, S1
c receives a private input σ(1) ∈ {0, 1}k1 and coin

tosses rS . At the end of the interaction, both S1
c and R1

c output a commitment
c(1). (Without loss of generality, we can assume that c(1) is the transcript of the first
commitment stage.)

2. In the first (noninteractive) reveal stage, both S1
r and R1

r receive as common inputs
the commitment c(1), and S1

r receives as private input its previous coin tosses rS . S1
r

sends R1
r a pair (σ(1), γ(1)) with γ(1) interpreted as a decommitment for σ(1) ∈ {0, 1}k1 .

R1
r accepts or rejects based on c(1), σ(1), and γ(1). After that, both S1

r and R1
r outputs

a string τ . (Without loss of generality, we can assume that τ is the transcript of the
first commitment stage and the first reveal stage and includes R1

r ’s decision to accept
or reject.)

3. In the second commitment stage, both S2
c and R2

c receive as common input the string
τ , and S2

c receives a private input σ(2) ∈ {0, 1}k2 and its previous coin tosses rS . At
the end of the interaction, both S2

c and R2
c output a commitment c(2). (Without loss

of generality, we can assume that c(2) is the concatenation of τ and the transcript of
the second commitment stage.)

4. In the second (noninteractive) reveal stage, both S2
r and R2

r receive as common input
the commitment c(2), and S2

r receives as private input its previous coin tosses rS . S2
r

sends R2
r a pair (σ(2), γ(2)) with γ(2) interpreted as a decommitment for σ(2) ∈ {0, 1}k2 .

R2
r accepts or rejects based on c(2), σ(2), and γ(2).

I We insist that scheme (S,R) have perfect completeness. That is to say, if both
sender S and receiver R follow their prescribed strategy, then R will always accept
(with probability 1).

I The sender and receiver’s algorithms, denoted by S = (S1, S2) = ((S1
c , S

1
r), (S2

c , S
2
r))

and R = (R1, R2) = ((R1
c , R

1
r), (R

2
c , R

2
r)) respectively, are computable in polynomial

time.

I Scheme (S,R) is public coin if all messages sent by R to S are independent random
coins.

3.4 FROM REGULAR ONE-WAY FUNCTIONS WITH UNKNOWN PREIMAGE SIZE 53

REMARK 3.4.2
We make several remarks regarding Definition 3.4.1.

1. We generally consider schemes that have the same message length for both phases.
When this is the case, namely k = k1 = k2, we say our 2-phase commitment scheme
has message length k. It is only in Section 3.5.5 that we will use this feature of
different message lengths.

2. Instead of providing sender S with decommitment values as private outputs of the
commitment phases, we simply provide it with the same coin tosses rS throughout
(so it can recompute any private state from the transcripts of the previous phases).
The receiver R, however, operates using independent coin tosses in each phase as it
does not need to keep private states.

3. The 2-phase commitment schemes that we construct will be public coin scheme where
the receiver R strategy is just to send random coins in each round.

Hiding for 2-phase commitment schemes. As for standard commitment schemes,
we define the security of the sender in terms of a hiding property. Stated informally, the
hiding property for a 2-phase commitment scheme says that both commitment phases are
hiding. Note that since the phases are run sequentially, the hiding property for the second
commitment stage is required to hold even given the receiver’s view of the first stage.

DEFINITION 3.4.3
2-phase commitment scheme (S,R), with security parameter n and message lengths
(k1(n), k2(n)), is statistically hiding if for all adversarial receiver R∗,

1. The views of R∗ when interacting with the sender in the first phase on any two mes-
sages are statistically indistinguishable. Namely, for all σ(1), σ̃(1) ∈ {0, 1}k1 , the prob-
ability ensembles

{
viewR∗(S1

c (σ(1)), R∗)(1n)
}

n∈N and
{
viewR∗(S1

c (σ̃(1)), R∗)(1n)
}

n∈N
are statistically indistinguishable.

2. The views of R∗ when interacting with the sender in the second phase are statisti-
cally indistinguishable no matter what the sender committed to in the first phase.
Namely, for all σ(1) ∈ {0, 1}k1 , and all σ(2), σ̃(2) ∈ {0, 1}k2 , the probability ensem-
bles

{
viewR∗(S2

c (σ(2)), R∗)(T, 1n)
}

n∈N and
{
viewR∗(S2

c (σ̃(2)), R∗)(T, 1n)
}

n∈N, where
T = transcript(S1(σ(1)), R∗)(1n), are statistically indistinguishable.

We stress that the second condition of the above hiding definition (Definition 3.4.3)
requires that the view of receiver in the second phase be indistinguishable for any two
messages even given the transcript of the first phase, T = transcript(S1(σ(1)), R∗)(1n).

54 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

1-out-of-2 binding for 2-phase commitment schemes. The 1-out-of-2 binding prop-
erty, informally stated, says that at least one of the two commitment phases is binding.
In other words, for every (nonuniform PPT) malicious sender S∗, at most one of the two
phases is bad in that S∗ can decommit a given commitment to two different messages in
that phase. We allow this bad phase to be determined dynamically by S∗. Moreover, we
require that the second phase be statistically binding if the sender breaks the first phase.
Our construction achieves this stronger property, and using it simplifies some of our proofs.

DEFINITION 3.4.4
2-phase commitment scheme (S,R), with security parameter n and message lengths
(k1(n), k2(n)), is statistically [resp., computationally] 1-out-of-2 binding if there
exist a set B of first phase transcripts and a negligible function ε(n) such that:

1. For all [resp., nonuniform PPT] adversary S∗, S∗ succeeds in the following game with
probability at most ε(n) for all sufficiently large n:10

(a) S∗ and R1
c interact and output a first-phase commitment c(1).

(b) S∗ outputs two full transcripts λ = (τ, κ) and λ̃ = (τ̃ , κ̃) of both phases with the
following three properties:

I Transcripts λ and λ̃ both start with prefix c(1).

I Transcript λ contains a successful opening of c(1) to the value σ(1) ∈ {0, 1}k1

using a first-phase transcript τ not in B, and R1
r and R2

r both accept in λ.

I Transcript λ̃ contains a successful opening of c(1) to the value σ̃(1) ∈ {0, 1}k1

using a first-phase transcript τ̃ not in B, and R1
r and R2

r both accept in λ̃.

(c) S∗ succeeds if all of the above conditions hold and σ(1) 6= σ̃(1).

2. For every (even computationally unbounded) sender S∗, the first-phase transcripts
in B make the second phase statistically binding. In other words, for all S∗ and all
τ ∈ B, with probability at least 1− ε(n) over c(2) = (S∗, R2

c)(τ), there is at most one
value σ(2) ∈ {0, 1}k2 such that outputR(S∗, R2

r)(c
(2), σ(2)) = accept.

REMARK 3.4.5
For computationally 1-out-of-2 binding schemes, we require that Condition 1 holds against
(nonuniform) PPT adversaries, but Condition 2 must hold against all, computationally-
unbounded adversaries. For statistically 1-out-of-2 binding schemes, we require that both
Conditions 1 and 2 hold against computationally-unbounded adversaries.

10Definitions of cryptographic primitives in the literature often use the reverse order of quantifiers, asking
that for every (nonuniform) PPT adversary S∗, there exists a negligible function ε(n) such that the success
probability of S∗ is at most ε(n). The two resulting definitions, however, turn out to be equivalent [Bel].

3.4 FROM REGULAR ONE-WAY FUNCTIONS WITH UNKNOWN PREIMAGE SIZE 55

3.4.2 Our 2-phase commitment scheme

We now describe our 2-phase commitment scheme for general functions f : {0, 1}n → {0, 1}n,
not necessarily regular nor one-way—as we shall later see, it is the regularity condition that
gives the hiding property, and the one-wayness of the function that gives the binding prop-
erty of our scheme. Let H = {h : {0, 1}n → {0, 1}m} be a family of pairwise-independent
hash functions. As shown in Section 3.3.1, we have a family whose description of each
element takes `(n,m) = 2n bits. It will be convenient to make `(n,m)+m = q(n), for some
fixed polynomial q(n), so that for every y ∈ {0, 1}n, |h, h(y)| = q(n). This can be done by
padding random bits to the description of h.

In addition, it will be convenient to work with protocols where the sender has no input
σ(j) to be committed to, but rather privately receives an output d(j) at the end of each
phase j ∈ {1, 2} of the commitment. If we can ensure that d(j) is close to uniform given the
receiver’s view, such a protocol can be easily tuned into a commitment scheme: the sender
can commit to an σ(j) of its choice by sending d(j) ⊕ σ(j) at the end of the commit stage.

PROTOCOL 3.4.6 �

2-phase commitment scheme (S,R) based on f : {0, 1}n → {0, 1}n.

Parameters: Integers t ∈ {1, 2, . . . , n}, k1 = k2 = k ∈ {1, 2, . . . , n}, ∆1 ∈ {0, 1, . . . , t}, and
∆2 ∈ {0, 1, . . . , n− t}.

Sender’s private input: String x ∈ {0, 1}n. (Note that this is not the value to which the
sender is committing, but is rather part of its coins, which will be chosen uniformly
at random by S unless otherwise specified.)

First phase commit:

1. S1
c sets y = f(x).

2. Let H1 = {h1 : {0, 1}n → {0, 1}t−∆1} be a family of pairwise-independent hash
functions. S1

c chooses a random hash h1 ← H1, and computes v = (h1, h1(y)) ∈
{0, 1}q.

3. (S1
c , R

1
c) run the interactive hashing protocol (SIH(v), RIH)(1q, 1k), given by Pro-

tocol 3.2.3, with S1
c and R1

c acting as SIH and RIH respectively.

Let circuit C(1) : {0, 1}k → {0, 1}q be the common output and d(1) ∈ {0, 1}k be
SIH’s private output in (SIH(v), RIH)(1q, 1k).

First phase sender’s private output: String d(1) ∈ {0, 1}k.

First phase reveal:
S1

r sends the tuple γ(1) = (d(1), y, h1).

Receiver R1
r accepts if and only if C(1)(d(1)) = (h1, h1(y)).

56 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Second phase commit:
Second phase common input: First-phase transcript τ = transcript(S1(x), R1), which
in particular includes the string y.

1. Let H2 = {h2 : {0, 1}n → {0, 1}n−t−∆2} be a family of pairwise-independent hash
functions. S2

c chooses a random hash h2 ← H2, and computes w = (h2, h2(x)) ∈
{0, 1}q.

2. (S2
c , R

2
c) run the interactive hashing protocol (SIH(w), RIH)(1q, 1k), given by Pro-

tocol 3.2.3, with S2
c and R2

c acting as SIH and RIH respectively.

Let circuit C(2) : {0, 1}k → {0, 1}q be the common output and d(2) ∈ {0, 1}k be
SIH’s private output in (SIH(v), RIH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k.

Second phase reveal:
S2

r sends the tuple γ(2) = (d(2), x, h2).

Receiver R2
r accepts if and only if f(x) = y and C(2)(d(2)) = (h2, h2(x)).

� �

THEOREM 3.4.7
If f is a regular one-way functions with known security s(n) = nω(1), then Protocol 3.4.6, with

setting of parameters t = H(f(Un)), k = O(log n), and ∆1 = ∆2 = 1
4 log s, is a 2-phase

commitment scheme that is statistically hiding and computationally 1-out-of-2 binding.

Because we do not know how to efficiently compute the correct value of t = H(f(Un)), we
are forced to try out all values of t = 1, 2, . . . , n to get a collection of commitment schemes, as
stated in the next corollary. While having a collection of schemes instead of a single scheme
may seem disconcerting, it is possible to convert this collection of 2-phase commitments
into a single commitment scheme that is statistically hiding and computationally binding
(in the standard sense of binding); we show how to do this in Section 3.5.5 using the
Haitner & Reingold transformation [HR2].

COROLLARY 3.4.8
If regular one-way functions with known security s(n) = nω(1) exist, then on security parameter

1n, we can construct in time polynomial in n a collection of public-coin 2-phase commitment

schemes COM = {Com1, · · · ,Comn}, such that:

I there exists an index i ∈ {1, 2, . . . , n} such that scheme Comi is statistically hiding, and

I for every index i ∈ {1, 2, . . . , n}, scheme Comi is computationally 1-out-of-2 binding.

3.4 FROM REGULAR ONE-WAY FUNCTIONS WITH UNKNOWN PREIMAGE SIZE 57

We divide the proof of Theorem 3.4.7 into Lemma 3.4.9 and Lemma 3.4.10 that establish
the statistical hiding and computational 1-out-of-2 binding properties of Protocol 3.4.6,
respectively.

LEMMA 3.4.9
If f is a regular function, then Protocol 3.4.6, with setting of parameters t = H(f(Un)),
k < q(n), and ∆1 = ∆2 = ω(log n), is statistically hiding in the sense of Definition 3.4.3.

Proof. Since t = H(f(Un)), the Leftover Hash Lemma (Lemma 3.3.1) tells us that random
variable Z = (H1,H1(f(Un))) is 2−Ω(∆1)-close to the uniform. Then by the hiding property
of interactive hashing (Definition 3.2.1), the first commitment phase is 2−Ω(∆1)-hiding, which
in turn is statistically hiding since ∆1 = ω(log n).

Let τ be the transcript of the first phase and y the string sent in the first reveal phase.
Let random variable X represent selecting at random a string from the set f−1(y). Since
X is a flat source with entropy n − H(f(Un)) = n − t, and h2 maps to strings of length
n− t−∆2, we apply the Leftover Hash Lemma once more to conclude that random variable
W = (H2,H2(X)) is 2−Ω(∆2)-close to the uniform, even given τ . By the hiding property
of interactive hashing, the second commitment phase is 2−Ω(∆2)-hiding, which in turn is
statistically hiding since ∆2 = ω(log n). �

LEMMA 3.4.10
If f is a s(n)-secure one-way function (not necessarily regular), then for any value of t ∈
{1, 2, . . . , n}, Protocol 3.4.6, with setting of parameters k = O(log n), ∆1 = ∆2 ≤ 1

4 log(s(n)),
is computationally 1-out-of-2 binding in the sense of Definition 3.4.4.

The proof of Lemma 3.4.10 will be broken into Claim 3.4.11 and 3.4.12 that establish
the binding property for the first and second phase, respectively. Before stating the claims,
we define the binding set B as follows:

For every t ∈ {1, 2, . . . , n}, define the set of light strings to be Lt = {y ∈ {0, 1}n :
Pr[f(Un) = y] ≤ 2−t−∆3}, for a parameter ∆3 that we will set at the end of the
proof. Define the binding set B to be the set of transcripts where the sender
reveals y ∈ Lt.

CLAIM 3.4.11
For the binding set B defined above, if there exists a (nonuniform) PPT S∗ that succeeds with

probability ε in the game in Condition 1 of Definition 3.4.4, then there exists a nonuniform PPT

B that can invert f with success probability at least

εO(1) · 1/poly(n) · 2−(k+∆1+∆3)

58 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Proof. We define a relation W as follows:

W = {(v, x) : ∃h1 such that both v = (h1, h1(f(x))) and f(x) /∈ Lt} .

Suppose we have a PPT S∗ that succeeds with probability greater than ε in the game
of in Condition 1 of Definition 3.4.4. In particular, this means that S∗ after interacting
with RIH will, with probability greater than ε, produce pairs (d(1)

0 , x0) and (d(1)
1 , x1) such

that d(1)
0 6= d

(1)
1 , (C(1)(d0), x0) ∈ W , and (C(1)(d1), x1) ∈ W . By the binding property of

interactive hashing (Condition 3 of Definition 3.2.1), there exists a nonuniform PPT A such
that

Pr
v←{0,1}q

[A(v) ∈Wv] > 2−k

(
ε

q

)O(1)

. (3.1)

Without loss of generality, we may assume A to be deterministic since it can nonuni-
formly fix the random coins that maximize its success probability in (3.1). Hence, the
probability in (3.1) is just taken over a random v ← {0, 1}q.

Let v = (h1, η) for some h1 ∈ H1 and η ∈ {0, 1}t−∆1 , and let x = A(v) = A(h1, η). If
x ∈W(h1,η), then it is the case that η = h1(f(x)) and

Pr[h1(f(Un)) = η] ≥ Pr[f(Un) = f(x)] > 2−t−∆3 , (3.2)

with the last inequality following from f(x) /∈ Lt.

Consider an algorithm B that on input y, picks a random hash function h1 ← H1, and
outputs A(h1, h1(y)). Observe that B successfully finds a preimage of y if A(h1, h1(y)) ∈
W(h1,h1(y)). We let η = h1(y), and compute the probability that B inverts f as follows:

Pr[B(f(Un)) ∈ f−1(f(Un))]

= E
h1←H1

 ∑
η s.t. A(h1,η)∈W(h1,η)

Pr[h1(f(Un)) = η]


> E

h1←H1

 ∑
η s.t. A(h1,η)∈W(h1,η)

2−t−∆3

 (by 3.2)

= 2−t−∆3 · 2t−∆1 · Pr
(h1,η)←H1×{0,1}t−∆1

[A(h1, η) ∈W(h1,η)]

> 2−(∆1+∆3) · 2−k

(
ε

q

)O(1)

(by 3.1)

= εO(1) · 1/poly(n) · 2−(k+∆1+∆3) (since q = poly(n)) . �

CLAIM 3.4.12
For the binding set B defined above, Condition 2 of Definition 3.4.4 is satisfied with ε =
poly(n) · 2−Ω(∆3−∆2) .

3.5 FROM ANY ONE-WAY FUNCTION 59

Proof. Let y ∈ Lt be the string sent in the first reveal phase. This means that Pr[f(Un) =
y] ≤ 2−t−∆3 , or equivalently

∣∣f−1(y)
∣∣ ≤ 2n−t−∆3 . Define set Γ = {(h2, h2(x)) : h2 ∈

H2, x ∈ f−1(y)}, and let µ(Γ) denote the density of the subset Γ. Since h2 maps {0, 1}n to
{0, 1}n−t−∆2 , we have

µ(Γ) ≤
∣∣f−1(y)

∣∣
2n−t−∆2

≤ 2n−t−∆3

2n−t−∆2
= 2(∆2−∆3) .

Applying Lemma 3.2.5, we have

Pr [(w0, w1) = output(S∗, RIH) satisfies w0, w1 ∈ Γ] < 2−Ω(∆3−∆2) · poly(q) ,

which then concludes our proof since q is a fixed polynomial in n. �

Proof of Lemma 3.4.10. Set ∆3 = 1
2 log s(n), and we are given that k = O(log n), and ∆1 =

∆2 ≤ 1
4 log(s(n)). With this setting, Claim 3.4.12 shows that Condition 2 in Definition 3.4.4

is satisfied with ε(n) = poly(n) · 2−Ω(log s(n)) = neg(n), since s(n) = nω(1). Condition 1 of
Definition 3.4.4 is also satisfied with negligible probability ε(n) because otherwise f can be
inverted with probability

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) ≥ εO(1) · 1/poly(n) · 2−(O(log n)+(3/4)·(log s(n)))

= εO(1) · 1/poly(n) · s(n)−3/4 ,

which is greater than 1/s(n) if ε is nonnegligible. �

3.5 From Any One-Way Function

Our final hurdle is to remove the regularity assumption. It turns out that this is the most
technically challenging step. Similar to our construction from regular one-way functions
(with unknown preimage size) in Section 3.4, our construction based on any one-way func-
tion yields a collection 2-phase commitments, as stated below.

THEOREM 3.5.1
If one-way functions exist, then on security parameter 1n, we can construct in time polynomial

in n a collection of public-coin 2-phase commitment schemes COM = {Com1, · · · ,Comm},
where m = poly(n), such that:

I there exists an index i ∈ {1, 2, . . . ,m} such that scheme Comi is statistically hiding, and

I for every index i ∈ {1, 2, . . . ,m}, scheme Comi is computationally 1-out-of-2 binding.

The above collection of 2-phase commitment schemes suffices for obtaining statistical
zero-knowledge arguments for all of NP (cf., [Ngu, Chap. 6]). Hence, Theorem 3.5.1 suffices

60 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

to establish Theorem 1.2.5, which states that statistical zero-knowledge arguments for all
of NP can be based on any one-way function.

We prove Theorem 3.5.1 in Sections 3.5.1 through 3.5.3. In Section 3.5.5, we present a
transformation technique, due to Haitner and Reingold [HR2], that takes the above collec-
tion of 2-phase commitment schemes and converts it into a single commitment scheme that
is statistically hiding and computationally binding (in the standard sense of binding). Do-
ing so would establish Theorem 3.0.4, one of the main theorems of this present chapter, and
would also provide an alternative way to establish Theorem 1.2.5 (since by Corollary 2.5.3,
statistically-hiding commitments imply statistical zero-knowledge arguments for all of NP).

3.5.1 Overview

We now present an overview of how we generalize our construction for regular one-way
functions with unknown preimage size (Protocol 3.4.6) to arbitrary one-way functions. As
shown in Lemma 3.4.10, this protocol already achieves 1-out-of-2 binding when f is any
one-way function (for every value of t). Thus the challenge is the hiding property. (Another
issue is that Protocol 3.4.6 requires a one-way function with known security. It turns out
that our method for handling the hiding property also eliminates the need to know the
security.)

As discussed in Section 3.4, for regular one-way functions with unknown preimage size,
Protocol 3.4.6 has a hiding first phase when the parameter t satisfies t <∼ H(f(Un)) and has
a hiding second phase when t satisfies t >∼ H(f(Un)). Intuitively, when f is not regular, we
should replace the fixed value H(f(Un)) with the dynamic value Hf (y) def= log(1/Pr[f(Un) =
y]), where y = f(x) is the value chosen by the sender in the pre-processing step, because
Hf (y) can be viewed as measuring the amount of entropy in y. The approximable preimage-
size one-way functions studied by Haitner et al. [HHK+] come equipped with an algorithm
that estimates Hf (y), but for general one-way functions, this quantity may be infeasible to
compute.

A weakly-hiding scheme (details in Section 3.5.2). One natural approach is to have
the sender choose t at random and hope that it is close to Hf (y). When we choose t too
small, only the first phase will be hiding, and when we choose t too large, only the second
phase will be hiding. But we have a nonnegligible probability of δ = 1/n that t ≈ Hf (y),
and thus both phases will be hiding. Thus we have a 1-out-of-2-binding commitment scheme
satisfying a weak hiding property, where with probability δ = 1/n, both phases are hiding,
and it is always the case that at least one phase is hiding. Actually, in order to simplify
our analysis, we will include t as a parameter to the protocol. Then there exists a choice
of t such that the protocol is weakly hiding in the sense above, and for all choices of t the
protocol is 1-out-of-2 binding. At the end, we will enumerate over all values of t, resulting
in a collection of commitment schemes as claimed in Theorem 3.5.1, albeit with a weak
hiding property.

3.5 FROM ANY ONE-WAY FUNCTION 61

Unfortunately, we do not know how to directly construct zero-knowledge arguments
from weakly-hiding 1-out-of-2-binding commitments. Thus instead, much of the effort in
this paper is devoted to amplifying the weak hiding property, where δ = 1/n, into a strong

hiding property, where δ = 1− neg(n), while maintaining the 1-out-of-2 binding property.

Amplifying the hiding property (details in Section 3.5.3). We do not amplify the
hiding probability from δ = 1/n to δ = 1 − neg(n) in one shot, but instead perform a
sequence of log n iterations, each one of which increases δ by a roughly factor of 2. This
results in δ = Ω(1), and then we are able to get δ = 1−neg(n) in just one more amplification
step.

How do we double δ? A natural idea is to consider several executions of the previous
weakly-hiding scheme. Specifically, if we take m = O(1) executions, the probability that at
least one of the executions has both phases hiding is roughly m · δ. Moreover, each of the
remaining m − 1 executions have either the first phase hiding or the second phase hiding.
Thus for some value of β, there are β+1 first phases that are hiding and m−β second phases
that are hiding. It turns out that we can choose β so that this exact (β+1,m−β) breakdown
given that one execution has both phases hiding occurs with probability Ω(1/

√
m). Thus

we are in the situation described with probability m · δ ·Ω(1/
√
m) = Ω(

√
m · δ) > 2δ, for a

large enough constant m.

Now our aim is to combine the outcomes of the weakly-hiding schemes in such a way
that when the above-described situation occurs, which happens with probability at least
2δ, both phases are hiding. Notice that the secret values σ1, . . . , σm ∈ {0, 1}k to which the
sender commits in the first commit phases have entropy (even min-entropy) at least (β+1)·k
conditioned on the receiver’s view (because (β + 1) of them are hiding), and similarly the
sender’s secrets in the second commit phases have entropy at least (m−β) ·k conditioned on
the receiver’s view. Let us compare this to the situation with binding. Since each execution
is 1-out-of-2 binding, a cheating polynomial-time sender can break the binding property for
either at most β of the first phases or at most m − β − 1 of the second phases. Thus the
number of possible values to which the sender can open in each case is at most 2m · 2k·β in
the first phase or at most 2k·(m−β−1), where the 2m factor in the first bound comes from
the sender’s ability to choose which subset of executions to break (and it is this factor that
limits us to taking m to be a constant). We can view these as strong forms of entropy upper
bounds m+ kβ and k · (m− β − 1). In at least one phase, there will be an entropy gap of
at least k −m.

How can we exploit these entropy gaps? It turns out that interactive hashing, again,
is a useful tool. Specifically, in the first phase we have the sender choose a random
pairwise-independent hash function h1 mapping to approximately (β + 1) · k bits and use
(h1, h1(σ1, . . . , σm)) as the input to the interactive hashing protocol, and analogously for
the second phase. By the Leftover Hash Lemma, this pairwise-independent hashing con-
verts the min-entropy lower bound described above to an almost-uniform distribution, so

62 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

the interactive hashing hiding property applies. As for the binding property, the bound
on the number of the sender’s choices gets translated to saying that the sender’s input (in
the first phase) comes from a set Γ of density 2−(k−m), so the interactive hashing binding
property applies. The analyses for the second phase are similar. Formalizing these ideas,
we get a new 1-out-of-2-binding commitment scheme in which both phases are hiding with
probability at least 2δ.

When we try to iterate this amplification stepO(log n) times, we run into a new difficulty.
Specifically, the above sketch hides the fact that we pay entropy losses of ω(log n) in both
the hiding and binding analyses. The entropy loss of ω(log n) in the hiding property comes
from the Leftover Hash Lemma, in order to ensure that (h1, h1(σ1, . . . , σm)) has negligible
statistical distance from uniform. The entropy loss of ω(log n) in the binding property
comes from needing the µ(Γ) · 2k factor to be negligible when applying Lemma 3.2.5. This
forces us to go, in one step of amplification, from a commitment scheme for secrets of length
k to a scheme for secrets of length k −m− ω(log n). As in Lemma 3.4.10, we can take the
initial secret length to be k = Θ(log s(n)) = ω(log(n)) if the one-way function has known
security s(n) = nω(1). But to tolerate log n losses of ω(log n), we would need s(n) = nω(log n)

(i.e., at least quasipolynomial security).

To get around this difficulty, in the amplification, we work with more relaxed, average-
case measures of entropy for both the hiding and binding analyses. Specifically, for hiding,
we keep track of the expected collision probability of the sender’s secret, conditioned on
the receiver’s view. (Actually, we use the expected square root of the collision probability.)
For binding, we work with the expected number of values to which the sender can open. In
both cases, we only require these expectations to be within a constant factor of the ideal
values, which are 2−k and 1 respectively. With these measures, it turns out that we need
only lose O(m) = O(1) bits in the entropy gap with each amplification step. Moreover, once
we amplify δ to a constant, we can afford to take the number of executions m to equal the
security parameter n and get an Ω(n)-bit entropy gap in the final amplification step. This
allows us to achieve exponentially strong statistical hiding even when we do not know the
security and start with secret length of k = O(log n).

The hiding analysis of the above construction works only for certain values of t in the
weakly-hiding scheme, and for certain values of the β’s in the amplification steps. We try
out all possible values of t and β’s, thus obtaining a collection of poly(n) schemes, at least
one of which is strongly hiding and all of which are 1-out-of-2 binding. Notice that the
number of possible choices of t and the β’s are polynomial in n since t ∈ {1, 2, . . . , n}, the
β’s in the each step except for the last is in the range {0, 1, . . . ,m− 1}, for some constant
m, and the last β is in the range {0, 1, . . . , n}.

Converting 1-out-of-2-binding commitments to standard commitments (details
in Section 3.5.5). Having obtained this collection of poly(n) schemes, we use convert it
into a single commitment scheme that is statistically hiding and computationally binding

3.5 FROM ANY ONE-WAY FUNCTION 63

using a transformation provided by Haitner and Reingold [HR2], henceforth called the
Haitner & Reingold transformation.

3.5.2 Weakly-hiding and 1-out-of-2-binding commitments

As discussed in Section 3.4, for the case of regular one-way functions with unknown preimage
size, Protocol 3.4.6 has a hiding first phase when the parameter t satisfies t <∼ H(f(Un)) and
has a hiding second phase when t satisfies t >∼ H(f(Un)). When f is not regular, then there
will be one value of t ∈ {1, 2, . . . , n} such that H(f(Un)) ≈ t with probability 1/n. This is
the case because there are only n possible choices for the value of t.

With this observation in mind, our 2-phase commitment scheme from general one-way
functions will be the same as the scheme in Protocol 3.4.6, with setting of parameters t = t0,
k = O(log n), and ∆1 = ∆2 = 2 log n, for some t0 ∈ {1, 2, . . . , n}. In other words, the same
scheme—with slightly different setting of parameters—used in the case of regular one-way
functions is also applicable to general one-way functions.

This commitment scheme (using general one-way functions), as we will show, is compu-
tationally 1-out-of-2 binding, but only statistically hiding in both phases with probability
at least 1/n (hence, called weakly hiding). In order to obtain a tighter analysis when we
amplify this scheme, we depart from the standard measures of hiding and binding used in
Section 3.4. Instead, we measure the statistical hiding property of our 2-phase commitments
using the expected square root of the collision probability of the sender’s secret, denoted as
CP1/2, and defined in Section 3.5.2. We measure the binding property by analyzing the
expected number of values to which an adversarial sender can open.

Later in Section 3.5.3, we show how to boost the statistical hiding probability to 1 −
2−Ω(n) while maintaining the computational 1-out-of-2 binding property.

Properties of collision probability

DEFINITION 3.5.2
For any random variable A, we define its collision probability as the probability that two
independent samples from A are equal. In other words,

CP(A) def=
∑

a∈Supp(A)

(Pr[A = a])2 = E
a←A

[Pr[A = a]] .

Measuring the collision probability of a random variable is equivalent to measuring its
Renyi entropy of order 2, defined as

H2(A) = log
1

Ea←A [Pr[A = a]]
= log

1
CP(A)

.

64 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

DEFINITION 3.5.3
For any random variable A, we define its expected square root of the collision proba-

bility as
CP1/2(A) def=

√
CP(A) .

For any two (possibly correlated) random variables A and B, we define

CP1/2(A|B) def= E
b←B

[
CP1/2(A|B=b)

]
.

We think of CP1/2(A|B) ≤
√

2k as saying that A has conditional Renyi entropy of
at least k given B. We use the expected square root of the collision probability (as our
measure of hiding) instead of just expected collision probability in order to ensure that
conditioning on a random variable Z can only decrease the conditional Renyi entropy by at
most log(|Supp(Z)|) bits. (See Lemma 3.5.7 below for details.)

The following lemmas show that CP1/2 behaves nicely as an entropy measure. Proofs
are in Appendix A.2.

LEMMA 3.5.4
For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) =
m∏

i=1

CP1/2(Xi|Yi) .

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent

from the other tuples.

In terms of conditional Renyi entropy, Lemma 3.5.4 states that the entropy is additive
for independent random variables. We will actually need a generalization of Lemma 3.5.4
to deal with somewhat dependent random variables, as stated in the next lemma.

LEMMA 3.5.5
Suppose random variables (X1, Y1), . . . , (Xm, Ym) satisfy the following conditions for some val-

ues of α1, . . . , αm ∈ R+ and all i = 1, 2, . . . ,m:

1. For every (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αi .

2. For every (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), the i+ 1 random variables X1, X2, . . . , Xi,

and Yi+1 are independent, even if we condition on Y1 = y1, . . . , Yi = yi.

3.5 FROM ANY ONE-WAY FUNCTION 65

Then,

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi .

The next lemma shows that pairwise-independent randomness extraction (h, h(x)) pre-
serves the CP1/2 measure.

LEMMA 3.5.6
(Randomness Extraction Lemma.) Let (X,Y) be any (possibly correlated) pair of random

variables, and let random variable H denote a random hash function from a family of pairwise-

independent hash functions H with range {0, 1}α. Suppose the hash functions from H are

represented by (q − α)-bit strings and CP1/2(X|Y) ≤
√

2−(α+3). If H is independent from

(X,Y), then

CP1/2((H,H(X))|Y) ≤
√

2−(q−1) .

