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Abstract

Transgenic models of Alzheimer’s disease (AD) have made significant contributions to our understanding of AD
pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster,
provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects
of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the
Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit
aspects of clinical AD neuropathology and symptomology. These include the generation of Ab40 and Ab42, the presence of
amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In
addition, these flies exhibit external morphological abnormalities. Treatment with a c-secretase inhibitor suppressed these
phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data
demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic
interventions.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder and is the most common cause of dementia in the

developed world [1]. The pathological features of AD include the

presence of amyloid plaques, neurofibrillary tangles, and loss of

neurons, primarily in the cerebral cortex and hippocampus [2].

Amyloid plaques are extracellular deposits mainly composed of a

small peptide (,4 kD) called b-amyloid (Ab), surrounded by

dystrophic neurites, reactive microglia and astrocytes [3]. Several

lines of evidence support the amyloid hypothesis of AD, according

to which Ab plays the central role in initiating the AD pathogenic

cascade [4].

Ab peptides are generated by proteolytic processing of the b-

amyloid precursor protein (APP) through sequential proteolysis by

b- and c-secretases in the amyloidogenic processing pathways [5].

This pathway is initiated when APP undergoes proteolytic

cleavage by b-secretase, encoded by the BACE gene. This cleavage

produces a soluble extracellular/lumenal fragment of APP (sAPPb)

and a membrane spanning C-terminal fragment (bCTF/C99).

The c-secretase complex then cleaves bCTF to produce Ab
peptides and the APP intracellular domain (AICD) [5]. Ab
peptides of a variety of lengths are produced but Ab40 and Ab42

are the major isoforms produced in the central nervous system

(CNS). Compared to Ab40, Ab42 is more prone to oligomerization

and has been shown to be more neurotoxic [6].

APP also undergoes an alternative proteolytic processing

pathway termed the non-amyloidogenic pathway. In this pathway,

a-secretase initially cleaves APP, rather than b-secretase, to

produce a soluble extracellular/lumenal fragment of APP (sAPPa)

and a membrane spanning C-terminal fragment (aCTF/C83).

Again, the c-secretase complex then cleaves aCTF to produce the

P3 peptide and AICD [5].

APP proteolysis is an important step towards development of

AD. Therefore, it is important to identify genes and pharmaceu-

ticals that modulate APP metabolism and Ab production and
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clearance. Developing in vivo disease models has proven crucial to

illuminating disease mechanisms, since in vitro studies do not

always represent the natural physiological complexity of the tissue

and/or organism. In particular, the fruit fly, Drosophila melanogaster,

has been tremendously important and influential in furthering our

understanding of the mechanisms of many forms of neurodegen-

erative diseases, including AD [7,8,9,10,11].

Drosophila endogenously express orthologues to the human APP

[12], a-secretase [13,14], and c-secretase [15,16,17,18]. Recently,

a functional Drosophila homolog of the BACE (b-secretase) family

of proteins has also been identified [19]. Though the Drosophila

homolog to human APP, Appl, does not contain significant

sequence similarity within the Ab region of human APP [12],

there is recent evidence suggesting that the fly Appl protein is also

capable of generating neurotoxic Ab-like fragments when the fly

Appl and fly b-secretase proteins are overexpressed in Drosophila

tissues [19]. These features position the fly as an attractive model

to further study the evolutionarily conserved functions of these

endogenous proteins.

Even though flies express orthologues of APP and secretase

proteins, other Drosophila models of AD have been generated that

express the human genes to gain insight into mechanism of disease

and to illuminate potential therapeutic approaches. Many of these

Drosophila AD models express the toxic human Ab42 to study its

effects on a molecular and behavioral level [9,20,21,22,23,24].

These models have been useful in further dissecting the basic

mechanisms behind human disease phenotypes such as amyloid

deposits, learning and memory deficiences, and premature death.

This method of expressing wild-type Ab and disease associated Ab
sequence variants is useful for modulating the disease phenotype

after disease progression has begun. Fewer reports have been

published that rely on human APP proteolytic processing in the

Drosophila CNS to generate Ab oligomers [11], even though it has

been shown that the endogenous fly secretases can process the

human form of APP [7,8].

The targeted expression of human AD genes in the fly has been

used previously, with a focus on expression in the retina, wing, and

the nervous system [7,8,11]. Here we express the human APP and

BACE genes within the developing nervous system of Drosophila.

This results in a model that displays very similar pathology to

human Alzheimer’s patients, including accumulation of Ab-

containing puncta in their brains, decreased dendritic and axonal

fields in areas of the brain important for learning and memory,

and memory deficits. A significant advantage of the model we

describe is that these neuropathologies and memory defects are

evident within days. We demonstrate that all of these phenotypes

can be pharmacologically suppressed by the c-secretase inhibitor

L-685,458, illustrating the efficacy of this model for the rapid

testing of small molecules for therapeutic intervention in vivo.

