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Abstract

In this paper we present a novel class of so-called
Radon-Like features, which allow for aggregation of spa-
tially distributed image statistics into compact feature de-
scriptors. Radon-Like features, which can be efficiently
computed, lend themselves for use with both supervised and
unsupervised learning methods. Here we describe various
instantiations of these features and demonstrate there use-
fulness in context of neural connectivity analysis, i.e. Con-
nectomics, in electron micrographs. Through various ex-
periments on simulated as well as real data we establish
the efficacy of the proposed features in various tasks like
cell membrane enhancement, mitochondria segmentation,
cell background segmentation, and vesicle cluster detection
as compared to various other state-of-the-art techniques.

1. Introduction
Recent breakthroughs in neural imaging has allowed

very detailed mapping of the neural connections of the ner-
vous system. Such neuron level maps of brain tissue ob-
tained using Electron Microscopy (EM) are called Connec-
tomes. The identification and analysis of the first complete
Connectome, that is, the first full connectivity diagram of
the brain of a mammal, is expected to open floodgates to a
better understanding of the basic cognitive functions of the
human brain and related pathologies [7]. Due to the rela-
tively large number of neurons in the brain (∼ 4 million for
a mouse), manual annotation of these detailed maps is con-
sidered infeasible and automated methods present the only
way to obtain meaningful global understanding of these
maps. One of the first steps along these lines involves auto-
mated segmentation of the constituent structures of the Con-
nectome images, which broadly include – the neuron cell
boundaries, the mitochondria, the cell background and the
clusters of neurotransmitters (vesicles) (indicated in Fig.1).

The medical imaging and computer vision literature is
littered with numerous techniques for automated segmenta-
tion of images [9]. Though there are various seminal and
landmark pieces of work [10, 4], one of the main reasons

Figure 1. Connectome Electron Microscopy Images: The three
different kind of images obtained as the staining process in the im-
age acquisition pipeline is changed. Blue boxes show mitochon-
dria, red boxes show vesicles, green boxes show cell boundaries
and yellow boxes show cell background.

there are a large number of methods is because they are tai-
lored, and rightly so, to work with a specific kind of images
- Photographs, CT Scans, EM images etc. Primarily due
to the novel nature of this data, the landscape of the im-
age understanding techniques meant for Connectome data
is relatively sparse as compared to the general segmentation
literature. Noteworthy work in this field includes techniques
focused on cell boundary segmentation [18, 6, 13, 15], mi-
tochondria segmentation [11, 16] and vesicle segmentation
[2].

The Connectome mapping process involves precise
staining, sectioning and scanning of large volumes of brain
tissue (several cubic micrometers in size) with resolutions in
the order of a few nanometers per pixel. The unique char-
acteristics of the Connectome image data involve presence
of non-trivial amount of scanning noise, staining artifacts -
dark blotches, slicing artifacts - grazed vesicles, presence of
structures defined by texture (vesicles), structure (neurons)
and both (mitochondria). Given this, we have found (also
demonstrated later) that a direct off-the-shelf application of
existing segmentation and associated methods does not nec-
essarily lead to good results.

Motivated by this nature of the Connectome images,
in this paper we propose a novel class of features, called
Radon-Like features, that provide a way of aggregating any
desired information derived from an image (e.g. image
intensities) within structural units (e.g. cell boundaries).
These features can then be used with a supervised learn-
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Figure 2. Radon-Like Features: All the points along the line seg-
ments a, b and c on the red line and the segments e, f and g on
the green line (part (a)) in the shown image I are assigned value
defined by the extraction function T (shown in part part (b).

Figure 3. The feature values collected at a pixel (red dot above)
along various directions could be used to define a distribution of
features (shown on the right).

ing method or simply as an unsupervised way of enhancing
structures in an image. We must point out that depending
on the staining process, the obtained images vary signifi-
cantly in appearance. Fig. 1 shows three such images ob-
tained using different staining methods. It can be noted that
same structures appear quite different in the three images.
This may require supervised segmentation and classifica-
tion techniques (e.g. [13]) to be retrained for every new
acquisition of data.

