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Sheet-crack cements and coextensive intrastratal folds and breccias occur in a stratigraphically controlled,
meter-thick zone, near the base of Marinoan (635 Ma) cap dolostones in slope settings. We demonstrate that
sheet-crack cements on the margins of the Congo and Kalahari cratons are localized at a turbidite-to-
grainstone transition, which records a transient fall in relative sea-level, preceding the larger glacioeustatic
transgression. Sheet-cracks opened vertically, implying that pore-fluid pressure exceeded lithostatic pressure.
When the margin of an ice-sheet retreats from a coast, a net fall in sea-level occurs in the vicinity, because of
the weakened gravitational attraction between the ice-sheet and the nearby ocean. Augmented by
glacioisostatic adjustment (postglacial rebound), the early regional fall in relative sea-level can mask the
simultaneous rise in global mean sea-level caused by the addition of meltwater. We propose that sheet-cracks
and related structures inMarinoan cap dolostones manifest pore-fluid overpressures resulting from rapid sea-
level falls in the vicinity of vanishing ice-sheets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the younger Cryogenian (Marinoan) glaciation, the con-
tinents were huddled between 30°N and 70°S latitude (Fig. 1). The
‘Northern Ocean’ would have dominated ocean circulation had it not
been covered by perennial sea ice. Dynamic ice-sheets shrouded
virtually every continent and many drained directly into the ocean,
even along the palaeoequator (Evans, 2000, 2003; Evans and Raub, in
press; Hambrey and Harland, 1981; Harland, 1964; Hoffman and Li,
2009; Trindade and Macouin, 2007). Whether a dynamic ‘sea-glacier’
fully covered the ocean, or large areas of seasonally open water
persisted through the glacial maxima, is controversial (Goodman and
Pierrehumbert, 2003; Hyde et al., 2000; Lewis et al., 2007; Liu and
Peltier, 2010; Pollard and Kasting, 2005; Warren et al., 2002).
Widespread geological evidence for dynamic (wet base) glaciation
on land (Deynoux, 1985; Domack and Hoffman, in press; Dow and
Gemuts, 1969; Edwards, 1984; Hambrey, 1982; Hambrey and Spencer,
1987; Hoffman, 2005; Kellerhals and Matter, 2003; McMechan, 2000)
suggests that the ice-sheets were in dynamic steady state, broadly
comparable to the present East Antarctic Ice Sheet (Donnadieu et al.,
2003; Liu and Peltier, 2010; Pollard and Kasting, 2004). It has a mean
thickness above sea-level of ~2.0 km (Lythe et al., 2001), and most of

its interior area and outlet ice-streams undergo basal melting (Pattyn,
2010). Given the extent and thickness of Marinoan ice-sheets, the
glacial oceanwas ~25% smaller in volume,with a proportional increase
in salinity, than when ice-sheets were absent. This corresponds to a
difference in mean sea-level of ~1.0 km, insensitive to the contested
differences in marine ice extent.

The abrupt termination of the Marinoan glaciation at 635 Ma
(Condon et al., 2005) caused vast coastal flooding. Remarkably,
meters to decameters of carbonate sediment, dubbed “cap dolos-
tones”, were draped across continental margins and marine platforms
worldwide as flooding progressed (Bertrand-Sarfati et al., 1997; Font
et al., 2010; Grotzinger and Knoll, 1995; Halverson et al., 2004;
Hoffman and Li, 2009; Hoffman et al., 2007; James et al., 2001; Jiang
et al., 2006; Kennedy, 1996; Nogueira et al., 2003; Rose and Maloof,
2010; Shields, 2005). They directly overlie terminal glacial deposits
without evident hiatus, and they drape the sub-glacial erosion surface
far beyond the confines of glacial deposits. They represent singular
events: multiple cap dolostones are not observed, even where
multiple “glacial–nonglacial” cycles are present (Allen et al., 2004;
Rieu et al., 2007). Cap dolostones were deposited diachronously, from
oldest to youngest with increasing palaeo-elevation. Their mass and
extent connote an anomalous flux of alkalinity during deglaciation
(Higgins and Schrag, 2003), in addition to strong surface warming and
the disproportionate concentration of continents in low latitudes,
where carbonate productivity is greatest. Systematic spatial and
temporal variations in δ13C (Halverson et al., 2004; Hoffman et al.,

Earth and Planetary Science Letters 300 (2010) 374–384

⁎ Corresponding author. 1216 Montrose Ave., Victoria, BC V8T 2K4, Canada. Tel.: +1
250 380 0059; fax: +1 250 592 5528.

E-mail address: paulfhoffman@yahoo.com (P.F. Hoffman).