Results

Expression of the human APP gene alone or in combination

with the human b-secretase (BACE) gene exclusively in the

developing fly nervous system was accomplished using the

GAL4/UAS system [25]. Specifically, we utilized elav-GAL4,

which drives protein expression throughout the fly CNS [26].

Using Western blot analysis, full-length APP is detected in the

brains of flies expressing either APP or APP/BACE under control

of the elav promoter, but APP is not detected in control flies lacking

the APP transgene (Figure 1), as expected in the absence of the

elav-GAL4 driver. In brain tissue from elav; APP; BACE heterozy-

gous flies, detection of BACE (Figure S1D) andb CTFs are

evidence of BACE expression and b-secretase activity (Figure 1,

red arrows in third lane) respectively. b-secretase activity is not

evident in elav; APP heterozygous flies, since only the a-secretase

generated aCTFwas detected (Figure 1, red arrow in second lane).

To determine if the bCTFs were further processed by c-

secretase we measured Ablevels by ELISA and by Western blot.

AbELISA results demonstrate that elav; APP; BACE heterozygous

flies produce signficantly higher levels of Ab40 and Ab42 than those

not expressing human APP or BACE (Table 1). When elav; APP;

BACE heterozygous flies are raised on food containing 100 nM L-

685,458, a c-secretase transition state inhibitor, Ablevels are

undetectable (Table 1). This indicates that c-secretase activity is

inhibited successfully in these flies, as is the subsequent production

of Ab. This result was confirmed by Western blot analysis of elav;

APP; BACE fly heads, which demonstrate decreased Ab levels in

the L-685,458 treated flies compared to the DMSO (vehicle) raised

elav; APP; BACE heterozygous flies (Figure S1C and S1F). The

bCTF is the substrate for c-secretase cleavage in APP amyloido-

genic processing. Inhibition of c-secretase activity should result in

increased CTF levels. Consistent with this, we observed increased

bCTF levels in the elav; APP; BACE heterozygous flies raised on L-

685,458 containing food compared to those raised on DMSO

(Figures S1B and S1F), as well as a modest increase in full length

APP levels in flies raised on L-685,458 (Figures S1A and S1F).

Treatment with either DMSO or L-685, 458 did not alter

expression of BACE (Figures S1E and S1F). Therefore, CNS

expression of human APP and BACE recapitulates APP

amyloidogenic processing observed in vitro and in rodent transgenic

AD models.

In this model APP and BACE are expressed continuously

during fly development. Upon adult eclosion, we observed two

Figure 1. Transgene expression and proteolytic processing.
Western blot analysis of human APP and fly b-actin detected in fly head
lysates of: 1) elav; +; + heterozygous flies 2) elav; APP; + heterozygous
flies, and 3) elav; APP; BACE heterozygous flies. APP-FL (full length APP,
,110 kD) and APP-CTFs (C terminal fragments, ,10–12 kD) were
detected using A8717 (Sigma). Red arrows indicate a-CTF (lane 2) and b-
CTFs (lane 3). A fly b-actin specific antibody was utilized (Abcam).
doi:10.1371/journal.pone.0020799.g001

Table 1. Ab levels.

Genotype Treatment Ab40 (pg/mL) Ab42 (pg/mL)

elav; +; + – 36614 ,5

elav; PP; BACE DMSO 11068 114622

elav; APP; BACE L-685,458 ,5 ,5

Ab levels detected in fly head lysates (genotypes indicated) by ELISA.
doi:10.1371/journal.pone.0020799.t001

Drosophila AD Model
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distinct morphological abnormalities in these flies: crumpled

wings, and the presence of melanotic masses on both the abdomen

and proboscis (arrows in Figure 2B). Crumpled wings were

observed in 61% of all elav; APP; BACE heterozygous flies, while

necrotic tissue was observed in 26% of the same genotype

(Figure 2C). These phenotypes are observed in flies expressing

human APP alone but at an approximately tenfold reduced

penetrance compared to flies expressing both human APP and

human BACE (Figure 2C) consistent with the idea that the

phenotypes are dependent upon the expression of human BACE

and amyloidogenic APP processing. More evidence to support this

idea is that elav; APP; BACE heterozygous flies raised on food

containing L-685,458 display significantly fewer crumpled wings

(p = 0.001) or necrotic tissue (p = 0.001; Figure 2C). Specifically, L-

685,458 treatment reduced the occurrence of crumpled wings to

17% from 52% observed in elav; APP; BACE flies treated with

vehicle (DMSO). Additionally, L-685,458 treatment reduced the

presence of melanotic masses to 3% from 16%.