2. Radon-Like Features
The Radon Transform [1] is an integral transformation

which in 2D is defined as

R(m, τ)[f(x, y)] =

∫ ∞
−∞

f(x,m+ τy)dx (1)

where m and τ define the slope and the intercept of the
line, respectively, along which the two dimensional function
f(x, y) is integrated. This transform is widely used in to-
mography e.g. in CT scanning, where the output is, loosely
speaking, a Radon Transform image comprising of values
obtained using Eq. 1 for some sampling of the slope (m)
and the intercept (τ ) space. The Radon Back-projection,
inverse of the above described transform, is then used to
reconstruct the original image

We propose a new class of features, called Radon-Like
features, which retains the central idea from the Radon
Transform – processing an image (a 2D function, I(x, y))
along a line (l, parameterized by t, i.e. l(t) = (x(t),y(t))).
But instead of collapsing I(x, y) along l into a scalar
value via integration (as in Eq. 1), we distribute some

(a) Input image (b) Edge map

(c) Features in direction 0◦. (d) Features in direction 178◦.

(e) Pixel-wise feature mean (f) Pixel-wise feature variance

Figure 4. Illustration of Radon-Like features when used with the
extraction function T1 (Eq. 3).

desired information derived from I(x, y) among various
line segments along l. The line segments are defined by
a set of salient points, called knots, along l. If the set
of knots along l is given as (t1, . . . , tn), value of Radon-
Like feature at a point p along l between (x(ti),y(ti)) and
(x(ti+1),y(ti+1)) is given by

Ψ(p, l, ti, ti+1)[I(x, y)] = T (I, l(t)), t ∈ [ti, ti+1], (2)

where T can be any desired function, called the extraction
function. Note that the information derived along l need not
be the same as l is traversed in the two opposite directions.
In other words, more flexibility can be built into our features
if each line also has an associated direction. This can be
easily incorporated by associating with each l an angle θ ∈
(0, 2π) whose tangent gives its slope. Important point being
that θ is considered to be different than π + θ.

The output of the above feature detection and description
process is yet another image I ′(x, y), when the angle θ of l
is fixed and its intercept varies, which is of the same size as
the input image I(x, y). This is a significant point of depar-
ture from the original Radon Transform where the output in
such a case is a 1D function. If the angle, θ, is also varied,
we obtain a vector of features at each point or pixel (x, y)
in the image.

A simpler version of Radon-Like features is described in
Fig. 2 where all the points along a directed line segment in
the shown image I are assigned the same value. The red
and the green lines in Fig. 2 denote two possible scanning
directions. The line segments a, b and c along the red line
and the segments e, f and g along the green line are as-
signed values obtain via the extraction function T . The blue
circles represent the chosen knots along the two lines. Af-
ter the features have been collected, a vector is obtained at
each pixel in the image, which, for instance, can be used as
a feature distribution (Fig. 3) for a pattern recognition task.

The usefulness of the features described above depends
on two critical choices – the knots and the extraction func-
tion. For the application at hand, Connectome image anal-
ysis, knots derived from the edges in the image provide a



useful guide to the constituent structures of the image. In
other words, as a line scans through the input image, its in-
tersections with the image’s edge map define the knots and
the line segments. Even with the knots fixed in this manner,
the choice of the extraction function provides enough flexi-
bility to differentiate among various structures in an image,
as we would demonstrate later.

As an example, in Fig. 4 we illustrate Radon-Like fea-
tures for the following choice of the extraction function:

T1(f, l(t)) = ||l(ti+1)− l(ti)||2, t ∈ [ti, ti+1]. (3)

The extraction function T1 assigns all the pixels between the
knots ti and ti+1 the value equal to the distance between the
them. The knots along the line l were taken to be the points
of intersection of l and the edge map of the image f . For the
example in Fig. 4, the intercept parameter of the scan line
l was varied to cover the whole image (this would always
be true in the rest of the paper) and the angle parameter
was varied in steps of 2◦ (from 0◦ to 180◦). Fig. 4(a) and
Fig. 4(b) show the input image and its corresponding edge
map obtained using Canny filter. Fig. 4(c) and Fig. 4(d)
show the features obtained at each pixel when the image is
scanned from two different directions (note that for a given
scan line l, T1 is same for both the scan-directions). Once
90 features have been obtained at each pixel, we approxi-
mated their distribution by a Gaussian distribution, whose
mean and variance is shown in Fig. 4(e) and Fig. 4(f), re-
spectively.