0012-821X/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.epsl.2010.10.027

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

j ourna l homepage: www.e lsev ie r.com/ locate /eps l



Author's personal copy

2007; James et al., 2001; Kennedy et al., 1998) demonstrate that cap
dolostones were not detrital in origin, as does their occurrence in
areas where sources of detrital carbonate were absent (Jiang et al.,
2003; Nogueira et al., 2003). Marinoan cap dolostones are typically
pale pinkish-grey (weathering to yellowish-grey) in colour and are
extremely lean, containing less than 0.001 by weight of total organic
carbon. Their conspicuous lamination is defined by normal and
reverse graded micro- and macropeloids, deposited as hydraulically-
sorted silt-, sand- and granule-size (b3.0 mm diameter) spherical
aggregates (Aitken, 1991; Hoffman et al., 2007; James et al., 2001;
Kennedy, 1996; Xiao et al., 2004). They were deposited mainly below
sea-level and above prevailing wave base; inter- and supratidal
indicators are uncommon except in specific regions (Shields et al.,
2007; Zhou et al., 2010). Cap dolostones represent the transgressive
tract of a global depositional sequence (Hoffman and Schrag, 2002)
and, where fully developed, they grade upward into deeper water
(below storm wave base) hemipelagic (limestone, marl and/or shale)
rhythmite, representing the maximum of the postglacial flood.

Cap dolostones display idiosyncratic sedimentary features
(Table 1) whose mutual stratigraphic relations are broadly consistent
within and between cap dolostones in different regions (Allen and
Hoffman, 2005; Hoffman et al., 2007). Here, we focus on one such
structure, sheet-crack cements (Kennedy et al., 2001), which we
observe to be consistently associated with an early fall in relative sea-

level, preceding the major flood.We suggest that it is analogous to the
rapid regression of early Holocene age in Greenland, which is
attributed to the combined effects of glacial isostatic adjustments
(rebound) and the weakening gravitational ‘pull’ on the adjacent
oceanby the receding ice sheet (Clark, 1976). The gravitational effect is
instantaneous, dictated by the rate and pattern of ice-sheet mass loss
(Clark, 1976; Clark et al., 2002; Farrell and Clark, 1976; Tanner and
Clark, 1976; Tapscott and Clark, 1976). The early Holocene regression
inGreenland occurred later, relative to the ‘glacioeustatic’ rise in global
mean sea-level, than the early regressions in Marinoan cap dolostones
in Namibia. This is because the palaeotropical Congo and Kalahari
cratons (Fig. 1) were among the first in the world to lose their ice-
sheets (Hoffman and Li, 2009). The idea that regional sea-level must
rise and fall, by tens ofmeters, in response to thewaxing andwaning of
nearby ice-sheets is not new (Penck, 1882, cited in Jamieson, 1882).

First, we document the stratigraphic association of sheet-crack
cements with early regression in Marinoan cap dolostones on the
Congo and Kalahari cratons of Namibia. The sedimentary facies and
pattern of δ13Ccarb variation in the Keilberg cap dolostone of the Otavi
Group (Congo craton) has been described previously (Hoffman et al.,
2007) and only a brief recap is needed. The Dreigratberg (new name)
cap dolostone of the Port Nolloth Group in the Gariep Belt (Kalahari
craton) is described here for the first time. It was previously correlated
with the Bloeddrif Member of the Holgat Formation, which is the cap
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Fig. 1. Global palaeogeographic model for 635 Ma, constrained by palaeomagnetic data and chronotectonic ‘bar-coding’ (modified after Li et al., 2008; Hoffman and Li, 2009). Stars
show the distribution of named late Cryogenian (Marinoan) glacigenic formations with cap dolostones. Open stars are the areas described in this paper. Palaeocontinents: Am,
Amazonia; Ar, Arabia; Au, Australia; Ba, Baltica; CA, Chukotka-Arctic Alaska; Co, Congo; In, India; Ka, Kalahari; Laur, Laurentia including Rubia (Hildebrand, 2009); Ma, Mawson; NC,
North China; RP, Rio Plata; SF, São Francisco; Si, Siberia; SC, South China; Ta, Tarim; TM, Tuva-Mongolia; WA, West Africa.

Table 1
Sedimentary structures in Marinoan cap dolostones (top to bottom).

Sedimentary structure Description Preferred interpretation Alternative interpretations

Sea-floor barite Roseate clusters of bladed barite crystals in cm-scale digitate masses
with internal growth laminae. Interspaces are filled by laminated
peloidal ferroan dolomite, intermittently bridged by barite

Sulfate/ferrous boundary
in the water column
(Hoffman and Schrag, 2002)

Methane cold seepage
(Jiang et al., 2006)

Giant wave ripples Steep, highly aggradational megaripples with sharp, straight and
parallel crestlines, and bidirectional laminae that intersect in the
crestal region and coarsen crestward. Relief typically ~35 cm
crest to trough; width ~150 cm crest to crest. Ripple sets aggrade
sigmoidally for up to 140 cm and terminate through onlapping

Long-period waves
(Allen and Hoffman, 2005)

Growth faulting
(Gammon et al., 2005)

Tubestone stromatolite Confluent, meter-scale, domal or corrugate stromatolites,
hosting synsedimentary, cm-scale tubes, oriented
palaeovertically (geoplumb), filled by meniscus laminated
dolomicrite and/or void-filling cements

Gas or fluid escape
(Cloud et al., 1974)

Organosedimentary
growth form (Corsetti
and Grotzinger, 2005)

Low-angle crossbedding Laminated, normal and reverse graded, peloidal grainstone with
meter-scale, low-angle toplaps, downlaps and onlaps

Storm waves
(James et al., 2001)

Dissolution and flowage
(Kennedy, 1996)

Sheet-crack cements Bedding-parallel (rarely perpendicular) extension cracks, filled
by fibrous, isopachous dolospar and locally late drusy quartz

Pore-fluid overpressures
(Corkeron, 2007)

Methane cold seeps
(Kennedy et al., 2001)
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limestone above the older (Sturtian) Numees glacigenic diamictite
(Frimmel, 2008). The description here complements and extends
previous observations and correlations (Macdonald et al., in press).
Finally, we speculate on a causalmechanism that links early regression
with the development of sheet-crack cements in cap dolostones.