We next compared the longevity of flies expressing human APP

and human BACE to those flies only expressing human APP or

human BACE alone. We created both survival and hazard plots

for each genotype for analysis (Figure S2). We calculated the

median survival time as the time when the survivor function equals

50%. As some flies were censored during the experiment (those

that flew away or died of unnatural causes), median survivorship

reflects a more reliable metric than the mean survival time.

The median survival time for elav; APP; BACE heterozygous flies

was 32 days, compared to 42 days for elav; + heterozygous flies,

and 56 days for +; APP; BACE heterozygous flies (Figure S2A). We

found that until day 45, elav; APP; BACE heterozygous flies

consistently had a lower probability of survival (Figure S2A). We

found a statistical difference in survival between elav; APP; BACE

heterozygous flies and controls (p,0.0001), suggesting that these

flies displayed decreased survival, but this effect was limited to only

young adults. While we found that there was no significant

difference in the probability of survival between elav; BACE; +
heterozygous flies and controls (p = 0.1207) (Figure S2D), we did

find a significant difference in the probability of survival between

elav; APP; + heterozygous flies and controls (p,0.0001) (Figure

S2C). The median survival time of elav; APP heterozygous flies was

6 days, while the median survival time for the +; APP heterozygous

and elav; + heterozygous flies was 38 and 45, respectively (Figure

S2C). Again, the effect on survival was limited to only young

adults. Finally, we compared the survival time for elav; APP; BACE

heterozygous flies fed on DMSO and L-685, 458, and found no

significant difference in the probability of survival (p = 0.5038).

Taken together, these results suggest that while there is an effect on

survival in the elav; APP; BACE heterozygous genotype in young

adult flies, this effect does not require either BACE or c-secretase

function, and therefore most likely does not represent an effect of

human Ab accumulation in these flies.

We next compared the gross anatomical features of whole

brains from elav-CD8; +; + heterozygous flies and elav-CD8; APP;

BACE heterozygous flies (Figures S3A and S3B, respectively). We

co-expressed a membrane tagged form of GFP (CD8-GFP) in the

CNS of flies with the indicated transgenes to fluorescently visualize

whole brain anatomy. elav-CD8; APP; BACE heterozygous flies

displayed evidence of significant neuroanatomical changes com-

pared to elav-CD8; +; + heterozygous flies and elav-CD8; APP; +
heterozygous flies (Figures S3A and S3B). A number of specific

brain structures/regions are altered including the the mushroom

body (Figure 3A), the antennal lobes, and the optic lobes (Figure

S3). The mushroom bodies are axonal bundles involved in

learning and memory behavior in multiple experimental para-

digms [27,28,29,30,31]. These axons extend from a population of

neurons that consist of three distinct groups, which give rise to a

final adult structure consisting of 5 projections to the a, a9, b, b9,

and c lobes (Figure 3A) [32]. These structures are significantly

smaller in elav-CD8; APP; BACE heterozygous flies compared to

controls (Figure 3A). In multiple cases axons from the mushroom

body extending to the a and a9 lobes are either significantly

shorter than controls, and/or missing completely (Figure 3A).

In order to quantify these observations we measured the sizes of

the Kenyon cells (soma), calyx (dendritic field), and lobes (axonal

bundles) of the mushroom body neurons (Figure 3B). elav-CD8;

APP; BACE heterozygous flies display significant reductions in the

Figure 2. External morphology and longevity in AD flies. A)
elav; +; + heterozygous fly one day after eclosion showing no defects on
ventral proboscis, ventral abdomen, or in wings. B) Arrows indicate
regions of the elav; APP; BACE heterozygous fly one day after eclosion
showing melanotic masses on ventral proboscis, ventral abdomen, and
curled wings. C) Quantification of the external defects shown in (B).
n.50 in each case. Genotypes and treatments indicated. * indicates
p,.001 between DMSO and L-685,458.
doi:10.1371/journal.pone.0020799.g002

Drosophila AD Model
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sizes of the calyx (p = 0.005) and the lobes (p = 0.005) compared to

elav-CD8; APP; + heterozygous flies, elav-CD8; BACE; + heterozy-

gous flies, or elav; + heterozygous control flies (Figures 3B, C).

However, elav-CD8; APP; BACE heterozygous flies do not display a

significant (p = 0.099) decrease in Kenyon cell soma size compared

to either elav; + heterozygous flies, or elav; APP; + heterozygous flies

(Figure 3C). elav-CD8; APP; BACE heterozygous flies do show a

significant difference in size compared to elav; BACE; +
heterozygous flies (p = 0.018). However, Kenyon cell fields from

elav; BACE; + heterozygous flies do not show a significant different

between either elav; APP; + heterozygous flies or Elav; +
heterozygous flies themselves (p = 0.393 and 0.989 respectively).