Our Radon-Like features should not be confused with the
Fast Ray features of [11]. While they both rely on the cast-
ing 2D line segments across the image plane, the Fast Ray
features only sample geometric information at each seg-
ments’s end points, whereas Radon-like features are more
general and can both sample or aggregate image statistics
(geometric or textural) along a segment.

3. Connectome Image Analysis with Radon-
Like Features

In the pervious section we introduced the general class
of Radon-Like features. Here we would describe a few spe-
cific instantiations of these features which can be useful in
Connectome image analysis. We would focus on the four
primary structures that are present in Connectome EM im-
ages - cell boundaries, mitochondria, cell background and
vesicle clusters, as a means of illustrating the above de-
scribed features. Radon-Like features, like any other fea-
tures, can be combined with sophisticated machine learning
algorithms to desired effect, but the objective of this work
is to design features that do most of the job by themselves.

The data that we use in the following experiments is ob-
tained as follows: A volume of brain tissue is first stained
with a high-contrast agent. Then an ultra-microtome laser

Figure 5. Cell Boundary Enhancement using Radon-Like fea-
tures: Part (a) shows the input and (b) shows the responses of
Gaussian-Second-Derivative filters in four directions. Part (c)
shows the image obtained by taking the maximum response at each
pixel and (d) shows the result of aggregating the information in (c)
via Radon-Like features with the extraction function given in Eq.
5.

sections the sample, and the tissue is fed into a high-
throughput transmission scanning electron microscope. The
result of the imaging process is a stack of 2D, gray-scale
(usually 8 bit) images with a resolution in X − Y dimen-
sion typically ten times higher than in Z dimension (e.g. 3
to 5 nm in X − Y and 40 nm in Z). A typical 2D section in
the obtained stack is 16K×16K pixels in size. For efficient
handling we have diced such sections into smaller 512×512
or 1024× 1024 pixels tiles.

3.1. Cell Boundary Enhancement
The primary tasks in Connectome image analysis is seg-

mentation of the data into constituent neuron cells. One
of the promising approaches for this involves segmenting
the 2D slices of the volume into cell boundaries and then
combining them into 3D structures [13, 15]. For this pur-
pose, cell boundary enhancement (and eventual segmenta-
tion) has attracted attention in recent years [6, 18]. Focus of
the work in this field has been on largely unsupervised dif-
fusion based techniques [17, 12] as well as those based on
bulky convolutional networks [5, 6] and graph-cuts meth-
ods [18]. In order to emphasize the usefulness of Radon-
Like features, we would restrict ourselves to unsupervised
methods.

In our scheme for cell boundary enhancement, the knots
and the extraction function for Radon-Like features use the
following transformation of the input image I(x, y):

R(x, y) = max
σ,φ

∆G(σ, φ)⊗ I(x, y), (4)

where σ and φ are the scale and the orientation of the bound-
ary enhancing Gaussian-Second-Derivative (GSD) [8] filter
∆G(σ, φ) (⊗ denotes convolution). The knots for Radon-
Like features are defined using an edge map of R(x, y) and
the extraction function, T2, is given as

T2(I, l(t)) =

∫ ti+1

ti
R(l(t))∂t

||l(ti+1)− l(ti)||2
, t ∈ [ti, ti+1], (5)

where l is the line along which features are obtained. This
extraction function assigns all the pixels between the knots
ti and ti+1 along l the mean value of function R along l
between the same two knots. The transformation R(x, y)



Figure 6. Cell Boundary Enhancement Results: Part (a) shows the 4 input images used. Each image is 1K × 1K pixels. Part (b) and (c)
presents the results of Coherence Enhancing Diffusion [17] and Hessian Based Diffusion [12], respectively. Part (d) presents the pixel-wise
mean of the obtained Radon-Like features (using the extraction function in Eq. 5). Part (e) shows thresholded results for (d) and part (f)
show the manually marked ground truth. In part (b) and (c) negative of the images are shown to make edges appear bright.

captures response of the most dominant GSD filter at each
pixel, across various σ and φ. For illustration, Fig. 5(a)
shows an input image and Fig. 5(b) shows response of GSD
filters for four different orientations. Fig. 5(c) shows the
corresponding R(x, y) and 5(d) is the pixel-wise mean of
our Radon-Like features accumulated over 180 uniformly
sampled directions. It can be noted that Radon-Like fea-
tures lead to structured smoothing of the image in Fig. 5(c)
and the majority of the spurious non-boundary responses
have been suppressed.