2. Sheet-crack cements and associated intrastratal folds

Sheet-cracks are planar openings, commonly buckled, that accom-
modate extension perpendicular, rarely parallel, to bedding. Their
typical aspect ratio of ~0.02 (width/length) is supported by isopachous
cement, precipitated as linings of constant-thickness, which are
composed of fibrous dolomite oriented normal to the crack walls
and local, late-stage, drusy quartz (Figs. 2a, b, 3a). Sheet-crack cements

are characteristic of but not unique to Marinoan cap dolostones
(Bertrand-Sarfati et al., 1997; Corkeron, 2007; Edwards, 1984; Hoff-
man et al., 2007; Jiang et al., 2006; Kennedy, 1996; Macdonald et al., in
press;McCay et al., 2006; Nédélec et al., 2007; Plummer, 1978; Shields,
2005; Sumner, 2002), where they are typically confined to a meter-
thick zone near the base of the cap dolostone (Corkeron, 2007;
Kennedy, 1996; Kennedy et al., 2001). Volumetric expansion, both
normal and parallel to bedding, is required to accommodate densely-
developed sheet-crack cements. This is expressed in the form of
variably-oriented intrastratal buckles and folds (Figs. 2a, b, 3a), the
severity of which increases directly with the volumetric fraction of
cement. The combination of intrastratal folds and isopachous cements
invites comparison with peritidal ‘tepee’ structures (Assereto and
Kendall, 1977), but sheet-crack cements in cap dolostones formed

Fig. 2. Lithofacies of Marinoan (635 Ma) cap dolostones on the distal foreslope of the Otavi platform in northern Namibia (a–c) and on the western margin of the Kalahari craton in
southern Namibia (d–f). (a) Sheet-crack cements composed of fibrous isopachous dolomite (white) and late drusy quartz (orange stain), with associated intrastratal folds, basal
Keilberg cap dolostone, Garettes pos (section P6540). (b) Micropeloidal dolostone (yellow) with isopachous sheet-crack cements (white) at the crest of an intrastratal anticline,
Fransfontein (section P7002). (c) Terminal Bethanis Member of the glacigenic Ghaub Formation, conformably overlain by basal turbidites and sheet-crack cements of the Keilberg
cap dolostone, Narachaams se pos (section A, P1607, in Fig. 4). (d) Namaskluft diamictite (ND) overlain by channelized white limestone (DCl) and buff micropeloidal dolostone
(DCd) of the Dreigratberg member, looking west from the top of the escarpment above Namaskluft Camp. (e) Clasts of Palaeoproterozoic basement rocks (arrows) at base of
Dreigratberg member above Namaskluft Camp. Note also the sheet-crack cement and buckling of beds developed to the left of the hammer. (f) Giant wave ripples and elongate
stromatolite (S) above Namaskluft Camp.
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exclusively below a sediment–water interface (Corkeron, 2007;
Kennedy, 1996; Kennedy et al., 2001), unlike ‘tepee’ structures which
result from subaerial exposure and evaporative pumping (Assereto and
Kendall, 1977; Kendall and Warren, 1987). Intrastratal folds associated
with sheet-crack cements should also not be confused with giant wave
ripples (Table 1), which lack void-filling cement and in which the
laminae interdigitate in the crestal region (Fig. 3b) as a result of
oscillatory traction across the ripple crest (Allen and Hoffman, 2005).

We are aware of only two explanations for sheet-crack cements in
Marinoan cap dolostones. The first is that they represent cold seeps on
the sea-floor, caused by flood-induced destabilization of permafrost
hydrates presumed to have developed in organic-rich shelf sediments
during the glacial sea-level lowstand (Jiang et al., 2003, 2006;
Kennedy et al., 2001). The existence of permafrost assumes that the
shelf was not well insulated by an ice sheet. One difficulty with this
model is the extreme paucity of cement with very depleted δ13C

values (Jiang et al., 2003; Wang et al., 2008), which are diagnostic of
modern and ancient cold seep carbonate cements (Kauffman et al.,
1996; Michaelis et al., 2002). In the Keilberg cap dolostone of the
Congo craton, the δ13C and δ18O values for isopachous cements and
coexisting sediments are statistically indistinguishable (Supplemen-
tary Fig. S1). A second difficulty is the lateral continuity of the meter-
thick zone of sheet-crack cements. We observed no discrete center in
tens of kilometers of continuous outcrop section, nor are the under-
lying strata or the base of the cap dolostone disturbed as would be
expected if methane had erupted from below (Hoffman et al., 2007).
Taking a different approach, Corkeron (2007) attributes sheet-
cracking and brecciation to pore-fluid overpressures, caused by
rapid carbonate sedimentation and differential burial compaction of
stratigraphically underlying mud, now shale. We are attracted to
pore-fluid overpressures as a means of jacking open sheet-cracks, but
place the ultimate cause of the overpressures elsewhere.