In other words, if X has at least α+3 bits of conditional Renyi entropy given Y , then we
can extract α bits from X that have conditional Renyi entropy at least α− 1. Notice that
this entropy loss is only 4 bits, as compared to 2 log(1/ε) if we require that the output be
ε-close to uniform as in the Leftover Hash (Lemma 3.3.1). This constant loss of conditional
Renyi entropy allows us to do a tighter hiding analysis in Section 3.5.3.

LEMMA 3.5.7
For any triple of (possibly correlated) random variables X, Y and Z,

CP1/2(X|Y) ≤ CP1/2(X|(Y, Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y) .

This says that conditioning on random variable Z can only decrease the conditional
Renyi entropy, but does so by at most log(|Supp(Z)|) bits. The final lemma is a stronger
variant of the previous Leftover Hash Lemma of Lemma 3.3.1, with its hypothesis stated in
terms of collision probability.

LEMMA 3.5.8
(A stronger variant of the Leftover Hash Lemma [BBR, ILL].) Let random variable H denote

a random hash function from a family of pairwise-independent hash functions H with range

{0, 1}α. For any ε > 0, if CP(X) ≤ ε2 · 2−α and H is independent from X, then random

variable (H,H(X)) is ε-close in statistical distance to uniform.

66 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Average-case hiding and binding properties of interactive hashing

We now analyze the interactive hashing protocol, namely Protocol 3.2.3, in terms of average-
case measures. For hiding, we use the CP1/2 measure introduced in the previous section.
For the binding property, we present an average-case variant of Lemma 3.2.5, where we look
at the expected number of outputs that lies in any set Γ, rather than bound the probability
that there is more than one output in Γ.

LEMMA 3.5.9
(Hiding of interactive hashing in CP1/2 measure.) Let (SIH, RIH) be the interactive hashing

protocol in Protocol 3.2.3. If the sender SIH’s input comes from a random variable Y over

{0, 1}q and W is any (possibly correlated) random variable (representing the receiver’s a priori

information about Y), then for any receiver R∗,

CP1/2(Z|(W,V)) ≤
√

2q−k · CP1/2(Y |W) ,

where Z = outputSIH
(SIH(Y), R∗)(1q, 1k) and V = viewR∗(SIH(Y), R∗)(1q, 1k).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (The ran-
domized case then follows by taking expectation over R∗’s coins.) Now that since R∗

is deterministic, the hash functions sent h0, . . . , hq−k−1 are fully determined by SIH’s re-
sponses c0, . . . , cq−k−1 ∈ {0, 1} (refer to Protocol 3.2.3). Hence, the number of possible
different receiver’s view is bounded by 2q−k. This implies that |Supp(V)| ≤ 2q−k, where
V = viewR∗(SIH(Y), R∗)(1q, 1k). By Lemma 3.5.7,

CP1/2(Y |(W,V)) ≤
√
|Supp(V)| · CP1/2(Y |W) ≤

√
2q−k · CP1/2(Y |W) .

Observe that given any particular instantiation of W = w and V = v, the distri-
butions outputSIH

(SIH(Y), RIH)(1q, 1k)|W=w,V =v has the same collision probability with
Y |W=w,V =v (indeed they are in bijective correspondence). Hence, CP1/2(Z|(W,V)) =
CP1/2(Y |(W,V)) ≤

√
2q−k · CP1/2(Y |W). �

LEMMA 3.5.10
(Binding of interactive hashing in expected measure.) Let (SIH, RIH) be the interactive hashing

protocol in Protocol 3.2.3. For any fixed subset Γ ⊆ {0, 1}q, and for any sender S∗, setting

C = output((S∗, RIH)(1q, 1k)), we have

E [|{z : C(z) ∈ Γ}|] < max{24, 2k+1 · µ(Γ)} ≤ 24 + 2k+1 · µ(Γ) ,

where the above expectation is taken over the coins of S∗ and RIH.

3.5 FROM ANY ONE-WAY FUNCTION 67

This lemma and its proof are inspired by the work of Goldriech, Goldwasser, and
Linial [GGL], who studied a protocol similar to interactive hashing for a different purpose
(namely, random selection protocols).

Proof. Without loss of generality, we may assume that R∗ is deterministic. (Else, we can
fix its coins to maximize the expectation.) Note that for iteration j = 0, . . . , q− k− 1, RIH

will send a random hj , partitioning the set of possible outputs into two sets {y : hj(y) = 0}
and {y : hj(y) = 1}, and S∗ chooses a side of the partition by sending a bit cj . Let Γ0 = Γ,
and for all j > 0, Γj = {y ∈ Γ : hi(y) = ci ∀i < j} denote the set of compatible elements at
iteration j. Let µj = E[|Γj | · 2−(q−j)], where the expectation is taken over random choices
of h0, . . . , hj−1. For convenience of notation, assume that the hash function hi’s range is
{±1}, instead of {0, 1}.

Consider a particular set Γj , and a particular hash function hj . Observe that for every
y 6= y′ ∈ Γj , Prhj

[hj(y) = hj(y′)] ≤ 1/2. Hence,

E
hj

[hj(y)hj(y′)] ≤ 0 ∀y 6= y′ ∈ Γj . (3.3)

Observe that the set Γj+1 = {y ∈ Γj : hj(y) = cj}. Therefore,

E
hj

[µ(Γj+1)] = µ(Γj) + 2−(q−j) · E
hj

∣∣∣∣∣∣
∑
y∈Γj

hj(y)

∣∣∣∣∣∣


≤ µ(Γj) + 2−(q−j) ·

√√√√√E
hj

∑
y∈Γj

hj(y)

2 (Cauchy-Schwartz/Jensen)

= µ(Γj) + 2−(q−j) ·
√
|Γj |+

∑
y 6=y′

E
hj

[hj(y)hj(y′)]

≤ µ(Γj) + 2−(q−j) ·
√
|Γj | (by 3.3)

= µ(Γj) +
√

2−(q−j) · µ(Γj) .

Consequently,

µj+1 = E
h0,...,hj

[µ(Γj+1)]

= E
h0,...,hj−1

[E
hj

[µ(Γj+1)]]

≤ E
h0,...,hj−1

[
µ(Γj) +

√
2−(q−j) · µ(Γj)

]
≤ E

h0,...,hj−1

[µ(Γj)] +
√

2−(q−j) · E
h0,...,hj−1

[µ(Γj)] (Cauchy-Schwartz/Jensen)

= µj +
√

2−(q−j) · µj .

68 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Assume that the µj ’s are monotonically increasing (otherwise, we can make it so). This
gives us

µq−k ≤ µ0 +
q−k−1∑

j=0

√
2−(q−j) · µj

≤ µ0 +
√
µq−k ·

q−k−1∑
j=0

√
2−(q−j) (µj ’s are monotonically increasing)

< µ0 +
√
µq−k ·

√
6/2k

≤ µ0 +
µq−k

2
(if µq−k ≥ 24 · 2−k) ,

giving us µq−k < 2µ0 = 2µ(Γ) if µq−k ≥ 24 · 2−k. This means that µq−k is either less than
24 · 2−k or less than 2µ(Γ). Therefore, we can conclude that

E
[
|{z : C(z) ∈ Γ}| : C = output((S∗, RIH)(1q, 1k))

]
= µq−k · 2k

< max{24, 2k+1 · µ(Γ)} . �

Protocol 3.4.6 is hiding in CP1/2 measure

We are now ready to analyze the hiding property of Protocol 3.4.6 in terms of the CP1/2

measure. To do so, we say what it means for a scheme to be δ-hiding in CP1/2 measure
in Definition 3.5.11 below. But before going into that definition, we first establish some
notations that are used throughout this part of the section.

With the sender’s input being x, we let random variable viewR∗(S1
c (x), R∗) denote the

view of receiver R∗ in the first commit phase, let random variable outputS(S1
c (x), R∗) denote

the sender’s private output in the first phase, and let random variable transcript(S1(x), R∗)
denote the first (commit and reveal) phase transcript.

Using similar notations, with the transcript being τ and sender’s input being x, we let
random variable viewR∗(S2

c (x), R∗)(τ) denote the view of receiver R∗ in the second commit
phase, let random variable outputS(S2

c (x), R∗)(τ) denote the sender’s private output in the
second phase, and let random variable transcript(S2(x), R∗)(τ) denote the second (commit
and reveal) phase transcript. We write Γ1 in viewR∗(S1

c (Γ1), R∗)—and similarly for others—
to mean that the sender’s private input is chosen uniformly from a set Γ1.

DEFINITION 3.5.11
For a parameter δ ∈ [0, 1], 2-phase commitment scheme (S,R) is said to be δ-hiding in

CP1/2 measure if there exists two sets Γ1,Γ2 ⊆ {0, 1}n such that the following three
properties hold.

(H.1) Γ1 ∪ Γ2 = {0, 1}n and µ(Γ1 ∩ Γ2) ≥ δ.

3.5 FROM ANY ONE-WAY FUNCTION 69

(H.2) When the sender’s private input x is chosen uniformly from Γ1, the sender’s pri-
vate output in the first phase has low collision probability given the receiver’s view.
Formally, for any adversarial receiver R∗,

CP1/2(A|V) ≤
√

2−(k−1) ,

for (A, V) = (outputS(S1
c (Γ1), R∗), viewR∗(S1

c (Γ1), R∗)).

(H.3) When the sender’s private input x is chosen uniformly from Γ2, the sender’s pri-
vate output in the second phase has low collision probability given the receiver’s
view. Formally, for every adversarial receiver R∗ and every τ ∈ Supp(T), where
T = transcript(S1(Γ2), R∗), we have

CP1/2(Bτ |Wτ) ≤
√

2−(k−1) ,

for (Bτ ,Wτ) = (outputS(S2
c (Γ2), R∗), viewR∗(S2

c (Γ2), R∗))|T=τ .

REMARK 3.5.12
Being δ-hiding in CP1/2 measure in the above Definition 3.5.11 roughly means that the
scheme is always hiding in at least one phase, and hiding in both phases occurs with prob-
ability δ.

LEMMA 3.5.13
(Protocol 3.4.6 is (1/n)-hiding in CP1/2 measure.) Let f : {0, 1}n → {0, 1}n be any function,

not necessarily one-way. There exist an integer t0 ∈ {1, 2, . . . , n} such that Protocol 3.4.6, with

setting of parameters t = t0, k ≤ q(n), ∆1 ≥ log n+ 4, and ∆2 ≥ 3, is (1/n)-hiding in CP1/2

measure.

Proof. Without loss of generality, we may assume that R∗ is deterministic since we can
fix the coins of R∗ that maximizes the above collision probabilities. We prove that (S,R)
satisfies the above three properties of Definition 3.5.11 as follows:

Property (H.1). Define p(y) = Pr[f(Un) = y], and let A1 = {y ∈ {0, 1}n : 1/2 ≤
p(y) ≤ 1}, and for t ∈ {2, 3, . . . , n}, let At = {y ∈ {0, 1}n : 2−t ≤ p(y) < 2−t+1}. Since
∪tAt = f({0, 1}n), there exists an index t0 such that Pr[f(Un) ∈ At0] ≥ 1/n. Define sets
Γ1 and Γ2 as follows:

Γ1 = {x : p(f(x)) < 2−t0+1}

Γ2 = {x : p(f(x)) ≥ 2−t0}

70 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

By the definition of Γ1 and Γ2, we have that µ(Γ1 ∩ Γ2) = Pr[f(Un) ∈ At0] ≥ 1/n, and also
Γ1 ∪ Γ2 = {0, 1}n.

Property (H.2). In the case when the sender’s private input x ∈ Γ1, we bound the
collision probability of the first phase secret as follows:

CP(f(Γ1)) =
∑

y∈f(Γ1)

(
p(y)
µ(Γ1)

)2

≤
(

max
y∈f(Γ1)

p(y)
)
·

 ∑
y∈f(Γ1)

p(y)

 · 1
µ(Γ1)2

< 2−t0+1 · µ(Γ1) · µ(Γ1)−2

≤ 2−(t0−log n−1) (since µ(Γ1) ≥ 1/n) .

Observe that CP(f(Γ1)) ≤ 2−(t0−log n−1) ≤ 2−(t0−∆1+3). Therefore we can apply Ran-
domness Extraction Lemma 3.5.6 to get CP1/2(Q) ≤

√
2−(q−1), where Q = (H1,H1(f(Γ1)))

and H1 is an independent random hash from H1.

Next, let A = outputS(S1
c (Γ1), R∗) denote the private output of the sender S in the first

phase of Protocol 3.4.6, which in turn is equal to the output of SIH in the interactive hashing
protocol, so equivalently A = outputSIH

(SIH(Q), R∗). Similarly, let V = viewR∗(S1
c (Γ1), R∗)

denote the view of the adversarial receiver R∗ in the first phase, which in turn is equal to
the view of R∗ in the interactive hashing protocol, so equivalently V = viewR∗(SIH(Q), R∗).

The final step is to use the hiding property of interactive hashing given by Lemma 3.5.9
to bound the collision probability of A (the private output of the sender S) given V (the
view of the adversarial receiver R∗) as follows:

CP1/2(A|V) ≤
√

2q−k ·
√

CP(Q) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1) .

Property (H.3). In the case when the sender’s private input x ∈ Γ2, we analyze the
collision probability of the second phase secret as follows. First we observe that for any
x, x′ ∈ {0, 1}n such that f(x) = f(x′), the first phase transcripts for both x and x′ are
identically distributed, that is transcript(S1(x), R∗) ≡ transcript(S1(x′), R∗). Thus, if we
fix a first phase transcript τ ∈ transcript(S1(x), R∗) containing a value y = f(x) in the
reveal phase, any element in Γ2,y = f−1(y) ⊆ Γ2 is equally likely to have generated τ . Also
observe that the Γ2,y’s form a partition of Γ2.

Note that by definition, |Γ2,y| ≥ 2n−t0 , and hence CP(Γ2,y) ≤ 2−(n−t0) ≤ 2−(n−t0−∆2+3).
Therefore we can apply Randomness Extraction Lemma 3.5.6 to get CP1/2(Q′) ≤

√
2−(q−1),

for Q′ = (H2,H2(Γ2,y)).

Next, let Bτ = outputS(S2
c (Γ2,y), R∗)(τ) denote the private output of the sender S in the

second phase, which in turn is equal to the output of SIH in the interactive hashing protocol,

3.5 FROM ANY ONE-WAY FUNCTION 71

so equivalently Bτ = outputSIH
(SIH(Q′), R∗). Similarly, let Wτ = viewR∗(S2

c (Γ2,y), R∗)(τ)
denote the view of the adversarial receiver R∗ in the second phase, which in turn is equal to
the view ofR∗ in the interactive hashing protocol, so equivalentlyWτ = viewR∗(SIH(Q′), R∗).

The final step is to use the hiding property of interactive hashing given by Lemma 3.5.9
to bound the collision probability of Bτ (the private output of the sender S) given Wτ (the
view of the adversarial receiver R∗) as follows:

CP1/2(Bτ |Wτ) ≤
√

2q−k ·
√

CP(Q′) ≤
√

2q−k ·
√

2−(q−1) =
√

2−(k−1) . �

Protocol 3.4.6 is 1-out-of-2 binding in expected measure

The definition of 1-out-of-2 binding in Definition 3.4.4 considers the first phase (resp., second
phase) to be broken if the sender S∗ produces valid decommitments to two different values
after the first commit stage (resp., second commit stage). In this section and Section 3.5.3,
we will work with a relaxed notion where we simply bound the expected number of values to
which the sender can open. To this end, we define openings(S∗, R1) [resp., openings(S∗, R2)]
to be a random variable denoting the number of values to which the sender successfully opens
in phase 1 [resp., phase 2], where ‘successfully’ opens is defined for each phase analogously to
Definition 3.4.4. More formally, for a two-phase commitment scheme (S,R) and a ‘binding’
set B, we define openings(S∗, R1)(B) as follows:

I S∗ and R1
c interact to get first phase commitment c(1).

I After the interaction, S∗ outputs a sequence of values d(1)
1 , . . . , d

(1)
` and corresponding

full transcripts λ1, . . . , λ` of both phases. Recall that λi = (τi, κi), where τi and κi are
the first-phase and second-phase transcripts, respectively.

I We let openings(S∗, R1)(B) be the set of distinct values d(1)
i whose opening λi is valid,

where by valid we mean that λi begins with prefix c(1), λi contains a decommitment
of c(1) to the value d(1)

i with first-phase transcript τi /∈ B, and both R1
r and R2

r accept
in λi.

Analogously, we define openings(S∗, R2)(τ), where τ is a first-phase transcript, as follows:

I S∗ and R2
c interact to get second phase commitment c(2).

I After the interaction, S∗ outputs a sequence of values d(2)
1 , . . . , d

(2)
` and corresponding

second-phase transcripts κ1, . . . , κ`.

I We let openings(S∗, R2)(τ) be the set of distinct values d(2)
i whose opening κi is valid,

where by valid we mean that κi starts with prefix c, κi contains a decommitment of
c(2) to the value d(2)

i , and R2
r accepts in κi.

Now, we can describe the binding property of Protocol 3.4.6 in this language (even when
the underlying one-way function has unknown security).

72 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

LEMMA 3.5.14
(Protocol 3.4.6 is 1-out-of-2 binding in expected measure.) For every integer t ∈ {1, 2, . . . , n},
k = O(log n), ∆1 = O(log n), and ∆2 = O(log n), the following holds for the 2-phase commit-

ment scheme (S,R) in Protocol 3.4.6 based on one-way function f : {0, 1}n → {0, 1}n:

There exists a binding set B for (S,R) where:

(B.1) No (nonuniform) PPT adversary S∗ can break the first phase binding with

nonnegligible probability in the sense of Definition 3.4.4. That is, for any

nonuniform PPT S∗, we have | openings(S∗, R1)(B)| ≤ 1 with probability

1− neg(n) over the coins of S∗ and R1
c .

(B.2) For all τ ∈ B and any adversarial sender S∗,

E
[∣∣openings(S∗, R2)(τ)

∣∣] < 2 ,

where the above expectation is taken over the coins of S∗ and R2.

Proof. We follow the proof of the binding property in Lemma 3.4.10, using both Claims 3.4.12
and 3.4.11 from that proof. Let B = {y ∈ {0, 1}n : Pr[f(Un) = y] ≤ 2−t−∆3} be the same
binding set as defined in both claims. We set ∆3 = ∆2 +O(log n) to be large enough so that
the binding parameter poly(n) · 2−Ω(∆3−∆2) in Claim 3.4.12 is at most 2−k. (This can be
done since k = O(log n).) Now, Claim 3.4.12 states that if τ ∈ B, then the second commit-
ment phase is not binding—i.e.,

∣∣openings(S∗, R2)(τ)
∣∣ ≥ 2—with probability at most 2−k.

Since
∣∣openings(S∗, R2)(τ)

∣∣ ≤ 2k (the commitment is to a k-bit string), taking expectations
we have

E
[∣∣openings(S∗, R2)(τ)

∣∣] ≤ 2k · 2−k + 1 · (1− 2−k) < 2 .

To see why property (B.1) holds, let ε be the probability for which PPT S∗ breaks the
first phase binding. Observe that the inversion success probability of f from Claim 3.4.11
is

εO(1) · 1/poly(n) · 2−(k+∆1+∆3) = εO(1) · 1/poly(n) · 2−(k+∆1+∆2+O(log n))

=
εO(1)

poly(n)
,

since all k,∆1,∆2 = O(log n). This forces ε to be a negligible function. �

3.5.3 Converting weakly-hiding to strongly-hiding commitments

In the previous section, we established that Protocol 3.4.6, with appropriate choice of pa-
rameters, is 1/n-hiding in CP1/2 measure (hence, only weakly hiding), and 1-out-of-2 binding
in expected measure. Our goal in this section is to show how to boost the hiding probabil-
ity to δ = 1 − neg(n), therefore making the scheme strongly hiding, while maintaining the
1-out-of-2 binding property.

3.5 FROM ANY ONE-WAY FUNCTION 73

We first show how to double the hiding probability by combining a constant number
of schemes to obtain a new scheme. We then repeat this doubling amplification process
O(log n) times to boost the hiding probability from 1/n to a constant c > 0, hence obtain-
ing an Ω(1)-hiding scheme. Finally we boost it all the way to 1 − neg(n) by combining
polynomial number of Ω(1)-hiding schemes. This is all achieved via a hiding amplification
procedure stated next.

ALGORITHM 3.5.15 �

Hiding amplification procedure, denoted as Amplify.

Input: 2-phase commitment (S,R)

Additional Input Parameters: These are given in unary, and listed below:

1. Security parameter n.

2. Number m of schemes (S,R) to be combined.

3. Integer r denoting S’s private input length.

4. Integer k denoting S’s private output length.

5. Integer k′ denoting S’s private output length.

6. Integer thresholds α1 and α2, for the first and second commit phases respectively.

Output: 2-phase commitment (S,R), as described by Protocol 3.5.16.

� �

To reduce unnecessary clutter, we write (S,R) = Amplify(S,R) when the rest of the
parameters are clear from context.

PROTOCOL 3.5.16 �

Amplified scheme (S,R) from hiding amplification of base scheme (S,R).

Sender’s private input: x = (x1, . . . , xm) ∈ {0, 1}mr.

First phase commit:

1. (S1
c ,R

1
c) does m sequential executions of (S1

c , R
1
c), using xi for S1

c ’s secret in the
i-th execution. Let (S1

c [i](xi), R1
c [i]) denote the i-th execution of (S1

c , R
1
c). Define

ai = outputS(S1
c [i](xi), R1

c [i]) ∈ {0, 1}k, and let a = (a1, . . . , am).

2. Let H1 = {h1 : {0, 1}mk → {0, 1}α1} be a family of pairwise independent hash
functions. S1 chooses a random hash h1 ← H1, and computes y(1) = (h1, h1(a)) ∈
{0, 1}q.

3. (S1
c ,R

1
c) runs the interactive hashing protocol (S1

IH(y(1)), R1
IH)(1q, 1k), given by

Protocol 3.2.3, with S1 and R1 acting as S1
IH and R1

IH, respectively.

Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(1) ∈ {0, 1}k′ be
S1

IH’s private output in (S1
IH(y(1)), R1

IH)(1q, 1k).

74 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

First phase sender’s private output: String d(1) ∈ {0, 1}k′ .

First phase reveal:
S1

r sends tuple γ(1) = (d(1), a, h1) ◦ (γ(1)
1 , . . . , γ

(1)
m), where γ(1)

i is the first phase reve-
lation string of S1

r [i] in the above execution of (S1
r [i](xi), R1

r [i]).

Receiver R1
r accepts if only if C(d(1)) = (h1, h1(a)) and R1

r [i] accepts (γ(1)
i , ai) for all

i ∈ {1, 2, . . . ,m}.

Second phase commit:
Second phase common input: Transcript τ = (τ1, . . . , τm), where each

τi = transcript(S1
i (xi), R1

i).

1. (S2
c ,R

2
c) does m sequential executions of (S2

c , R
2
c), using xi for S2’s secret and

transcript τi in the i-th execution. Let (S2
c [i](xi), R2

c [i])(τi) denote the i-th ex-
ecution of (S2, R2). Define bi = outputS(S2

c [i](xi), R2
c [i])(τi) ∈ {0, 1}k, and let

b = (b1, . . . , bm).

2. Let H2 = {h2 : {0, 1}mk → {0, 1}α2} be a family of pairwise independent hash
functions. S2 chooses a random hash h2 ← H2, and computes y(2) = (h2, h2(b)) ∈
{0, 1}q.

3. (S2
c ,R

2
c) runs the interactive hashing protocol (S2

IH(y(2)), R2
IH)(1q, 1k), given by

Protocol 3.2.3, with S2
c and R2

c acting as S2
IH and R2

IH, respectively.

Let circuit C : {0, 1}k′ → {0, 1}q be the common output, and d(2) ∈ {0, 1}k′ be
S2

IH’s private output in (S2
IH(y(2)), R2

IH)(1q, 1k).

Second phase sender’s private output: String d(2) ∈ {0, 1}k′ .

Second phase reveal:
S2

r sends tuple γ(2) = (d(2), b, h2) ◦ (γ(2)
1 , . . . , γ

(2)
m), where γ

(2)
i is the second phase

revelation string of S2
r [i] in the above execution of (S2

r [i](xi), R2
r [i]).

Receiver R2
r accepts if only if C(2)(d(2)) = (h2, h2(b)) and R2

r [i] accepts (γ(2)
i , bi) for

all i ∈ {1, 2, . . . ,m}.

� �

Starting from a weakly-hiding scheme (S0, R0) of Protocol 3.4.6, we iteratively apply
the amplification process Amplify, in a way described by Algorithm 3.5.17 below, to achieve
a new scheme (S,R) that we will show to be statistically-hiding. Let D > 1 denote a large
enough integer constant. We will set the number of schemes to be combined to be m = D

in all but the last iteration, in which we set m = n.

3.5 FROM ANY ONE-WAY FUNCTION 75

ALGORITHM 3.5.17 �

Iterative amplification procedure.

Input: Security parameter n, constant integer D > 1, and thresholds t ∈ {1, 2, . . . , n},
β1, . . . , β` ∈ {0, 1, . . . , D − 1}, β`+1 ∈ {0, 1, . . . , n}.

1. Let k0 = (16D) · log n, ` = log n, and (S0, R0) be the 2-phase commitment
scheme based on one-way function f : {0, 1}n → {0, 1}n from Protocol 3.4.6
using parameters t, k = k0, and ∆1 = ∆2 = 2 log n.

2. For j = 1, 2, . . . , `, repeat the following:

(a) Set kj = kj−1 − 8D − 8.

(b) Set (Sj , Rj) = Amplify(Sj−1, Rj−1) for settings of parameters m = D, r =
n · Dj−1, k = kj−1, k′ = kj , α1 = (βj + 1)(kj−1 − 1) − 3 and α2 = (D −
βj)(kj−1 − 1)− 3.

3. Set (S,R) = Amplify(S`, R`) for settings of parameters m = n, r = n ·D`, k = k`,
k′ = 1, α1 =

⌊
(β`+1 + 1

3δn)k
⌋

and α2 =
⌊
(n− β`+1 + 1

3δn)k
⌋
, where δ = 1/(2D).

Output: 2-phase commitment scheme (S,R).

� �

LEMMA 3.5.18
If scheme (S0, R0) used by Algorithm 3.5.17 runs in polynomial time, then scheme (S,R), the

output of Algorithm 3.5.17, also runs in polynomial time.

Proof. Scheme (S,R) consists of n ·D` = n ·DO(log n) = poly(n) executions of (S0, R0). In
addition, each amplification procedure Amplify adds an overhead time of poly(n) since both
the sender and receiver are doing interactive hashing. Since there are only 1 + n + nD +
nD2 + · · ·+D`−1 = poly(n) amplifications steps, the overhead time is polynomial. Hence,
scheme (S,R) runs in polynomial time if (S0, R0) does too. �

The rest of this section, which is technically involved, is devoted to proving the hiding
and binding properties of the final scheme (S,R). (In process of doing so, we also analyze
the the hiding and binding properties of intermediate schemes (Sj , Rj).)

Hiding amplification

The following two lemmas, Lemma 3.5.19 and 3.5.20, provide us a way to understand the
hiding property (in the CP1/2 measure) of amplified scheme (S,R), in terms of its base
scheme (S,R). Lemma 3.5.19 basically say that the hiding probability doubles when we go
from (Sj−1, Rj−1) to (Sj , Rj) = Amplify(Sj−1, Rj−1) (refer to Step 2b in Algorithm 3.5.17).
So if we start up with 1/n-hiding scheme (S0, R0), in ` = log n iterations, we will get a

76 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

scheme (S`, R`) with Ω(1)-hiding. Lemma 3.5.20 essentially argues that the final amplifi-
cation step boost the hiding probability all the way to 1 − neg(n) (in both phases) when
starting from a scheme that is Ω(1)-hiding. With these two lemmas, we can establish that
the final scheme (S,R) = Amplify(S`, R`) is statistically hiding in both phases.

LEMMA 3.5.19
(Intermediate step hiding amplification.) For any sufficiently large constant D ∈ Z+, the

following holds:

If scheme (S,R) is δ-hiding, then there exist an integer β ∈ {0, 1, . . . , D− 1} such

that scheme (S,R) = Amplify(S,R), with parameters m = D, k′ = k − 8D − 8,

α1 = (β + 1)(k − 1) − 3, and α2 = (D − β)(k − 1) − 3, is δ′-hiding, for δ′ =
min{2δ, 1/D}.

Proof. Without loss of generality, we may assume that R∗ is deterministic since we can fix
the coins of R∗ that maximizes the collision probability. Throughout this proof, the value
of m will be fixed to D, although we will keep writing m. Let the δ-hiding properties, as
stated in Definition 3.5.11, of (S,R) be (H.1), (H.2) and (H.3), respectively. We will prove
that (S,R) satisfies Definition 3.5.11 with Properties (H’.1), (H’.2) and (H’.3) by showing
that Property (H.1) implies (H’.1), and so forth.

Property (H.1) implies (H’.1). Let Γ1 and Γ2 be the corresponding sets for (S,R).
Define the sets Γ′1 and Γ′2 in terms as follows (the value of β will be determined later).

Γ′1 = {(x1, . . . , xm) : ∃ i1, . . . , iβ+1 such that xi1 , . . . , xiβ+1
∈ Γ1} ,

Γ′2 = {(x1, . . . , xm) : ∃ i1, . . . , im−β such that xi1 , . . . , xim−β
∈ Γ2} .

By the way we defined Γ′1 and Γ′2 together with the fact that Γ1 ∪Γ2 = {0, 1}r, it is the
case that Γ′1 ∪ Γ′2 = {0, 1}mr. This is because either at least β + 1 of the xi are in Γ1 (in
which case, (x1, . . . , xm) ∈ Γ′1) or else at most β of the xi are in Γ1, which implies that at
least m− β of the xi are in Γ2 (in which case, (x1, . . . , xm) ∈ Γ′2).

We are given that µ(Γ1 ∩ Γ2) ≥ δ. Define δ′ = min{δ, 1/(2m)}. What we need to show
is that µ(Γ′1 ∩ Γ′2) ≥ δ′. Choose any subset S ⊆ Γ1 ∩ Γ2 such that µ(S) = δ′. Hence, we
have

Pr
x1,...,xm←{0,1}r

[exactly one xi ∈ S] = mδ′(1− δ′)m−1 ≥ mδ′(1− 1/(m− 1))m−1 = Ω(mδ′) .

Given that exactly one xi ∈ S, assume without loss of generality that xm ∈ S. Let pt

denote the conditional probability that exactly t of the rest of the m− 1 xi’s are in Γ1 \Γ2.
Choose β ∈ [0,m−1] to maximize pt, i.e., β = argmaxt pt. Let Ii, for i = 1, 2, . . . ,m−1, be a
binary random variable indicating whether xi ∈ Γ1 or not; note that these are independent

3.5 FROM ANY ONE-WAY FUNCTION 77

random variables conditioned on the fact that xm ∈ S. Let the µ the mean of the Ii’s. By
a Chernoff bound,

Pr

[∣∣∣∣∣∑
i

Ii − µ · (m− 1)

∣∣∣∣∣ > 3
√
m− 1

]
≤ 2e((m−1)/3)·(3/

√
m−1)2 < 1/2 .

This means that greater 1/2 of the weight is centered around µ · (m− 1)± 3
√
m− 1. Since

we chose β = argmaxt pt in a maximal way, we have

Pr
x1,...,xm←{0,1}r

[exactly β of xi’s are in Γ1 \ S | exactly one xi ∈ S] = Ω
(

1√
m

)
.

Knowing that Γ1 ∪ Γ2 = {0, 1}r, if exactly β of xi’s in Γ1 \ S and exactly one xi ∈ S,
then there must be at least m− 1− β of xi’s in Γ2 \ S. Consequently,

Pr
x1,...,xm←{0,1}r

[(x1, . . . , xm) ∈ Γ′1 ∩ Γ′2] = Ω(mδ′) · Ω
(

1√
m

)
= Ω(

√
mδ′)

> 2δ′ = min{2δ, 1/m},

where the last inequality holds when m = D is a large enough constant.

Property (H.2) implies (H’.2). In the first commitment phase (S1
c , R

∗), the cheating
receiver R∗ interacts with m sequential executions of S1

c . Here we must analyze the case
when S1

c ’s private input in these m executions, given by x = (x1, . . . , xm), are distributed
uniformly in Γ′1. We let Ai(x) denote the private output of the sender and Vi(x) the view
of the receiver in the i’th execution, for x being the private input for S1

c . That is, for
i = 1, . . . ,m,

Ai(x) = outputS(S1
c (xi), R∗(V1, . . . , Vi−1));

Vi(x) = viewR∗(S1
c (xi), R∗(V1, . . . , Vi−1)).

Note that while the sender’s behavior in the i’th execution is independent of the previous
executions, the cheating receiver may base its strategy on its previous views. We want to
bound CP1/2(A′′(Γ ′1)|V ′′(Γ ′1)), where A′′(Γ ′1) = (A1(Γ ′1), . . . , Am(Γ ′1)) represents the com-
bined first-phase private outputs of the m senders, and V ′′(Γ ′1) = (V1(Γ ′1), . . . , Vm(Γ ′1))
represents the view of R∗ when interacting with these m senders. Note that random vari-
able Γ ′1 represents an independent random element from the set Γ′1. To do this, we consider,
for each I ⊆ [m] of size at least β + 1, the random variable Γ ′1|I for private input of the
sender S, where Γ ′1|I represents choosing xi uniformly in Γ1 for i ∈ I, and uniformly in Γ1

for i /∈ I. To get a bound on CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)), we will have to refer to Lemma 3.5.5
and see why the (Ai, Vi)’s satisfy the two conditions of the lemma.