Evaluation: Fig. 6 qualitatively compares the perfor-
mance of the proposed Radon-Like features to existing un-
supervised boundary enhancement methods. Fig. 6(a)
presents the input images, Fig. 6(b) and Fig. 6(c) show
results obtained using Coherence Enhancing Diffusion [17]
and Hessian Based Diffusion [12], respectively. Both of
these techniques have been applied for cell boundary en-
hancement [12]. Fig. 6(d) shows results obtained using
our method as described in this section. Fig. 6(e) shows a
thresholding of the images in Fig. 6(d) and Fig. 6(f) shows
the ground truth images. The threshold value used in Fig.
6(e) was chosen heuristically. Note that our features were

able to aggregate the information obtained from Gaussian-
Second-Derivative filters to obtain clearly demarcated crisp
boundaries.

Next we quantitatively evaluate the cell boundary en-
hancement methods through a segmentation experiment.
Here we used twenty 2D tiles (512 x 512 pixels) with the
above mentioned three boundary enhancement methods and
the results were thresholded to obtain a binary segmenta-
tion of the images. The Receiver Operating Characteristic
(ROC) curves in Fig. 7(a) shows the obtained False Pos-
itive Rate vs. True Positive Rate plots for pixel-wise seg-
mentation as the threshold was varied. It can be noted that
Radon-Like features perform comparatively better than the
methods outlined in [17] and [12]. For the sake of com-
pleteness, we also plot ROC curves for the cases when the
dominant edge response image (R(x, y) in Eq. 4) is directly
thresholded, used as input for Coherence Enhancing Diffu-
sion and used as input for Hessian Based Diffusion. These
results are better than [17] and [12] directly applied to input
images as they benefit from the extraction function designed
for our Radon-Like features.

Since the intention here is to demonstrate the per-



Figure 7. ROC Curves: (a) ROC curves for pixel-wise segmenta-
tion of cell boundaries. (b) ROC curves for pixel-wise segmenta-
tion of mitochondria.

formance of various features under similar constraints,
we have used a simple thresholding based segmentation
scheme. Moreover, the unsupervised nature of our method
can allow it to work with images obtained through differ-
ent staining processes (Fig. 1) without any retraining. We
must also point out that even though a vector of features
was obtained at each pixel using our method, only its mean
value was used in the experiments above. In case a more
sophisticated classifier is used, the whole feature vector can
be provided as input instead of just its central moment.

3.2. Mitochondria Segmentation
Next, we focus on the mitochondria detection and seg-

mentation problem. Mitochondria in Connectome EM im-
ages are characterized by their elliptical, but largely irreg-
ular shape and dark texture. They are also known to have
ribbed structure inside their outer boundaries which can be
confused with vesicles (see Fig. 1). Existing methods for
mitochondria segmentation include [11], which goes after
the shape via boosted ray features, and [16], which uses
Gabor features with Boosting for the same task. It should
be noted that the objective in [11] was only to localize mi-
tochondria (within bounding boxes) and not to pixel-wise
segment them, while [16] attempted pixel-wise segmenta-
tion. In addition to these methods, traditional texture seg-
mentation methods [14] can also be used to segment the
mitochondria.

The relatively unique geometry and the associated tex-
ture of mitochondria in EM image lend itself very well for
analysis with Radon-Like features. The closed contours of

the mitochondria boundary (obtained using edge detection)
indicate that extraction functions (such as in Eq. 3) that look
at the distance between knots (edges derived) might be use-
ful. But we have found that regions with vesicles can also
lead to edges with similar spacing between them. Thus we
go after the textural and the geometric information simul-
taneously. We accomplish this by using the edge maps of
the intensity images I(x, y) obtained using Canny filters to
derive knots, and the mean of the intensity values as the ex-
traction function. More explicitly, the extraction function is
defined as

T3(I, l(t)) =

∫ ti+1

ti
I(l(t))∂t

||l(ti+1)− l(ti)||2
, t ∈ [ti, ti+1], (6)

where I(l) is the input intensity image evaluated along the
line l and ti and ti+1 indicate two successive knots on l as
before. Note that feature values along line segments with
lengths < 10 pixels were explicitly set to zero.