3. Otavi platform, Congo craton, northern Namibia

The Otavi Group is a 770–590 Ma carbonate platform exposed in
the Damaran (590–530 Ma) Otavi fold belt, which rims the (present)
southwestern promontory of the Congo craton. Two Cryogenian
glaciations are represented in the Otavi Group, the older Chuos
Formation and the ca 635 Ma Ghaub Formation (Halverson et al.,
2005; Hoffman and Halverson, 2008; Hoffman et al., 1998; Hoffmann
and Prave, 1996; Hoffmann et al., 2004;). The Ghaub Formation forms
a marine ice grounding-zone wedge situated on the distal part of the
south-facing foreslope of the Otavi platform (Domack and Hoffman, in
press; Hoffman, 2005, 2010). Glacial deposits are absent on the upper
foreslope and outer platform, 5 km seaward and 50 km landward of
the slope break respectively, but a discontinuous veneer of lodgement
tillite is found on the erosionally-deepened inner platform. A
syndeglacial cap dolostone, the Keilberg Member of the Maieberg
Formation (Hoffmann and Prave, 1996), conformably overlies the
Ghaub Formation or the contiguous glacial erosion surface (Hoffman
et al., 2007). The Keilberg Member (Fig. 4) is thicker on the upper

ba

Fig. 3. Contrast between the crestal regions of (a) an intrastratal anticline associated
with sheet-crack cements and (b) a giant wave ripple. Note the fibrous radiaxial
dolosparite (clear) filling the folded sheet-cracks (a); and the interdigitation of
opposing laminae, crestward-coarsening of peloids and strongly aggradational
character of the wave ripple (b).
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foreslope (b100 m) and outer platform (b75 m) where the Ghaub
Formation is absent, and thinner on the inner platform (b25 m) and
distal foreslope (b10 m). It forms the transgressive tract of the
postglacial depositional sequence, the Maieberg Formation, and is
everywhere conformably overlain by deeper water, marly limestone
rhythmite of themaximum postglacial flood (Hoffman and Halverson,
2008; Hoffman and Schrag, 2002).

There are five basic carbonate lithofacies within the Keilberg cap
dolostone (Fig. 4). All were deposited above prevailing wave base
except for the carbonate turbidites, which mark the upper transition
nearly everywhere and the base of the cap dolostone exclusively on the
distal foreslope (Fig. 4). The regression (shoaling-upward transition)
from basal turbidites into peloidal grainstone with low-angle cross-
bedding is exceptional; it goes against the overall deepening-upward
trend. The basal turbidites (Fig. 2c) are discrete, parallel-sided, graded
units of dololutite, separated by shale partings. They thicken (0.5 to
2.0 cm), coarsen and amalgamate upward. The zone with sheet-crack
cements consistently occurs directly above the turbidite-to-grainstone
transition (Figs. 2c, 5). It is ~1.0 m thick and continues laterally for tens
of kilometers parallel to depositional strike. Although spatially variable
in the intensity of development, the cements do not form centered
complexes, nor are the turbidites or the basal contact disturbed. The
turbidites pinch out at the base of the upper foreslope, coincident with
the disappearance sheet-crack cements (Fig. 4).

The question that emerges is, do sheet-crack cements systemat-
ically accompany regressive changes from basal turbidites to low-
angle crossbedded grainstones? Kennedy (1996) documented a
similar relationship in the lower part of the Marinoan cap dolostone
in the Amadeus Basin of central Australia, but attributed the low-
angle crossbedding (his Lithofacies II) to differential dissolution and
semi-plastic slumping in a deepwater setting. We suggest that his
graded, well-sorted macropeloids (Kennedy, 1996, Fig. 4b) accumu-
lated above prevailing wave base. To further illustrate the coincidence
of early regression and sheet-crack cements in cap dolostones, we
next describe a new cap dolostone from a different craton in Namibia.

4. Gariep belt, Kalahari craton, southern Namibia

TheGariep belt is a Pan-African orogenic belt exposed on thewestern
margin of the Kalahari craton in southwestern Namibia and northwest-
ern SouthAfrica (Stoweet al., 1984;Tankard et al., 1982). Folded strata in
this late Ediacaran to Terraneuvian transpressional orogen (Davies and
Coward, 1982) include the Port Nolloth Group (PNG), which formed as a
consequence of rifting on the Kalahari margin of the Adamastor
palaeocean (Frimmel, 2008), and theNamaGroup, whichwas deposited
in a foreland basin developed in response to collisions between the
Kalahari, Congo and Rio de la Plata Cratons (Germs and Gresse, 1991;
Gresse and Germs, 1993; Grotzinger and Miller, 2008; Grotzinger et al.,
1995). The PNG contains a pre-Sturtian diamictite (Kaigas Formation) of
uncertain origin, and discrete Sturtian (Numees Formation) and
Marinoan (Namaskluft diamictite) glacigenic deposits (Macdonald
et al., in press). The Namaskluft diamictite is capped by the Dreigratberg
member of the Holgat Formation, which contains geochemical and
sedimentological features characteristic of Marinoan (basal Ediacaran)
capdolostones. Belowwecompareproximal sections of theDreigratberg
member that show evidence for upward-shallowing, with more distal
sections that contain sheet-crack cements.