78 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Conditioned on the any previous view—namely, V1(Γ ′1|I) = v1, . . . , Vi−1(Γ ′1|I) = vi−1

for any v1, . . . , vi−1—it is the case that CP1/2(Ai(Γ ′1|I)|Vi(Γ ′1|I)) ≤
√

2−(k−1) if i ∈ I.
This follows from Property (H.2) because the (unbounded) receiver R∗ can incorporate
the previous view v1, . . . , vi−1 as nonuniform advice, and then the only randomness in the
definition of Ai and Vi is the sender’s coins xi ← (Γ ′1|I)i, which are uniform in Γ1 (even
conditioned on v1, . . . , vi−1). This shows that the first condition of Lemma 3.5.5 is satisfied.

For the second condition, what we need to show is that conditioned on V1(Γ ′1|I) =
v1, . . . , Vi(Γ ′1|I) = vi, the random variables A1(Γ ′1|I), . . . , Ai(Γ ′1|I), Vi+1(Γ ′1|I) are indepen-
dent. This can be seen by induction on i as follows. It is vacuously true for i = 0. Assuming
it is true for i = j − 1, we prove it for i = j as follows. First condition on v1, . . . , vj−1. By
inductive hypothesis, A1, . . . , Aj−1, Vj are independent (omitting Γ ′1|I from the notation for
readability). Moreover, since we have conditioned on v1, . . . , vj−1, Aj and Vj are functions of
only (Γ ′1|I)j , the sender’s coins in the j’th execution, which is independent of A1, . . . , Aj−1

(because we have only used (Γ ′1|I)1, . . . , (Γ ′1|I)j−1 so far). Thus, if we condition on Vj = vj ,
Aj remains independent of A1, . . . , Aj−1. Vj+1 is independent of A1, . . . , Aj because now it
is only a function of (Γ ′1|I)j+1, which has not been used yet.

Applying Lemma 3.5.5, we have

CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)) ≤
√

2−(β+1)(k−1), (3.4)

since from property (H.2), it is the case that for all i ∈ I, CP1/2(Ai|Vi) ≤
√

2−(k−1) (even
conditioned on the previous views), and |I| ≥ β + 1.

Now, to bound CP1/2(A′′(Γ ′1)|V ′′(Γ ′1)) where X is uniform in Γ′1, we observe that Γ ′1 =
Γ ′1|I , where I is the random variable on subsets I of size at least β + 1 given by

Pr [I = I] = Pr
(x1,...,xm)←Γ′1

[{i : xi ∈ Γ1} = I].

In other words, sampling from Γ′1 can be broken into two steps; first sampling an I ← I,
and then sampling xi ← Γ1 for i ∈ I, and xi ← Γ1 for i /∈ I. Therefore, we have

CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)) ≤ CP1/2(A′′(Γ ′1|I)|(V ′′(Γ ′1|I), I)) (by Lemma 3.5.7)

= E
I←I

[
CP1/2(A′′(Γ ′1|I)|V ′′(Γ ′1|I)

]
≤
√

2−(β+1)(k−1) (3.5)

=
√

2−(α1+3),

with the last inequality following from (3.4). Therefore we can apply Randomness Ex-
traction Lemma 3.5.6 to get CP1/2(H1,H1(A′′(Γ ′1))|V ′′(Γ ′1)) ≤

√
2−(q−1), where H1 is an

independent random hash from H1.
Next, let A′ = outputS(S1(Γ′1), R

∗) denote the private output of the sender S in the
first phase, which in turn is equal to the output of SIH in the interactive hashing protocol,

3.5 FROM ANY ONE-WAY FUNCTION 79

so equivalently A′ = outputSIH
(SIH(Q), R∗IH), where Q = (H1,H1(A′′(Γ ′1))). Similarly, let

V ′ = viewR∗(S1(Γ′1), R
∗) denote the view of the adversarial receiver R∗ in the first phase,

which in turn is equal to the view of R∗ in the interactive hashing protocol, so equivalently
V ′ = (viewR∗

IH
(SIH(Q), R∗IH), V ′′), for the same Q = (H1,H1(A′′(Γ ′1))).

The final step is to use the hiding property of interactive hashing given by Lemma 3.5.9
to bound the collision probability of A′ (the private output of the sender S) given V ′ (the
view of the adversarial receiver R∗) as follows:

CP1/2(A′|V ′) ≤
√

2q−k′ · CP1/2(Q|V ′′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1) .

Property (H.3) implies (H’.3). Fix a transcript τ ′ ∈ Supp(T′), where random variable
T′ = transcript(S1(Γ ′2), R

∗). Transcript τ ′ contains first-phase transcripts (τ1, . . . , τm) for
the m executions of (S,R). Similarly to the above proof of Property (H’.2), we define the
following random variables:

Bi(x) = outputS(S2
c (xi), R∗(W1, . . . ,Wi−1)(τi));

Wi(x) = viewR∗(S2
c (xi), R∗(W1, . . . ,Wi−1)(τi)),

where xi are the coins of the sender in the i’th execution of the the (S,R). For nota-
tional simplicity, we omit the sender’s coin-tosses from the first-phase interactive hash-
ing (they can be considered fixed for the analysis below). As above, we want to bound
CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)), where random variable B′′(Xτ ′) = (B1(Xτ ′), . . . , Bm(Xτ ′)) rep-
resents the combined second-phase private outputs of the m senders, and random variable
W ′′(Xτ ′) = (W1(Xτ ′), . . . ,Wm(Xτ ′)) represents the view of R∗ when interacting with these
m senders, with Xτ ′ being a shorthand for Γ ′2|T(Γ ′

2)=τ ′ . To do this, we consider, for each
subset J ⊆ [m] of size at least m−β, the random variable XJ for private input of the sender
S, where XJ represents choosing xi uniformly in Γ2 for i ∈ J , and uniformly in Γ2 for i /∈ J .

It is important to note that even when we condition on T′(XJ) = τ ′, the components
(X1, . . . , Xm) of XJ remain independent, and the distribution of Xi|T′(XJ)=τ ′ is equivalent
to Xi|T(Xi)=τi

, where only condition on the transcript of the i’th execution. (Similarly to
the inductive proof above, it can be shown that (X1, . . . , Xm) are independent given the
receiver’s view Vm of the m executions of S1

c . The only additional information revealed
about the Xi’s in the first phase is (A1, . . . , Am), where Ai is a function only of Xi once we
condition on Vm.)

Thus from property (H.3), we have for all i ∈ J , CP1/2(Bi(XJ,τ ′)|Wi(XJ,τ ′)) ≤
√

2−(k−1),
where XJ,τ ′ = Γ ′2|J |T′(Γ ′

2|J)=τ ′ , and this holds even conditioned on the previous views.
Similar to the first phase, we apply Lemma 3.5.5 to show that

CP1/2(B′′(XJ,τ ′)|W ′′(XJ,τ ′)) ≤
√

2−(m−β)(k−1) .

Again analogous to the first phase, we observe that Xτ ′ = XJ ,τ ′ for an appropriate

80 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

random variable J on sets of size at least m− β, and thus

CP1/2(B′′(Xτ ′)|W ′′(Xτ ′)) ≤
√

2−(m−β)(k−1) (3.6)

=
√

2−(α2+3).

By the Randomness Extraction Lemma 3.5.6, we get CP1/2(H2,H2(B′′(Xτ ′))|W ′′(Xτ ′)) ≤√
2−(q−1).

The final step is to use the hiding property of interactive hashing given by Lemma 3.5.9
to bound the collision probability of Bτ (the private output of the sender S) given Wτ (the
view of the adversarial receiver R∗) as follows:

CP1/2(B′τ ′ |W ′τ ′) ≤
√

2q−k′ ·
√

2−(q−1) =
√

2−(k′−1) . �

LEMMA 3.5.20
(Final step hiding amplification.) The following statement holds for every constant δ > 0 and

every integer k ≥ 100/δ:

If scheme (S,R) is δ-hiding, then there exist an integer β ∈ [0, n] such that scheme

(S,R) = Amplify(S,R), with parameters m = n, k′ = 1, α1 =
⌊
(β + 1

3δn)k
⌋

and

α2 =
⌊
(n− β + 1

3δn)k
⌋
, is statistically hiding in the sense of Definition 3.4.3.

Proof. Let the δ-hiding properties, as stated in Definition 3.5.11, of (S,R) be (H.1), (H.2)
and (H.3), respectively. To prove that scheme (S,R) is statistically hiding, it suffices to show
that there exists sets Γ′1,Γ

′
2 ⊆ {0, 1}nr such that the following holds for every adversarial

receiver R∗:

(H’.1) Both µ(Γ′1), µ(Γ′2) ≥ 1− 2−Ω(n).

(H’.2) (A′, V ′) is 2−Ω(n)-close to (U1, V
′), where A′ = outputS(S1

c(Γ
′
1), R

∗) de-
notes the private output of the sender S in the first phase, and V ′ =
viewR∗(S1

c(Γ
′
1), R

∗) denotes the view of the adversarial receiver R∗ in the
first phase.

(H’.3) For all τ ′ ∈ Supp(T′), (B′τ ′ ,W
′
τ ′) is 2−Ω(n)-close to (U1,W

′
τ ′), where random

variable (B′τ ′ ,W
′
τ ′) = (outputS(S2

c(Γ
′
2), R

∗), viewR∗(S2
c(Γ

′
2), R

∗))|T′=τ ′ , and
random variable T′ = transcript(S1(Γ ′2), R

∗). We view B′τ ′ as representing
the private output of the sender S in the second phase given that the first-
phase transcript is τ ′. Similarly, we view W ′τ ′ as representing the view of
the adversarial receiver R∗ in the second phase given that the first-phase
transcript is τ ′.

Property (H.1) implies (H’.1). Let Γ1 and Γ2 be the corresponding sets for (S,R),
and let p = µ(Γ1). Set β =

⌊
pn− 1

2δn
⌋
, γ1 =

⌊
pn− 1

12δn
⌋

and γ2 =
⌊
(1− p+ δ)n− 1

12δn
⌋
.

3.5 FROM ANY ONE-WAY FUNCTION 81

Note that β ∈ [0, n] since p ∈ [δ, 1].

Define the sets Γ′1 and Γ′2 as follows:

Γ′1 = {(x1, . . . , xn) : ∃ i1, . . . , iγ1 such that xi1 , . . . , xiγ1
∈ Γ1},

Γ′2 = {(x1, . . . , xn) : ∃ i1, . . . , iγ2 such that xi1 , . . . , xiγ2
∈ Γ2}.

To lower bound µ(Γ′1), note that µ(Γ1)−γ1/n = p−
⌊
pn− 1

12δn
⌋
/n ≥ 1

12δ = Ω(1) since
δ = Ω(1). Using a Chernoff bound, we get

µ(Γ′1) = 1− Pr
(x1,...,xn)

[less than γ1 of the xi’s are in Γ1]

= 1− 2−Ω(n).

To analyze µ(Γ′2), we note that µ(Γ2)−γ2/n = (1− p+ δ)−
⌊
(1− p+ δ)n− 1

12δn
⌋
/n ≥

1
12δ = Ω(1). Using a similar analysis as above, we get µ(Γ′2) = 1− 2−Ω(n).

Property (H.2) implies (H’.2). Using the same notations and analysis as in the proof
of Lemma 3.5.19, we let Ai(x) denote the private output of the sender and Vi(x) the view
of the receiver in the i’th execution, for x being the private input for S1

c . That is, for
i = 1, . . . , n,

Ai(x) = outputS(S1
c (xi), R∗(V1, . . . , Vi−1));

Vi(x) = viewR∗(S1
c (xi), R∗(V1, . . . , Vi−1)).

Let A′′(Γ ′1) = (A1(Γ ′1), . . . , An(Γ ′1)) represent the combined first-phase private outputs of
the n senders, and V ′′(Γ ′1) = (V1(Γ ′1), . . . , Vn(Γ ′1)) represent the view of R∗ when interacting
with these n senders, before interactive hashing is done. From now on, we simplify notation
by making A′′ = A′′(Γ ′1) and V ′′ = V ′′(Γ ′1).

Similar to (3.5) as in the proof of Lemma 3.5.19, we obtain

CP1/2(A′′|V ′′) ≤
√

2−γ1·(k−1) .

And by a Markov bound, we know that with probability greater than 1−2−n over v′′ ← V ′′,

CP(A′′|V ′′=v′′) ≤ 2−γ1(k−1) · 22n ≤ 2−α1−(1/24)δkn+3n ≤ 2−(α1+n), (3.7)

with the last inequality following from k ≥ 100/δ.

Consider v′′ ∈ V ′′ such that the above (3.7) holds. Let Q = (H1,H1(A′′)), where
H1 is an independent random hash from H1. Because H1 is independent, Q|V ′′=v′′ =
(H1,H1(A′′|V ′′=v′′)), and we can apply the Leftover Hash Lemma 3.5.8 to obtain that
Q|V ′′=v′′ , the input to the interactive hashing protocol, is 2−Ω(n)-close to uniform.

Next, let A′ = outputS(S1(Γ ′1), R
∗) denote the private output of S in the first phase,

82 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

which in turn is equal to the output of SIH in the interactive hashing protocol, so equivalently
A′ = outputSIH

(SIH(Q), R∗). Similarly, let V ′ = viewR∗(S1
c (Γ1), R∗) denote the view of the

adversarial receiver R∗ in the first phase, and let VIH = (viewR∗
IH

(SIH(Q), R∗IH) denote the
view of receiver R∗ during the interactive hashing execution only. Observe that V ′ =
(V ′′, VIH), recalling that V ′′ is the view of R∗ when interacting with these n senders, before
interactive hashing is done.

Because Q|V ′′=v′′ , the input to interactive hashing, is 2−Ω(n)-close to uniform, we know
that (A′|V ′′=v′′ , VIH|V ′′=v′′) is 2−Ω(n)-close to (U1, VIH|V ′′=v′′), as guaranteed by the hiding
property of interactive hashing (see Definition 3.2.1). So the S’s private output A′|V ′′=v′′

is hidden for any v′′ ∈ V ′′ satisfying the above (3.7). Finally note that (3.7) is satisfied for
all but a 2−n fraction of v′′ ← V ′′, so it follows that (A′, V ′) is 2−Ω(n)-close to (U1, V

′), as
required.

Property (H.3) implies (H’.3). Using similar ideas in the proof of Lemma 3.5.19, we
can proceed as above and obtain that Property (H’.3) holds assuming (H.3). �

Binding preservation

In the execution of Algorithm 3.5.17, we obtained ` intermediate commitment schemes
[(Sj , Rj)]1≤j≤` , and one final commitment scheme (S,R). Our goal is to prove that the
final scheme (S,R) satisfies the 1-out-of-2 binding property of Definition 3.4.4. To achieve
our goal, we inductively show that the expected number of openings a sender can produce
in the intermediate schemes is bounded by some constant, namely 32. (This is captured by
Lemma 3.5.22 below.) Then in the final step, for scheme (S,R), we show how to shrink this
expectation to value that is very close to 1, effectively proving that scheme (S,R) is satisfies
the 1-out-of-2 binding property. (This in turn is captured by Lemma 3.5.24.)

In the definition of the computational 1-out-of-2 binding property (Definition 3.4.4),
we stipulated that the adversarial sender in the second phase can be computationally un-
bounded, whereas the adversarial sender in the first phase must be probabilistic polynomial
time (PPT). It will be rather messy to work with PPT senders, hence we will first ab-
stract away the PPT requirement by showing, in the next section, how to convert any PPT
sender violating the 1-out-of-2 binding property in the first phase into a computationally
unbounded sender with a special unique binding property. A sender with the unique binding
property, intuitively, will not break the (first-phase) binding property of any execution of
the initial schemes (S0, R0), but might still break the binding property of the intermediate
schemes (Sj , Rj) (or final scheme (S,R)). Intuitively, we can restrict to such senders because
of the computational 1-out-of-2 binding property of the initial scheme (S0, R0). Once we
have a sender with the unique binding property, the analysis of the amplification steps is
entirely information theoretic.

To formally define the unique binding property for senders, we observe that schemes
[(Sj , Rj)]1≤j≤` and (S,R) each contain multiple executions of initial scheme (S0, R0). Hence,

3.5 FROM ANY ONE-WAY FUNCTION 83

when a cheating sender S∗ interacts with Rj , it is actually also interacting with the i-th
execution of R0, for each i = 1, 2, . . . , which we will denote by R0[i]. Formally, we obtain a
(computationally unbounded) cheating sender strategy S∗[i] that interacts with this single
execution of R0[i] (more precisely, the first commit stage R1

0,c[i]), by simulating all of the
other messages of Rj on its own until the end of the first commit stage of R0[i]. Then
it enumerates over all choices for the subsequent messages of Rj and outputs all of the
resulting transcripts of S∗’s interactions with R0[i] together with the corresponding first-
phase decommitment values.

DEFINITION 3.5.21
(Unique binding property of sender.) For intermediate schemes [(Sj , Rj)]1≤j≤` and final
scheme (S,R), a (deterministic) sender S∗ has the unique binding property if for all i,
we have | openings(S∗[i], R0[i])| ≤ 1 with probability 1 (over the coins of S∗[i]11 and R0[i])
where openings(·) is defined as in Section 3.5.2.

The following two lemmas, Lemma 3.5.22 and 3.5.24, provide us a way to understand
the binding property (in an average case sense) of (S,R), the amplified hiding scheme as
presented in Protocol 3.5.16, in terms of (S,R). We might occasionally drop the superscript
notations (1) and (2) from the notations if it is clear which phase we are referring to.

LEMMA 3.5.22
(Intermediate step binding preservation.) For some constant D ∈ N and any integers t ∈ [1, n],
β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and β`+1 ∈ [0, n], letting [(Sj , Rj)]1≤j≤` be the intermediate

commitment schemes obtained in the execution of Algorithm 3.5.17 with parameters D, t, and

(β1, . . . , β`+1), there exists a binding set B such that the following two conditions hold for each

j = 1, 2, . . . , `:

(B.1) For every deterministic sender S∗ with the unique binding property,

E
[∣∣openings(S∗, R1

j)(B)
∣∣] < 32 ,

where the expectation is taken over the coins tosses of R1
j .

(B.2) For every τ ∈ B and for every deterministic sender S∗,

E
[∣∣openings(S∗, R2

j)(τ)
∣∣] < 32 ,

where the expectation is taken over the coins tosses of R2
j .

Proof. We proceed to prove by induction on j. In fact, we will start with a base case of

11Note that S∗[i] is probabilistic even if S∗ is deterministic, because it simulates all of the random choices
of Rj other than those of R0[i].

84 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

j = 0, i.e., consider the scheme (S0, R0) from Section 3.5.2. By Lemma 3.5.14, we know
that scheme (S0, R0) satisfies both conditions (B.1) and (B.2). (Although Lemma 3.5.14
guarantees that (S0, R0) satisfies condition (B.1) only for PPT S∗, it is also trivially satisfied
for computationally unbounded S∗ with the unique binding property.)

For the inductive step, we assume (Sj , Rj) satisfy both (B.1) and (B.2), and show that
so does (Sj+1, Rj+1). Note that (Sj+1, Rj+1) is obtained by the amplification procedure
(Protocol 3.5.16) that combines m sequential executions of (Sj , Rj), i.e., (Sj+1, Rj+1) =
Amplify(Sj , Rj). Hence, for convenience of notation we will denote (Sj , Rj) and (Sj+1, Rj+1)
as (S,R) and (S,R) respectively. The i-th execution of (S,R) in (S,R) is denoted as
(S[i], R[i]), not to be confused with the subscript indexing notation of (Sj , Rj).

Also throughout this proof, the value of m will be fixed to D, although we will keep
writing m. Let B be the binding set for (S,R). We define our new binding set B′ for (S,R)
in terms of B as follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1 , . . . , τjβ+1
∈ B} .

That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ if and only if at least β + 1 of τj ’s are in B.
Conversely, τ ′ /∈ B′ if and only if at least m− β of the τj ’s are not in B.

Property (B.1). Consider a deterministic S∗ with the unique binding property interact-
ing with R1. The random coins of R1 can be broken up into independent random coins of
R1[1], . . . , R1[m] and R1

IH, the receiver in the interactive hashing.
Recall that the m executions of (S,R) in (S,R) are sequential. We want to focus on

the interaction of S∗ with (the commit phase of) R1[i]. To do so, define S∗[i], the sender
interacting with R1[i], as follows: S∗[i] simulates S∗ using fixed coins rj for all the previous
R1[j]’s (for all j < i) and after the interaction with R1[i], S∗[i] outputs all the valid openings
that occur in some continuation of S∗’s interaction with R[i] (by enumerating over all coins
of the future R[j]’s, j > i, the coins of R1

IH, and the coins of R2). Observe that S∗[i] inherits
the unique binding property from S∗. We will write S∗[i](r1, . . . , ri−1) to indicate the fixed
coins rj that are used by S∗[i] in simulating R1[j].

Let Xi(r1, . . . , ri) =
∣∣openings(S∗[i](r1, . . . , ri−1, R

1[i](ri))(B)
∣∣; in other words, count of

the number of valid decommitment in i-th execution, when the sender uses simulated coins
r1, . . . , ri−1 and R1[i] uses coins ri. Let U = (U1, . . . , Um), where Ui denotes the uniform
random variable on coins ri for R[i]; note that these are independent because the honest
receiver tosses independent coins for each execution. We now consider the random variables
Xi(U) = Xi(U1, . . . , Ui).

By our induction hypothesis, for all fixed (r1, . . . , ri−1), we have

E [Xi(U)|U1 = r1, . . . , Ui−1 = ri−1] = E [Xi(r1, . . . , ri−1, Ui)] < 32 .

Because the previous Xj(U)’s, for j < i, only depend on U1, . . . , Uj , we have that
the expected value of Xi is less than 32 even given any previous values of Xj ’s. That is,

3.5 FROM ANY ONE-WAY FUNCTION 85

E
[
Xi|X1=x1,...,Xi−1=xi−1

]
< 32 for any (x1, . . . , xi−1) ∈ Supp(X1, . . . , Xi−1). The following

claim allows us to bound the expectation of the product of these random variables.

CLAIM 3.5.23
Let Y1, . . . , Y` be nonnegative real-valued random variables such that for all i =
1, 2, . . . , `, we have E[Yi|Y1=y1,...,Yi−1=yi−1] < αi ∈ R+, for every (y1, . . . , yi−1) ∈
Supp(Y1, . . . , Yi−1). Then,

E

[∏̀
i=1

Yi

]
<
∏̀
i=1

αi .

Proof of Claim. Note that

E[Y1 · · ·Y`] = E
[
E[Y1 · · ·Y` | Y1 · · ·Y`−1]

]
= E

[
Y1 · · ·Y`−1 · E[Y` | Y1 · · ·Y`−1]

]
< E[Y1 · · ·Y`−1 · α`]

= α` · E[Y1 · · ·Y`−1] ,

and the claim follows by induction on `. �

As noted above, it is always the case that E [Xi] < 32, regardless of the instantiation of
previous Xj ’s, for j < i. Note that Claim 3.5.23 also applies to computing the expectation
of
∏

i∈J Xi, for any subset J ⊂ [m], since any subset of the Xi’s (preserving the right order)
satisfy the condition of claim.

Once the m commitments R1[i] are complete, we can define a random variable A = A(U)
that denotes the set of values a = (a1, . . . , am)’s for which the sender S∗ produces a valid
opening with respect to B′ in some continuation of the protocol. By the definition of B′,
this means that a = (a1, . . . , am) is valid if at least m − β of those are ai’s correspond to
decommitments that are in B. For those ai’s corresponding to decommitments that are in
B, the number of possible values that ai can take on is Xi(U). And for those ai’s correspond
to decommitments that are not in B, we can only bound the number of possible values that
ai can take on by 2k (since ai is a k-bit string).

E
U

[|A(U)|] ≤ E
U

 ∑
J⊆[m],|J |≥m−β

∏
i∈J

Xi(U)
∏
i/∈J

2k


=

∑
J⊆[m],|J |≥m−β

E
U

[∏
i∈J

Xi(U)
∏
i/∈J

2k

]

<
∑

J⊆[m],|J |≥m−β

∏
i∈J

32 ·
∏
i/∈J

2k (by Claim 3.5.23)

≤ 2m · 32m−β · (2k)β (because 32 < 2k)

≤ 2(β+1)(k−1)+6m−k+1 = 2α1−(k−6m−4) .

86 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Let random variable Γ1 = (H1,H1(A)). Since E[|A|] ≤ 2α1−(k−6m−4) and the range of
h1 ∈ H1 is α1, the expected density of Γ1 satisfies E[µ(Γ1)] ≤ E[|A|] · 2−α1 ≤ 2−(k−6m−4),
where the expectation is taken over the coins tosses U = (U1, . . . , Um). Note that Γ1 is inde-
pendent of the coins of R1

IH in the first phase interactive hashing (though not independent
of the coins of R1).

Finally, we have

E
coins R1

[∣∣openings(S∗,R1)(B′)
∣∣] ≤ E

coins R1
IH,Γ1

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣] ,

where in the second expectation, C = output(S∗, R1
IH). By Lemma 3.5.10,

E
coins R1

IH,Γ1

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣] < 24 + 2k′+1 · E[µ(Γ1)] < 32 ,

with the last inequality following from k′ < k − 8m− 8.

Property (B.2). We use the same approach as above, except this time, we consider all
deterministic S∗, as opposed to only those with the unique binding property. Also we need
to fix a binding transcript τ = (τ1, . . . , τm) ∈ B′. Let J be the set of indices such that
τi ∈ B.

As done previously, we define S∗[i] and set Xi =
∣∣openings(S∗[i], R2[i])(τi)

∣∣, where S∗[i].
By our induction hypothesis, for all i ∈ J , we have

E
[
Xi|X1=x1,...,Xi−1=xi−1

]
< 32 ,

for any (x1, . . . , xi−1) ∈ Supp(X1, . . . , Xi−1).

Let random variable B denote the denotes the set of values b = (b1, . . . , bm) for which
the sender S∗ produces a valid opening in some continuation of the protocol. Noting that
Xi can be as large as 2k for indices i /∈ J , we have

E [|B|] ≤ E
coins R2[1], . . . , R2[m]

[∏
i∈J

Xi

∏
i/∈J

2k

]
<
∏
i∈J

32 ·
∏
i/∈J

2k (by Claim 3.5.23))

≤ 32β+1 · (2k)m−β−1 (because 32 < 2k)

≤ 2(m−β)(k−1)−(k−6m) (because m > 5)

= 2α2−(k−6m−3).

Let random variable Γ2 = (H2,H2(B)). Since E[|B|] ≤ 2α2−(k−6m−3) and the range of
h2 ∈ H2 is α2, the expected density of Γ2 satisfies E[µ(Γ2)] ≤ E[|B|] · 2−α2 ≤ 2−(k−6m−3),
where the expectation is taken over the coins tosses of R2

1, . . . , R
2
m. Note that Γ2 is indepen-

3.5 FROM ANY ONE-WAY FUNCTION 87

dent of the coins of R2
IH in the second phase interactive hashing (though not independent

of the coins of R2). Finally, we have

E
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣] ≤ E

coins R2
IH,Γ2

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣] ,

where in the second expectation, C = openings(S∗(Γ2), RIH). By Lemma 3.5.10,

E
coins R2

IH,Γ2

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣] < 24 + 2k′+1 · E[µ(Γ2)] < 32 ,

with the last inequality following from k′ < k − 8m− 8. �

LEMMA 3.5.24
(Final step binding preservation.) For some constant D ∈ N and any integers t ∈ [1, n],
β1, . . . , β` ∈ {0, 1, . . . , D − 1}, and β`+1 ∈ [0, n], letting (S,R) be the final output of Algo-

rithm 3.5.17 with parameters D, t, and (β1, . . . , β`+1), there exists a binding set B′ such that

the following two conditions hold:

(B.1) For every deterministic sender S∗ with the unique binding property, with prob-

ability 1− 2−Ω(n) over the coins of R1,∣∣openings(S∗,R1)(B′)
∣∣ ≤ 1 .

(B.2) For every τ ∈ B′ and for every deterministic sender S∗, with probability 1 −
2−Ω(n) over the coins of R2,∣∣openings(S∗,R2)(τ)

∣∣ ≤ 1 .

Proof. From Lemma 3.5.22, we have scheme (S`, R`) with an associated binding set B sat-
isfying both conditions (B.1) and (B.2) in Lemma 3.5.22. Scheme (S,R) = Amplify(S`, R`),
and hence we will need to show that the amplification boosts the binding by making sure
both

∣∣openings(S∗,R1)(B)
∣∣ ≤ 1 and

∣∣openings(S∗,R2)(τ)
∣∣ ≤ 1 with probability 1− 2−Ω(n).

Throughout this proof, the value ofm will be fixed to n (as in Step 3 of Algorithm 3.5.17),
although we will keep writing m. We define our new binding set B′ for (S,R) in terms of B
as follows:

B′ = {(τ1, . . . , τm) : ∃ j1, . . . , jβ+1 such that τj1 , . . . , τjβ+1
∈ B} .

That is, a transcript τ ′ = (τ1, . . . , τm) ∈ B′ if and only if at least β + 1 of τj ’s are in B.
Conversely, τ ′ /∈ B′ if and only if at least m− β of the τj ’s are not in B.

88 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Property (B.1). Using the same analysis and notations as in the proof of Lemma 3.5.22,
we have that

E
coins R1[1], · · · , R1[m]

[|A|] ≤ 2m · 32m−β · (2k)β ≤ 2βk+6m ,

where A is the random variable denoting the set of values a = (a1, . . . , am)’s for which the
sender S∗ produces a valid opening with respect to B′ in some continuation of the protocol.

Since δ = Ω(1) and k` ≥ log n, observe that α1 =
⌊
(β + 1

3δn)k
⌋
> βk + 8n, for large

enough values of n. Let random variable Γ1 = (H1,H1(A)). Since the range of h1 ∈ H1 is
{0, 1}α1 , the density of Γ1 satisfies

E
coins R1[1], · · · , R1[m]

[µ(Γ1)] ≤ E[|A|] · 2−α1 < 2βk+6m · 2−(βk+8n) = 2−2n ,

sincem = n. Thus, with probability at least 1−2−n over the coins tosses of R1[1], . . . , R1[m],
we have that

µ(Γ1) ≤ 2−2n · 2n = 2−n .

By Lemma 3.2.5, we can conclude that for such a Γ1 (with µ(Γ1) ≤ 2−n),

Pr
coins R1

IH

[∣∣∣{d(1) : C(1)(d(1)) ∈ Γ1}
∣∣∣ > 1

]
= 2−Ω(n) .

Finally, we have:

Pr
coins R1

[∣∣openings(S∗,R1)
∣∣ > 1

]
≤ Pr

coins R1
1, · · · , R1

m

[
µ(Γ1) > 2−n

]
+ Pr

coins R1
IH

[
|{d(1) : C(1)(d(1)) ∈ Γ1}| > 1

∣∣ µ(Γ1) ≤ 2−n
]

= 2−Ω(n) .

Property (B.2). Fix any τ ′ ∈ B′. Again, we use the same analysis and notations as in
the proof of Lemma 3.5.22 to get:

E
coins R2[1], · · · , R2[m]

[|B|] ≤ 32β+1 · (2k)m−β−1 ≤ 2(m−β)k+5m ,

where B is the random variable denoting the set of values b = (b1, . . . , bm)’s for which the
sender S∗ produces a valid opening in some continuation of the protocol

Since δ = Ω(1) and k ≥ log n, observe that α2 =
⌊
(n− β + 1

3δn)k
⌋
> (n − β)k + 7n,

for large enough values of n. Let random variable Γ2 = (H2,H2(B)). Since the range of
h2 ∈ H2 is {0, 1}α2 , the density of Γ2 satisfies

E
coins R2[1], · · · , R2[m]

[µ(Γ2)] ≤ E[|B|] · 2−α2 < 2(m−β)k+5m · 2−((n−β)k+7n) = 2−2n ,

sincem = n. Thus, with probability at least 1−2−n over the coins tosses of R2[1], . . . , R2[m],

3.5 FROM ANY ONE-WAY FUNCTION 89

we have that
µ(Γ2) ≤ 2−2n · 2n = 2−n.

By Lemma 3.2.5, we can conclude that for such a Γ2 (with µ(Γ2) ≤ 2−n),

Pr
coins R2

IH

[∣∣∣{d(2) : C(2)(d(2)) ∈ Γ2}
∣∣∣ > 1

]
= 2−Ω(n) .