Evaluation: The qualitative results are presented in Fig.
8, where we show results on 4 different tiles of the Con-
nectome EM data. Fig. 8(a) presents the input intensity
images while Fig. 8(b) shows the pixel-wise mean of the
estimated Radon-Like features. Fig. 8(c) shows results ob-
tained using Textox based texture classification method [14]
and Fig. 8(d) shows results obtained using Gabor feature
histograms as suggested in [16] ([16] uses boosting with
Gabor and intensity histograms). For both of these cases
a nearest-neighbor classifier was used to obtain final pixel-
wise segmentation. Segmentation results obtained using our
Radon-Like features via thresholding are presented in Fig.
8(e) and the ground-truth is presented in Fig. 8(f).

Quantitative comparison of the above-mentioned three
methods is presented in Fig. 7(b), where the False Positive
Rate for pixel-wise segmentation is plotted against the True
Positive Rate for different threshold values. These results
are averaged over multiple 512 × 512 pixel 2D tiles. From
both Fig. 8 and Fig. 7(b) the effectiveness of the proposed
features can be readily noted.

3.3. Cell Background Segmentation
Background detection and subtraction, besides being a

commonly used step in general segmentation, has been ex-
plored in particular for EM image analysis [2]. It could also
benefit tasks such as cell tracking through a volume of Con-
nectome EM data [13, 15]. The existing techniques for this
task include morphological opening [3] and Median filter-
ing (as used in [2]) of an image.

Since Radon-Like features allow us access to spatially
varying structural units within an image, we can carry out
image-morphology-like operations to a greater effect. In
particular, with edge map of the intensity image as a guide
for knots and an extraction function defined as,

T4(I, l(t)) = min [I(l(t))], t ∈ [ti, ti+1], (7)
we can obtain effects superior to morphological opening of
an image. The extraction function in Eq. 7 assigns all the



Figure 8. Mitochondria Segmentation: Column (a) shows 512 × 512 input images and column (b) shows the pixel-wise mean of the
obtained Radon-Like features (using the extraction function in Eq. 6). Column (c) presents results obtained using the texton-based
Texture Classifier [14] and column (d) show results obtained using Gabor histogram features as suggested in [16]. Column (e) shows the
segmentation obtained using Radon-Like features (thresholding (b)) and (f) shows the corresponding ground truth.

pixel between the knots the minimum intensity value along
l between the same two knots.

Evaluation: In Fig. 9 we present results obtained using
the method for background detection described above and
compare it with the traditional image morphological oper-
ation of opening. Fig. 9(a) shows the input images. For
these images we computed the morphological opening us-
ing an oriented line segment as the structuring element. The
line segment was chosen as the structuring element since it
was closest to the scanning procedure used by Radon-Like
features. We computed the morphological opening for each
of the input image with 180 uniformly varying orientations
of the structuring elements and its mean is presented in Fig.
9(b). The mean of the 180 long vector accumulated at each
pixel using our method outlined above is presented in Fig.
9(d). Fig. 9(c) and Fig. 9(e) are the results obtained by
thresholding the images in Fig. 9(b) and Fig. 9(d) respec-
tively. The thresholds were heuristically chosen for both the
methods. It could be noted that our method does a signif-
icantly better job at detecting the cell background than the
morphological opening operation.

3.4. Vesicle Cluster Enhancement
Finally, we turn our attention to vesicle detection in Con-

nectome EM images. Vesicles appear as very small circu-
lar structures that are generally clustered together. Existing
methods like [2] go after detecting individual vesicles using
morphological operations. It should be noted that the im-
ages used in [2], though still EM images, are qualitatively
different from the Connectome EM images used in this pa-
per. Detecting vesicles is relatively easier in almost texture-
less images used in [2] (see Fig. 2 in [2]). Results for vesi-
cle detection in Connectome EM images were shown in [16]
but the method was not described in any detail.