4.1. Inner shelf sections at Namaskluft Camp

On the escarpment above Namaskluft Camp (Fig. 5), the PNG fills a
~12-km-wide and 1-km-deep palaeo-valley that is incised into

Fig. 5. Geological map of a part of the autochthonous (Namaskluft Camp) and
parautochthonous (Namaskluft Farm and Dreigratberg) Port Nolloth Group on the
eastern margin of the Gariep Belt in southern Namibia.
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crystalline basement (Fig. 6). This panel is separated from more
internal, parautochthonous sections by crystalline basement (Fig. 5).

The palaeo-valley at Namaskluft Campwas cut into an uplifted rift-
shoulder during the Sturtian glaciation (Macdonald et al., in press). It
is lined by Sturtian-age glacial deposits (Numees Formation) and
largely filled by allodapic carbonate and siliciclastic turbidites
(Wallekraal Formation), consisting predominantly of Bouma
sequences Ta-b. During the Marinoan glaciation, a valley developed
on the south-side of the palaeo-canyon, preferentially eroding the
underlying sedimentary rocks (Fig. 6). The upper palaeo-valley is at
least 3 km-wide and 200 m deep, with a cross-sectional morphology
similar to Pleistocene sub-glacial tunnel valleys (Boyd et al., 1988;
Van Dijke and Veldkamp, 1996). Tunnel valleys form under high
glaciostatic pressures during rapid deglaciation (Van Dijke and
Veldkamp, 1996). The lower stratified diamictite facies of the
Namaskluft diamictite include plowed clasts, laminated muds with
soft-sediment deformation of glacitectonic origin, graded sandstone
with rare lonestones, and planar bedding passing upwards to
aggradational ripples, characteristic of upper flow regime (Macdonald
et al., in press). This facies assemblage is characteristic of Pleistocene
tunnel valleys (Eyles and McCabe, 1989). The massive diamictite
facies at the top of the Namaskluft diamictite are interpreted to reflect
a rainout till formed at the termination of glaciation. The overlying
Dreigratberg cap carbonate is also channelized with a b30-m thick
package of limestone turbidite (Fig. 2d) present between the
Namaskluft diamictite and the cap dolostone (Fig. 7). This limestone
body pinches out laterally and is succeeded by the buff-coloured
dolostones of the Dreigratberg member, which contains giant wave
ripples and tubestone stromatolites.

Fifteen detailed stratigraphic sections were measured through the
Dreigratberg cap carbonate along the escarpment above Namaskluft

Camp to track facies changes in a three dimensional framework (Fig. 7).
Deposition begins with a channelized body of white to violet allodapic
limestone with reduction spots (Fig. 2d) and shallows up to a fine-
laminated micropeloidal dolomite with low-angle crossbedding. The
limestone beds are graded and also contain thin green marl partings.
Within 5 km to the northwest of its greatest thickness, the limestone
turbidite interval thins to less than a meter. Cobble-sized lonestones of
metamorphic basement and carbonate are present in these thin
turbidite beds on the margin of the channel (Fig. 2e), but were not
found in the thickest bodies of the basal Dreigratberg limestone.

The limestone turbidites are succeeded gradationally by fine-
laminated, buff-coloured, micropeloidal dolostone with low-angle
crossbedding. Sheet-crack cements occur near the base of the dolostone
(Fig. 2e), but are poorly developed and laterally discontinuous. Within
2 m of the base of the dolostone, giant wave ripples form off of planar
surfaces. Wave ripples near the base of the dolomite have b30 cm of
synoptic relief and wavelengths N2 m (Fig. 2f). Elongate stromatolites
appear ~2 m higher in the section, preferentially nucleated on the
crests of the giant wave ripples. Microbialites become more dominant
upwards and modify the size of the wave ripples, decreasing their
wavelength and regularity (Fig. 2f). Throughout the cap dolostone, both
the wave ripples and the elongate stromatolites maintain a consistent
orientation ~100° azimuth. Some of the wave ripples are refolded, but
the orientation of these later tectonic folds is ~158° azimuth, distinct
from the orientation of the elongate stromatolites and wave ripples.
Higher in the section, the elongate stromatolites coalesce to form a
massive bioherms with tubestone structures (Corsetti and Grotzinger,
2005; Macdonald et al., in press). The bioherms are flooded by b300 m
of pink to light grey allodapic limestone and siltstone with hummocky
cross-stratification (upper Holgat Formation), variably truncated by the
sub-Nama unconformity (Fig. 6).
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Fig. 6. Longitudinal (strike-parallel) cross-section of the escarpment above Namaskluft Camp. Line of cross-section shown in Fig. 1. Datum is the base of the Nama Group, a surface
that certainly had some relief.