Finally, we have:

Pr
coins R2

[∣∣openings(S∗,R2)(τ ′)
∣∣ > 1

]
≤ Pr

coins R2
1, · · · , R2

n

[
µ(Γ2) > 2−n

]
+ Pr

coins R2
IH

[
|{d(2) : C(2)(d(2)) ∈ Γ2}|

∣∣ µ(Γ2) ≤ 2−n
]

= 2−Ω(n) . �

3.5.4 A collection of 1-out-of-2-binding commitments

In this section, we prove Theorem 3.5.1 restated below.

RESTATEMENT OF THEOREM 3.5.1
If one-way functions exist, then on security parameter 1n, we can construct in time polynomial

in n a collection of public-coin 2-phase commitment schemes COM = {Com1, · · · ,Comm},
where m = poly(n), such that:

I There exists an index i ∈ {1, 2, . . . ,m} such that scheme Comi is statistically hiding.

I For every index i ∈ {1, 2, . . . ,m}, scheme Comi is computationally 1-out-of-2 binding.

Proof of Theorem 3.5.1

To obtain the desired collection of 2-phase commitment schemes, we apply Algorithm 3.5.17
to the weakly-hiding scheme (S0, R0), which can be constructed based on any one-way
function. More precisely, we obtain a collection of commitments by enumerating over all
the polynomially many choices of the integers t ∈ {1, 2, . . . , n}, β1, . . . , β` ∈ {0, 1, . . . , D−1},
and β`+1 ∈ {0, 1, . . . , n}. Note that the number of choices is n·D` ·(n+1) = poly(n), as D =
O(1) and ` = log n. By Lemma 3.5.18, the resulting commitment schemes Com1, · · · ,Comm

all run in polynomial time. The hiding and binding properties of these schemes are given
by Lemmas 3.5.25 and 3.5.26, which together establish Theorem 3.5.1.

LEMMA 3.5.25
There exists a constant D ∈ N, integers t ∈ {1, 2, . . . , n}, β1, . . . , β` ∈ {0, 1, . . . , D − 1},
and β`+1 ∈ {0, 1, . . . , n} such that the 2-phase commitment scheme (S,R) produced by Al-

gorithm 3.5.17 with parameters D, t, and (β1, . . . , β`+1) is statistically hiding in the sense

90 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Definition 3.4.3 (regardless of whether the function f on which the scheme is based on is

one-way or not).

Proof. We prove by induction on the properties of (Sj , Rj) for j = 0, 1, . . . , `. The induction
hypothesis is that (Sj , Rj) has two associated sets Γ1,j ,Γ2,j ⊆ {0, 1}nmj

such that for all
R∗, the following holds:

1. Γ1,j ∪ Γ2,j = {0, 1}nmj
and µ(Γ1,j ∩ Γ2,j) ≥ min{2j/n, 1/2D}.

2. CP1/2(A|V) ≤
√

2−(kj−1), where A = outputS(S1
c,j(Γ1,j), R∗) and V =

viewR∗(S1
c,j(Γ1,j), R∗).

3. CP1/2(Bτ |Wτ) ≤
√

2−(k−1), where the joint distribution (Bτ ,Wτ) =
(outputS(S2

c (Γ2,j), R∗), viewR∗(S2
c (Γ2,j), R∗))|T=τ , for every τ ∈ Supp(T),

for T = transcript(S1(Γ2,j), R∗).

where kj is defined as in Algorithm 3.5.17.

The base case of j = 0 follows from the fact that Protocol 3.4.6 is (1/n)-hiding as estab-
lished by Lemma 3.5.13. The induction step is provided by the Intermediate Step Hiding
Amplification Lemma 3.5.19. Finally, observe that µ(Γ1,` ∩ Γ2,`) ≥ min{2`/n, 1/(2D)} =
Ω(1) since ` = log n.

By the Final Step Hiding Amplification Lemma 3.5.20, there exists two sets Γ1,`+1 and
Γ2,`+1 such that for all R∗, the following three conditions holds:

1. µ(Γ1,`+1), µ(Γ2,`+1) > 1− 2−Ω(n);

2. (A, V) is 2−Ω(n)-close to (U1, V), where A = outputS(S1
c(Γ1,`+1), R∗) and

V = viewR∗(S1
c(Γ1,`+1), R∗);

3. for all τ ′ ∈ Supp(T′), (B′τ ′ ,W
′
τ ′) is 2−Ω(n)-close to (U1,W

′
τ ′), where

(B′τ ′ ,W
′
τ ′) = (outputS(S2

c(Γ2,`+1), R∗), viewR∗(S2
c(Γ2,`+1), R∗))|T′=τ ′ , and

T′ = transcript(S1(Γ2,`+1), R∗).

Since both µ(Γ1,`+1), µ(Γ2,`+1) > 1− 2−Ω(n), we can substitute random variables Γ1,`+1

and Γ2,`+1 with an independent uniform random variable UN , where N = nm`and get the
following desired hiding properties.

I (A, V) is 2−Ω(n)-close to (U1, V), where A = outputS(S1
c(UN), R∗) and

V = viewR∗(S1
c(UN), R∗).

I (B′,W ′,T′) is 2−Ω(n)-close to (U1,W
′,T′), where B′ = outputS(S2

c(UN), R∗), W ′ =
viewR∗(S2

c(UN)), and T′ = transcript(S1(UN), R∗).

The above two conditions are the requirements for being statistical hiding in the sense
Definition 3.4.3. �

3.5 FROM ANY ONE-WAY FUNCTION 91

LEMMA 3.5.26
There exists a constant D ∈ N such that for all integers t ∈ {1, 2, . . . , n}, β1, . . . , β` ∈
{0, 1, . . . , D − 1}, and β`+1 ∈ {0, 1, . . . , n}, the 2-phase commitment scheme (S,R) produced

by Algorithm 3.5.17 with parameters D, t, and (β1, . . . , β`+1) is computationally 1-out-of-2

binding in the sense of Definition 3.4.4. (Here the function f for which the scheme is based on

needs to be hard to invert.)

Proof. By Lemma 3.5.24, we have established that the 2-phase commitment scheme (S,R)
produced by Algorithm 3.5.17 satisfies the first condition of Definition 3.4.4. In addition,
it also satisfies the second condition for all S∗ with the unique binding property. Stated
formally, for every deterministic (and computationally unbounded) S∗ with the unique
binding property,

Pr
[∣∣openings(S∗,R1)

∣∣ ≤ 1
]

= 1− 2−Ω(n), (3.8)

where the probability is taken over the coins of R1.

Thus, it suffices to prove is that any PPT S∗ breaking the second condition of Defini-
tion 3.4.4 with probability ε will either (i) yield a PPT Ŝ that violates the computational
1-out-of-2 binding property of (S0, R0) with probability at least εO(1)/poly(n), or (ii) yield
a computationally unbounded Ŝ that has the unique binding property and succeeds with
probability greater than ε/2. In both cases, ε needs to be negligibly small in order to avoid
a contradiction. Without loss of generality, we may assume adversarial PPT sender S∗ to
be deterministic since we can set its coins to maximizes its success probability.

From now on, let ε be the probability that the deterministic S∗ breaks the second
condition of Definition 3.4.4 with respect to scheme (S,R). By the way we defined (S,R),
it contains polynomially many executions of (S0, R0). Let N = n ·D` denote such number.

Let z denote the transcript of (S∗,R). Contained in z is also a first-phase commitment
z[i] for the i-th execution of R0, denoted R0[i] (for all i = 1, 2, . . . , N). Let ẑ[i] be the
partial transcript of z up to and including the first commit stage of R0[i]. Note that z[i] is
a suffix of ẑ[i], and ẑ[i] is a prefix of z.

For all index i ∈ [N], partial transcripts ẑ[i] ending with the first commit stage of R0[i]
and d ∈ {0, 1}k0 , define

pi,ẑ[i],d = Pr
z←(S∗,R1)

[z contains a valid opening of z[i] to value d |z begins with ẑ[i]] ,

where as usual by a valid opening, we mean that the transcript τ [i] of S∗’s interaction with
R0[i] contains an opening of z[i] to the value d, the first phase of τ [i] is not in the binding
set B0, and R0[i] accepts in both phases of τ [i].

Let K = 2k0 , where k0 is the message length in (S0, R0). We have two cases to consider.

92 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Case 1. There exists an i ∈ [N] such that with probability at least ε
4NK over ẑ[i], there

exists d 6= d′ with both pi,ẑ[i],d, pi,ẑ[i],d′ >
ε

4NK .

In this case, we violate the computational 1-out-of-2 binding property of (S0, R0) by
considering the following sender Ŝ interacting with R0[i].

1. Select a random i← [N].

2. Run S∗ with R1, simulating all of the messages of R1 internally except for
those of R0[i]. Halting after the first commit stage of R0[i], we obtain a
partial transcript ẑ[i]. From ẑ[i], we get z[i], the first-phase commitment
of R0[i].

3. Record the current state ψ of S∗ and R1.

4. Continue the execution of S∗ with R1 from ψ to obtain a decommitment
to a value d in the interaction with R0[i].

5. Repeat Step 4 with independent randomness in continuing the execution
of S∗ with R1 to obtain a decommitment to a value d′. (This can be done
since R is public coin, i.e., just sends independent random coins at each
round, and S∗ is deterministic.)

Because our goal is to violate the computational 1-out-of-2 binding property of (S0, R0),
we succeed in the above algorithm if d 6= d′ and decommitments produced are valid. We
calculate our success probability as follows: We guess correct index i ∈ [N] with probability
1/N . Given that we guess the correct i, we get the desired ẑ[i] with probability at least

ε
4NK . Now, when we do two independent continuations of ẑ[i] we arrive at two different
decommitted values with probability greater than (ε

4NK)2. Consequently, we violate the
computational 1-out-of-2 binding property of (S0, R0) (i.e., win the game in Condition 2 of
Definition 3.4.4) with probability greater than

1
N
· ε

4NK
·
(ε

4NK

)2
=

1
N
·
(ε

4NK

)3
=
(ε
n

)O(1)
,

since K = 2k0 = 2O(log n) = poly(n) and N = n ·D` = n ·O(1)O(log n) = poly(n). This forces
ε to be a negligible function.

Case 2. For all i ∈ [N], with probability greater than 1− ε
4NK over ẑ[i], there is at most

one d such that pi,ẑ[i],d >
ε

4NK .

Define d∗(ẑ[i]) to be the value of d that maximizes pi,ẑ[i],d. Taking a union bound over

3.5 FROM ANY ONE-WAY FUNCTION 93

all the rest of the pi,ẑ[i],d′ <
ε

4NK , we have that

Pr
z←(S∗,R)

[S∗ opens some z[i] to a value other than d∗(ẑ[i])]

≤
N∑

i=1

(
ε

4NK
·K + Pr

ẑ[i]

[
exists more than one d such that pi,ẑ[i],d >

ε

4NK

])
< N ·

(ε

4NK
·K +

ε

4NK

)
<
ε

2
.

Let Ŝ be the adversary that mimics S∗ except that it halts and fails if S∗ attempts to
open some z[i] to a value other than d∗(ẑ[i]), for all i ∈ [N] and all ẑ[i]. By the way we
defined Ŝ, the final outcome of (Ŝ,R1) will only differ with the original final outcome of
(S∗,R1) with probability at most ε/2 over the coins of R1. In addition, Ŝ has the unique
binding property. By (3.8) above,

∣∣∣openings(Ŝ,R1)
∣∣∣ > 1 occurs with at most negligible

probability over the coins of R1. Hence,
∣∣openings(S∗,R1)

∣∣ > 1 occurs with probability at
most neg(n)+ ε/2. We started off assuming that S∗ breaks property (B.1) of scheme (S,R)
with probability at least ε, that is to say

∣∣openings(S∗,R1)
∣∣ > 1 with probability at least ε.

Thus ε ≤ neg(n) + ε/2, which implies that ε = neg(n). �

3.5.5 Standard commitments from 1-out-of-2-binding commitments

In the previous sections, we constructed statistically-hiding and computationally 1-out-of-
2 -binding commitment schemes from any one-way function. In this section, we present a
result of Haitner and Reingold [HR2] that transforms these 1-out-of-2-binding commitments
into commitment schemes that are statistically hiding and computationally binding (in the
standard sense of binding). They accomplished this using a novel application of a universal
one-way hash family, whose existence can be based on any one-way function [Rom] (see
also [KK]). Thus, the Haitner & Reingold transformation can be based on any one-way
function. We state their transformation techniques in Algorithm 3.5.28 and Protocol 3.5.29,
but first we give an overview of their techniques.

Overview of the Haitner & Reingold transformation

The 1-out-of-2 binding property of 2-phase commitment schemes states that it is infeasible
for an adversarial sender S∗ to break both phases of the commitment, but nonetheless it
might be possible for S∗ to break one of the two phases of its choice. With this in mind,
suppose that after the first commitment phase, receiver R flips a coin phase ← {1, 2}. If
phase = 1, the first commitment phase is used to do the commitment. On the other hand,
if phase = 2, the second commitment phase is used to do the commitment (this is done by
S∗ revealing its first-phase commitment, and then proceeding to the second phase with R).
Intuitively, this would make the scheme binding (with probability 1/2) if S∗ chooses which

94 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

of the two phases it wants to break in advance. The problem, however, is that S∗ could
choose the phase that it wants to break after seeing the value of phase.

A way to overcome this problem is to force the adversary S∗ to decide which of the
two phases it wants to break before seeing the value of phase. Haitner and Reingold [HR2]
achieved this by having S∗ send back a value y = f(σ) before the value of phase is announced
by the receiver R, where σ is the message committed to by S∗ in the first phase, and f

is a random hash function from a universal one-way hash family. A universal one-way

hash family is a family of hash functions such that it is hard to find collisions with any
particular value of x specified in advance.12 In other words, for a value of x announced
before a random hash function f is selected from that family, any efficient algorithm will
not be able to find another x′ such that f(x′) = f(x). This property of a universal one-way
hash family is termed target collision resistance by Bellare and Rogaway [BR].

We first argue the hiding property of this new scheme. Before y is sent, the value of
σ, the message committed in the first phase, is hidden. If hash function f is compressing
enough, then the value of y = f(σ) leaks at most a few bits of information about σ, so the
entropy of σ given y is still large. This means that we can apply a pairwise-independent
hash on σ to get an almost uniform value (recall the Leftover Hash Lemma 3.3.1). Thus,
this new scheme is hiding when phase = 1. When phase = 2, the sender reveals σ and
proceeds on to the second phase, which is used for the commitment. In this case, the hiding
property of this new scheme follows from the hiding property of the second commitment
phase.

Next, we argue the binding property of this new scheme by making the following obser-
vation: the 1-out-of-2 binding property says that after the first commitment phase, there
exists at most one value of σ∗ that allows an adversarial sender S∗ to cheat in the second
phase. In other words, if S∗ reveals to a value other than σ∗, the second phase will be
binding.

When it is the sender’s turn to send y, after receiving a random hash function f from
receiver R, sender S∗ could decide to either send y = f(σ∗) or send y 6= f(σ∗). If it
decides to send y = f(σ∗), and if R selects phase = 1 following that, then S∗ is bound to
a single value, since to decommit to two different values it will have to reveal a σ′ 6= σ∗

with f(σ′) = y = f(σ∗), and this is infeasible by the target collision resistance property
of f . (The value of σ∗ is determined by the first-phase commitment, which is completed
before a random f is selected.) Instead if it decides to send y 6= f(σ∗), and if R selects
phase = 2 following that, then S∗ will have to reveal to a value other than σ∗ for its first-
phase commitment. In this case, the commitments are done in the second phase, and by
the 1-out-of-2 binding property, this phase is guaranteed to be binding. Since the value of
phase is independent of y, both cases happen with probability 1/2, which would make our
scheme binding with probability close to 1/2.

12See Definition 3.5.31 for the definition of a universal one-way hash family.

3.5 FROM ANY ONE-WAY FUNCTION 95

The Haitner & Reingold transformation

The Haitner & Reingold transformation [HR2], to be stated in Algorithm 3.5.28, requires a
2-phase commitment with message lengths (k1, k2) = (n, 1): that is to say, the first phase
deals with commitment to an n-bit message, and the second phase deals with commitment
to a 1-bit message. Next, we show how to obtain these commitments.

Obtaining 2-phase commitments with suitable message lengths. The 2-phase
commitments that we constructed based on any one-way function, as stated in Theo-
rem 3.5.1, has message lengths (k1, k2) = (1, 1). Nevertheless, it is possible to convert
these scheme to one with message lengths (k1, k2) = (n, 1).

CLAIM 3.5.27
(From [HR2, Lem. 2.14].) If there exists a 2-phase commitment scheme (S,R) with message

lengths (k1, k2) = (1, 1), then there exists another 2-phase commitment scheme (S′,R′) with

message lengths (k1, k2) = (n, 1) such that:

I if (S,R) is statistically hiding, then (S′,R′) is also statistically hiding, and

I if (S,R) is statistically [resp., computationally] 1-out-of-2 binding, then (S′,R′) is also

statistically [resp., computationally] 1-out-of-2 binding.

Proof Sketch. Here, we present an informal description of the new scheme (S′,R′) with
message lengths (k1, k2) = (n, 1); the detailed construction of (S′,R′), and the proof of
Claim 3.5.27 is in [HR2]:

1. In the first phase, scheme (S′,R′) commits to a message σ = (σ1, . . . , σn) ∈ {0, 1}n by
running n independent executions of the first phase of (S,R) in parallel, committing
to σi in the i-th execution of (S,R).

2. In the second phase, scheme (S′,R′) commits to a bit b ∈ {0, 1} by also running
n independent executions of the second phase of (S,R) in parallel, but this time
committing to the same bit b in all executions of (S,R).

Intuitively, scheme (S′,R′) should be hiding since it is only running multiple executions of
scheme (S,R), all of which are hiding. The 1-out-of-2 binding property of (S′,R′) can be
informally argued as follows: If we break the first phase of (S′,R′), we will have to break
the i-th first phase execution of (S,R), for some i ∈ {1, 2, . . . , n}. By the 1-out-of-2 binding
property of (S,R), the i-th execution of the second phase of (S,R) will be binding, and
because we are committing to the same bit b in all executions, this will force the second
phase of (S′,R′) to be binding.

96 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

The Haitner & Reingold transformation algorithm. We present the transformation
algorithm using an arbitrary family of functions F , and will only require F to be a universal
one-way hash family when we want to prove the hiding and binding security properties.
Separating the security properties from the protocol description enables us to prove that
the transformation also works in settings of instance-dependent cryptographic primitives,
as later considered in Section 3.6.

ALGORITHM 3.5.28 �

The Haitner & Reingold transformation, denoted as HR-Transform.

Input: 2-phase commitment scheme (S,R) with message lengths (k1, k2) = (n, 1), and a
family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m}.

Output: Commitment scheme (S,R) as described by Protocol 3.5.29.
� �

Hence, we write the commitment scheme obtained as (S,R) = HR-Transform((S,R),F).

PROTOCOL 3.5.29 �

Standard commitment scheme (S,R) from 2-phase commitment scheme (S,R).

Security parameter: 1n, given as common input to both S and R.

Sender’s private input: Bit b ∈ {0, 1}.

Commit stage:

1. S selects a uniform σ ← {0, 1}n.

2. S and R engages in (S1
c(σ),R1

c)(1
n), with S acting as S1

c and R acting as R1
c . Let

c(1) be the common output of S1
c and R1

c after the interaction.

3. R chooses f ← Fn and sends it to S.

4. S sends y = f(σ) to R.

5. R flips a random coin, represented by phase← {1, 2}.
If phase = 1, then proceed as follows:

(a) S selects a random hash h← H, where H is a family of pairwise-independent
hash functions with domain {0, 1}n and range {0, 1}, and sends (h, b⊕h(σ))
to R.

(b) S and R both output (c(1), f, y, phase = 1, h, b⊕ h(σ)) as the commitment.

If phase = 2, then proceed as follows:

(a) S runs S1
r to obtain the decommitment message γ(1) and first-phase transcript

τ corresponding to both σ and c(1). S sends (σ, γ(1), τ) to R.

(b) S and R engage in (S2
c(b),R

2
c)(1

n, τ), with S acting as S2
c and R acting as R2

c .
Let c(2) be the common output of S2

c and R2
c after the interaction.

3.5 FROM ANY ONE-WAY FUNCTION 97

(c) S and R both output (c(1), f, y, phase = 2, c(2)) as the commitment.

Reveal stage:
To decommit to bit b, do the following depending the value of phase.

If phase = 1, then:

1. S sends (b, σ) to R;

2. If y = f(σ) and the last component of the commitment equals b⊕ h(σ), then R
accepts. Otherwise, R rejects.

If phase = 2, then:

1. S runs S2
r to obtain the decommitment message γ(2), and sends (b, γ(2)) to R;

2. If y = f(σ) and both R1
r and R2

r accept (c(1), σ, γ(1)) and (c(2), b, γ(2)), respectively,
then R accepts. Otherwise, R rejects.

� �

Analyzing the Haitner & Reingold transformation

The hiding and binding security properties of Protocol 3.5.29 will rely on properties of
F being a universal one-way hash family. In fact, we will analyze these security proper-
ties separately so that Protocol 3.5.29 will be applicable in settings of instance-dependent
cryptographic primitives, as later considered in Section 3.6.

Our plan for the remaining of this section is as follows: (i) we present the definition of a
universal one-way hash family due to Naor and Yung [NY]; (ii) we separate the properties
of a universal one-way hash family into two parts; and finally, (iii) we prove the hiding and
binding properties of Protocol 3.5.29 based on these two separate properties.

Universal one-way hash family. In order to define a universal one-way hash family,
we need to understand what it means for a family of functions to be polynomial-time com-
putable.

DEFINITION 3.5.30
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} is polynomial-time com-

putable if

I for every n, the description of a function f ∈ Fn is bounded by a polynomial in n,
and

I there exists a deterministic polynomial-time algorithm F such that for every n and
every f ∈ Fn, given the description of the function f and a string x ∈ {0, 1}n, F
outputs the value of f(x).

98 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

DEFINITION 3.5.31
A polynomial-time computable family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} is

a universal one-way hash family if m < n and there exists a negligible function ε such
that for all nonuniform PPT A the following holds for all values of n and all x∗ ∈ {0, 1}n:

Pr
f←Fn

[A(1n, f) = x such that f(x) = f(x∗) and x 6= x∗] ≤ ε(n) .

REMARK 3.5.32

I The original definition by Naor and Yung [NY] required the PPT adversary A to
output a string x∗ before a random hash f ← Fn is chosen. The definition presented
above, which considers all strings x∗, is equivalent to the Naor–Yung definition when
considering nonuniform PPT adversaries. This is because this adversary can be given
as advice the value of x∗ that maximizes its chance to produce a collision.

I Although it is more natural for the security be parameterized in terms of the output
length, namely m, our applications do not require hash functions that are shrinking
by more than a polynomial factor. Hence for this reason, and in part for consistency,
we keep n as our security parameter.

I Naor and Yung [NY] showed that starting with a universal one-way hash family that
is compressing by only one bit, namely m = n−1, more compression can be achieved,
say m ≤ n/2, by iterative application several hash functions chosen from the family.
Hence, without loss of generality, we can assume that our universal one-way hash
family will have the feature that m ≤ n/2.

Two properties of a universal one-way hash family. A universal one-way hash family
satisfying Definition 3.5.31 has the following two main properties.

Large preimages: most of the preimages have a large size. This follows from the com-
pressing nature of hash functions: the output length m is much shorter than the input
length n. (Recall that we can get a universal one-way hash family with m ≤ n/2.)
We formalize this in property in Definition 3.5.33.

Target collision resistance : it is hard to find collisions for a pre-specified value of x∗.
We formalize this in property in Definition 3.5.34.

DEFINITION 3.5.33
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} has the large preimages

property if for every f ∈ F , most elements in the range of f have large preimage sizes.
Stated precisely, there exists a function α(n) = ω(1) and a negligible function ε, such that

3.5 FROM ANY ONE-WAY FUNCTION 99

for all values of n, the following holds:

Pr
x←{0,1}n

[∣∣f−1(f(x))
∣∣ ≥ nα(n)

]
≥ 1− ε(n) ,

for every function f ∈ Fn.

DEFINITION 3.5.34
A family of functions F =

⋃
nFn = {f : {0, 1}n → {0, 1}m} has the statistical [resp.,

computational] target collision resistance property if there exists a negligible function
ε such that for every [resp., nonuniform PPT] A, the following holds for all values of n and
every x∗ ∈ {0, 1}n:

Pr
f←Fn

[A(1n, f) = x such that f(x) = f(x∗) and x 6= x∗] ≤ ε(n) .

Large preimages and target collision resistance are opposing properties. Specifically, it
is impossible for a single family of functions to have large preimages and have statistical
target collision resistance.13 The power of a universal one-way hash family comes from
the fact that it has the large preimages property and has computational target collision
resistance.

LEMMA 3.5.35
If F =

⋃
nFn = {f : {0, 1}n → {0, 1}m}, for m ≤ n/2, is a universal one-way hash family, then

F has both the large preimages and the computational target collision resistance properties.

Proof. The computational target collision resistance property follow directly from Defini-
tion 3.5.31. Hence, all we need to show is that the compressing nature of F , when m ≤ n/2,
implies the large preimages property.

Group the elements with small preimages into a set S = {y ∈ {0, 1}m :
∣∣f−1(y)

∣∣ <
2

3
4
n−m}. Since m ≤ n/2, every element y /∈ S has a preimage of size

∣∣f−1(y)
∣∣ ≥ 2

3
4
n−m ≥

2n/4 = nω(1). To complete, we bound the probability of landing in S, which we do by a
union bound over the elements in S (for which, there are at most 2m):

Pr
x←{0,1}n

[f(x) ∈ S] = Pr [∃y ∈ S with f(Un) = y] <
2

3
4
n−m

2n
· 2m = 2−n/4 = neg(n) . �

Hiding. Having separated the properties of a universal one-way hash family into hav-
ing large preimages and having target collision resistance, we now show that the large

13As we will see later in Section 3.6, it is possible for an instance-dependent family of functions to have
large preimages and have statistical target collision resistance, albeit each property holds on different set of
instances.

100 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

preimages property of F translates to the hiding property of the commitment scheme
(S,R) = HR-Transform((S,R),F) obtained from the Haitner & Reingold transformation.

LEMMA 3.5.36
If the family of functions F has the large preimages property, and the 2-phase commitment

scheme (S,R) is statistically hiding, then scheme (S,R) = HR-Transform((S,R),F) is statisti-

cally hiding.

Proof. What we need to show is that for any adversarial receiver R∗, the views of R∗ in
(S(0), R∗) and (S(1), R∗) are statistically indistinguishable. (In this proof, we drop the
security parametrization of 1n because it is clear from context.) We can, without loss of
generality, only consider deterministic R∗ because we can fix the adversary’s coin tosses to
maximize its distinguishing advantage. In the rest of this proof, we use indistinguishability
and hiding to mean those of the statistical variant.

Let P denote the value of phase sent by R∗, and we break our hiding analysis to cases
when P = 1 and P = 2. To formalize this case analysis, we say that random variables X and
Y are indistinguishable on event E if for all D, |Pr[D(X) = 1 ∧ E]− Pr[D(X) = 0 ∧ E]|
is negligible (in the security parameter n). What we will show is that the random variables
viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are indistinguishable on both events P = 1 and
P = 2, thus allowing us to conclude that the scheme is hiding.

First, we analyze the case when P = 2. Let random variable Σ and F denote S’s
choice of σ and the value of f sent by R∗, respectively. Observe that P is a deterministic
function of the random variables V1 = viewR∗(S1

c(Σ), R∗) and Y = F (Σ). In turn, V1 and
Y are deterministic functions of the first-phase transcript T = transcript(S1(Σ), R∗), which
includes both the commit and reveal stages. This is because we can compute the view of
the receiver from the first-phase transcript, and the first-phase transcript also contains the
value of σ, from which we can compute y = f(σ). For bit b ∈ {0, 1}, let random variable
V2(b) = viewR∗(S2

c(b), R
∗)(T), recalling that T = transcript(S1(Σ), R∗). Because (S,R) is

hiding, its 2-phase commitments is hiding even given the first-phase transcript: this means
that (V2(0),T) is indistinguishable from (V2(1),T). Since P is a deterministic function of
T, random variables (V2(0),T) and (V2(1),T) are indistinguishable on event P = 2. Since
viewR∗(S(b), R∗)|P=2 is a deterministic function of (V2(b),T)|P=2, for b ∈ {0, 1}, we have
that viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are indistinguishable on event P = 2.

Next, we analyze the case when P = 1. The hiding property of the first phase gives us

(V1,Σ) ≈s (V1, Un) ,

where Un represent a uniform random variable over {0, 1}n, and is independent from V1

and Σ. Recall that random variable F denotes the function f sent by R∗. Since F is a

3.5 FROM ANY ONE-WAY FUNCTION 101

deterministic function of V1, we get

(V1, F, F (Σ),Σ) ≈s (V1, F, F (Un), Un) .

Now, let random variable H represent the hash function h selected by S when phase = 1.
Note that H is independent of V1, F , Σ, and Un, so

(V1, F, Y,H,H(Σ)) ≈s (V1, F, F (Un),H,H(Un)) , (3.9)

recalling that Y = F (Σ).
What we need to establish is that H(Un) is close to uniform so that we have hiding.

The next claim does this for us.

CLAIM 3.5.37
Suppose family of functions F =

⋃
nFn has the large preimages property. Let

random variable H denote a random hash function from a family of pairwise-

independent hash functions with domain {0, 1}n and range {0, 1}, random vari-

able Un denote a uniform string in {0, 1}n, random variable U ′1 denote a uniform

string in {0, 1}, and that H, Un, and U ′1 are all independent. For every f ∈ Fn,

(f(Un),H,H(Un)) is indistinguishable from (f(Un),H, U ′1).

Proof of Claim. The large preimages property of F guarantees that with prob-
ability 1−neg(n) over y ← f(Un), the min-entropy H∞(Un|f(Un)=y) ≥ ω(log n).
For y satisfying this condition, we apply the Leftover Hash Lemma 3.3.1 to get
that (y,H,H(Un|f(Un)=y)) is indistinguishable from (y,H,H(Un|f(Un)=y)). �

Because H and Un are independent from the rest of the random variables (and are
independent from each other), Claim 3.5.37 states that

(V1, F, F (Un),H,H(Un)) ≈s (V1, F, F (Un),H, U ′1) , (3.10)

where U ′1 is an independent random variable representing a uniform random variable over
{0, 1}. Combining (3.9) and (3.10), we get

(V1, F, Y,H,H(Σ)) ≈s (V1, F, F (Un),H, U ′1) ,

which leads to:

(V1, F, Y,H, 0⊕H(Σ)) ≈s(V1, F, F (Un),H, 0⊕ U ′1)

≡ (V1, F, F (Un),H, 1⊕ U ′1)

≈s(V1, F, Y,H, 1⊕H(Σ)) .

102 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Since P is a deterministic function of V1 and Y , random variables (V1, F, Y,H, 0⊕H(Σ)) and
(V1, F, Y,H, 1 ⊕ H(Σ)) are indistinguishable on event P = 1. Since viewR∗(S(b), R∗)|P=1

is a deterministic function of (V1, F, Y,H, b ⊕ H(Σ))|P=1, for b ∈ {0, 1}, we have that
viewR∗(S(0), R∗) and viewR∗(S(1), R∗) are indistinguishable on event P = 1. �

Binding. We show that the target collision resistance property of F translates to the
binding property of the commitment scheme (S,R) = HR-Transform((S,R),F) obtained
from the Haitner & Reingold transformation. Because we will only be able to show that
(S,R) is binding with probability close to 1/2, we first define what it means to for a scheme
to be binding with probability δ, for some δ ∈ [0, 1].

DEFINITION 3.5.38
Commitment scheme (S,R) is statistically [resp., computationally] δ(n)-binding if
for all [resp., nonuniform PPT] S∗ and every large enough values of n, sender S∗ succeeds
in the following game with probability at most δ(n):

On security parameter 1n, S∗ interacts with R in the commit stage obtaining
commitment c. Then S∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the
reveal stage, R(0, d0, c) = R(1, d1, c) = accept.

The standard notion of binding as given in Definition 2.4.4 corresponds to being (1 −
neg(n))-binding in the above definition.

LEMMA 3.5.39
If the family of functions F is statistically [resp., computationally] universal one-way, and the

2-phase commitment scheme (S,R) is statistically [resp., computationally] 1-out-of-2 binding,

then scheme (S,R) = HR-Transform((S,R),F) is statistically [resp., computationally] (1/2 −
neg(n))-binding.

Proof. For this proof, we take probabilities over the entire interaction between S∗ and R
in both the commit and reveal stages, unless stated otherwise. Since S∗ is nonuniform, we
can assume without loss of generality that reveal stage is noninteractive, and the message
sent by S∗ in the reveal stage is a deterministic function of its view in the commit phase.
So naturally, we say that S∗ breaks commitment Υ = output(S∗,R) if it is able to produce
decommitments to two different messages for commitment Υ in the reveal phase. (In this
proof, we drop the security parametrization of 1n because it is clear from context.)