Since the Connectome EM images have a large number
of structured and textured elements, locating vesicle clus-
ters can help concentrate effort and suppress false positives
for any vesicle specific post-processing. Here, using Radon-
Like features, we describe a method that can be used to en-
hance the regions with clusters of vesicles in the EM im-
ages. For this task we use two edge maps of the input image
(I(x, y)). Most edge detectors, like Canny filtering, include
a threshold that decides the binary detection of edges. By



Figure 9. Cell Background Segmentation: Part (a) shows the input images. Part (b) is the pixel-wise mean of the results obtained via
morphological opening with structuring element oriented along various directions. Part (c) shows (b) thresholded. Part (d) shows pixel-wise
mean of Radon-Like features obtained with the extraction function defined in Eq. 7. Part (e) shows the images in (d) thresholded.

changing this parameter, weaker edges can be selected or
ignored. One of the edge maps (E1(x, y)) is obtained at
the usual threshold used for knot generation and the other
(E2(x, y)) is obtained with a lot more of weaker edges in-
cluded. Since regions with vesicle clusters create a lot of
weak, randomly oriented edge, the central idea here is to
capture the weak edge within the bounds of knots. We use
the following extraction function for this task:

T5(I, l(t)) =

∫ ti+1

ti
E2(l(t))∂t

||l(ti+1)− l(ti)||2
, t ∈ [ti, ti+1]. (8)

Note that E2(x, y) is a binary image obtained from I(x, y).
Note that feature values along line segments with lengths <
10 pixels were explicitly set to zero.

Evaluation: Results obtained using the outlined method
are presented in Fig. 10. Fig. 10(a) shows the input im-
ages while Fig. 10(b) shows the pixel-wise mean of Radon-
Like features obtained using the extraction function T5. Fig.

10(c) shows manually marked ground truth for comparison.
The intention of this task is to locate possible clusters of
vesicles within the very large Connectome images for fur-
ther processing, possibly along the lines outlined in [2]. We
must point out that another segmentation of vesicles can be
obtained by a trivial combination of the schemes outlined in
Sec. 3.1, 3.2 and 3.3.

4. Epilogue
In this paper we have introduced a novel class of fea-

tures, called Radon-Like features, which can be a useful
tool in aggregating information within structural units in an
image. This class of features provides flexibility to design
features for a specific task by selecting different extraction
functions and knot maps. We have demonstrated the effec-
tiveness of these features for various tasks associated with
Connectome EM image analysis.

Computational efficiency of these features depends on



Figure 10. Vesicle Cluster Enhancement: Part (a) shows in input
images. Part (b) shows the pixel-wise mean of the features ob-
tained using Radon-Like features with extraction function as de-
fined in Eq. 8. Part (c) shows the ground truth.

the specific extraction function used but the scanning proce-
dure in general takes only O(n2) if the image size is n× n
pixels. This is so because each pixel is visited only once
during a scan along one direction. Quite importantly, these
features lend themselves very well to parallel implementa-
tion. Since scans along various lines and directions are in-
dependent of each other, they can be performed in parallel
with tremendous gains in efficiency. For the task of cell
boundary enhancement outlined in Sec. 3.1, on a single
CPU core, it takes 496 sec. while on an 64 core cluster,
with different scan directions parallelized, it takes only 11
sec. to compute these features for 180 uniformly sampled
directions for a 512 × 512 image. These results were ob-
tained using a MATLAB implementation of these features.

Tunable parameters of Radon-Like features depend on
the choice of the knot map and the extraction function. For
the instances in this paper, knots were derived using Canny
filter based edge detection with the threshold set to 0.45.

We have not overlooked the fact that most of segmen-
tation results presented in this paper used a very simple
thresholding based method. More sophisticated machine
learning methods like Support Vector Machines and/or
schemes like Markov Random Fields can possibly improve
the over all results. But we contend that if the classification
scheme is provided better features, it would also perform
better. Hence, we feel that it is reasonable to use even a
simple classifier, as long as it is the same across compari-
son, when the objective is to evaluate usefulness of features.

As mentioned before, Radon-Like features accumulate
multi-dimensional features at each pixel. In all the exper-
iments here, we have used only a scalar summary (mean)
of these features at each pixel. We believe that the whole
distribution of the features at each pixel can be useful in
its classification and that is something we would like to ex-
plore in future. The Connectome image analysis, with its

peculiar characteristics, motivated the development of these
features, but there is no reason these features could not be
used for classification tasks at large e.g. face detection, ob-
ject recognition etc. and that is also something that we wish
to explore further.
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