379P.F. Hoffman, F.A. Macdonald / Earth and Planetary Science Letters 300 (2010) 374–384



Author's personal copy

4.2. Upper slope sections at Namaskluft Farm

The sections at Namaskluft Camp are separated from those at
Namaskluft Farm by a basement high (Fig. 5). Along the southernmost
exposures at Namaskluft Camp, the cap dolostone rests on basement,
suggesting that this basement high persisted during deposition of the
Dreigratberg member. At Namaskluft Farm, the Namaskluft diamictite
is succeeded by less than a meter of green marl, a couple of meters of
thin-laminated peloidal dolomite, then N30 m of massive stromatolite
bioherm with irregular cements (Fig. 8). This is overlain by an ~50 m
thick transgressive sequence of folded pink limestone rhythmite and
an additional ~50 m of mixed allodapic carbonate and siliciclastic
rocks of the upper Holgat Formation.

4.3. Distal sections at Dreigratberg

In deeper water sections ~20 km to the southwest of Namaskluft
Camp at Dreigratberg, the Neoproterozoic stratigraphy is very con-
densed and consists predominantly of allodapic carbonate and argillite
(Fig. 8). The Namaskluft diamictite is stratified and contains rare,
subrounded carbonate and sandstone cobble dropstones that pierce the
siltstonematrix lamination. The diamictite is sharply capped by 1.6 m of
graded beds of allodapic limestone, which weathers white but is blue
when fresh. These beds are interpreted as turbidites. They are succeeded
by 0.4 m of dolostone with cements that are parallel to sedimentary
bedding and buckled upwards into pseudo-tepees. These sheet-crack

cements are isopachous,fibrous, andconsist of dolospar. Unlike thegiant
wave ripples, the pseudo-teepee structures associated with the sheet-
crack cements shownopreferred orientation. TheDreigratbergmember
continues upwards with an additional ~50 m of pink limestone,
characteristic of the upper portion of the Dreigratberg cap carbonate.

Sheet-crack cements are also present in distal sections of the
Dreigratberg member in the Dolomite Peaks area of South Africa
(Macdonald et al., in press).

4.4. Chemostratigraphy

Sampleswere collected frommeasured stratigraphic sections for δ13C
and δ18O analyses. They were processed and analyzed using standard
laboratory procedures (described in detail in Halverson et al., 2004).

The Dreigratberg member at Namaskluft Camp, Namaskluft
Farm, and Dreigratberg all display δ13C profiles with values beginning
near−1‰, decreasing sharply in the lower couple of meters, and then
increasing upwards through the most of the cap dolostone before
plunging to the most depleted values at the top (Fig. 8). Values of δ13C
at Namaskluft Farm are consistently offset by ~+1‰ from those at
Namaskluft Camp (Fig. 8).

4.5. Base-level fall

The Neoproterozoic palaeotopography on the escarpment above
Namaskluft Camp affords a unique window into the relationship

Fig. 7. Litho- and chemostratigraphy of the Dreigratberg cap carbonate in a longitudinal cross-section of the escarpment above Namaskluft Camp. Datum is the base of the cap
dolostone.

380 P.F. Hoffman, F.A. Macdonald / Earth and Planetary Science Letters 300 (2010) 374–384



Author's personal copy

between base-level and facies change. Typically, the sedimentary
facies of the Marinoan cap dolostone are in a characteristic order,
progressing in a transgressive sequence up-section from a micro-
peloidal dolomite with low-angle crossbedding, to tubestone stroma-
tolites, to giant wave ripples, and culminating with crystal fans
precipitated at a dolomite–limestone transition (Hoffman et al., 2007),
although one or more of these features are commonly missing from
any individual outcrop. However, unlike cap carbonates elsewhere,
along the escarpment, a channelized body of allodapic limestone is at
the base, and is succeeded by amicropeloidal dolostone. The limestone
hosts rare ice-rafted debris, marking the retreat of the ice-line. Within
the overlying dolostone, giant wave ripples are always below or
interbeddedwith elongate gutter stromatolites that progress upwards
to tubestone stromatolites. Elongate stromatolites grow preferentially
on the crests of giant wave ripples and coalesce upwards to form
tubestone stromatolites. These facies patterns describe a high-stand
tract prior to a transgression, and the characteristic sequence of
sedimentary structures is inverted.

Carbon isotope chemostratigraphy suggests that the high-stand
tract on the escarpment can be correlated with the condensed section
at Dreigratberg. That is, the progression from channelized limestone
turbidite to giant wave ripples and tubestone stromatolites on the
escarpment is equivalent to the condensed turbidite to sheet-crack
cement succession at Dreigratberg, both recording a fall in relative
sea-level prior to the maximum flood at the top of the Dreigratberg
member.

5. Discussion

5.1. Variable expressions of early regression

There are significant differences as well as obvious similarities
between the Dreigratberg cap dolostone and its equivalent on the
Otavi platform, the Keilberg Member (Figs. 4 and 8). In both areas, the
cap dolostone is thinnest on the distal slope, thickest on the upper
slope, and intermediate in thickness on the platform. In both areas, it
features an overall sigmoidal δ13C profile composed of three stages—a
steep early decline, a long gradual rise, and a steep final descent. In
both areas, δ13C values through the gradual rise are consistently

higher on the slope than on the inner shelf/platform. And in both
areas, rifting had been active before, during and after the Sturtian
glaciation, but the Marinoan glaciation encountered young passive
margins undergoing regional subsidence of presumed thermal origin
(Halverson et al., 2002; Macdonald et al., in press).