We need to upper bound the probability that S∗ breaks the commitment Υ. To help us
do so, we establish several useful random variables. Let random variable C = output(S∗,R1

c)
denote the first-phase commitment of S∗ interacting with R1

c . For each first-phase commit-
ment c ∈ C, we will need to define a value of σ∗ that will be interpreted as the commitment

3.5 FROM ANY ONE-WAY FUNCTION 103

of S∗ in the first phase such that only if S∗ reveals to σ∗, will S∗ be able to cheat in the
second phase. To do so, define the following measure for each first-phase commitment c ∈ C:

pσ[c] = Pr

[
S∗ produces an accepting full transcript λ = (τ, κ)

such that τ /∈ B and τ contains c and σ

]
, (3.11)

where we say full transcript λ is accepting if both R1
r and R2

r accept in λ. With this
measure, we define σ∗[c] = argmaxσ pσ[c], breaking ties arbitrarily (say, by choosing the
lexicographic smallest σ). We define the random variables P , F , Σ∗, Σ1, and Σ2 as follows:

I P represents the value of phase;

I F represents the function f from the family F ;

I Σ∗ = σ∗[C]. Note that Σ∗ is a deterministic function of C;

I Σ1 represents the value of σ 6= Σ∗ given by S∗ when P = 1 (if no such value exists,
then the value of Σ1 defaults to Σ∗);

I Σ2 represents the value of σ revealed when P = 2.

We use the notation Σ2 /∈ B to denote the event of P = 2 and S∗ completing an accepting
full transcript λ = (τ, κ) such that τ /∈ B and τ contains c and Σ2. In addition, we use the
notation Σ2 ∈ B to denote the complementary event of Σ2 /∈ B not happening.

Having established the appropriate random variables, we turn our attention back to
bounding the probability that S∗ breaks the commitments as follows:

Pr[S∗ breaks Υ] ≤ Pr[S∗ breaks Υ ∧ F (Σ∗) = Y] + Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y]

≤
Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1] + Pr[F (Σ∗) = Y ∧ P = 2]

+Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2] + Pr[F (Σ∗) 6= Y ∧ P = 1]

=
Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1]

+Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2] + 1/2
(3.12)

with the last equality following from the fact that P is independent of Y , F , and Σ∗.
Therefore, all we need to do is to bound both Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1] and
Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2] by negligible functions, and we are done.

To bound Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1], we will use the property of F having
target collision resistance. For that, let εuow be the negligible function for F given by
Definition 3.5.34. Since F is chosen independent of Σ∗, we have

Pr[F (Σ1) = F (Σ∗) ∧ Σ1 6= Σ∗] ≤ εuow. (3.13)

For S∗ to break commitment Υ when F (Σ∗) = Y and P = 1, S∗ needs to produce a

104 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

σ 6= Σ∗, and hence it must be the case that Σ1 6= Σ∗. With this in mind, we bound:

Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1]

≤ Pr[F (Σ1) = Y ∧ Σ1 6= Σ∗ ∧ F (Σ∗) = Y]

= Pr[F (Σ1) = F (Σ∗) ∧ Σ1 6= Σ∗]

≤ εuow (from 3.13).

To bound Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2], we will exploit the 1-out-of-2 binding
property of (S,R). The way we do so is stated in the next claim.

CLAIM 3.5.40
The following holds:

Pr[Σ2 6= Σ∗ ∧ Σ2 /∈ B] = O((εbind)1/3),

where εbind is the negligible function for 1-out-of-2-binding scheme (S,R) given by

Definition 3.4.4.

Proof of Claim. Let ε = Pr[Σ2 6= Σ∗ ∧ Σ2 /∈ B]. Taking probability over C =
output(S∗,R1

c), we get

Pr
c←C

[
Pr[Σ2 6= σ∗[c] ∧ Σ2 /∈ B | C = c] ≥ ε/2

]
≥ ε/2.

Call c good if Pr[Σ2 6= σ∗[c] ∧ Σ2 /∈ B | C = c] ≥ ε/2. This means that the
probability of choosing a good c← C is at least ε/2.

Now, for a good c, we claim that with nonnegligible probability, we can find
two accepting full transcripts λ = (τ, κ) and λ̃ = (τ̃ , κ̃), such that both τ, τ̃ /∈ B
and τ and τ̃ contains σ and σ̃ 6= σ, respectively. Call this event break first

phase binding.

From (3.11), we have

pσ[c] = Pr

[
S∗ produces an accepting full transcript λ = (τ, κ)

such that τ /∈ B and τ contains c and σ

]
,

so for a good c, it must be the case that∑
σ

pσ[c] = pσ∗ [c] + Pr[Σ2 6= σ∗[c] ∧ Σ2 /∈ B | C = c] > ε/2.

After obtaining first-phase commitment c, we run two independent executions of
S∗ that continues from c. Because σ∗ is maximal in the sense that pσ∗ [c] ≥ pσ[c]
for all other σ’s, the probability that we land in the event break first phase

3.5 FROM ANY ONE-WAY FUNCTION 105

binding conditioned that c is good is at least Ω(ε2). Consequently, we break the
first-phase binding property of (S,R) with probability:

Pr[c is good] · Pr[break first phase binding | c is good ≥ (ε/2) · Ω(ε2) = Ω(ε3) ,

and hence, this forces ε = O((εbind)1/3). �

Having established the above claim, we bound:

Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2]

= Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ F (Σ2) = Y]

= Pr[S∗ breaks Υ ∧ Σ2 6= Σ∗]

=
Pr[S∗ breaks Υ ∧ Σ2 6= Σ∗ ∧ Σ2 ∈ B]

+Pr[S∗ breaks Υ ∧ Σ2 6= Σ∗ ∧ Σ2 /∈ B]

≤
Pr[S∗ breaks second phase of R2 ∧ Σ2 ∈ B]

+Pr[Σ2 6= Σ∗ ∧ Σ2 /∈ B]

≤ Pr[S∗ breaks second phase of R2 ∧ Σ2 ∈ B] +O((εbind)1/3) (by Claim 3.5.40)

≤ εbind +O((εbind)1/3)

= O((εbind)1/3) .

Finally, we continue from where we left at (3.12) to bound the success probability of S∗

breaking the binding property of the commitment.

Pr[S∗ breaks Υ] =
Pr[S∗ breaks Υ ∧ F (Σ∗) = Y ∧ P = 1]

+Pr[S∗ breaks Υ ∧ F (Σ∗) 6= Y ∧ P = 2] + 1/2
(from 3.12)

≤ εuow +O((εbind)1/3) + 1/2

= 1/2 + ε′ ,

for a negligible function ε′ = εuow +O((εbind)1/3). �

Boosting the binding. The commitment scheme (S,R) from Lemma 3.5.39 is only (1/2−
neg(n))-binding. Nonetheless, we can boost its binding probability to 1−neg(n) as follows:
to commit to bit b, run n independent executions of (S(b),R) in parallel. Intuitively, this new
scheme is (1−neg(n))-binding, because to cheat, one will need to cheat in all n independent
executions, and the probability of succeeding in that is bounded by (1/2+neg(n))n = neg(n).

CLAIM 3.5.41
(Folklore, cf., [HR2, Prop. 2.9].) There exists an efficient procedure that converts a statistically

[resp., computationally] (1/2 − neg(n))-binding commitment scheme (S,R) into commitment

106 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

scheme (S,R) that is statistically [resp., computationally] binding. Furthermore, if (S,R) is

statistically hiding, so is (S,R).

Putting it all together

Having established the appropriate claims and lemmas, we now state what is achievable
from the Haitner & Reingold transformation [HR2].

PROPOSITION 3.5.42
There exist an efficient procedure, call it HR-FullTransform, that takes as inputs a 2-phase

commitment scheme (S,R) and a family of functions F , and outputs a commitment scheme

(S,R) = HR-FullTransform((S,R),F) satisfying the following properties:

I If (S,R) is statistically hiding and F has the large preimages property, then (S,R) is

statistically hiding.

I If (S,R) is statistically [resp., computationally] 1-out-of-2 binding and F has statistical

[resp., computational] target collision resistance, then (S,R) is statistically [resp., com-

putationally] binding (in the standard sense of binding).

I If (S,R) is public coin, then (S,R) is also public coin.

Proof. We describe the HR-FullTransform algorithm, recapping what we have done thus far,
as follows.

1. On input 2-phase commitment scheme (S,R) and family of functions F , convert (S,R)
to 2-phase commitment scheme (S′,R′) that has appropriate message lengths (k1, k2) =
(n, 1). This step follows from Claim 3.5.27.

2. Next, apply Algorithm 3.5.28 on (S′,R′) and F to obtain a (standard) commitment
scheme (S,R). Lemmas 3.5.36 and 3.5.39 state that for the right properties of both
(S′,R′) and F (see the first two items in Proposition 3.5.42 above), (S,R) is hiding
and (1/2− neg(n))-binding.

3. Finally, using Claim 3.5.41, boost the binding of (S,R) to obtain a scheme (S,R) that
is (1− neg(n))-binding while not affecting the hiding property. Output (S,R) as our
desired scheme.

As for the preservation of the public coin property, observe that the messages sent by R
that are specific to the Haitner & Reingold transformation are choosing f ← F and selecting
phase← {0, 1}, both of which are public coin operations. �

With Proposition 3.5.42 in hand, let us see how we can construct statistically hiding
and computationally binding commitments from any one way function; this is captured by
Theorem 3.0.4, restated as follows.

3.5 FROM ANY ONE-WAY FUNCTION 107

RESTATEMENT OF THEOREM 3.0.4
(First appeared in [HR2, Thm. 1.1].) If one-way functions exist, then there exist commitment

schemes that are statistically hiding and computationally binding. Moreover, the commitment

schemes obtained are public coin.

Proof of Theorem 3.0.4. We start off by constructing a collection of 2-phase commitment
schemes from any one-way function; this is given by Theorem 3.5.1 which states that if one-
way functions exist, then on security parameter 1n, we can construct in time polynomial
in n a collection of public-coin 2-phase commitment schemes COM = {Com1, · · · ,Comm},
where m = poly(n), such that:

I there exists an index i ∈ {1, 2, . . . ,m} such that scheme Comi is statistically hiding,
and

I for every index i ∈ {1, 2, . . . ,m}, scheme Comi is computationally 1-out-of-2 binding.

Now we apply Proposition 3.5.42 to each 2-phase commitment Comi in the collection
with a universal one-way hash function family F , which can be constructed from any one-
way function [Rom] (see also [KK]). Let the resulting (standard) commitment schemes be
Com′i = HR-FullTransform(Comi,F). By Proposition 3.5.42 and Lemma 3.5.35, we know
that:

I Com′i is statistically hiding if Comi is statistically hiding,

I Com′i is computationally binding if Comi is computationally 1-out-of-2 binding, and

I Com′i is public coin if Comi is public coin.

This means that we now have a collection of public-coin (standard) commitment schemes
COM′ =

{
Com′1, · · · ,Com′m

}
, where m = poly(n), such that:

I there exists an index i ∈ {1, 2, . . . ,m} such that scheme Com′i is statistically hiding,
and

I for every index i ∈ {1, 2, . . . ,m}, scheme Com′i is computationally binding (in the
standard sense of binding).

We are almost done, except that we are still left with a collection of commitments
instead of a single commitment scheme. To obtain that, we combine these schemes using
a technique of secret sharing the committed bit. That is, to commit to bit b, we first
secret share b into m shares b1, . . . , bm such that each share bi is uniform in {0, 1}, and
b = b1⊕ b2⊕ · · · ⊕ bm. We then use Com′i to commit to each bit bi, with the m independent

108 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

executions of Com′1, . . . ,Com′m done in parallel (to save on round complexity). Intuitively,
this would be hiding since at least one scheme Com′i will hide the value of bi, and knowing
even m− 1 shares will not reveal the value of b. The binding property follows from the fact
that all schemes Com′i are binding. And this new scheme will be public coin if the all Com′i
are. Our above observation is captured by the following claim.

CLAIM 3.5.43
(Folklore, cf., [HR2, Prop. 2.8].) There is an efficient procedure that converts a

polynomial collection of commitment schemes, at least one of which is statistically

hiding and all are computationally binding, into a single commitment scheme that

is statistically hiding and computationally binding. In addition, if we start off with

public-coin schemes, we also end up with a public-coin scheme.

Our proof is now complete since we now have a single commitment scheme that is
statistically hiding and computationally binding, and the only complexity assumption made
is the existence of one-way functions. �

We end this section with the following observation: the statistical hiding property of the
commitment scheme constructed in the above proof of Theorem 3.0.4 does not depend on
the one-way security of the function that the scheme is based on. Thus, we can construct an
instance-dependent commitment scheme from any instance-dependent function such that
the scheme is always statistically hiding, but is guaranteed to be computationally binding
only on the instances where the function is hard to invert. This is stated in the following
proposition, which can be viewed as an instance-dependent formulation of Theorem 3.0.4.

PROPOSITION 3.5.44
For every set K ⊆ {0, 1}∗, if there is an instance-dependent one-way function on K, then

problem (K,K) has an instance-dependent commitment that is statistically hiding on the YES

instances (namely, instances in K), and computationally binding on the NO instances (namely,

instances in K). Moreover, the instance-dependent commitment scheme obtained is public coin.

3.6 Instance-Dependent Variant

Having constructed statistically-hiding and computationally-binding commitments from any
one-way function, our theme in this section is to eliminate unproven assumptions—like the
existence of one-way functions—and construct instance-dependent commitments that are
based on special properties of certain class of problems. Recall that instance-dependent
commitments are commitment schemes where both sender and receiver strategies can de-
pend on the specific instance x of a problem Π. (Refer back to Section 2.4.4 if needed.)

3.6 INSTANCE-DEPENDENT VARIANT 109

The results presented in this section will show that every problem Π = (ΠY,ΠN) ∈ SZKP
having statistical zero-knowledge proofs yield instance-dependent commitments for Π that
are statistically hiding on the YES instances (meaning, instances in ΠY), and statisti-
cally binding on the NO instance (meaning, instances in ΠY). Note that this statement
is unconditional—in that it does not rely on any unproven assumptions—and the instance-
dependent commitments constructed have statistical security for both hiding and binding,
a feature that is impossible for standard commitments.

Prior works have constructed instance-dependent commitments for certain specific prob-
lems in SZKP or a limited subclass of SZKP, such as Graph Isomorphism [BMO, IOS],
Quadratic Residuosity [IOS], approximate versions of lattice problems [MV], and ran-
dom self-reducible problems [TW, DDPY1, KMS]. But it was not until the seminal work of
Vadhan did we know how to construct instance-dependent commitments for all problems in
SZKP, even allowing for certain relaxations in the notion of commitments. Vadhan [Vad3]
showed that every problem Π ∈ SZKP has instance-dependent commitments, albeit with an
inefficient sender algorithm. These instance-dependent commitments suffice for some ap-
plications like converting honest-verifier zero knowledge proofs into zero knowledge proofs
secure against any adversarial verifier, without relying on unproven assumptions, but the
downside is that we are left with a protocol having an inefficient prover strategy.

To obtain efficient-prover zero-knowledge proofs for NP, we need commitment schemes
whose both sender and receiver strategies are efficient. Nguyen and Vadhan [NV] overcame
this problem by constructing instance-dependent commitments for SZKP whose sender and
receiver algorithms are efficient, but they paid a price in that their commitments are only
1-out-of-2 binding. It turns out that 1-out-of-2-binding commitments suffice for obtaining
efficient-prover zero-knowledge proofs for all languages in SZKP∩NP, but applications of 1-
out-of-2 binding are still limited to settings where only the prover does the commitments, not
to mention the complications that arise when dealing with 1-out-of-2-binding commitments.
(Look back at Section 3.5 if you’re not convinced of the intricacies of 1-out-of-2-binding
commitments!)

Our goal in this section is to extend the result of Nguyen and Vadhan to prove that
every problem in SZKP has instance-dependent commitments with the standard binding
property, and with efficient sender and receiver strategies. Because these are standard
notions for commitments (with the exception of being instance dependent), they have a
much wider applicability—for example, we can now let the verifier do commitments too—
and they are used throughout to establish the results in Chapter 4. Two nice features of
our commitments are that they are very round efficient and are public coin, in addition to
being constructed without assuming any unproven assumptions.

110 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

3.6.1 Instance-dependent commitments for statistical zero-knowledge

proofs

An initial attempt

Consider the SZKP-complete problem Statistical Difference [SV], defined as SD =
(SDY,SDN) with:

SDY = {(X,Y) : ∆(X,Y) ≤ 1/3} ;

SDY = {(X,Y) : ∆(X,Y) ≥ 2/3} ,

where X and Y are represented by circuits encoding these random variables, and recall
that ∆(X,Y) is the statistical difference between X and Y (see Section 2.2.1). Here, and
throughout this section, a circuit encoding a random variable X is a Boolean circuit
whose output on a uniformly random input string is identically distributed to X. Without
loss of generality, we can assume that the circuit encoding a random variable X have size
at most n2, where n is the number of inputs to that circuit. (This can be done by padding
dummy input variables to the circuit.)

The first approach one might think of in constructing instance-dependent commitments
for all of SZKP is to start with the Statistical Difference problem. This is because
there is a natural and simple instance-dependent scheme for Statistical Difference as
follows.

To commit to bit b = 0, sender S sends a random sample from X to R, and to
commit to bit b = 1, sender S send a random sample from Y to R. To decommit,
sender S just reveals its random coins used in sampling from either X or Y .

This scheme is somewhat hiding considering that the statistical distance between X and Y
is less than 1/3 for the YES instances, and also seems to be somewhat binding considering
the statistical distance between X and Y is greater than 2/3 for the NO instances. It
turns out that we can boost the bounds to be ∆(X,Y) ≤ neg(n) for YES instances, and
∆(X,Y) ≥ 1 − neg(n) for NO instances; this seems to further suggest that this technique
might work. On further inspection, however, a fundamental problem of binding arises with
our simple commitment scheme when the NO instances have ∆(X,Y) < 1. This is because
a cheating sender S∗ could possibly find a string z ∈ Supp(X)∩ Supp(Y), and always send
z as its commitments. If S∗ knows how to find inverses of z under both X and Y , then it
can decommit to both 0 and 1.

Nonetheless, as shown by Micciancio and Vadhan [MV], this simple commitment scheme
is an instance-dependent commitment scheme for a restricted version of Statistical Dif-

ference, where the NO instances are such that X and Y have disjoint supports (i.e.,
∆(X,Y) = 1). We do still do not know if this restricted version of Statistical Dif-

ference is SZKP-complete, so we cannot depend on its instance-dependent commitment

3.6 INSTANCE-DEPENDENT VARIANT 111

scheme to get instance-dependent commitments for all of SZKP. Vadhan [Vad3], however,
managed to work a way around this problem of binding by designing an alternative scheme
that works for (the non-restricted version of) Statistical Difference, albeit with an
inefficient sender.

The Nguyen & Vadhan approach

To obtain efficient senders, Nguyen and Vadhan [NV] started off from a different SZKP-
complete problem, namely the Entropy Difference [GV] problem ED = (EDY,EDN),
defined as:

EDY = {(X,Y) : H(X) ≥ H(Y) + 1};

EDN = {(X,Y) : H(X) ≤ H(Y)− 1},

where X and Y are represented by circuits encoding these random variables, and H(·)
denotes the entropy measure (see Section 2.2.1). Their construction of instance-dependent
schemes for ED is not a commitment scheme in the standard sense, but are commitments
with the weaker 1-out-of-2 binding property.14 These commitments, even though with a
weaker binding property, suffice for getting efficient-prover statistical zero-knowledge proofs
for all of SZKP ∩NP [NV].

Our construction of instance-dependent commitments for all of SZKP will follow closely
the Nguyen & Vadhan approach, except at the part where they get stuck with 1-out-of-2-
binding commitments, we convert them into commitments with the standard binding prop-
erty using techniques from Section 3.5.5. Specifically, we use an instance-dependent variant
of the Haitner & Reingold transformation to convert 1-out-of-2-binding commitments into
commitments with the standard binding property.

Let us trace back the Nguyen & Vadhan approach. First, they did not construct their
schemes directly from ED, but instead first established a Cook reduction from ED to a
restricted version of the Entropy Approximation [GSV2] problem, denoted as EA’ =
(EA’Y,EA’N), and defined below:

EA’Y = {(X, t) : H(X) ≥ t+ 1};

EA’N = {(X, t) : t− 1/n14 ≤ H(X) ≤ t},

where the circuit encoding the random variable X has input length n. The problem EA’ is
considered a restricted version of Entropy Approximation because (unrestricted version
of) the Entropy Approximation problem EA = (EAY,EAN) does not lower-bound the

142-phase commitments scheme (Definition 3.4.1), and its corresponding hiding and 1-out-of-2 binding
properties (Definitions 3.4.3 and 3.4.4, respectively), can be extended to instance-dependent analogues in a
similar fashion as done for standard commitments in Section 2.4.4.

112 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

entropy in the case of the NO instances. EA is defined as follows:

EAY = {(X, t) : H(X) ≥ t+ 1};

EAN = {(X, t) : H(X) ≤ t}.

The Cook reduction from ED to EA’ is established by the following proposition.

PROPOSITION 3.6.1
(Cook Reduction from ED to EA’; from [NV, Lem. 4.9], which builds on [GSV2].) Let (X,Y)
be an instance of the Entropy Difference problem ED = (EDY,EDN), where the circuits

encoding the random variables X and Y both have input length n. The Cook reduction from

ED to EA’ is as follows:

(X,Y) ∈ EDY ⇒
n·k∨
i=0

(Y, i/k) ∈ EA’Y ∧
i∧

j=0

(X, j/k) ∈ EA’Y

 ;

(X,Y) ∈ EDN ⇒
n·k∧
i=0

(Y, i/k) ∈ EA’N ∨
i∨

j=0

(X, j/k) ∈ EA’N

 ,

where k = n14.

With this proposition, Nguyen and Vadhan noted that it suffices to construct instance-
dependent commitments for both EA’ and its complement EA’ in order to obtain instance-
dependent commitments for ED (and hence, all of SZKP).

LEMMA 3.6.2
If both the special case of the Entropy Approximation problem EA’ and its complement

EA’ have instance-dependent commitments, namely:

I there exists instance-dependent commitments that are statistically hiding on instances in

EA’Y and statistically binding on instances in EA’N, and

I there exists instance-dependent commitments that are statistically hiding on instances in

EA’N and statistically binding on instances in EA’Y.

Then the Entropy Difference problem ED (and hence, every problem in SZKP) has an

instance-dependent commitment scheme that is statistically hiding on the YES instances and

statistically binding on the NO instances.

Proof. Let Comx and Com′x be the instance-dependent commitments for EA’ and EA’,
respectively. The instance-dependent commitment scheme for ED is as follows.

3.6 INSTANCE-DEPENDENT VARIANT 113

On instance (X,Y) and an input bit b, first secret share b into n ·k = n15 secrets
shares b1, . . . , bnk with b = b1⊕ · · ·⊕ bnk. Then for each share bi, commit to bi a
total of (i+2) times as follows: run Com′(Y,i/k)(bi), and for each j = 0, 1, . . . , i, run
Com(X,j/k)(bi). The executions are done in parallel to save on round complexity.

The hiding and binding properties of the above scheme follows from Proposition 3.6.1. �

Indeed, Nguyen and Vadhan [NV] constructed instance-dependent schemes for both EA’

and EA’. Their scheme for EA’ is a commitment with the standard binding property, but
for EA’, they only managed to only get 1-out-of-2-binding commitments. This deficiency
is what that makes their overall scheme only 1-out-of-2 binding.

LEMMA 3.6.3
(From [NV, Thm. 4.4].) The special case of the entropy approximation problem EA’ has an

instance-dependent commitment that is statistically hiding on YES instances (namely, instances

in EA’Y) and statistically binding on NO instances (namely, instances in EA’N). Moreover,

their scheme is public coin and constant round.

LEMMA 3.6.4
(From [NV, Thm. 4.5].) The complement of the special case of the entropy approximation prob-

lem EA’ = (EA’Y,EA’N) = (EA’N,EA’Y) has an instance-dependent 2-phase commitment

that is statistically hiding on the YES instances (namely, instances in EA’N) and statistically

1-out-of-2 binding on NO instances (namely, instances in EA’Y). Moreover, their scheme is

public coin and constant round.

Instance-dependent commitments for EA’

To obtain instance-dependent commitments (with the standard binding property) for EA’,
we use an instance-dependent variant of the Haitner & Reingold transformation [HR2] (from
Section 3.5.5). The main difference here is that we are now dealing with instance-dependent
cryptographic primitives, but nonetheless the techniques from Section 3.5.5 will still apply.
With instance-dependent primitives, the security is measured in terms of the length of the
instance. In the case of EA’, the instance is (X, t), and the length of the instance is the
size of the circuit encoding X, which in turn is bounded by n2, where n is the input length
to that circuit. Therefore, we can view the security parameter in terms of n.

With this in mind, we generalize the notion of large preimages property in Defini-
tion 3.5.33 and the target collision resistance property in Definition 3.5.34 to accommodate
instance-dependent family of functions F =

⋃
xFx = {f : {0, 1}n(|x|) → {0, 1}m(|x)|}, where

n(·) and m(·) are polynomials. We present our definition of an instance-dependent uni-
versal one-way hash family, which will be used in the Haitner & Reingold transformation
in order to convert instance-dependent 1-out-of-2-binding commitments into corresponding

114 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

commitments with the standard binding property.

DEFINITION 3.6.5
Problem Π = (ΠY,ΠN) has an instance-dependent universal one-way hash fam-

ily if there exists a polynomial-time computable family F =
⋃

xFx = {f : {0, 1}n(|x|) →
{0, 1}m(|x|)}, where n(·) and m(·) are polynomials, such that the following two conditions
hold.

I The family FY =
⋃

x∈ΠY
Fx has the large preimages property in the sense of Defini-

tion 3.5.33. That is, there exists a function α(·) = ω(1) and a negligible function ε,
such that the following holds for all x ∈ ΠY and every function f ∈ Fx:

Pr
y←{0,1}n(|x|)

[∣∣f−1(f(y))
∣∣ ≥ |x|α(|x|)

]
≥ 1− ε(|x|) .

I The family FN =
⋃

x∈ΠN
Fx has statistical target collision resistance in the sense of

Definition 3.5.34. That is, there exists a negligible function ε such that for every A,
the following holds for all x ∈ ΠY and every y∗ ∈ {0, 1}n(|x|):

Pr
f←Fx

[
A(1|x|, f) = y such that f(y) = f(y∗) and y 6= y∗

]
≤ ε(|x|) .

REMARK 3.6.6
In the above definition of an instance-dependent universal one-way hash family, we allow
m(|x|) > n(|x|), and only insist that the family has the large preimages property on the
YES instances. In fact, our construction of an instance-dependent universal one-way hash
family for EA’ will be such that m(|x|) is much larger than n(|x|).

In addition, we insist that FN to have statistical target collision resistance because we
want to achieve instance-dependent commitments that are statistically binding (in addition
to being statistically hiding). As mentioned previously in Section 3.5.5, it is impossible for
a single family of functions F (i.e., one that is not instance-dependent) to achieve both the
the large preimages and the statistical target collision resistance properties.

Proposition 3.5.42 from Section 3.5.5 can be extended to account for instance-dependent
primitives as follows.

PROPOSITION 3.6.7
Let HR-FullTransform be the algorithm stated in Proposition 3.5.42. For any problem Π =
(ΠY,ΠN), if the following two conditions hold:

I Family of functions F =
⋃

xFx is an instance-dependent universal one-way hash family

for Π;

3.6 INSTANCE-DEPENDENT VARIANT 115

I Scheme (Sx,Rx) is an instance-dependent 2-phase commitment scheme for Π that is sta-

tistically hiding on the YES instances, and statistically 1-out-of-2 binding on NO instances.

Then, scheme (Sx, Rx) = HR-FullTransform((Sx,Rx),Fx) is an instance-dependent commit-

ment scheme for Π that is statistically hiding on the YES instances, and statistically binding on

NO instances. Moreover, (Sx, Rx) is public coin if (Sx,Rx) is.

Based on the above proposition, it suffices to construct an instance-dependent universal
one-way hash family for EA’ in order to get instance-dependent commitments for EA’.

Instance-dependent universal one-way hash family for EA. Although we just need
an instance-dependent universal one-way hash family for EA’, we will construct one for the
slightly more general problem of EA (note that EA’ is polynomial-time reducible to EA).

Working directly with EA is difficult since we do not know any structure of the random
variable X, other than its entropy bound. So to get more structure out of the random
variable, we will flatten random variable X by taking multiple copies of X and outputting
all of them—in other words, we are taking a direct product of multiple independent copies
of X. Let X ′ denote this new random variable. Doing this would make the probability
mass of X ′ concentrated around 2−H(X′), and this is why we call it flattening the random
variable. (This is also known as the Asymptotic Equipartition Property in the information
theory literature; see [CT].) Following Goldreich and Vadhan [GV], we give a definition of
flatness as follows:

DEFINITION 3.6.8
Random variable X is δ-flat if for every t ≥ 1,

Pr
x←X

[
2−t·δ <

Pr[X = x]
2H(X)

< 2t·δ
]
> 1− 2−t2 .

Consider the flattened version of the Entropy Approximation problem, denoted as
FlatEA = (FlatEAY,FlatEAN), and defined as follows:

FlatEAY = {(X, t) : H(X) ≥ t+ n14/15 and X is n8/15-flat}

FlatEAN = {(X, t) : H(X) ≤ t and X is n8/15-flat}

It is clear that FlatEA is polynomial time reducible to EA, and the reverse reduction
from EA to FlatEA follows from the Flattening Lemma of Goldreich and Vadhan [GV,
Lem. 3.5]. Hence, constructing an instance-dependent universal one-way hash family for
EA is equivalent to constructing one for FlatEA, and we do this next.

116 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

THEOREM 3.6.9
The complement of the flattened version of the Entropy Approximation problem, namely

FlatEA = (FlatEAY,FlatEAN) = (FlatEAN,FlatEAY) has an instance-dependent

universal one-way hash family.

In the remaining of this section, we abuse notation by denoting the circuit encoding
random variable X as X : {0, 1}n → {0, 1}m.

Proof Idea of Theorem 3.6.9

For problem FlatEA, we will need to construct an instance-dependent (family of) functions
that have target collision resistance on the YES instances and large preimages property
on the NO instances. These are reversed properties because we want to prove that the
complement FlatEA has an instance-dependent universal one-way hash family.

For the YES instances of FlatEA, X has entropy at least t + γ, where γ = n14/15.
Since X is a nearly-flat random variable, most of its preimages are small, i.e., their sizes
are <∼ 2n−t−γ . So with high probability over a random y ← {0, 1}n, the preimage size of
X(y) is <∼ 2n−t−γ . By applying a pairwise-independent hash h : {0, 1}n → {0, 1}β to y, for
β >∼ n − t − γ, it would make the function gh(y) = (X(y), h(y)) almost injective, in that
for almost every element in the range has a unique preimage. (An injective function is, by
definition, collision resistant.)

The adversary, however, need not choose y uniformly at random; in particular, it could
choose an element y such that X−1(X(y)) is large, making f(y) = (X(y), h(y)) no longer
injective. To prevent the adversary from gaining, we add a shift s ∈ {0, 1}n to the circuit
X. Specifically, let the new function be fs,h(y) = (X(y⊕ s), h(y)). Since y is now randomly
shifted by s, the preimage size of X(y ⊕ s) is small with high probability over a random
s← {0, 1}n. Thus, we can conclude that fs,h(y) is almost injective even for an adversarially
chosen y. This will give us the desired target collision resistance property for β >∼ n− t− γ.

For the NO instances of FlatEA, X has entropy at most t. Since X is a nearly-flat
random variable, most of its preimages are large, i.e., their sizes are >∼ 2n−t. Restricting to a
hash h : {0, 1}n → {0, 1}β will shrink the size of the preimages by a factor of approximately
2−β. So if β <∼ n− t, the size of the preimages will still be large enough to satisfy the large
preimages property.

The entropy gap of γ = n14/15 between the YES and NO instances allows us to find an
appropriate value of β between n− t− γ and n− t that satisfies both cases.

3.6 INSTANCE-DEPENDENT VARIANT 117

Proof of Theorem 3.6.9

Based on the proof idea presented above, our instance-dependent universal one-way hash
family for FlatEA is as follows:

F =
⋃

(X,t)

F(X,t) =
{
fs,h : {0, 1}n → {0, 1}m+β

}
,

where s ∈ {0, 1}n, β = n − t − 3n9/15, h is from a pairwise-independent hash family
H = {h : {0, 1}n → {0, 1}β}, and fs,h(y) = (X(y ⊕ s), h(y)) for all y ∈ {0, 1}n.

We divide the proof of Theorem 3.6.9 into Lemmas 3.6.10 and 3.6.12 that establish the
large preimages and the statistical target collision resistance properties of F , respectively.

LEMMA 3.6.10
For every (X, t) ∈ FlatEAN, the family F(X,t) has the large preimages property in the sense

of Definition 3.5.33.