Culturing elav-CD8; APP; BACE heterozygous flies on food

containing the common drug vehicle DMSO resulted in a

decrease in Kenyon cell size as compared to the same genotype

cultured on medium containing no DMSO, indicating that

DMSO has a negative effect on these neurons in this genetic

background. This is consistent with previous literature suggesting

that DMSO has deleterious effects in flies as well as other systems

[33,34,35]. However, when elav-CD8; APP; BACE heterozygous

flies were raised on food containing L-685,458 dissolved in DMSO

we observe a significant increase in the size of the Kenyon cell

soma (p = 0.03) and calyx (p = 0.03) compared to elav-CD8; APP;

BACE heterozygous flies raised on DMSO alone (Figure 3D).

However, a significant increase in the axonal fields upon L-

685,458 treatment was not observed (p = 0.14; Figure 3D). In

conclusion, elav-CD8; APP; BACE heterozygous flies have reduced

dendritic and axonal fields in structures involved in learning and

memory. Further, these reductions require the expression of

human APP and BACE, as well as the proper function of the c-

secretase complex, consistent with the idea that these neuroana-

tomical phenotypes are dependent upon amyloidogenic APP

processing.

Having observed significant neuroanatomical changes in the

elav-CD8; APP; BACE heterozygous flies, we investigated whether

these brains also displayed Abpositive puncta. Labeling elav-CD8;

APP; BACE heterozygous fly brains with the anti-Ab antibody,

6E10, we detected significantly more 6E10 positive puncta in elav-

CD8; APP; BACE heterozygous flies as compared to elav-CD8; +; +
heterozygous controls (Figure 4B compared to 4A, Figure 4H).

These 6E10 reactive puncta are found in the same brain regions as

we observed significant neuroanatomical changes. Figure S3C

shows a higher resolution image of 6E10 immunoreactive puncta

in region near the Kenyon cell soma. Thioflavin S confirms the

presence of amyloid puncta in the same cortical areas as the 6E10

antibody of elav; APP; BACE heterozygous flies (Figure S3D). To

Figure 3. Defects in AD fly neuroanatomy. A) Mushroom body from elav-CD8-GFP; +; + heterozygous fly brain (left) displays normal axonal
lobes. The same region in elav-CD8-GFP; APP; BACE heterozygous fly brain (right) displays significantly altered axonal lobes. These lobes are labeled.
Note the complete loss of a9 lobe in elav-CD8-GFP; APP; BACE heterozygous fly brain. Scale bars indicate 50 mm in both panels. B) Examples of Kenyon
cell (KC) substructures measured in the indicated genotypes. Kenyon indicates KC cell soma. Calyx indicates KC dendritic field. Lobes indicate KC
axonal field. C) Neuroanatomical surface area measurements. Genotypes and substructures indicated. * indicates p,0.05, with exact values listed in
text. D) Pharmacological rescue of neuroanatomical surface area decreases in elav-CD8-GFP; APP; BACE heterozygous fly brains. Treatments indicated.
* indicates p,0.05, ANOVA analysis with exact values listed in text. Error bars represent standard error in each case.
doi:10.1371/journal.pone.0020799.g003

Drosophila AD Model
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confirm that the 6E10 puncta we observe could co-localize with a

stain for amyloid, we stained these brains with both 6E10 and X-

34, a fluorescent Congo red derivative. X-34 has previously been

shown to detect a variety of amyloid structures in brain tissue [36].

We analyzed multiple high magnification (6006) images of elav-

CD8; APP; BACE heterozygous fly brains to determine the

frequency of colocalization of 6E10 and X-34. We observe that

on average 84.2% of X-34 puncta co-localize with 6E10, while

59.2% of 6E10 puncta co-localize with X-34 stain in elav; APP;

BACE heterozygous fly brains (Figures 4C–E), suggesting that our

6E10 immunoreactive puncta contain material in a b-pleated

sheet conformation.

Culturing elav-CD8; APP; BACE heterozygous flies on L-685,458

resulted in a significant decrease in the number of 6E10

Figure 4. Ab and amyloid detection in CNSs. A) elav; +; + heterozygous fly brain six days after eclosion shows minimal immunoreactivity to
6E10. Scale bar indicates 100 mm for panels A, B, F, and G. B) elav; APP; BACE heterozygous fly brain six days after eclosion shows significant 6E10
immunoreactive puncta. C) Co-localization of puncta to 6E10 and X-34 immunoreactivity in elav; APP; BACE heterozygous fly brains. High
magnification (6006) of 6E10 puncta (red) from cortical area of fly brain show a majority of puncta co-localized with X-34 stain (green). Arrow
indicates one example of 6E10 colocalizing with X-34 positive puncta. Arrowhead indicates one example of 6E10 that does not colocalize with X-34
puncta. Scale bar indicates 20 mm for C, D, and E. D) 6E10 positive puncta (white) from panel C. E) X-34 positive puncta from panel C. F) elav; APP;
BACE heterozygous fly brain six days after eclosion from flies treated with DMSO (vehicle) shows significant 6E10 immunoreactive puncta. G) elav;
APP; BACE heterozygous fly brain six days after eclosion from flies treated with L-685,458 (c-secretase inhibitor) shows minimal 6E10 immunoreactive
puncta. H) Quantification of panels A and B (left) and F and G (right). Error bars represent standard error. * indicates p,0.05. n = 3–5 fly brains.
doi:10.1371/journal.pone.0020799.g004