Hoffman et al. (2007) demonstrated that the KeilbergMemberwas
strictly deposited within the flooding stage associated with global ice-
sheet meltdown. On the assumption that this occurred rapidly
because of positive climate feedbacks (e.g., ice-elevation, ice-albedo
and greenhouse-gas feedbacks), they concluded that the observed
change in δ13C of N4‰ was far too large to reflect change in the
isotopic composition of seawater, given the long residence time of C in
seawater (100 s of kyrs) with elevated atmospheric pCO2 (Bao et al.,
2008). They postulated that the changes in δ13C reflect a dominant
role for temperature-dependent CO2 (gas)–CO3

2− isotopic fraction-
ation at low pH (b7.2). Accordingly, the overall upward decline in δ13C
reflects strong warming as ice-sheets receded, lowering the planetary
albedo by 0.3 (snowball Earth deglaciation). With insolation reduced
by 6% relative to present, the albedo change amounts to a radiative
forcing of nearly 100 Wm−2, of which ~11 Wm2 would be taken up
in melting the global ice-sheets (Wallace and Hobbs, 1977, p. 320).
Lower δ13C values on the inner platform reflect warmer waters there
during the gradual rise, compared to the slope. This reasoning may
also apply to the Gariep belt, although the estimated horizontal
temperature gradient across the Otavi platform of 0.1 °C km−1

(Hoffman et al., 2007) must have been b10× steeper to account for
the telescoping of distance (Fig. 8). Alternatively, the lateral gradient
could be a product of an isotopically-light carbon flux from the
continent. Either way, we postulate that this gradient was maintained
in part by a palaeotopographic basement high between the inner shelf
and upper slope, above which the tubestone stromatolite of the
Dreigratberg member was best developed, restricting circulation
between the inner shelf and the open ocean.

Of the differences, four stand out. First, stratigraphic and isotopic
variability is more localized in the Gariep belt. Changes that take place
in 15 km across strike in the Gariep belt occur in 150 km across the
Otavi platform (Figs. 4 and 8). This reflects more localized palaeoto-
pography as discussed above. Second, compared with the Keilberg
Member, the Dreigratberg sections are displaced ‘downward’, relative

Fig. 8. Litho- and chemostratigraphies of the Dreigratberg cap carbonate in an oblique transverse cross-section from Dreigratberg to Namaskluft Camp (see Fig. 1 for locations).
Columnar section at Namaskluft Camp is a cartoon section with the thickness of the basal turbidites from F539 and the thicknesses of the cap dolostone facies averaged from the
sections shown in Fig. 6.
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to the sigmoidal δ13C profile. The early steep decline is captured in all
three sections in the Gariep belt but only on the distal foreslope of the
Otavi platform (Figs. 4 and 8). The final steep descent is recorded in
dolostone in all sections on the Otavi platform, but in the Gariep belt
it only occurs in the limestone above the Dreigratberg member.
This means that the Dreigratberg member began and ended earlier
than the Keilberg Member, relative to the warming trend and the
glacioeustatic rise. A simple explanation is that the Dreigratberg
preserves the shoalwater depositional record at a lower mean palaeo-
elevation than the Keilberg, thereby capturing an earlier phase of the
glacioeustatic flood. Third, the early regression recorded in the
Dreigratberg member extends over a thicker stratigraphic interval
compared with the Keilberg Member. The regressive segment is
b1.0 m thick in the Keilberg (Fig. 2c) but up to 40 m thick in the
Dreigratberg member (Fig. 8). This is consistent with the Dreigratberg
cap being slightly older than the Keilberg, which only caught the tail
end of the early regression in its oldest sections (distal foreslope). And
fourth, the early regression occupies only part of the initial steep
decline in δ13C in the Keilberg Member, but outlasts it in the
Dreigratberg member (Figs. 4 and 8). This implies that relative sea-
level continued to fall in the Gariep belt after it had stopped falling
around the Otavi platform, assuming that the warming of surface
waters (governing the δ13C trajectory according to Hoffman et al.,
2007) occurred simultaneously in both areas.