Proof. For the NO instances of FlatEA, that is when (X, t) ∈ FlatEAN, we know that
H(X) ≤ t and X is n8/15-flat. Define a new circuit Xs(y) = X(y ⊕ s), and since Xs(Un)
and X(Un) are identically distributed, Xs inherits all its statistical properties from X.
Therefore, for any fixed s ∈ {0, 1}n, we have that

Pr
y←{0,1}n

[∣∣X−1
s (Xs(y))

∣∣ ≥ 2n−t−n9/15
]
≥ 1− 2−n2/15

= 1− neg(n). (3.14)

Bounding the size of
∣∣X−1

s (Xs(y))
∣∣ is not sufficient since fs,h leaks the value of h(y) too.

Thus what we need is to bound the size of h−1(h(y))∩X−1
s (Xs(y)) = f−1

s,h (fs,h(y)), and the
following claim provides us a way to do so.

CLAIM 3.6.11
For any set S ⊆ {0, 1}n, any function h : {0, 1}n → {0, 1}β, and any c > 0,

Pr
y←S

[∣∣h−1(h(y)) ∩ S
∣∣

|S|
≤ 2−β−c

]
≤ 2−c.

Proof of Claim. The above probability can be written as:∑
γ∈{0,1}β

Pr
y←S

[
h(y) = γ and

∣∣h−1(γ) ∩ S
∣∣ ≤ 2−β−c |S|

]
≤ 2β · 2−β−c = 2−c. �

To apply the above claim, observe that instead of picking y ← {0, 1}n, an equivalent
way would be to select an output x of X weighted according to the size of its preimage,

118 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

and then pick a random preimage of x (namely, sample a uniform element from X−1(x)).
Now we can apply Claim 3.6.11 to (3.14) and obtain

Pr
y←{0,1}n

[∣∣h−1(h(y)) ∩X−1(X(y ⊕ s))
∣∣ ≥ 2n−t−n9/15−β−c

]
≥ 1− neg(n)− 2−c,

for any fixed s ∈ {0, 1}n and h ∈ H. Since β = n − t − 3n9/15, and we set c = n9/15,
the size of f−1

s,h (fs,h(y)) = h−1(h(y)) ∩ X−1(X(y ⊕ s)) is at least 2n9/15
with probability

1− neg(n). �

LEMMA 3.6.12
For every (X, t) ∈ FlatEAY, the family F(X,t) has the statistical target collision resistance

property in the sense of Definition 3.5.34.

Proof. For the YES instances of FlatEA, that is when (X, t) ∈ FlatEAY, we know that
H(X) ≥ t+ n14/15 and X is n8/15-flat. Therefore, for any y ∈ {0, 1}n chosen in advance,

Pr
s←{0,1}n

[∣∣X−1(X(y ⊕ s))
∣∣ ≤ 2n−t−n14/15+n9/15

]
≥ 1− 2−n2/15

= 1− neg(n). (3.15)

The value of X(y ⊕ s) alone does not bind y, but since the number of its preimages
is small (with high probability), a pairwise independent hash would uniquely determine y.
The next claim captures this fact.

CLAIM 3.6.13
Let random variable H denote a random hash function from a family of pairwise-

independent hash functions H mapping {0, 1}n to {0, 1}β. For any subset S ⊆
{0, 1}n and any element y ∈ {0, 1}n, we have:

Pr
[
∃y′ ∈ S \ {y} such that H(y′) = H(y)

]
≤ |S| · 2−β.

Proof of Claim. The pairwise independent property of H guarantees that for
any y′ 6= y, we have Pr [H(y′) = H(y)] ≤ 2−β. Taking a union bound over all
possible values of y′ ∈ S \ {y} yields our claim. �

We say X−1(X(y ⊕ s)) is large if
∣∣X−1(X(y ⊕ s))

∣∣ > 2n−t−n14/15+n9/15
, and small

otherwise. Because fs,h(y) = fs,h(y′) if only if both X(y⊕ s) = X(y′⊕ s) and h(y) = h(y′),
applying Claim 3.6.13 to (3.15), we have that for any fixed y,

Pr
[
X−1(X(y ⊕ Un)) is large

]
= neg(n) . (3.16)

3.6 INSTANCE-DEPENDENT VARIANT 119

Thus, we can bound the probability of finding a collision with any fixed y as follows:

Pr[∃y′ 6= y such that fUn,H(y) = fUn,H(y′)]

≤
Pr
[
X−1(X(y ⊕ Un)) is large

]
+Pr

[
∃y′ 6= y such that fUn,H(y) = fUn,H(y′) | X−1(X(y ⊕ Un) is small

]
≤ neg(n) + 2n−t−n14/15+n9/15 · 2−β (by 3.16)

= neg(n) + 2−n14/15+4n9/15
,

with the final equality following from setting β = n − t − 3n9/15. Since 2−n14/15+4n9/15
is

negligible, our proof is complete. �

Because EA’ polynomial-time reduces to EA, which in turn is polynomial-time equiva-
lent to FlatEA, we arrive at the following corollary of Theorem 3.6.9.

COROLLARY 3.6.14
Both problems EA and EA’ have instance-dependent universal one-way hash families.

Putting it all together

We restate Theorem 3.0.5 and prove it.

RESTATEMENT OF THEOREM 3.0.5
For every problem Π ∈ SZKP, problem Π has an instance-dependent commitment scheme

that is statistically hiding on the YES instances and statistically binding on the NO instances.

Moreover, the instance-dependent commitment scheme obtained is public coin and is constant

round.

Proof of Theorem 3.0.5. Proposition 3.6.1 informs us that to construct instance-dependent
commitment schemes for all problems in SZKP, it suffices to construct instance-dependent
commitment schemes for EA’ and its complement EA’, recalling that EA’ is the restricted
version of Entropy Approximation.

Lemma 3.6.3 and 3.6.4 provides instance-dependent commitments for EA’ and instance-
dependent 1-out-of-2-binding commitment schemes for EA’, respectively. (Both these
schemes are due to Nguyen and Vadhan [NV].) We also know that EA’ has an instance-
dependent universal one-way hash family, given by Corollary 3.6.14. Therefore, Proposi-
tion 3.6.7 tells us that we can use the Haitner & Reingold transformation [HR2] to convert
the instance-dependent 1-out-of-2-binding commitments for EA’ into instance-dependent
commitments (with the standard binding property) for EA’.

The public coin property of our final scheme follows from the fact that the both schemes
for EA’ and EA’ are public-coin schemes (refer to Lemmas 3.6.3 and 3.6.4, respectively).

120 CHAPTER 3 / STATISTICALLY-HIDING COMMITMENTS

Finally, observe that we obtain a constant-round scheme because both schemes for EA’

and EA’ are constant round (refer to Lemmas 3.6.3 and 3.6.4, respectively), and the added-
on round complexity due to the Haitner & Reingold transformation is only a constant. �

Conclusion. We have shown how to construct instance-dependent commitment schemes
for all of SZKP that are statistically hiding on the YES instances and statistically binding
on the NO instances. In the next chapter, we extend our result to the other three variants
of zero knowledge—namely, computational zero-knowledge proofs (CZKP), statistical zero-
knowledge arguments (SZKA), and computational zero-knowledge arguments (CZKA)—
showing that all of them have instance-dependent commitments with corresponding security
properties. This means that we can obtain instance-dependent commitments from zero-
knowledge protocols, and having this ability allows us to establish various unconditional
relationships between the different formulations of zero knowledge, as done in Chapter 4.

4
� �

UNCONDITIONAL CHARACTERIZATIONS OF

ZERO KNOWLEDGE

In this chapter, we give unconditional characterizations of classes of problems having zero-
knowledge argument systems using the Vadhan condition. These characterizations would,
among other things, allow us to establish the main unconditional results of this disserta-
tion, which are equivalences between instance-dependent commitments and zero-knowledge
protocols (Theorem 1.2.4), symmetry between computational zero knowledge and compu-
tational soundness (Theorem 1.2.2), and a method of transforming any honest-verifier zero-
knowledge argument system into a malicious-verifier zero-knowledge argument system for
the same problem. Recall that all these results were highlighted in Section 1.2 of Chapter 1.

For context, we restate the Vadhan condition from Section 1.2 in the terms of instance-
dependent one-way functions (Definition 2.4.6).

RESTATEMENT OF DEFINITION 1.2.3
A promise problem Π = (ΠY,ΠN) satisfies the Vadhan condition if there exists a set of
instances I ⊆ ΠY ∪ΠN such that:

I the promise problem (ΠY \ I,ΠN \ I) is in SZKP, and

I there exists an instance-dependent one-way function on I.

We call I the set of OWF instances, I∩ΠY the set of OWF YES instances, and I∩ΠN

the set of OWF NO instances.

Chapter organization. In the next section, we present our main characterization theo-
rems, which expands upon Theorem 1.2.4. The steps involved in proving these characteriza-
tion theorems are outlined in the beginning of Section 4.2, and lemmas needed to establish

121

122 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

these theorems are given in Sections 4.2.1, 4.2.2, and 4.2.3. Finally, in Section 4.3, we
prove our Symmetry Theorem (Theorem 1.2.2) between computational zero knowledge and
computational soundness, and show an interesting consequence of our Symmetry Theorem.

4.1 The Characterization Theorems

In this section, we expand upon the characterizations of zero-knowledge protocols in terms
of the Vadhan condition given by Theorem 1.2.4, and the equivalences between instance-
dependent commitments and zero-knowledge protocols given by Theorem 1.2.1. Specifically,
we state four theorems giving a variety of equivalent characterizations of the zero-knowledge
complexity classes SZKP, CZKP, CZKA, and SZKA. The ones for zero-knowledge argu-
ments, namely CZKA and SZKA, are new; the other for zero-knowledge proofs, namely
CZKP and SZKP, contain results from previous work, but are given for comparison. In
addition to establishing Theorems 1.2.1 1.2.4, these theorems show an equivalence between
problems having only honest-verifier zero-knowledge protocols, problems satisfying the Vad-
han condition, and problems with (malicious-verifier) zero-knowledge protocols having de-
sirable properties like an efficient prover, perfect completeness, public coins, and black-box
simulation. It should be noted that these characterizations refer only to the classes of prob-
lems, and do not necessarily preserve other efficiency measures like round complexity, unless
explicitly mentioned.

The following two theorems give unconditional characterizations of zero-knowledge proofs.

THEOREM 4.1.1
(SZKP Characterization Theorem, containing results from [Oka, GSV1, NV].) For every problem

Π ∈ IP, the following conditions are equivalent.

1. Π ∈ HV-SZKP.

2. Π satisfies the Vadhan condition without OWF instances.

3. Π has an instance-dependent commitment scheme that is statistically hiding on the YES

instances and statistically binding on the NO instances. Moreover, the scheme is public

coin and constant round.

4. Π ∈ SZKP, and the statistical zero-knowledge proof system for Π has a black-box sim-

ulator, is public coin, and has perfect completeness. Furthermore, if Π ∈ NP, the proof

system has an efficient prover and is constant round with a polynomially-small soundness

error.1

1To get negligible soundness error with ω(1) rounds, we repeat the protocol ω(1) times sequentially.

4.1 THE CHARACTERIZATION THEOREMS 123

THEOREM 4.1.2
(CZKP Characterization Theorem, containing results from [Vad3, NV].) For every problem

Π ∈ IP, the following conditions are equivalent.

1. Π ∈ HV-CZKP.

2. Π satisfies the Vadhan condition without OWF NO instances.

3. Π has an instance-dependent commitment scheme that is computationally hiding on the

YES instances and statistically binding on the NO instances. Moreover, the scheme is

public coin and constant round.

4. Π ∈ CZKP, and the computational zero-knowledge proof system for Π has a black-box

simulator, is public coin, and has perfect completeness. Furthermore, if Π ∈ NP, the proof

system has an efficient prover and is constant round with a polynomially-small soundness

error.1

REMARK 4.1.3
The new result in both Theorems 4.1.1 and 4.1.2 is the (2) ⇒ (3) direction, establishing
instance-dependent commitments (with an efficient sender strategy and a regular binding
property) from the Vadhan condition. The previous works of Vadhan [Vad3], and Nguyen
and Vadhan [NV] result in an inefficient sender strategy and a weaker 1-out-of-2 binding
property, respectively.

The (1) ⇒ (2) direction for the SZKP case (Theorem 4.1.1) and the CZKP case (The-
orem 4.1.2) follows from [Oka, GSV1] and [Vad3], respectively. The (2) ⇒ (4) direction, in
both the SZKP and CZKP cases, was established by [NV] using instance-dependent commit-
ments with the weaker 1-out-2-binding property. Because of this weaker binding property,
their zero-knowledge proof systems have polynomial number of rounds. We obtain constant-
round instance-dependent commitments with the standard binding property, based on the
(2)⇒ (3) direction, and hence we are able to achieve constant-round zero-knowledge proofs
with a polynomially-small soundness error.

We give analogous characterizations for zero-knowledge arguments.

THEOREM 4.1.4
(SZKA Characterization Theorem.) For every problem Π ∈ NP, the following conditions are

equivalent.

1. Π ∈ HV-SZKA.

2. Π satisfies the Vadhan condition without OWF YES instances.

124 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

3. Π has an instance-dependent commitment scheme that is statistically hiding on the YES

instances and computationally binding on the NO instances. Moreover, the scheme is

public coin.

4. Π ∈ SZKA, and the statistical zero-knowledge argument system for Π has a black-box

simulator, is public coin, has perfect completeness, and an efficient prover.

THEOREM 4.1.5
(CZKA Characterization Theorem.) For every problem Π ∈ NP, the following conditions are

equivalent.

1. Π ∈ HV-CZKA.

2. Π satisfies the Vadhan condition.

3. Π has an instance-dependent commitment scheme that is computationally hiding on the

YES instances and computationally binding on the NO instances. Moreover, the scheme

is public coin.

4. Π ∈ CZKA, and the computational zero-knowledge proof system for Π has a black-box

simulator, is public coin, has perfect completeness, and an efficient prover.

We prove Theorems 4.1.1, 4.1.2, 4.1.4, and 4.1.5 using lemmas established in Sec-
tions 4.2.1, 4.2.2, and 4.2.3. Notice that in the theorems involving zero knowledge argu-
ments, we have restricted the problem Π to be in NP in contrast to the theorems involving
zero-knowledge proofs (Theorems 4.1.1 and 4.1.2), which are naturally restricted to IP.
The reason for this is that argument systems are mainly interesting when the honest prover
runs in polynomial time given a witness for membership (otherwise the protocol would not
even be sound against prover strategies with the same resources as the honest prover), and
such efficient provers only make sense for problems in NP (or actually, MA, to which our
results generalize easily). In fact our theorems above show that for problems in NP, a zero-
knowledge protocol without an efficient prover can be converted into one with an efficient
prover (by the equivalence of Items 1 and 4 in Theorems 4.1.1 to 4.1.4 above).

4.2 Proof of the Characterization Theorems

We provide an outline of the steps involved in proving the characterization theorems stated
in the previous section.

1. In Section 4.2.1, we show that every problem Π possessing a (honest-verifier) zero-
knowledge protocol satisfies the Vadhan condition. Depending on the zero knowledge
and soundness guarantee, the types of Vadhan condition that Π satisfies will dif-
fer (in whether the sets of OWF YES instances and OWF NO instances are empty

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 125

or nonempty). This result extends the unconditional characterization work of Vad-
han [Vad3] for zero-knowledge proof systems to the more general zero-knowledge ar-
gument systems.

2. Next, in Section 4.2.2, we show that every problem Π satisfying the Vadhan condition
yields an instance-dependent commitment scheme for Π.

3. Finally, in Section 4.2.3, we show that every problem Π ∈ NP having instance-
dependent commitments allow us to construct zero-knowledge argument systems for
Π with desirable properties like perfect completeness, black-box zero knowledge, pub-
lic coins, and an efficient prover. This is achieved by substituting instance-dependent
commitments for standard commitments used in existing zero-knowledge protocols.
(This technique of substituting instance-dependent commitments for standard com-
mitments is detailed in Section 2.5.)

A summary of the steps involved in establishing our characterization theorems, together
with their corresponding lemmas, is given in Figure 4.1.

Honest-Verifier Zero-Knowledge Protocol

Lemmas 4.2.1 and 4.2.2
��

Vadhan Condition

Lemma 4.2.9
��

Instance-Dependent Commitment

Lemma 4.2.12 + Π ∈ NP
��

Zero-Knowledge Protocol
(with public coins, black-box simulator, etc.)

immediate

^^

Figure 4.1: Steps of our proof.

4.2.1 From zero-knowledge protocols to the Vadhan condition

In this subsection, we show that problems possessing (honest verifier) zero-knowledge argu-
ments satisfy the Vadhan condition. Specifically, we prove that for every problem Π having
a zero-knowledge argument also satisfies the Vadhan condition. This involving establishing
a set of instances I ⊆ ΠY∪ΠN such that (ΠY \I,ΠN \I) ∈ SZKP, and from which instance-
dependent one-way functions can be constructed. The main difference from Vadhan [Vad3]
is that [Vad3] characterizes only zero-knowledge proofs and it without OWF NO instances,
namely I ∩ ΠN = ∅. In other words, the characterizations of [Vad3] satisfy the Vadhan
condition without OWF NO instances.

126 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

We state a lemma establishing characterizations of (honest verifier) zero-knowledge
proofs in terms of the Vadhan condition. This lemma follows from the works of [Oka,
GSV1, Vad3], but is given for comparison.

LEMMA 4.2.1
(Follows from [Oka, GSV1, Vad3].) If problem Π ∈ HV-CZKP, then Π satisfies the Vadhan

condition without OWF NO instances, namely I ∩ΠN = ∅. In addition, if Π ∈ HV-SZKP, then

Π satisfies the Vadhan condition without OWF instances, namely I = ∅.

Next, we give analogous characterizations for (honest verifier) zero-knowledge argu-
ments.

LEMMA 4.2.2
If problem Π ∈ HV-CZKA, then Π satisfies the Vadhan condition. In addition, if Π ∈
HV-SZKA, then Π satisfies the Vadhan condition without OWF YES instances, namely I∩ΠY =
∅.

Proof Idea of Lemma 4.2.2

Proving that Π ∈ HV-CZKA satisfies the Vadhan condition involves establishing a set I
with an instance-dependent one-way on I and (ΠY \ I,ΠN \ I) ∈ SZKP. To do so, we
provide a separate analysis for the YES and NO instances; namely, we show that there
exist sets IY ⊆ ΠY and IN ⊆ ΠN such that instance-dependent one-way functions can be
constructed on these sets, and that (ΠY \ IY,ΠN \ IN) ∈ SZKP. These instance-dependent
one-way functions fx and gx on IY and IN, respectively, can be combined into a single
instance-dependent one-way function on I def= IY ∪ IN by concatenating the functions fx and
gx.

The sets IY and IN are defined based on the simulator S for the zero-knowledge pro-
tocol of Π ∈ HV-CZKA. Following Fortnow [For], we consider a simulation-based prover
PS and corresponding simulation-based verifier VS . Informally, PS replies with the same
conditional probability as the prover in the output of S, and VS sends its messages with
the same conditional probability as the verifier in the output of S. We make the following
observations.

1. The interaction between PS and VS is identical to the output of the simulator S, on
every x.

2. By the zero-knowledge condition, we have that 〈PS , VS〉 is computationally indistin-
guishable from 〈P, V 〉, when x ∈ ΠY.

3. By assuming, without loss of generality, that the simulator always outputs accepting
transcripts, it holds that PS makes VS accepts with probability 1, on every x.

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 127

We consider a statistical measure of how similar VS is to V (on instance x, when inter-
acting with simulation-based prover PS). Using this statistical measure (given in the full
proof below), we define sets IY and IN as follows:

I IY contains instances x ∈ ΠY for which VS is statistically different from V , and

I IN contains instances x ∈ ΠN for which VS is statistically similar to V .

Now the proof that this gives a Vadhan condition proceed as follows:

1. On IY, we have that VS is statistically different from V . Nevertheless, by the zero-
knowledge condition (as noted above), VS is computationally similar to V . This
enables us to construct one-way functions for instances in IY, as shown in [Vad3].

2. On IN, we have that VS is statistically similar to V . Combining this with the fact that
PS will always convince VS to accept (as noted above), we conclude that PS convinces
V to accept with high probability. By the computational soundness of (P, V), it must
be the case that PS is not PPT. Using techniques from Ostrovsky [Ost], this allows us
to convert the simulator S into an instance-dependent distributional one-way function
gx.2 Then by Proposition 2.4.8, due to Impagliazzo and Luby [IL], we can obtain an
instance-dependent one-way function from gx.

3. To see that (ΠY \ IY,ΠN \ IN) ∈ SZKP, we observe the following: for those YES
instances not in IY (i.e., instances in ΠY \IY), the simulated verifier VS is statistically
similar to V . And for those NO instances not in IN (i.e., instances in ΠN \ IN),
the simulated verifier VS is statistically different from V . This gap in the statistical
properties allows us to reduce promise problem (ΠY\IY,ΠN\IN) to one of the complete
problems for SZKP [SV, GV, Vad3].

Proof of Lemma 4.2.2

Let (P, V) be a zero-knowledge argument system for Π, with simulator S. Following Vad-
han [Vad3], we modify our interactive protocol (P, V) to satisfy the following additional
properties.

I The completeness error c(|x|) and soundness error s(|x|) are both negligible. This can
be achieved by a standard error reduction via sequential repetition.

I On every input x, the two parties exchange 2`(|x|) messages for some polynomial `,
with the verifier sending even-numbered messages and sending all of its r(|x|) random

2If gx is not distributionally one-way, then PS can be made to be efficient, hence contradicting the compu-
tational soundness of (P, V). Interestingly, Ostrovsky [Ost] uses the assumption that gx is not distribution-
ally one-way to invert the simulator S on the YES instances, and conclude that Π is not hard-on-average.
Although we use similar techniques as [Ost], we instead invert S on the NO instances to contradict the
computational soundness of (P, V).

128 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

coin tosses in the last message. (Without loss of generality, we may assume that
r(|x|) ≥ |x|.) Having the verifier send its coin tosses at the end does not affect
soundness because it is after the prover’s last message, and does not affect honest-
verifier zero knowledge because the simulator is anyhow required to simulate the
verifier’s coin tosses.

I On every input x, the simulator S always outputs accepting transcripts, where a
simulator output τ is an accepting transcript on x if all of the verifier’s messages in τ
are consistent with its coin tosses (as specified in the last message), and the verifier
would accept in such an interaction.

For a transcript τ , we denote by τi the prefix of τ consisting of the first i messages.
For readability, we often drop the input x from the notation, for instance using ` = `(|x|),
〈P, V 〉 = 〈P, V 〉(x), r = r(|x|), and so forth. Thus, in what follows, 〈P, V 〉i and Si are
random variables representing prefixes of transcripts generated by the real interaction and
simulator, respectively, on a specified input x.

Using the simulator S, we define the simulation-based prover PS as follows: On input x
and execution prefix τ2i, for i = 1, 2, . . . , `− 1, do the following:

1. If simulator S(x) outputs a transcript that begins with τ2i with probability 0, then
PS replies with a dummy message.

2. Otherwise, PS replies according with the same conditional probability as the prover
in the output of the simulator. That is, it replies with a string α with probability
pα = Pr [S(x)2i = τ2i−1 ◦ α|S(x)2i−1 = τ2i−1] .

The simulation-based verifier VS can be defined analogously as follows: On input x and
execution prefix τ2i−1, for i = 1, 2, . . . , `, do the following:

1. If simulator S(x) outputs a transcript that begins with τ2i−1 with probability 0, then
VS replies with a dummy message.

2. Otherwise, VS replies according with the same conditional probability as the verifier
in the output of the simulator. That is, it replies with a string β with probability
pβ = Pr [S(x)2i+1 = τ2i ◦ β|S(x)2i = τ2i] .

Observe that 〈PS , VS〉(x) is identically distributed to S(x), for every x. Following [AH,
PT, GV, Vad3], we consider the following quantity:

h(x) =
∑̀
i=1

[H(S(x)2i)−H(S(x)2i−1)] =
∑̀
i=1

[H(〈PS , VS〉(x)2i)−H(〈PS , VS〉(x)2i−1)] ,

(4.1)
recalling that H(·) is the (Shannon) entropy measure.

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 129

From [AH, PT, GV], we know that for every x ∈ {0, 1}∗, and every prover strategy P ′,

r(|x|) =
∑̀
i=1

[
H(〈P ′, V 〉(x)2i)−H(〈P ′, V 〉(x)2i−1)

]
. (4.2)

The above sum in (4.2) measures the total entropy contributed by the honest verifier’s
messages, and hence it is natural that this should equal r(|x|), the number of coin tosses of
the honest verifier. This is because the honest verifier reveals all its coin tosses at the end.

From (4.1) and (4.2), we observe that how close the value of h(x) gets to r(|x|) is a
measure of how close the simulation-based verifier VS is from the honest verifier V (when
interacting with PS). Following our intuition in the proof sketch above, we let IY be the
set of instances x ∈ ΠY for which the VS is far from the honest verifier V , and we let IN be
the set of instances x ∈ ΠN for which the VS is close to V . Formally, we define:

IY = {x ∈ ΠY : h(x) < r(|x|)− 1/q(|x|)} ;

IN = {x ∈ ΠN : h(x) > r(|x|)− 2/q(|x|)} ,

where the polynomial q(|x|) = 256 · `(|x|).
Having defined sets IY and IN, Lemma 4.2.2 is established by the following claims. The

first three are proven in the same way as in [Vad3], and hence we defer their proofs to
Appendix A.3.

CLAIM 4.2.3
Problem (ΠY \ IY,ΠN \ IN) ∈ SZKP.

CLAIM 4.2.4
There exists an instance-dependent one-way function on IY.

CLAIM 4.2.5
For Π ∈ HV-SZKA, we can take IY = ∅.

The main novelty in our analysis is the following claim.

CLAIM 4.2.6
There exists an instance-dependent one-way function on IN.

Proof of Claim. To get an instance-dependent one-way function on IN, we use the following
idea of Ostrovsky [Ost]: if we can invert the simulator, then PS ’s replies can be approximated
efficiently. By the computational soundness of (P, V), this is impossible, so the simulator
must be a one-way function. More precisely, we define the function gx, whose purpose is to

130 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

output the messages of the simulator, as follows:

gx(i, ω) = (x, i, S(x;ω)2i) . (4.3)

Note that gx is polynomial-time computable because the simulator S runs in polynomial
time. If gx is not distributionally one-way (in the sense of Definition 2.4.7), then we can
devise an efficient cheating prover strategy, call it P̃ , that efficiently approximates our
simulation-based prover PS upto negligible statistical error. The way to do this is to feed
a given transcript prefix τ2i after the verifier has responded in round 2i, into the inversion
algorithm of gx to obtain the simulation-based prover response for round 2i+1. In doing so,
we contradict the computational soundness property of (P, V). This argument is captured
by following proposition, whose proof is given in Appendix A.3.

PROPOSITION 4.2.7
(Based on [Ost, Lem. 1].) Let gx be as in (4.3). For every set K ⊆ {0, 1}∗, if gx is

not an instance-dependent distributionally one-way function on K, then for every

polynomial p, there exists a nonuniform PPT prover P̃ such that

∆(〈P̃ , V 〉(x), S(x)) ≤ `(|x|) ·
(

1
p(|x|)

+ 2 ·∆(〈PS , V 〉(x), S(x))
)

,

for infinitely many x ∈ K.

Our main goal is to upper bound ∆(〈P̃ , V 〉, S) because doing so would contradict the
computational soundness of V : by virtue of the fact that S always outputs accepting tran-
scripts, if 〈P̃ , V 〉 is close to S, then the nonuniform PPT P̃ will convince V to accept with
noticeable probability. The above proposition tells us that in order to obtain an upper
bound on ∆(〈P̃ , V 〉, S), we just need to upper bound ∆(〈PS , V 〉, S), which we do next.

Recall that for every x ∈ IN, we have h > r − 2/q. From [AH, PT, GV], we know
that h = r − KL(〈PS , V 〉, S), where KL is the Kullback-Leibler distance defined as
KL(X,Y) = Eα←X

[
log(Pr[X = α]) − log(Pr[Y = α])

]
. (See [GV, Lem. 2.2].) Hence,

we get KL(〈PS , V 〉, S) < 2/q. Using the fact that for any random variables X and Y ,
KL(X,Y) ≥ (1/2) · (∆(X,Y))2 [CT, Lem. 12.6.1], we get that for all x ∈ IN,

∆(〈PS , V 〉, S) < 2/
√
q = 1/(8 · `) , (4.4)

since q = 256 · `.

Now by Proposition 4.2.7, if gx is not distributionally one-way on IN, we can take IN = K

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 131

and choose p(|x|) = 4 · `(|x|), to get a nonuniform PPT P̃ such that

∆(〈P̃ , V 〉, S) ≤ ` · (1/p+ 2 ·∆(〈PS , V 〉, S))

= 1/4 + 2 · ` ·∆(〈PS , V 〉, S)

< 1/2 . (by 4.4)

And since the simulator S always produce accepting transcripts, we have

Pr[(P̃ , V)(x) = accept] ≥ 1/2 ,

for infinitely many x ∈ IN. This contradicts the computational soundness of (P, V). There-
fore, gx must be a distributionally one-way function on IN. By Proposition 2.4.8 (due to
Impagliazzo and Luby [IL]), gx can be converted into an instance-dependent (standard)
one-way function on IN, as desired. �

Let us see how the above five claims establish Lemma 4.2.2. Define set I = IY ∪ IN.
This means that the promise problem (ΠY \ I,ΠN \ I) = (ΠY \ IY,ΠN \ IN), and Claim 4.2.3
places this problem in SZKP. Claims 4.2.4 and 4.2.6 give us instance-dependent one-way
functions on IY and IN, respectively; to obtain a single instance-dependent one-way function
on I = IY ∪ IN, we use the following claim.

CLAIM 4.2.8
For any sets J,K ⊆ {0, 1}∗, if there exist instance-dependent one-way functions on J and there

exist instance-dependent one-way functions on K, then there exist instance-dependent one-way

functions on J ∪K.

Proof of Claim. Let fx and gx be any instance-dependent one-way function on J and K,
respectively. Then, hx(y, z) = (fx(y), gx(z)) is an instance-dependent one-way function on
J ∪K. This is because inverting hx involves inverting both fx and gx, at least one of which
is hard to invert on J ∪K. �

Therefore, by Claim 4.2.8 above, we know that Π ∈ HV-CZKA satisfies the Vadhan
condition. Furthermore, if Π ∈ HV-SZKA, Claim 4.2.5 tells us that IY = ∅, and hence
I ∩ ΠY = IY = ∅, giving us that Π satisfies the Vadhan condition without OWF YES
instances. This completes our proof of Lemma 4.2.2.

4.2.2 From the Vadhan condition to instance-dependent commitments

In this subsection, we show that every problem Π satisfying the Vadhan condition yields
an instance-dependent commitment scheme for Π. This is obtained by combining the
statistically-binding commitments from one-way functions of [Nao, HILL], the statistically-

132 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

hiding commitments from one-way functions of Theorem 3.0.4, and the instance-dependent
commitments for SZKP of Theorem 3.0.5.

LEMMA 4.2.9
The following conditions hold for problems Π satisfying the Vadhan condition.

I SZKP case: if Π satisfies the Vadhan condition without OWF instances, then it has an

instance-dependent commitment scheme that is statistically hiding on the YES instances

and statistically binding on the NO instances. Moreover, this scheme is constant round.

I CZKP case: if Π satisfies the Vadhan condition without OWF NO instances, then it has

an instance-dependent commitment scheme that is computationally hiding on the YES

instances and statistically binding on the NO instances. Moreover, this scheme is constant

round.

I SZKA case: if Π satisfies the Vadhan condition without OWF YES instances, then it

has an instance-dependent commitment scheme that is statistically hiding on the YES

instances and computationally binding on the NO instances.

I CZKA case: if Π satisfies the Vadhan condition, then it has an instance-dependent com-

mitment scheme that is computationally hiding on the YES instances and computationally

binding on the NO instances.

Furthermore, all the above instance-dependent commitment schemes are public coin.

The proof of Lemma 4.2.9, tying together all the following propositions and claims, is
given at the end of this subsection. But first, we provide an outline of the steps of our
construction in the next paragraph.

For a problem Π that satisfies the Vadhan condition, let IY and IN be the set of OWF
YES and OWF NO instances, respectively. We break the task of constructing an instance-
dependent commitment scheme for a Π into following four steps: (i) construct a scheme
that is hiding on ΠY\IY and binding on ΠN\IN, (ii) construct a scheme that is hiding on IY
and binding everywhere, (iii) construct a scheme that is hiding everywhere and binding on
IN, and (iv) combine all these three schemes into a single instance-dependent commitment
scheme for Π. We will explain why these four steps yield an instance-dependent commitment
scheme for Π in the proof of Lemma 4.2.9, given at the end of this subsection.

Step 1. Obtain a statistically-hiding and statistically-binding instance-dependent com-
mitment scheme for problem (ΠY \ IY,ΠN \ IN) ∈ SZKP from Theorem 3.0.5, restated
below.