Drosophila AD Model
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immunoreactive puncta compared to DMSO treated flies of the

same genotype (Figures 4F, 4G, and 4H). These results further

confirm the presence of Ab positive puncta in the brains of the

elav-CD8; APP; BACE heterozygous flies, and show that presence of

these puncta is dependent on c-secretase activity, as expected.

Having observed marked neuroanatomical and neuropatholog-

ical changes in the elav-CD8; APP; BACE heterozygous flies, we

wanted to determine if CNS function may be compromised. As an

initial test of CNS function, we utilized a simple, yet powerful

behavioral assay, the climbing assay [37]. This well-established

assay has been previously used to assess nervous system

dysfunction in fly models of multiple diseases, including AD [9].

Briefly, flies display a negative geotaxis response when given a

mechanical stimulus. When tapped to the bottom of a vial, flies

normally orient themselves rapidly and begin climbing to the top.

By assaying the fly’s ability to climb to the top of a vial in a set time

period (18 seconds) we are able to compare broad nervous system

function of reflex behavior between flies of different genotypes, or

flies treated with different pharmacologic agents. When cultured

on normal food, flies that express both human APP and human

BACE (elav; APP; BACE heterozygous flies) show a significant

decrease in their climbing ability compared to outcrossed control

flies (Figure 5A). When cultured on food that contains L-685,458,

the decrease in climbing ability is significantly rescued compared

to flies cultured on food that contains vehicle (DMSO) control flies

(Figure 5B). To rule out the individual effect of APP and BACE on

this behavior, we repeated these experiments expressing only

human APP (elav; APP; + heterozygous flies) or only human BACE

(elav; +; BACE heterozygous flies) in the developing CNS. In both

cases, we observed no significant difference in flies expressing

human APP or human BACE alone compared to the appropriate

transgenic outcrossed controls (Figures S4A and S4B).

Memory loss is the defining symptom of AD. To test for deficits

in learning and memory in our AD model, we performed the

conditioned courtship suppression assay [38]. This assay is

ethologically based and capable of measuring both learning and

memory in individual flies [39]. Courtship conditioning is a form

of associative learning in Drosophila, where male courtship behavior

is modified by exposure to a previously mated female that is

unreceptive to courting [38,40]. Thus, after a training period of

1 hour of courting a mated female, virgin males suppress their

courtship behavior(s) even during subsequent exposure to

receptive virgin females for 1–3 hours [38,41,42,43].

To determine effects on learning in elav; APP; BACE

heterozygous flies, male flies were placed in a courtship chamber

with a previously mated (unreceptive) wild type (Canton S) female

for 60 minutes. The amount of time the male spent performing

courtship behavior was assessed during the first 10 minutes of this

training and compared to the last 10 minutes of the training

period. Wild type control flies showed a significant drop

(p = 0.0003) in courtship behavior in the last 10 minutes of

training as compared to the first 10 minutes of training

(Figure 6A), indicative of an appropriate learning response. Flies

that express human APP and human BACE (elav; APP; BACE

heterozygous flies) also showed an appropriate learning response

regardless of whether these flies were cultured on DMSO

(p = 0.0004) or L-685,458 (p = 0.0001; Figure 6A). Importantly,

this indicates that our elav; APP; BACE heterozygous flies are able

to successfully perceive and interpret these sensory stimuli

normally, and that they are able to alter their behavior

appropriately (learn) in response to training.

There have been five phases of memory defined in Drosophila:

immediate recall (0–2 minutes post-training), short term memory

(up to 1 hour post-training), medium term memory (up to six hours),

anesthesia-resistant memory (up to two days), and long term

memory (up to 9 days) [44,45]. We assayed the elav; APP; BACE

heterozygous flies for immediate recall memory by transferring

trained male flies to clean mating chambers with a receptive virgin

female within 2 minutes of training. We then assayed their

courtship behavior for 10 minutes. Trained wild type males showed

a clear decrease in courtship activity as compared to parallel sham

trained flies (p = 0.00003; Figure 6B), indicating a change in

behavior consistent with normal immediate recall memory of

training. However, elav; APP; BACE heterozygous flies cultured on

DMSO showed no significant decrease (p = 0.8) in courtship

behavior within 2 minutes of prior training compared to elav;

APP; BACE heterozygous male flies unexposed to females (sham

trained; Figure 6B). This indicates that though these flies are

capable of learning, they are deficient in their immediate recall

memory of this learning. Culturing elav; APP; BACE heterozygous

flies on L-685,458 showed a clear decrease (p = 0.005) in courtship

activity as compared to parallel sham trained elav; APP; BACE

heterozygous flies cultured on this media (Figure 6B), indicating that

L-685,458 can rescue the immediate recall memory defect normally

associated with elav; APP; BACE heterozygous flies cultured on

DMSO. This is interesting to note, particularly as culturing flies on

L-685,458 does not fully rescue the decreased Kenyon neuron

morphology in our elav-CD8; APP; BACE heterozygous flies.