5.2. Early regression and sheet-crack cements

Why are sheet-crack cements closely associated with early
regression? Before they were buckled, sheet-cracks opened vertically,
parallel to the fibres of the cement, and against the force of gravity.
This implies that pore-fluid pressure (pore pressure) exceeded the
lithostatic pressure. When sedimentation occurs, the sediment ac-
quires a pore pressure equal to the hydrostatic pressure. With burial,
pore pressures increase on a trajectory intermediate between the
hydrostatic and lithostatic pressure gradients (Fig. 9). This is referred
to as pore-fluid overpressure. Overpressure allows sheet-cracks to
form within the sediment. We propose that regionalized sea-level
falls associated with the disappearance of ice-sheets lowered
lithostatic pressures below the ambient pore pressure at shallow
depths beneath the sediment–water interface (Fig. 9). Hydrostatic
and lithostatic pressures drop by ~1 bar for every 10 m fall in sea-
level. For this mechanism to be viable, the rate of sea-level fall must be
rapid relative to the rate at which the sediment can depressurize by
pore-fluid escape. Rapid cementation, which lowers permeability
while increasing pore pressure, is an essential part of the proposed
mechanism. The isopachous cements themselves provide undeniable
evidence for rapid carbonate precipitation from pore waters synchro-
nous with incremental sheet-crack opening. We discount reminer-
alization of organic matter or methane hydrate as a driving force for
overpressure because the δ13C of the sheet-crack cement provides no
support for an isotopically-light source of alkalinity (Supplementary
Fig. S1). Our proposal provides a causal mechanism for the observed
correlation of sheet-crack cements and early regression within cap
dolostones.

5.3. Early regression and ice-sheet mass loss

What caused the early fall in relative sea-level? When a grounded
ice-sheet forms near a coast, sea-level in its vicinity rises due to
mutual gravitational attraction between the ice-sheet and the
adjacent waters. At a glacial termination, sea-level in the vicinity of
a melting ice-sheet will fall at a rate determined by the rate and
distribution of ice-sheet mass loss (Clark, 1976; Farrell and Clark,
1976). The fall will be fastest where mass loss is concentrated at the
periphery of an ice-sheet, causing the ice edge to retreat. By raising
the land surface, glacioisostatic adjustments (GIA) also contribute to

early regression but, as the time-scale for GIA is more prolonged
than the recession of the Laurentide and Scandinavian ice-sheets,
Marinoan GIA has been identified with ‘late regression’, at the strati-
graphic tops of cap dolostones (Bertrand-Sarfati et al., 1997; James
et al., 2001; Nogueira et al., 2003; Shields et al., 2007; Zhou et al.,
2010). We propose that early regressions in Marinoan cap dolostones
in central Australia (Kennedy, 1996) and on the Congo and Kalahari
cratons, are primarily related to the instantaneous gravitational effect
on regional sea-level of ice sheet mass loss, complemented by GIA.

How fast did Marinoan ice-sheets vanish? From a climate physics
perspective, it is generally assumed that Marinoan deglaciation was
very rapid (a few kys) because of the preponderance of ice-sheets at
low palaeolatitudes (Fig. 1), combined with extreme atmospheric
pCO2 (Bao et al., 2008, 2009). In contrast, the existence of apparent
geomagnetic excursions and reversals in cap dolostones implies a
time-scale of tens to hundreds of kyrs if Marinoan geomagnetic field
behavior was similar to the Cenozoic (Font et al., 2010; Raub and
Evans, 2006; Trindade et al., 2003). This conflict remains unresolved,
but we find the shorter time-scale more compatible with the
sedimentology of cap dolostones (Table 1). If Marinoan ice-sheets
were buttressed by ice-shelves or a continuous ‘sea-glacier’ (Goodman
and Pierrehumbert, 2003; Pollard and Kasting, 2005; Warren et al.,
2002), their removal would have triggered rapid ice-sheet drainage, as
observed in modern outlet glaciers when confined ice-shelves are lost
(De Angelis and Skvarca, 2003). The sea-glacier would be lost before
the ice-sheet because it is thinner and has a lower surface elevation.
Because the rise in global mean sea-level due to the melting of
Marinoan ice-sheets globally was roughly ten times larger than the
regional fall in relative sea-level due to the gravitational effect of local
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Pressure
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Fig. 9. Lithostatic pressures before (LP0) and after (LP) after a sea-level fall, and their
relation to equivalent hydrostatic pressures (HP0 and HP) and the initial pore pressure
(PP0). The triangular area in yellow indicates the field where pore pressures potentially
exceed lithostatic pressures after the sea-level fall, provided the fall is rapid relative to
the rate at which the sediment will depressurize. Note that sedimentation during sea-
level fall would not increase LP relative to PP0: they would rise in unison.
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ice-sheet mass loss, ice-sheets must have vanished in sequence, not in
unison, for the gravitational effect to reverse, not merely reduce, the
rate of syndeglacial flooding.

6. Conclusions

Sheet-crack cements and associated intrastratal folds and breccias
consistently follow regressive (shoaling-upward) intervals near the
base of otherwise transgressive (deepening-upward) cap dolostones
of earliest Ediacaran (Marinoan) age on the Congo and Kalahari
cratons of Namibia. We relate the early regression to sea-level fall in
the vicinity of an ice-sheet, as a gravitational response to its mass loss,
complemented by glacial isostatic adjustment (postglacial rebound).
The fall in relative sea-level, if rapid, could result in pore-fluid
overpressures at shallow depths within sediment of low permeability,
which we suggest as the mechanism for sheet-crack development.
This would account for the stratigraphic association of sheet-crack
cements with early regressions in Marinoan cap dolostones. If our
model has merit, sheet-crack cements will be found to follow early
regressions within Marinoan cap dolostones in other areas.

Supplementarymaterials related to this article can be found online
at doi: 10.1016/j.epsl.2010.10.027.
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