RESTATEMENT OF THEOREM 3.0.5
Every problem in SZKP has an instance-dependent commitment scheme that is statistically

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 133

hiding on the YES instances and statistically binding on the NO instances. Moreover, this

instance-dependent commitment scheme is public coin and is constant round.

Step 2. From an instance-dependent one-way function on IY, apply Proposition 2.4.14 to
get an instance-dependent commitment scheme that is computationally hiding on IY and
statistically binding elsewhere.

RESTATEMENT OF PROPOSITION 2.4.14
(Follows from [Nao, HILL].) For every set K ⊆ {0, 1}∗, if there is an instance-dependent one-

way function on K, then problem (K,K) has an instance-dependent commitment scheme that is

computationally hiding on the YES instances (namely, instances in K), and statistically binding

on the NO instances (namely, instances in K). Moreover, the instance-dependent commitment

scheme obtained is public coin and constant round.

Step 3. From an instance-dependent one-way function on IN, apply Proposition 3.5.44 to
get an instance-dependent commitment scheme that is computationally binding on IN and
statistically hiding elsewhere.

RESTATEMENT OF PROPOSITION 3.5.44
For every set K ⊆ {0, 1}∗, if there is an instance-dependent one-way function on K, then

problem (K,K) has an instance-dependent commitment that is statistically hiding on the YES

instances (namely, instances in K), and computationally binding on the NO instances (namely,

instances in K). Moreover, the instance-dependent commitment scheme obtained is public coin.

Step 4. Finally, we use standard methods to combine the three instance-dependent com-
mitment schemes that we have constructed into a single instance-dependent commitment
scheme for Π. The first method gives a combined scheme for the intersection of two prob-
lems.

CLAIM 4.2.10
Suppose problems Γ′ = (Γ′Y,Γ

′
N) and Γ′′ = (Γ′′Y,Γ

′′
N) have instance-dependent commitment

schemes Com′x and Com′′x, respectively. Then problem Γ def= Γ′ ∩ Γ′′ = (Γ′Y ∩ Γ′′Y,Γ
′
N ∪ Γ′′N) has

an instance-dependent commitment scheme Comx with the following properties.

I Comx is statistically [resp., computationally] hiding if both Com′x and Com′′x are statistically

[resp., computationally] hiding.

I Comx is statistically [resp., computationally] binding if either of Com′x or Com′′x is statis-

tically [resp., computationally] binding.

I Comx is public coin if both Com′x and Com′′x are public coin.

134 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

I The round complexity of Comx equals the larger of the round complexities of Com′x and

Com′′x.

Proof. In commitment scheme Comx, the sender commits to b by committing to b in both
schemes Com′x and Com′′x, with the execution of both schemes done in parallel. The claimed
properties of Comx follow by inspection. �

The second method provides a combined scheme for the union of two problems.

CLAIM 4.2.11
Suppose problems Γ′ = (Γ′Y,Γ

′
N) and Γ′′ = (Γ′′Y,Γ

′′
N) have instance-dependent commitment

schemes Com′x and Com′′x, respectively. Then problem Γ def= Γ′ ∪ Γ′′ = (Γ′Y ∩ Γ′′Y,Γ
′
N ∪ Γ′′N) has

an instance-dependent commitment scheme Comx with the following properties.

I Comx is statistically [resp., computationally] hiding if either of Com′x or Com′′x is statisti-

cally [resp., computationally] hiding.

I Comx is statistically [resp., computationally] binding if both Com′x and Com′′x are statis-

tically [resp., computationally] binding.

I Comx is public coin if both Com′x and Com′′x are public coin.

I The round complexity of Comx equals the larger of the round complexities of Com′x and

Com′′x.

Proof. In commitment scheme Comx, the sender on input bit b, first secret shares b into
two shares, b′ and b′′, with the property that b′ ⊕ b′′ = b and both b′ and b′′ are uniform
in {0, 1}. (This can be done by choosing a random b′ ← {0, 1}, and setting b′′ = b′ ⊕ b.)
The sender then commits to b by committing to bits b′ and b′′ in schemes Com′x and Com′′x,
respectively. The execution of schemes Com′x and Com′′x is done in parallel.

The hiding property follows from the fact that bit b remains hidden as long as one of the
bits b′ or b′′ remains hidden. Then binding property follows from the fact that b = b′ ⊕ b′′,
and hence b is bounded to a fixed value if both b′ and b′′ are bounded to fixed values. The
public coin property and round complexity of Comx follow by inspection. �

Having established the propositions and claims that we need, we now prove Lemma 4.2.9.

Proof of Lemma 4.2.9. Given that problem Π satisfies the Vadhan condition, let I be the
set of OWF instances. We will partition I into the OWF YES instances IY = I ∩ ΠY

and the OWF NO instances IN = I ∩ ΠN. By Theorem 3.0.5, and Propositions 2.4.14 and
3.5.44, we have three instance-dependent commitment schemes, call them Com

(1)
x , Com

(2)
x ,

and Com
(3)
x , for the problems (ΠY \ I,ΠN \ I) ∈ SZKP, (IY, IY), and (IN, IN), respectively.

Moreover, all three schemes are public coin, and the first two are constant round.

4.2 PROOF OF THE CHARACTERIZATION THEOREMS 135

If Π satisfies the Vadhan condition without OWF instances, then set I = ∅, and hence
Com

(1)
x suffices to be our instance-dependent commitment scheme for Π. If Π satisfies the

Vadhan condition without OWF NO instances, then IN = I ∩ ΠN = ∅. Consequently, we
do not need scheme Com

(3)
x , and can just combine schemes Com

(1)
x and Com

(2)
x in a manner

prescribed by Claim 4.2.11 to get a constant-round instance-dependent commitment scheme
for Π.

Analogously, if Π satisfies the Vadhan condition without OWF YES instances, then IY =
I ∩ ΠY = ∅. Consequently, we do not need scheme Com

(2)
x , and can just combine schemes

Com
(1)
x and Com

(3)
x in a manner prescribed by Claim 4.2.10 to get an instance-dependent

commitment scheme for Π. Finally, if Π satisfies the Vadhan condition, we first combine
schemes Com

(1)
x and Com

(2)
x in a manner prescribed by Claim 4.2.11 to get an instance-

dependent commitment scheme for (ΠY,ΠN\IN), and then combine this scheme with Com
(3)
x

in a manner prescribed by Claim 4.2.10 to get an instance-dependent commitment scheme
for Π.

The hiding, binding, and public coin properties of the instance-dependent commitment
scheme for Π follow by inspection. �

4.2.3 From instance-dependent commitments to zero-knowledge

protocols

The instance-dependent commitment scheme for a problem Π ∈ NP obtained in the previous
subsection can be used to unconditionally construct a zero-knowledge protocol for Π. Recall
that we did this in Section 2.5 where we substituted instance-dependent commitments for
standard commitments in the Blum protocol [Blu]. In the following lemma, we expand
upon Proposition 2.5.2 from Section 2.5.

LEMMA 4.2.12
(Expanded version of Proposition 2.5.2, which is based on [Blu].) If problem Π ∈ NP has an

instance-dependent commitment scheme Comx, then it has an efficient-prover protocol (P, V)
with perfect completeness and the following additional properties.

I (P, V) is statistical [resp., computational] zero knowledge if Comx is statistically [resp.,

computationally] hiding on the YES instances. Moreover, (P, V) has a black-box simula-

tor.

I (P, V) is a proof [resp., argument] system if Comx is statistically [resp., computationally]

binding on the NO instances.

I (P, V) is public coin if Comx is public coin.

I (P, V) has polynomially-small soundness error.

I The round complexity of (P, V) equals that of Comx plus an additive constant.

136 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

REMARK 4.2.13
Protocol (P, V) in Lemma 4.2.12 above is obtained by repeating the Blum protocol [Blu],
given by Protocol 2.5.1, a total of O(log n) times in parallel, which still maintains the zero
knowledge property (cf., [BL, BLV]).

4.2.4 Putting it all together

We now show how our lemmas in Sections 4.2.1, 4.2.2, and 4.2.3 imply our main character-
ization theorems in Section 4.1.

Proof of Theorems 4.1.1, 4.1.2, 4.1.4, and 4.1.5. The implications for these four theorems
are captured by the same lemmas, so we can conveniently state them together.

(1) ⇒ (2) is established by Lemma 4.2.1 for the SZKP and CZKP cases, and by Lemma 4.2.2
for SZKA and CZKA cases.

(2) ⇒ (3) is established by Lemma 4.2.9.

(3) ⇒ (4) is established by Lemma 4.2.12. This is the only step that requires the problem
Π to be in NP. For problems Π ∈ IP having zero-knowledge proofs, this direction was
established in [Vad3, Sect. 4.2] based on techniques from [IY, BGG+, IOS].3

(4) ⇒ (1) follows directly from definition. �

4.3 Symmetry between Zero Knowledge and Soundness

The characterization theorems in Section 4.1 yield the Symmetry Theorem (Theorem 1.2.2)
presented in Section 1.2. Here we restate our Symmetry Theorem in a slightly more general
form that captures promise problems. For a discussion on why we regard this theorem as
establishing an unconditional symmetry between computational zero knowledge and com-
putational soundness, refer back to page 8.

RESTATEMENT OF THEOREM 1.2.2
(Symmetry Theorem.)

1. CZKA versus co-CZKA: a problem Π ∈ NP∩co-NP has a computational zero-knowledge

argument system if and only if its complement Π has a computational zero-knowledge

argument system.

3Vadhan [Vad3] constructed public-coin honest-verifier zero-knowledge proofs for Π ∈ IP from instance-
dependent commitment schemes for Π with weaker properties, such as having an inefficient sender, and used a
result of Goldreich, Sahai, and Vadhan [GSV1] to convert them into general, malicious-verifier zero-knowledge
proofs. Since we now have instance-dependent commitments with standard properties, the construction
presented in [Vad3, Sect. 4.2] would directly yield general, malicious-verifier zero-knowledge proofs (without
using the [GSV1] conversion).

4.3 SYMMETRY BETWEEN ZERO KNOWLEDGE AND SOUNDNESS 137

2. SZKA versus CZKP: a problem Π ∈ NP has a statistical zero-knowledge argument

system if and only if its complement Π has a computational zero-knowledge proof system.

Observe how the quality of the zero-knowledge condition for Π translates to the quality
of the soundness condition for Π and vice-versa.

Proof of Theorem 1.2.2. Using the fact that SZKP = co-SZKP [Oka, GSV1], and the sym-
metric role played by the set of OWF instances I in the Vadhan condition (Definition 1.2.3),
we can derive the following claim.

CLAIM 4.3.1
(Symmetry of the Vadhan condition.)

1. A problem Π satisfies the Vadhan condition if and only if its complement Π
satisfies the Vadhan condition.

2. A problem Π satisfies the Vadhan condition without OWF YES instances with

if and only if its complement Π satisfies the Vadhan condition without OWF

NO instances.

For our first result, by Theorem 4.1.5, we know that Π ∈ NP ∩ co-NP is in CZKA if
and only if Π satisfies the Vadhan condition. From Item 1 of Claim 4.3.1 above, this is
equivalent to Π ∈ NP ∩ co-NP satisfying the Vadhan condition. Applying Theorem 4.1.5
again makes this equivalent to Π ∈ CZKA.

For our second result, by Theorem 4.1.4, we know that Π ∈ NP is in SZKA if and only if
Π satisfies the Vadhan condition without OWF YES instances. From Item 2 of Claim 4.3.1
above, this is equivalent to Π ∈ co-NP ⊆ IP satisfying the Vadhan condition without OWF
NO instances. Applying Theorem 4.1.2 again makes this equivalent to Π ∈ CZKP. �

While our Symmetry Theorem establishes that the class CZKA is closed under comple-
ment for problems in NP ∩ co-NP, we still do not know if the classes CZKP or SZKA are
closed under complement (even for problems in NP ∩ co-NP). Nevertheless, the Symmetry
Theorem allows us to derive the following relationships.

COROLLARY 4.3.2
The following three statements are equivalent.

1. The class CZKP is closed under complement for problems in NP∩co-NP. In other words,

CZKP ∩ (NP ∩ co-NP) = co-CZKP ∩ (NP ∩ co-NP).

2. The class SZKA is closed under complement for problems in NP∩co-NP. In other words,

SZKA ∩ (NP ∩ co-NP) = co-SZKA ∩ (NP ∩ co-NP).

138 CHAPTER 4 / UNCONDITIONAL CHARACTERIZATIONS OF ZERO KNOWLEDGE

3. The class CZKP equals SZKA for problems in NP ∩ co-NP. In other words, CZKP ∩
(NP ∩ co-NP) = SZKA ∩ (NP ∩ co-NP).

Note that none of the above statements are known to be true unconditionally (though
they all hold under the assumption that one-way functions exist), but if any one is true,
then so are the others.

Proof of Corollary 4.3.2. We prove the equivalences of the three statements as follows.

(1) ⇒ (2) is established by:

SZKA ∩ (NP ∩ co-NP) = co-CZKP ∩ (NP ∩ co-NP) (by the Symmetry Theorem)

= CZKP ∩ (NP ∩ co-NP) (by 1)

= co-SZKA ∩ (NP ∩ co-NP) (by the Symmetry Theorem).

(2) ⇒ (3) is established by:

SZKA ∩ (NP ∩ co-NP) = co-SZKA ∩ (NP ∩ co-NP) (by 2)

= CZKP ∩ (NP ∩ co-NP) (by the Symmetry Theorem).

(3) ⇒ (1) is established by:

CZKP ∩ (NP ∩ co-NP) = SZKA ∩ (NP ∩ co-NP) (by 3)

= co-CZKP ∩ (NP ∩ co-NP) (by the Symmetry Theorem). �

We have now established all the results contained in this dissertation. In the next
chapter, we explore a direction for future research.

5
� �

FUTURE RESEARCH

In this dissertation, we constructed instance-dependent commitment schemes for a problem
Π based on any—even an honest verifier—zero-knowledge protocol for Π. We then estab-
lished our various unconditional results by substituting instance-dependent commitments
for standard commitments in existing zero-knowledge protocols. In this final chapter, we
explore a future research direction motivated by the following question: can we obtain
constant-round statistical [resp., computational] zero-knowledge arguments for every prob-
lem in SZKA ∩NP [resp., CZKA ∩NP]?

For comparison, our characterization theorems for zero-knowledge proofs, as stated
by Theorems 4.1.1 and 4.1.2, yield constant-round statistical [resp., computational] zero-
knowledge proofs (with perfect completeness and a polynomially small soundness error) for
every problem in SZKP∩NP [resp., CZKP∩NP]. The bottleneck in extending this to argu-
ment systems turns out to be that the known construction of statistically-hiding commit-
ments based on any one-way function, as presented in this dissertation, has polynomial num-
ber of rounds (cf., [HR2]). Moreover, any fully-black-box construction of statistically-hiding
commitments even from any one-way permutation requires Ω(n/ log n) rounds [HHRS], and
indeed ours is a fully-black-box construction.1 Recall that we needed to base our construc-
tion of statistically-hiding commitments on one-way functions because in Theorems 4.1.4
and 4.1.5, we characterized every problem having zero-knowledge arguments in terms of
instances with a statistical zero-knowledge proofs plus a set of instances IN from which we
can construct a one-way function (i.e., the OWF NO instances).

Nevertheless, constant-round statistically-hiding commitment schemes can based on any

1See [RTV, Def. 2.3] and [HHRS, Def. 2.6] for the definition of a fully-black-box construction.

139

140 CHAPTER 5 / FUTURE RESEARCH

collision-resistant hash family [NY, DPP].2 Thus, if we can characterize every problem
Π = (ΠY,ΠN) ∈ SZKA in terms of instances with a statistical zero-knowledge proof system
plus a set of instances IN ⊆ ΠN from which we can construct a collision-resistant hash family,
then we should expect to resolve the above question in the affirmative in the SZKA case:
proving that every problem in SZKA∩NP has a constant-round statistical zero-knowledge
argument system.

And although not immediately obvious, the CZKA case does follow from the SZKA case
if our hypothesis turns out to be true. This is because, based on our main characterization
theorems, every problem Π ∈ CZKA ∩ NP can be characterized in terms of instances with
a statistical zero-knowledge argument system plus a set of instances IY ⊆ ΠY from which
we can construct a one-way function (i.e., the OWF YES instances). And we can construct
constant-round computationally-hiding and statistically-binding commitments from this set
of OWF YES instances (see Proposition 2.4.14).

To formalize our hypothesis as an open problem, we first give a proposed definition of a
hash family that is collision resistant on a set I, following the spirit of an instance-dependent
one-way function in Definition 2.4.6.

DEFINITION 5.0.3
A polynomial-time computable family H =

⋃
xHx = {h : {0, 1}n(|x|) → {0, 1}m(|x|)}, where

n(·) > m(·) are polynomials, is an instance-dependent collision-resistant hash family

on I if there exists a negligible function ε such that for every nonuniform PPT A, the
following holds for every x ∈ I:

Pr
h←Hx

[A(x, h) = (α, α′) such that h(α) = h(α′)] ≤ ε(|x|) .

OPEN PROBLEM 5.0.4
For a problem Π = (ΠY,ΠN) ∈ SZKA ∩NP, does there exists a set IN ⊆ ΠN such that:

I the promise problem (ΠY,ΠN \ IN) is in SZKP, and

I there exists an instance-dependent collision-resistant hash family on IN ?

As a first step, we could even ask whether the above two conditions hold for problems Π ∈ NP
having constant-round statistical zero-knowledge arguments (instead of considering all problems

in SZKA ∩NP).

More ambitiously, it would be interesting to see if the techniques presented in this
dissertation can be extended to conduct an unconditional study on other cryptographic
constructs, like multiparty cryptographic protocols (cf., [Yao, GMW1]).

2A collision-resistant hash family is a family of hash functions H = {h : {0, 1}n → {0, 1}m} where
n > m, and given a random hash h ← H, it is computationally infeasible to find a pair y and y′ such that
h(y) = h(y′). See Definition 5.0.3 for an instance-dependent variant.

A
� �

DEFERRED PROOFS

We present proofs that have been deferred from the main text. Appendices A.1, A.2, and
A.3 contain proofs deferred from Sections 3.2.2, 3.5.2, and 4.2.1, respectively.

A.1 Interactive Hashing with Multiple Outputs

This section is devoted to prove Theorem 3.2.4 from Section 3.2.2, restated below.

RESTATEMENT OF THEOREM 3.2.4
There exists an interactive hashing with multiple outputs protocol, namely Protocol 3.2.3.

The correctness of Protocol 3.2.3 is easy to see. Hence, we divide the proof of this
theorem into lemmas establishing the hiding and binding properties of Protocol 3.2.3. The
proofs presented are very similar in nature to those in [NOVY], with additional analysis
needed to handle interactive hashing for multiple outputs.

LEMMA A.1.1
Protocol 3.2.3 satisfies the hiding property of Definition 3.2.1. In other words, letting inter-

active hashing (SIH, RIH) be as in Protocol 3.2.3, we have for all R∗, (V,Z) is distributed

identically to (V,Uk), where V = viewR∗(SIH(Uq), R∗) is the view of receiver R∗, and Z =
outputSIH

(SIH(Uq), R∗) is the private output of SIH.

Proof. The view of any R∗ will be the hash functions h0, h1, · · · , hq−k−1 together with SIH’s
responses c0, c1, . . . , cq−k−1. Given queries h0, h1, · · · , hq−k−1 from R∗, we show that there
are 2q−k possible y’s that would make SIH(y) respond to c0, c1, . . . , cq−k−1.

141

142 APPENDIX A / DEFERRED PROOFS

Consider the matrix H = (h0, h1, · · · , hq−k−1) whose rows are the hi’s, vector c =
(c0, c1, . . . , cq−k−1), and the equation Hy = c. Since hi is of the form 0i1{0, 1}q−i−1, the
first q − k columns of the matrix are linearly independent. Hence, any setting of the last k
bits of y, will fully determine the first q − k bits of it. Since the output of SIH, denoted as
z, is the last k bits of its private input y, any z ∈ {0, 1}k is equally as likely given the view
of R∗. �

LEMMA A.1.2
Protocol 3.2.3 satisfies the binding property of Definition 3.2.1. That is, letting interactive

hashing (SIH, RIH) be as in Protocol 3.2.3, there exists a oracle PPT algorithm A such that:

For every S∗ and any relationW , denoting the common output as C = (S∗, RIH)(1q, 1k),
and private outputs of S∗ as ((x0, z0), (x1, z1)) = outputS∗(S∗, RIH), if it is the

case that

Pr[x0 ∈WC(z0) ∧ x1 ∈WC(z1) ∧ z0 6= z1] > ε ,

where the above probability is over the coin tosses of RIH and S∗, then it is also

the case that

Pr
y←{0,1}q

[AS∗(y, 1q, 1k, ε) ∈Wy] = Ω(ε3q−62−k) .

REMARK A.1.3
Independent of our work, Haitner and Reingold [HR1] gave an improved bound that brings
the success probability of AS∗ to Ω(ε2q−82−k). Their witness-finding algorithm AS∗ is also
different from ours and is more efficient in terms of its running time. We will, however, not
need these improved bounds for our applications.

We prove Lemma A.1.2 by providing an algorithm A that finds a valid witness (according
to relation W) for a random string y ← {0, 1}q with nonnegligible probability. Before
describing algorithm A, we provide the following definitions.

Definitions. In the enumerated definitions below, hi is of the form 0i1{0, 1}q−i−1, and
hi(y) = 〈hi, y〉. Without loss of generality, we can assume that S∗ is deterministic because
every probabilistic S∗ can be converted to a (nonuniform) deterministic one with the same
success probability and running time by fixing its random coins to maximize its success
probability.

1. For 0 ≤ i < q, let Hi denote the family of hash functions of the form 0i1{0, 1}q−i−1,
i.e., Hi = {0i1w : w ∈ {0, 1}q−i−1}.

2. A node N at level i is defined by a series of hash functions (h0, h1, . . . , hi−1), where

A.1 INTERACTIVE HASHING WITH MULTIPLE OUTPUTS 143

each hj ∈ Hj . (Since S∗ is deterministic, this determines c0, . . . , ci−1 where cj =
S∗(h0, . . . , hj).) Let Li denote the set of nodes at level i.

3. The set of compatible hash functions at node N ∈ Li is denoted as

Comp(N, y) = {hi ∈ Hi : S∗(N,hi) = hi(y)} ,

where S∗(N,hi), with N = (h0, . . . , hi−1), denotes S∗(h0, . . . , hi).

4. A string y is γ-balanced at N ∈ Li if

1− γ
2
≤ Comp(N, y)

|Hi|
≤ 1 + γ

2
.

A string y is γ-fully-balanced at N ∈ Li if it is γ-balanced at all its parental
nodes. That is, letting N = (h0, . . . , hi−1), y is required to be γ-balanced at all
N0 = (h0), N1 = (h0, h1), . . . , N = Ni−1 = (h0, . . . , hi−1).

5. A string y is said to be compatible with a node N = (h0, . . . , hi−1) if hj(y) =
S∗(h0, . . . , hj) for all 0 ≤ j < i. Let U(N) denote the set of compatible y’s with node
N . Note that for every N ∈ Li, we have |U(N)| = 2q−i.

6. Let B(N) and F (N) denote the set of γ-balanced strings and γ-fully-balanced strings
at node N respectively. Moreover, let G(N) = U(N)\F (N) be the set of strings that
are not fully-balanced. Note that for every node N , we have F (N) ⊆ B(N) ⊆ U(N).

7. At every node N ∈ Lq−k, we can assume without loss of generality that S∗(N) outputs
a pair of strings (x0, z0) and (x1, z1), but it is not necessarily the case that any of
xb ∈WC(zb).

The description of our witness-finding algorithm is presented next.

ALGORITHM A.1.4 �

Algorithm AS∗ : on input y ∈ {0, 1}q, 1q, 1k and ε, do the following.

1. Set parameters γ = 1/q, β = log(1/ε) + 2 log(q) + 4 log(1/γ) + 4, and α = q − β − k.

2. Repeat the following for i = 0, 1, . . . , α− 1:

When A is at node N ∈ Li, explore along a random hi ← Comp(N, y) to get
to a new nodeN ′ = (N,hi) ∈ Li+1. (This can be done efficiently by choosing
a random hi ← Hi and querying S∗ to make sure that hi ∈ Comp(N, y),
and repeat up to 8q times if not. If after 8q repetitive tries and fail to
encounter any hi ∈ Comp(N, y), then output fail.)

3. At node N ∈ Lα, choose random hα ← Hα, . . . , hα+β−1 ← Hα+β−1, to arrive at
node Ñ = (N,hα, hα+1, . . . , hα+β−1) ∈ Lα+β. (Note that q − k = α + β, and hence
Ñ ∈ Lα+β = Lq−k.)

144 APPENDIX A / DEFERRED PROOFS

4. Query S∗(Ñ) to get (x0, z0) and (x1, z1). If either of C(zb) = y, then output xb. Else,
output fail.

� �

It is clear that algorithm AS∗ stated in Algorithm A.1.4 runs in polynomial time (with
oracle queries to S∗). The remainder of the proof is broken down into the following claims.

CLAIM A.1.5
For every node N ∈ Li, the set of unbalanced strings, U(N) \B(N) ≤ 2/γ2.

Proof. Let X ⊆ U(N) be a set of size 2d, where d = 2 log(1/γ). We interpret X as a
random variable that has equal weights on each of its 2d elements. Let Hi be the family
of hash functions after node N of the form 0i1{0, 1}q−i−1. Observe that for every x 6= x′,
Prhi←Hi

[hi(x) = hi(x′)] ≤ 1/2. Also, note that hi requires exactly q− i− 1 bits to describe.

Recall the definition of collision probability, denoted as CP, from Section 3.5.2. Com-
puting the collision probabilities (using the notation Hi to denote a random hash function
from Hi), we get

CP((Hi,Hi(X))) ≤ CP(Hi)(CP(X) + Pr[Hi(X) = Hi(X ′) : X 6= X ′])

≤ CP(Hi) · (1/2d + 1/2)

= 2−(q−i−1)(1/2d + 1/2) whereas,

CP((Hi, U1)) = CP(Hi) · 1/2

= 2−(q−i−1) · (1/2) .

Thus,

∆((Hi,Hi(X)), (Hi, U1)) = 1/2 |(Hi,Hi(X))− (Hi, U1)|1
≤ 1/2 ·

√
2q−i−1 ·

√
CP((Hi,Hi(X)))− CP((Hi, U1))

≤ 1/2
√

1/2d

= 2−d/2−1

≤ γ/2 ,

with the last inequality following from d = 2 log(1/γ).

Having establish the above bound, assume for sake of contradiction that U(N)\B(N) >
2d+1 = 2/γ2. Then we will have a set T ⊆ U(N)\B(N) of size greater then 2d with elements
that are unbalanced in one direction (i.e. all > 1/2+γ, or all < 1/2−γ). But this contradicts
the requirement that ∆((Hi,Hi(T)), (Hi, U1)) ≤ γ/2 (since |T | > 2d). �

A.1 INTERACTIVE HASHING WITH MULTIPLE OUTPUTS 145

CLAIM A.1.6
For every node N ∈ Li, the set of strings that are not fully balanced, G(N) = U(N) \F (N) ≤
2i/γ2. In particular, for γ = 1/q, |F (N)| ≥ |U(N)| /2 for i ≤ q − 4 log q.

Proof. Follows from Claim A.1.5 by taking a union bound over all unbalanced elements at
levels i and smaller. �

CLAIM A.1.7
For every node N ∈ Lα, the fraction of children nodes Nα+β with greater than one element

from G(N) is at most ε/4.

Proof. Consider any fixed node N ∈ Lα. The number of non-fully-balanced (aka bad)
elements in that node is G(N). Hence, the number of pairs of these bad elements is at most
|G(N)|2. Since for each x 6= y ∈ U(N), Pr[hi(x) = hi(y)] ≤ 1/2 for all α ≤ i < α + β, the
fraction of children nodes N ′ ∈ Lα+β with greater than one element from G(N) is at most
|G(N)|2 /2β.

Since β = log(1/ε) + 2 log(q) + 4 log(1/γ) + 4, we can bound |G(N)|2 /2β as follows:

|G(N)|2 · 2−β ≤ (2αγ−2)22−β ≤ 4q2γ−42−β < ε/4 . �

A node N ∈ Lα+β = Lq−k is witness revealing if both of S∗(N)’s outputs, namely
(x0, z0) and (x1, z1), satisfy C(zb) ∈ U(N) and xb ∈WC(zb), for b ∈ {0, 1}. A node N ∈ Lα

is said to be good if greater than ε/2 of its children at level q − k are witness revealing.

CLAIM A.1.8
The fraction of good nodes at level α is at least ε/2.

Proof. By the assumption that

Pr

[
x0 ∈WC(z0) ∧ x1 ∈WC(z1)

∣∣∣∣ (S∗, R)(1q, 1k) = C , and
outputS∗(S∗, R) = ((x0, z0), (x1, z1))

]
> ε ,

we know that at least ε fraction of all the nodes at level q − k are nonbinding. And, by a
Markov bound, we have that ε/2 fraction of nodes at level α are good. �

CLAIM A.1.9
For any fixed N ∈ Lα and y′ ∈ F (N), we have

1
2q−α

· 1
(1 + γ)α

· 1
|Lα|

≤ Pr[A reaches N ∧ y = y′] ≤ 1
2q−α

· 1
(1− γ)α

· 1
|Lα|

,

146 APPENDIX A / DEFERRED PROOFS

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

Proof. Let N = (h0, h2, . . . , hα−1), and for 1 ≤ j ≤ α, define Nj = (h0, . . . , hj−1). To get
the upper bound,

Pr[A reaches N ∧ y = y′] = Pr[y = y′] · Pr[A reaches N]

= 2−q
α−1∏
j=0

1
Comp(Nj , y)

≤ 2−q
α−1∏
j=0

2
1− γ

· 1
|Hj |

=
1

2q−α
· 1
(1− γ)α

· 1
|Lα|

.

To get the lower bound, we use very similar techniques.

Pr[A reaches N ∧ y = y′] = 2−q
α−1∏
j=0

1
Comp(Nj , y)

≥ 2−q
α−1∏
j=0

2
1 + γ

· 1
|Hj |

=
1

2q−α
· 1
(1 + γ)α

· 1
|Lα|

. �

CLAIM A.1.10

Pr[The node N reached by A is good ∧ y ∈ F (N)] ≥ ε

4(1 + γ)α
,

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

Proof. Let N ∈ Lα be any good node at level α. Then,

Pr[A reaches N ∧ y ∈ F (N)] =
∑

y′∈F (N)

Pr[A reaches N ∧ y = y′]

≥
∑

y′∈F (N)

1
|Lα|

· 1
2q−α

· 1
(1 + γ)α

=
|F (N)|
2q−α

· 1
|Lα|

· 1
(1 + γ)α

=
|F (N)|
|U(N)|

· 1
|Lα|

· 1
(1 + γ)α

≥ 1
2
· 1
|Lα|

· 1
(1 + γ)α

,

A.1 INTERACTIVE HASHING WITH MULTIPLE OUTPUTS 147

with the last inequality following from the fact that |F (N)| / |U(N)| ≥ 1/2, noting α ≤
q − 3 log q (refer to Claim A.1.6).

There are |Lα| nodes at level α, and at least ε/2 fraction of them are good. Hence, we
multiply the above probability by (ε/2) |Lα| to get our stated result. �

CLAIM A.1.11
In any good node N ∈ Lα, the fraction of nonbinding children of N at level α+β that has one

or less image in G(N) is at least ε/4.

Proof. The fraction of nonbinding children is greater than ε/2, and by Claim A.1.7, the
fraction of children nodes of N with greater than one element from G(N) is at most ε/4.

�

CLAIM A.1.12
For any fixed N ∈ Lα and y′ ∈ F (N), we have

Pr[y = y′|A reaches N ∧ y ∈ F (N)] ≥ 1
|F (N)|

(
1− γ
1 + γ

)α

,

where the probability is taken over y ∈ {0, 1}q and the random coins of A.

Proof. For any fixed N ∈ Lα and y′ ∈ F (N),

Pr[y = y′|A reaches N ∧ y ∈ F (N)] =
Pr[A reaches N ∧ y = y′]

Pr[A reaches N ∧ y ∈ F (N)]
.

For the numerator, by Claim A.1.9,

Pr[A reaches N ∧ y = y′] ≥ 1
|Lα|

· 1
2q−α

· 1
(1 + γ)α

.

For the denominator, also using Claim A.1.9,

Pr[A reaches N ∧ y ∈ F (N)] =
∑

y′∈F (N)

Pr[A reaches N ∧ y = y′]

≤
∑

y′∈F (N)

1
|Lα|

· 1
2q−α

· 1
(1− γ)α

= |F (N)| · 1
|Lα|

· 1
2q−α

· 1
(1− γ)α

.

Combining the two, we have our result. �

We are now ready to prove Lemma A.1.2.

148 APPENDIX A / DEFERRED PROOFS

Proof of Lemma A.1.2. Observe how algorithm A in Algorithm A.1.4 operates. On input y,
it follows a random compatible (with y) hash functions hi out of node N ∈ Li, for 1 ≤ i < α,
and then takes random hi’s (not necessarily compatible with y) when α ≤ i < α+ β. (For
now, we can ignore failure to obtain compatible hash functions.) Algorithm A will find a
valid witness for y if the all following conditions hold.