Discussion

Drosophila serves as a quick, efficient, and powerful in vivo tool for

the analysis of multiple human diseases, including neurodegener-

ative diseases like AD. The main goal of developing such animal

models is to use the abundant genetic, cellular, and behavioral

tools available for these model organisms to discover and analyze

novel molecules and genetic pathways that mediate the etiology,

pathogenesis, and symptoms of human diseases. Because of the

speed and sensitivity of Drosophila, these models can serve as

excellent initial in vivo models to test for drug efficacy and possibly

toxicity. Our results indicate that we have successfully created a

Drosophila AD model that develops phenotypes rapidly and is

sensitive to pharmacological rescue by a known inhibitor of c-

secretase. We show that these AD model flies can recapitulate

amyloidogenic proteolytic processing of APP by b- and c-secretase

respectively, leading to the production of Ab. We have also shown

that presence of Ab in the central nervous system of these flies can

recapitulate some of the pathological, neuroanatomical and

behavioral changes seen in AD patients. We suggest that this

model will serve as a useful tool for future screening of genetic and

pharmacologic modulators of APP proteolysis and Ab production/

toxicity/clearance.

Previously characterized Drosophila models of AD have largely

relied on three basic approaches to investigate AD function

(reviewed in [46]). The first set of approaches relies on analyzing

the Drosophila homologs of the genes involved in AD. These

include Appl, the Drosophila homolog of APP [19,47,48]; tau, the

Drosophila homolog of Tau [49]; as well as Drosophila homologs of

the c-secretase complex genes presenillin [15,17], nicastrin [50], aph-1

[18,51], and pen-2 [18]. Expression of human APP rescues

behavioral deficits associated with loss of fly Appl, showing that

the human and fly proteins share a significant amount of

functional homology [48]. By studying the basic functions of

these fly genes, evolutionarily conserved functions of their

mammalian counterparts can be determined, and this in turn

can lead to a better understanding of the normal role of these

genes and their gene products in neural development and

neurodegeneration.
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A second approach relies on the direct expression of human Ab
[9,20,21,22,23,24,52,53,54,55,56]. Examples include expression of

Ab in fly tissues to: identify genes associated with Ab toxicity [52],

validate computational predictions of mutant Ab42 toxicity [24],

test the pathological effect of different Ab42 oligomerization states

[22], test for pathological effects of Tau phosphorylation, and test

for mitchondrial dysfunction [54,55].

Finally, expression of the human forms of APP, BACE,

Presenillin, and Tau [7,8,57,58] has also been utilized, but to a

lesser degree. Examples include the analysis of APP on axonal

outgrowth after injury [47], testing the efficacy of pharmacological

inhibitors [8] or peptide mimetics [11] on Ab generation and

toxicity, and testing the effect of Ab aggregation on axonal

transport defects [59].

Here, we expressed the human forms of APP and BACE

exclusively within the developing nervous system of the fly

allowing for the natural proteolytic processing of APP to occur

in order to generate Ab42. Expression was restricted to the CNS by

using the elav-GAL4 fly stock. This reagent places the yeast Gal4

protein under the control of the elav (embryonic lethal, abnormal vision)

Figure 5. Motor reflex behavior. A) Climbing assay measurement of motor reflex behavior of elav; APP; BACE heterozygous flies, as compared to
elav; +; + heterozygous flies and w; APP:BACE heterozygous flies. Parental strains indicated. B) Modulation of elav; APP:BACE heterozygous flies’ motor
reflex behavior by c-secretase inhibitor, L-685,458. Genotypes and treatment indicated. * indicates p,0.05. n = 50–100 flies. Error bars represent
standard error.
doi:10.1371/journal.pone.0020799.g005
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genomic enhancer region on the X chromosome [25]. elav encodes

for an RNA binding protein that is expressed in all post-mitotic

neurons [60], and has recently been shown to be expressed in

embryonic glial cells, but not larval or adult glia [61]. Though

other Drosophila models have similarly expressed both of these

human proteins to model AD in the fly, these models have largely

restricted their analysis to the developing retina [8] and wing

tissues [7,8]. In the retina, Greeve and colleagues observe that

expression of human APP resulted in more neurodegeneration

than the co-expression of human APP and human BACE [8].

They postulated that this suprising difference was due to the

claveage of APP by a putative d-secretase when BACE was not

expressed. d-secretase cleaves APP 12 residues N terminal of the b-

secretase site. The long Ab that results from d- and c-secretase

cleavage produces more photoreceptor neurodegeneration. Inter-

estingly, in our study the consequences of human APP and human

BACE co-expression far outweigh those observed by expression of

human APP alone in the CNS. We found no evidence of APP d-

secretase cleavage in our Western blot results (Figure 1 & Figure

S1). This may suggest that d-secretase expression is high in the

retina and lower in the brain.

AD can be caused by increased APP expression levels. In

humans, the APP gene is located on chromosome 21. Patients with

Trisomy 21 (Down’s Syndrome) invariably develop AD [62,63].

Furthermore, APP locus duplications have also been identified in a

small number of patients developing AD early in life [64]. This

suggests that increased APP levels cause AD presumably by

increased Ab levels. Consistent with these clincial findings, we find

that using a strong CNS promoter, daughterless (da-GAL4), to drive

co-expression of human APP and human BACE results in pupal

death (data not shown). Because of this effect, we utilized the elav

promoter to drive transgene expression since it is weaker than the

da promoter. Even with this relatively weak promoter, we observe

strong biochemical, neuroanatomical, and behavioral effects.

Using an even weaker promoter may result in more subtle

phenotypes.

Recently, Sarantseva et al expressed both human APP and

human BACE using the elav-GAL4 driver at 29uC using standard

yeast medium [11]. Consistent with the results presented here,

these authors showed that these flies expressed APP, that this APP

was processed successfully to generate Ab monomers and

oligomers, and that this Ab accumulated in cortical regions of

fly brains [11]. In their model, changes in neuroanatomy are also

observed. Decreased mushroom bodies and antennal lobe sizes,

consistent with the decreased mushroom body stuctures we

observe in our model, are observed in 30 day old flies. These

authors also report a defect in immediate recall learning (also

called immediate recall memory) using an olfactory learning assay

with 1–2 day old flies [11]. This defective immediate recall is

consistent with our observations in 3 day old AD model flies,

which display normal learning during the training period, but

defective immediate recall memory. Because the olfactory learning

task does not allow for testing of learning during training, these

results suggest that in both of our models, immediate recall

memory is defective in young adult flies.

Surprisingly, there are some significant differences between our

two models. The neuroanatomical changes observed by Sarant-

seva et al are not apparent in young adult flies (two days old) but

only in 30 day old flies [11]. This is in stark contrast to significant

neuroanatomical changes we observe in six day old adult flies. The

neuroanatomical changes we observe also occur concurrently with

memory deficits, while this concurrence is not observed by

Sarantseva et al. While both models observe strong neuropatho-

logical changes in the brains of elav; APP; BACE heterozygous flies,

the flies described here also display phenotypes outside of the

brain. Specifically we observe abnormal wing development and

melanotic masses on the abdomen and proboscis, Sarantseva et al

did not report such observations.

What could account for the differences we observe between our

models? The calorie content of the fly food may be one cause. There

are multiple recipes in use for fly media (http://flystocks.bio.

indiana.edu/Fly_Work/media-recipes/media-recipes.htm). Each

differ in the kind and amount of sugar(s) used. We used a standard

Figure 6. Learning and memory behavior. A) Panel denotes
learning ability during the first 10 minutes (white columns) and last
10 minutes (grey columns) of the courtship suppression assay training
phase. Treatments are indicated and WT indicates Canton S. Note
normal learning response of elav; APP; BACE heterozygous flies raised
on either DMSO or L-685, 458. B) Panel denotes immediate recall
memory (0–2 minutes post-training) of trained flies (white columns) as
compared to sham trained flies of matching genotypes and age (grey
columns). elav; APP; BACE heterozygous flies treated with DMSO
(vehicle) show no significant difference between trained and sham
trained flies, indicating no immediate recall memory of training. This
memory defect was rescued by treating flies with c-secretase inhibitor,
L-685,458. Error bars represent standard error. * indicates p,0.05. n$18
for panels A and B.
doi:10.1371/journal.pone.0020799.g006
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medium containing molasses, which has a higher calorie content

than the standard media containing sucrose or dextrose. Consistent

with this, we have observed that reducing calorie intake in another

Drosophila AD model reduces c-secretase cleavage of APP

(Chakraborty et al., in preparation).

Abnormal wing development was previously observed in flies

expressing human APP in wings [7]. Melanotic masses have not

been previously described when human APP or human APP and

human BACE are expressed. These masses are an immune

response in flies due to the localized buildup of hemocytes

(invertebrate phagocytes) in the presence of tissue damage,

necrotic tissue, infection, or altered self components [65].