1. Algorithm A reaches a good node N ∈ Lα such that y ∈ F (N). This happens with
probability at least ε/(4(1 + γ)α) (Claim A.1.10).

2. Algorithm A reaches a witness revealing child with at most one element in G(N).
Given that Item 1 occurs, this happens with probability at least ε/4 (Claim A.1.11).

When this is the case, S∗ outputs (x0, z0) and (x1, z1), such that at least one (xb, zb)
will have xb ∈WC(zb) and C(zb) ∈ U(N) \G(N) = F (N). Let y′ = C(zb).

3. The string y equals y′ = C(zb). The conditional probability of this happening, by
Claim A.1.12, is:

Pr[y = y′|A reaches N ∧ y′ ∈ F (N)] ≥ 1
|F (N)|

(
1− γ
1 + γ

)α

.

When this happens, A will output xb ∈Wy, a valid witness for y.

Combining all the probabilities, we have

Pr
y←{0,1}q

[A(y) ∈Wy] ≥
ε

4(1 + γ)α
· ε
4
· 1
|F (N)|

(
1− γ
1 + γ

)α

≥ 1
2β+k

· ε
2

32
·
(

1− γ
(1 + γ)2

)q

.

With settings of parameters γ = 1/q and β = log(1/ε) + 2 log(q) + 4 log(1/γ)) + 4, we
have the probability of finding a witness to be greater than c ·(ε3q−62−k), for some constant
c > 0.

Finally, we need to account for the case when we fail to find compatible hash functions
hi out of node N ∈ Li, for 1 ≤ i < α. Nevertheless, because our analysis has only focused on
fully balanced y, and we repeat 8q times to find a compatible hash, the probability of failure,
by a Chernoff bound, is exponentially small. Therefore, the overall success probability is
greater than c · (ε3q−62−k)− exp(q) = Ω(ε3q−62−k). �

A.2 COLLISION PROBABILITY LEMMAS 149

A.2 Collision Probability Lemmas

We prove the lemmas presented in Section 3.5.2.

RESTATEMENT OF LEMMA 3.5.4
For independent pairs of random variables (X1, Y1), . . . , (Xm, Ym),

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) =
m∏

i=1

CP1/2(Xi|Yi) .

Note that Xi and Yi can be correlated, it is only required that the pair (Xi, Yi) be independent

from the other tuples.

Proof. Since the Xi’s are independent, for all y1, . . . , ym, we have

CP((X1, . . . , Xm)|Y1=y1,...,Ym=ym) =
m∏

i=1

CP(Xi|Yi=yi) . (A.1)

This gives us

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym))

= E
(Y1,...,Ym)

[
CP1/2((X1, . . . , Xm)|Y1,...,Ym)

]
= E

(Y1,...,Ym)

[
m∏

i=1

CP1/2(Xi|Yi)

]
(by A.1)

=
m∏

i=1

E
Yi

[
CP1/2(Xi|Yi)

]
(by independence of Yi’s)

=
m∏

i=1

CP1/2(Xi|Yi) . �

RESTATEMENT OF LEMMA 3.5.5
Suppose random variables (X1, Y1), . . . , (Xm, Ym) satisfy the following conditions for some val-

ues of α1, . . . , αm ∈ R+ and all i = 1, 2, . . . ,m:

1. For every (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Yi−1),

CP1/2(Xi|Y1=y1,...,Yi−1=yi−1 | Yi|Y1=y1,...,Yi−1=yi−1) ≤ αi .

2. For every (y1, . . . , yi) ∈ Supp(Y1, Y2, . . . , Yi), the i+ 1 random variables X1, X2, . . . , Xi,

and Yi+1 are independent, even if we condition on Y1 = y1, . . . , Yi = yi.

150 APPENDIX A / DEFERRED PROOFS

Then,

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤
m∏

i=1

αi .

Proof. By induction, it suffices to prove

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) ≤ αm · CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1)) , (A.2)

and then by iteratively expanding CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1)) in terms of αj ’s,
we get our result. To simplify notation, we write X ′m = Xm|Y1=y1,...,Ym−1=ym−1 and Y ′m =
Ym|Y1=y1,...,Ym−1=ym−1 when y1, . . . , ym−1 are clear from context. We prove (A.2) as follows:

CP1/2((X1, . . . , Xm)|(Y1, . . . , Ym)) (A.3)

= E
(Y1,...,Ym)

[
CP1/2((X1, . . . , Xm)|Y1,...,Ym)

]
(A.4)

= E
(Y1,...,Ym−1)

[
E
Y ′

m

[
CP1/2((X1, . . . , Xm)|Y1,...,Y ′

m
)
]]

(A.5)

= E
(Y1,...,Ym−1)

[
E
Y ′

m

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Y ′

m
) · CP1/2(Xm|Y1,...,Y ′

m
)
]]

(A.6)

= E
(Y1,...,Ym−1)

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1) · E

Y ′
m

[
CP1/2(Xm|Y1,...,Y ′

m
)
]]

(A.7)

= E
(Y1,...,Ym−1)

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1) · CP1/2(X ′m|Y ′m)

]
(A.8)

≤ αm · E
(Y1,...,Ym−1))

[
CP1/2((X1, . . . , Xm−1)|Y1,...,Ym−1)

]
(A.9)

≤ αm · CP1/2 ((X1, . . . , Xm−1)|(Y1, . . . , Ym−1))) . (A.10)

Equation (A.6) follows because X1, . . . , Xm conditioned on Y1 = y1, . . . , Ym = ym are
independent. Equation (A.7) follows because X1, . . . , Xm−1, and Ym conditioned on Y1 =
y1, . . . , Ym−1 = ym−1 are independent. Finally, (A.9) follows from the assumption that for
all (y1, . . . , yi−1) ∈ Supp(Y1, Y2, . . . , Ym−1),

CP1/2(X ′m|Y ′m) = CP1/2(Xm|Y1=y1,...,Ym−1=ym−1 | Ym|Y1=y1,...,Ym−1=ym−1) ≤ αm . �

RESTATEMENT OF LEMMA 3.5.6
(Randomness Extraction Lemma.) Let (X,Y) be any (possibly correlated) pair of random

variables, and let random variable H denote a random hash function from a family of pairwise-

independent hash functions H with range {0, 1}α. Suppose the hash functions from H are

represented by (q − α)-bit strings and CP1/2(X|Y) ≤
√

2−(α+3). If H is independent from

(X,Y), then

CP1/2((H,H(X))|Y) ≤
√

2−(q−1) .

A.2 COLLISION PROBABILITY LEMMAS 151

Proof. We bound the value of CP1/2((H,H(X))|Y) as follows:

CP1/2(H,H(X)|Y)

= E
y←Y

[
CP1/2(H,H(X)|Y =y)

]
≤ E

y←Y

[
CP1/2(H) ·

√
CP(X|Y =y) + 2−α

] (
since CP(H,H(Z)) ≤
CP(H) · (CP(Z) + 2−α)

)
≤ E

y←Y

[
CP1/2(H) ·

(
CP1/2(X|Y =y) +

√
2−α

)]
(Cauchy-Schwartz/Jensen)

= CP1/2(H) ·
((

E
y←Y

[
CP1/2(X|Y =y)

])
+
√

2−α

)
= CP1/2(H) · (CP1/2(X|Y) +

√
2−α)

≤
√

2−(q−α) · (CP1/2(X|Y) +
√

2−α) (since |h| = q − α)

≤
√

2−(q−α) ·

(√
2−α

8
+
√

2−α

)
<
√

2−(q−α) ·
(√

2−α ·
√

2
)

=
√

2−(q−1) . �

RESTATEMENT OF LEMMA 3.5.7
For any triple of (possibly correlated) random variables X, Y and Z,

CP1/2(X|Y) ≤ CP1/2(X|(Y, Z)) ≤
√
|Supp(Z)| · CP1/2(X|Y) .

Proof. For each y ∈ Supp(Y) and z ∈ Supp(Z), let vy,z be the vector
(Pr[X = x ∧ Z = z|Y = y])x∈Supp(X). With this, we compute:∥∥∥∥∥∑

z

vy,z

∥∥∥∥∥
2

≤
∑

z

‖vy,z‖2 (triangle inequality)

≤
√

Supp(Z|Y =y) ·

∥∥∥∥∥∑
z

vy,z

∥∥∥∥∥
2

(Cauchy-Schwartz/Jensen)

≤
√

Supp(Z) ·

∥∥∥∥∥∑
z

vy,z

∥∥∥∥∥
2

.

Since CP1/2(X|Y =y) = ‖
∑

z vy,z‖2 and CP1/2 ((X|Y =y) | (Z|Y =y)) =
∑

z ‖vy,z‖2, taking
expectations over Y for both sides yield our result. �

RESTATEMENT OF LEMMA 3.5.8
Let random variable H denote a random hash function from a family of pairwise-independent

hash functions H with range {0, 1}α. For any ε > 0, if CP(X) ≤ ε2 ·2−α and H is independent

152 APPENDIX A / DEFERRED PROOFS

from X, then random variable (H,H(X)) is ε-close in statistical distance to uniform.

Proof. Let D = 2q−α and L = 2α. We bound the statistical distance of (H,H(X)) from
uniform as follows:

1
2
|(H,H(X))− Uq|1 ≤

√
DL

2
‖(H,H(X))− Uq‖2

=
√
DL

2
·
√

CP(H,H(X))− 2−q

≤
√
DL

2
·

√
1
D

(
CP(X) +

1
L

)
− 1
DL

=

√
CP(X) · L

2
≤ ε

2
. �

A.3 Establishing the Vadhan Condition

We restate and prove Claims 4.2.3, 4.2.4, and 4.2.5, and Proposition 4.2.7 from Section 4.2.1.
Doing so would give a complete proof of Lemma 4.2.2, which states that every problem Π
having a zero-knowledge argument system also satisfies the Vadhan condition. The three
claims are proven using techniques from Vadhan [Vad3], and Proposition 4.2.7 is based on
ideas from Ostrovsky [Ost]. Recall that (P, V) is the zero-knowledge argument system for
Π, with simulator S.

Before proving the above claims and proposition, we first define the conditional en-
tropy of two jointly distributed random variables as follows: For jointly distributed random
variables X and Y , we define the conditional entropy of X given Y to be

H(X|Y) def= E
y←Y

[H(X|Y =y)] = E
(x,y)←(X,Y)

[
log

1
Pr[X = x|Y = y]

]
= H(X,Y)−H(Y) .

Next, recall the definition of h(x) as stated by (4.1) in Section 4.2.1:

h(x) =
∑̀
i=1

[H(S(x)2i)−H(S(x)2i−1)] =
∑̀
i=1

H(S(x)2i|S(x)2i−1) , (A.11)

recalling that H(·) is the entropy measure. The second equality in (A.11) follows the fact
that the output of S2i contains S2i−1, and hence H(S2i, S2i−1) = H(S2i).

Finally, recall that from (4.2) in Section 4.2.1, we have that for every x ∈ {0, 1}∗, and
every prover strategy P ′, the number of coins used by the honest verifier, denoted by r(|x|),

A.3 ESTABLISHING THE VADHAN CONDITION 153

is:

r(|x|) =
∑̀
i=1

[
H(〈P ′, V 〉(x)2i)−H(〈P ′, V 〉(x)2i−1)

]
=
∑̀
i=1

H(〈P ′, V 〉(x)2i|〈P ′, V 〉(x)2i−1) ,

(A.12)
with the second equality following from the fact that the output of 〈P ′, V 〉2i contains
〈P ′, V 〉2i−1, and hence H(〈P ′, V 〉2i, 〈P ′, V 〉2i−1) = H(〈P ′, V 〉2i).

RESTATEMENT OF CLAIM 4.2.3
Problem (ΠY \ IY,ΠN \ IN) ∈ SZKP.

Proof. The following proposition is from [Vad3].

PROPOSITION A.3.1
(Based on [Vad3, Prop. 3.2].) Consider the problem Conditional Entropy

Approximation = (CEAY,CEAN), where CEAY = {((X,Y), r) : H(X|Y) ≥
r} and CEAN = {((X,Y), r) : H(X|Y) ≤ r−1}. Here (X,Y) is a samplable joint

distribution specified by two circuits that use the same coin tosses. Conditional

Entropy Approximation is complete for SZKP.

Given the above proposition, it suffices to show a reduction from (ΠY \ IY,ΠN \ IN) to
Conditional Entropy Approximation. Our reduction is as follows: On input x, we
construct circuits X and Y that sample from the following (joint) random variables.

(X,Y): Select i ← {1, . . . , `(|x|)}, choose random coin tosses ω for the simulator, and
output (S2i(x;ω), S2i−1(x;ω)).

When x ∈ ΠY \ IY, we have h(x) > r − 1/q, and hence:

H(X|Y) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
>
r − 1/q

`
=
r

`
− 1
q · `

.

And when x ∈ ΠN \ IN, we have have h(x) < r − 2/q, and hence:

H(X|Y) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
<
r − 2/q

`
=
r

`
− 2
q · `

.

This is what we need to prove, except the entropy gap is only 1/(q · `). This can be
increased to 1 by taking q · ` independent samples from the joint distribution. That is, we
define (X,Y) = ((X1, . . . , Xq·`), (Y1, . . . , Yq·`)), where the (Xi, Yi)’s are independent copies
of (X,Y). Since (ΠY \ IY,ΠN \ IN) reduces to Conditional Entropy Approximation,
Proposition A.3.1 gives us that (ΠY \ IY,ΠN \ IN) ∈ SZKP. �

154 APPENDIX A / DEFERRED PROOFS

RESTATEMENT OF CLAIM 4.2.4
There exists an instance-dependent one-way function on IY.

Proof. The following proposition is from [Vad3].

PROPOSITION A.3.2
(From [Vad3, Lem. 3.10].) Let K ⊆ {0, 1}∗ be any set. Assume that there exists

a polynomial-time computable mapping that maps every x ∈ K to samplable joint

distributions (X,Y) and a parameter r such that H(X|Y) ≤ r−1, but H(X ′|Y ′) ≥ r
for some (X ′, Y ′) indistinguishable from (X,Y). Then there exists an instance-

dependent one-way function on K.

When x ∈ ΠY, then S is computationally indistinguishable from 〈P, V 〉. So (X,Y), as
defined in the proof of Claim 4.2.3 above, is indistinguishable from the joint distribution
(X ′, Y ′) = (〈P, V 〉2L, 〈P, V 〉2L−1), where random variable L denotes an independent uniform
element of {1, . . . , `}.

By (A.12), we have:

H(X ′|Y ′) =
1
`

∑̀
i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

`
,

for all x ∈ ΠY. And when x ∈ IY ⊆ ΠY, we have have h(x) < r − 1/q and hence:

H(X|Y) =
1
`

∑̀
i=1

H(S2i|S2i−1) =
h

`
<
r − 1/q

`
=
r

`
− 1
q · `

.

Again, like in the proof of Claim 4.2.3, we can increase the entropy gap between H(X ′|Y ′)
and H(X|Y) to 1. Finally, we apply Proposition A.3.2 to establish our claim. �

RESTATEMENT OF CLAIM 4.2.5
For Π ∈ HV-SZKA, we can take IY = ∅.

Proof. For Π ∈ HV-SZKA, the output of the simulator S(x) is statistically close to 〈P, V 〉(x)
for every x ∈ ΠY. This implies that IY = ∅, since for every x ∈ ΠY, we have

h(x) >
∑̀
i=1

[H(〈P, V 〉2i(x))−H(〈P, V 〉2i−1(x))]− neg(|x|) = r(|x|)− neg(|x|) ,

with the last equality following from (A.12). �

Finally, we prove Proposition 4.2.7, restated below. Recall that the function gx(i, ω) =
(x, i, S(x;ω)2i), as stated by (4.3) in Section 4.2.1.

A.3 ESTABLISHING THE VADHAN CONDITION 155

RESTATEMENT OF PROPOSITION 4.2.7
Let gx be as in (4.3) in Section 4.2.1. For every set K ⊆ {0, 1}∗, if gx is not an instance-

dependent distributionally one-way function on K, then for every polynomial p, there exists a

nonuniform PPT prover P̃ such that

∆(〈P̃ , V 〉(x), S(x)) ≤ `(|x|) ·
(

1
p(|x|)

+ 2 ·∆(〈PS , V 〉(x), S(x))
)

,

for infinitely many x ∈ K.

Proof. Let random variable I denote an independent uniform index i ← {1, 2, . . . , `}, and
let random variable Ω denote independent uniform coins ω for the simulator S. Recall
the definition of instance-dependent distributionally one-way function as stated in Defi-
nition 2.4.7. If gx is not an instance-dependent distributionally one-way function on K,
then for any polynomial q, there exists a nonuniform PPT A such that the random vari-
ables ((I,Ω), S(x; Ω)2I) and (A(S(x; Ω)2I), S(x; Ω)2I) are 1/q(|x|)-close for infinitely many
x ∈ K. Let K ′ ⊆ K be the infinite set of instances x for which the previously stated random
variables are 1/q(|x|)-close. Let the polynomial p(|x|) = q(|x|) · (1/`(|x|)). For this point
on, we will drop the mention of x and assume that x ∈ K ′.

Since I is independent from the other random variables, we have that for all i =
1, 2, . . . , `, the random variables

((i,Ω), S(Ω)2i) and (A(S(Ω)2i), S(Ω)2i) are (1/p)-close , (A.13)

since ` · (1/q) = 1/p.

For any interactive machine A and B, let random variable 〈A,B〉[mj] denote the tran-
script of messages exchanged between A and B conditioned on the first j messages being
mj . In other words, 〈A,B〉[mj] = 〈A,B〉|〈A,B〉j=mj

. It follows from definition that

〈A,B〉[〈A,B〉j] ≡ 〈A,B〉 , (A.14)

for any index j.

By (A.13), and noting that PS and P̃ use (i,Ω) and A(S(Ω)2i) to produce their messages
in round 2i+ 1, respectively, we have that for every i = 1, 2, . . . , `,

(〈PS , V 〉[S2i])2i+2 and (〈P̃ , V 〉[S2i])2i+2 are (1/p)-close , (A.15)

156 APPENDIX A / DEFERRED PROOFS

Using (A.14) and (A.15) above, we have that for every i = 1, 2, . . . , `,

∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2)

= ∆((〈P̃ , V 〉[〈P̃ , V 〉2i])2i+2, (〈PS , V 〉[〈PS , V 〉2i])2i+2) (by A.14)

≤ ∆((〈P̃ , V 〉[S2i])2i+2, (〈PS , V 〉[S2i])2i+2)

+ ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉2i, S2i)

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉2i, S2i) (by A.15)

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + ∆(〈PS , V 〉, S) . (A.16)

We now prove the following by induction on i = 0, 1, 2, . . . , `:

∆(〈P̃ , V 〉2i, S2i) ≤ i · (1/p+ 2 ·∆(〈PS , V 〉, S)) . (A.17)

Note that the case for i = ` establishes Proposition 4.2.7. The base case for i = 0 is trivial.
We prove the inductive step as follows:

∆(〈P̃ , V 〉2i+2, S2i+2)

≤ ∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2) + ∆(〈PS , V 〉2i+2, S2i+2)

≤ ∆(〈P̃ , V 〉2i+2, 〈PS , V 〉2i+2) + ∆(〈PS , V 〉, S)

≤ (1/p) + ∆(〈P̃ , V 〉2i, S2i) + 2 ·∆(〈PS , V 〉, S) (by A.16)

≤ (i+ 1) · (1/p+ 2 ·∆(〈PS , V 〉, S)) (by induction on i) .

This completes our proof of Proposition 4.2.7. �

� �

BIBLIOGRAPHY

[AH] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be
recognized in two rounds. Journal of Computer and System Sciences, 42(3):327–
345, 1991. Preliminary version in FOCS’87.

[ALM+] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Jour-
nal of the ACM, 45(3):501–555, 1998. Preliminary version in FOCS’92.

[AS] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new charac-
terization of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version
in FOCS’92.

[Bar] Boaz Barak. How to go beyond the black-box simulation barrier. In Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 106–115. IEEE Computer Society, 2001.

[BBR] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplifica-
tion by public discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[BCC] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BD] Gilles Brassard and Ivan Damg̊ard. “Practical IP” ⇐ MA. In Advances in
Cryptology – CRYPTO ’88, volume 403 of Lecture Notes in Computer Science,
pages 580–582. Springer, 1988.

[BDMP] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Nonin-
teractive zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[Bel] Mihir Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–
284, 2002.

[BGG+] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. Everything provable is provable in zero-
knowledge. In Advances in Cryptology – CRYPTO ’88, volume 403 of Lecture
Notes in Computer Science, pages 37–56. Springer, 1988.

[BHZ] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short
interactive proofs? Information Processing Letters, 25:127–132, 1987.

157

158 BIBLIOGRAPHY

[BKK] Joan F. Boyar, Stuart A. Kurtz, and Mark W. Krentel. A discrete logarithm
implementation of perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–
76, 1990.

[BL] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and ex-
traction. SIAM Journal on Computing, 33(4):738–818, 2004. Preliminary ver-
sion in STOC’02.

[Blu] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings
of the International Congress of Mathematicians, pages 1444–1451. American
Mathematical Society, 1987.

[BLV] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-black-
box zero knowledge. Journal of Computer and System Sciences, 72(2):321–391,
2006. Preliminary version in FOCS’04.

[BM] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof
system and a hierarchy of complexity classes. Journal of Computer and System
Sciences, 36:254–276, 1988.

[BMO] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in
constant rounds. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing (STOC), pages 482–493. ACM Press, 1990.

[BOGKW] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: how to remove intractability assumptions. In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
113–131. ACM Press, 1988.

[BP] Mihir Bellare and Erez Petrank. Making zero-knowledge provers efficient. In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(STOC), pages 711–722. ACM Press, 1992.

[BR] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: towards making
UOWHFs practical. In Advances in Cryptology – CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 470–484. Springer, 1997.

[CCM] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with
a memory-bounded receiver. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science (FOCS), pages 493–502. IEEE Computer
Society, 1998.

[CDG] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty computa-
tions ensuring privacy of each party’s input and correctness of the result. In
Advances in Cryptology – CRYPTO ’87, volume 293 of Lecture Notes in Com-
puter Science, pages 87–119. Springer, 1987.

[CM] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-
bounded adversaries. In Advances in Cryptology - CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 292–306. Springer, 1997.

BIBLIOGRAPHY 159

[CS] Claude Crépeau and George Savvides. Optimal reductions between oblivi-
ous transfers using interactive hashing. In Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 201–
221. Springer, 2006.

[CT] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, second edition, 2006.

[Dam1] Ivan Damg̊ard. Collision free hash functions and public key signature schemes.
In Advances in Cryptology – EUROCRYPT ’87, volume 304 of Lecture Notes
in Computer Science, pages 203–216. Springer, 1987.

[Dam2] Ivan Damg̊ard. On the existence of bit commitment schemes and zero-knowledge
proofs. In Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes
in Computer Science, pages 17–27. Springer, 1989.

[Dam3] Ivan B. Damg̊ard. Interactive hashing can simplify zero-knowledge protocol de-
sign without computational assumptions. In Advances in Cryptology – CRYPTO
’93, volume 773 of Lecture Notes in Computer Science, pages 100–109. Springer,
1993.

[DC] Ivan Damg̊ard and Ronald Cramer. On monotone function closure of per-
fect and statistical zero-knowledge. Technical Report CS-R9618, Centrum voor
Wiskunde en Informatica (CWI), 1996. http://www.cwi.nl/ftp/CWIreports/
AA/CS-R9618.pdf.

[DDPY1] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.
On monotone formula closure of SZK. In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 454–465. IEEE
Computer Society, 1994.

[DDPY2] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.
Image Density is complete for non-interactive-SZK. In Automata, Languages
and Programming, 25th International Colloquium, ICALP’98, volume 1443 of
Lecture Notes in Computer Science, pages 784–795. Springer, 1998.

[DHRS] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-
round oblivious transfer in the bounded storage model. In Theory of Cryptog-
raphy, First Theory of Cryptography Conference, TCC 2004, volume 2951 of
Lecture Notes in Computer Science, pages 446–472. Springer, 2004.

[DOY] Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung. Keeping the SZK-
verifier honest unconditionally. In Advances in Cryptology – CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 31–45. Springer, 1997.

[DPP] Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. Statistical se-
crecy and multibit commitments. IEEE Transactions on Information Theory,
44(3):1143–1151, 1998.

[DR] Yan Zong Ding and Michael O. Rabin. Hyper-encryption and everlasting secu-
rity. In Proceedings of the 19th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2002), volume 2285 of Lecture Notes in Computer
Science, pages 1–26. Springer, 2002.

160 BIBLIOGRAPHY

[DS] Irit Dinur and Shmuel Safra. The importance of being biased. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages
33–42. ACM Press, 2002.

[ESY] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise
problems with applications to public-key cryptography. Information and Con-
trol, 61(2):159–173, 1984.

[FGL+] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the
ACM, 43(2):268–292, 1996. Preliminary version in FOCS’91.

[FGM+] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis
Zachos. On completeness and soundness in interactive proof systems. Advances
in Computing Research, 5:429–442, 1989. Preliminary version in FOCS’87.

[For] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in Com-
puting Research: Randomness and Computation, 5:327–343, 1989.

[FRS] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover
interactive protocols. Theoretical Computer Science, 134(2):545–557, 1994.

[FS] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding pro-
tocols. In Proceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting (STOC), pages 416–426. ACM Press, 1990.

[GGL] Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant computa-
tion in the full information model. SIAM Journal on Computing, 27(2):506–544,
1998.

[GK1] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[GK2] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169–192, 1996. Preliminary
version in ICALP’90.

[GK3] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system
for a problem equivalent to the discrete logarithm. Journal of Cryptology, 6:97–
116, 1993.

[GMR1] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.
Preliminary version in STOC’85.

[GMR2] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on Com-
puting, 17(2):281–308, 1988. Preliminary version in FOCS’84.

[GMW1] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing (STOC),
pages 218–229. ACM Press, 1987.

BIBLIOGRAPHY 161

[GMW2] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(1):691–729, 1991. Preliminary version in FOCS’86.

[GO] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[Gol1] Oded Goldreich. A uniform-complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, 6(1):21–53, 1993.

[Gol2] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, 2001.

[Gol3] Oded Goldreich. Zero-knowledge twenty years after its invention. http://www.
wisdom.weizmann.ac.il/∼oded/zk-tut02.html, March 2004.

[GS] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in in-
teractive proof systems. Advances in Computing Research: Randomness and
Computation, 5:73–90, 1989.

[GSV1] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the 30th
Annual ACM Symposium on Theory of Computing (STOC), pages 399–408.
ACM Press, 1998.

[GSV2] Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero-knowledge
be made non-interactive?, or On the relationship of SZK and NISZK. In Ad-
vances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 467–484. Springer, 1999.

[GV] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero
knowledge with applications to the structure of SZK. In IEEE Conference on
Computational Complexity, pages 54–73. IEEE Computer Society, 1999.

[HHK+] Iftach Haitner, Omer Horvitz, Jonathan Katz, Chiu-Yuen Koo, Ruggero
Morselli, and Ronen Shaltiel. Reducing complexity assumptions for statistically-
hiding commitment. In Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 58–77. Springer, 2005.

[HHRS] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding
collisions in interactive protocols – a tight lower bound on the round complexity
of statistically-hiding commitments. Technical Report TR07-038, Electronic
Colloquium on Computational Complexity, 2007.

[HILL] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999. Preliminary versions in STOC’89 and STOC’90.

[HR1] Iftach Haitner and Omer Reingold. A new interactive hashing theorem. Tech-
nical Report TR06–096, Electronic Colloquium on Computational Complexity,
2006.

162 BIBLIOGRAPHY

[HR2] Iftach Haitner and Omer Reingold. Statistically-hiding commitment from any
one-way function. Technical Report 2006/436, Cryptology ePrint Archive, 2006.
To appear in STOC’07.

[IL] Russell Impagliazzo and Michael Luby. One-way functions are essential for
complexity based cryptography. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science (FOCS), pages 230–235, 1989.

[ILL] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gen-
eration from one-way functions. In Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing (STOC), pages 12–24. ACM Press, 1989.

[Imp] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings
of the Tenth Annual Structure in Complexity Theory Conference, pages 134–147.
IEEE Computer Society, 1995.

[IOS] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent crypto-
graphic primitive. Journal of Cryptology, 10(1):37–49, 1997.

[IY] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations
(extended abstract). In Advances in Cryptology – CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pages 40–51. Springer, 1987.

[Kar] Richard M. Karp. Reducibility among combinatorial problems. In J. W.
Thatcher and R. E. Miller, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, Inc., 1972.

[KK] Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash
functions from arbitrary one-way functions. Technical Report 2005/328, Cryp-
tology ePrint Archive, 2005.

[KMS] Bruce Kapron, Lior Malka, and Venkatesh Srinivasan. A characterization of
non-interactive instance-dependent commitment-schemes (NIC). In Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007, Lec-
ture Notes in Computer Science. Springer, 2007.

[KSS] Jeff Kahn, Michael Saks, and Cliff Smyth. A dual version of Reimer’s inequal-
ity and a proof of Rudich’s conjecture. In 15th Annual IEEE Conference on
Computational Complexity, pages 98–103, 2000.

[Lev] Leonid A. Levin. Average case complete problems. SIAM Journal on Comput-
ing, 15(1):285–286, 1986.

[Mau] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure random-
ized cipher. Journal of Cryptology, 5(1):53–66, 1992.

[MV] Daniele Micciancio and Salil Vadhan. Statistical zero-knowledge proofs with
efficient provers: lattice problems and more. In Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 282–
298. Springer, 2003.

[Nao] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991. Preliminary version in CRYPTO’89.

BIBLIOGRAPHY 163

[Ngu] Minh-Huyen Nguyen. Zero knowledge and efficient provers. PhD thesis, Harvard
University, Cambridge, MA, USA, 2006.

[NOVY] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Per-
fect zero-knowledge arguments for NP using any one-way permutation. Journal
of Cryptology, 11(2):87–108, 1998. Preliminary version in CRYPTO’92.

[NV] Minh-Huyen Nguyen and Salil Vadhan. Zero knowledge with efficient provers.
In Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), pages 287–295. ACM Press, 2006.

[NY] Moni Naor and Moti Yung. Universal one-way hash functions and their cryp-
tographic applications. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 33–43. ACM Press, 1989.

[Oka] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs.
Journal of Computer and System Sciences, 60(1):47–108, 2000. Preliminary
version in STOC’96.

[Ost] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical
zero-knowledge proofs. In Proceedings of the 6th Annual Structure in Complexity
Theory Conference, pages 133–138. IEEE Computer Society, 1991.

[OVY] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Fair games
against an all-powerful adversary. AMS DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 155–169, 1993. Preliminary
version in SEQUENCES’91.

[OW] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-
trivial zero-knowledge. In Proceedings of the 2nd Israel Symposium on Theory
of Computing Systems, pages 3–17. IEEE Computer Society, 1993.

[Ped] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology – CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer, 1991.

[PS] Rafael Pass and Abhi Shelat. Unconditional characterizations of non-interactive
zero-knowledge. In Advances in Cryptology - CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 118–134. Springer, 2005.

[PT] Erez Petrank and Gábor Tardos. On the knowledge complexity of NP. Combi-
natorica, 22(1):83–121, 2002. Preliminary version in FOCS’96.

[Rom] John Rompel. One-way functions are necessary and sufficient for secure sig-
natures. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing (STOC), pages 387–394, 1990.

[RTV] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, volume 2951 of Lecture Notes in Com-
puter Science, pages 1–20. Springer, 2004.

164 BIBLIOGRAPHY

[Rud] Steven Rudich. Limits on the Provable Consequences of One-Way Functions.
PhD thesis, U.C. Berkeley, 1988.

[Sim] Daniel Simon. Finding collisions on a one-way street: Can secure hash func-
tions be based on general assumptions? In Advances in Cryptology – EURO-
CRYPT ’98, volume 1403 of Lecture Notes in Computer Science, pages 334–345.
Springer, 1998.

[Sip] Michael Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, Boston, MA, USA, second edition, 2005.

[SV] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
Journal of the ACM, 50(2):196–249, 2003. Preliminary version in FOCS’97.

[TW] Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge
interactive proofs of possession of information. In Proceedings of the 28th Annual
Symposium on Foundations of Computer Science (FOCS), pages 472–482. IEEE
Computer Society, 1987.

[Vad1] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1999.

[Vad2] Salil P. Vadhan. Interactive proofs & zero-knowledge proofs. http://www.eecs.
harvard.edu/∼salil/papers/pcmi-abs.html, 2000.

[Vad3] Salil P. Vadhan. An unconditional study of computational zero knowledge.
SIAM Journal on Computing, 36(4):1160–1214, 2006. Preliminary version in
FOCS’04.

[Yao] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science (FOCS),
pages 162–167. IEEE Computer Society, 1986.