Melanotic masses are formed due to the activation of the Toll

pathway, which is the major effector of the innate immune

response in flies [66]. The hemocyte response includes cell

aggregation, phagocytosis, encapsulation of material (self or

foreign), and the induction of the melanization cascade [65].

Though these melanotic masses appear in flies that only express

human APP, the frequency of these melanotic masses increases

almost tenfold when human BACE is co-expressed. Further, the

frequency of these masses is significantly decreased when these

flies are fed L-685,458, suggesting that these masses consist of Ab
or are induced by Ab. This Drosophila immune response is

reminscent of the inflammatory response that is invariably

observed in human AD brain tissue [67], and may be in response

to Ab accumulation or Ab-induced cellular/tissue damage. In

mammals, Ab has been shown to induce the inflammatory

response via activation of Toll-like receptors 4 and 6 (TLR4/6)

[68]. In light of a recent paper that suggests Ab is an

antimicrobial peptide in the innate immune response in humans

[69], an alternative explanation to the role of Ab in melanotic

masses is that Ab is an active participant in the innate immune

response and thereby does not directly ‘‘cause’’ the response.

Regardless of the mechanism of formation of these masses, they

are apparent when flies first eclose from their pupal case, and

may act as a proxy for cerebral Ab accumulation.

In humans, there is a poor correlation between plaque load and

cognitive function [70,71,72]. Therefore in addition to monitoring

a proxy for cerebral Ab accumulation, it is important to have a

quick measure of CNS function. Our AD flies display a rapid

decline in their reflex climbing behavior within the first 10 days

after eclosion (Figure 5). As expected for any Ab dependent

process, this climbing defect can be rescued by treating the flies

with L-685,458.

In each case, we see that there are significant effects of genetic

background on climbing ability for each experimental genotype

(Figure 5, and Figure S4). However, the only valid comparisons

that can be made for these experimental genotypes must be made

between experimental and outcrossed controls of the same groups.

Thus, while w; APP; + heterozygous flies and w; +; BACE

heterozygous flies show similar levels of climbing compared to elav;

APP; BACE heterozygous flies, the fact that the elav; APP; BACE

heterozygous flies contain both UAS:APP and UAS:BACE trans-

genes precludes comparison between these genotypes. The

appropriate comparison must be made between elav; APP; BACE

heterozygous flies and w; APP; BACE heterozygous flies, as it is the

w; APP; BACE heterozygous genetic background that is included

within our elav; APP; BACE heterozygous flies, and not the APP; +
heterozygous genetic background alone. Thus, based on these

genetic experiments, we can only conclude that induction of APP

expression via the GAL4/UAS system is not detrimental to the

climbing ability compared to either the elav-GAL4 or UAS:APP

backgrounds alone (Figure S4). This is also similar for BACE

expression alone (Figure S4). However, when we combine the

genetic background of elav-Gal4 with the UAS:APP; UAS:BACE

genetic background, we observe a significant decrease in climbing

ability in the subsequent elav; APP; BACE heterozygous genetic

background compared to either the elav; + heterozygous genetic

background, or the w; APP; BACE heterozygous genetic back-

grounds alone (Figure 5).

Finally, treatment of our AD model flies (elav; APP; BACE

heterozygous flies) with the drug vehicle DMSO has deleterious

effects on these flies, decreasing Kenyon Cell size, decreasing

climbing reflex behavior, and increasing the number of Ab puncta

in fly brains (Figures 3, 4, 5). Previous literature has shown that

DMSO can induce cytotoxicity in transgenic flies lines expressing

hsp70-lacZ at 0.3% of dietary concentration [34]. Though the

concentration of DMSO we used was lower at 0.1%, it is easy to

imagine a scenario where a lower concentration of DMSO could

have a deleterious effect on these flies is the cell’s stress response is

already activated or compromised, as is the case for our AD model

flies (elav; APP; BACE heterozygous flies). Further, while the

previous study examined hatchability, emergence, fecundity,

reproductive performance, and hsp70 expression [34], our study

focuses on neural function, which may be a more sensitive assay,

especially within our model. In mice, DMSO has been shown to

cause apoptosis throughout the central nervous system [33].

Further, cells from AD patients show increased endoplasmic

reticulum calcium stores, a well-defined target of oxidative stress

present in AD. DMSO treatment of these cells exaggerates H2O2

enhancement of this increased calcium storage [35,73]. In each

case analyzed, treatment with L-685, 458 in the presence of

DMSO suppresses the phenotypes associated with our model,

suggesting that though DMSO enhances the pathology in our fly

model, suppression of the gamma secretase complex rescues this

effect, in many cases back to relatively normal levels (ex. Figures 4

& 5). These data are consistent with a requirement for gamma

secretase activity to induce these phenotypes.

In summary, the expression of human APP and human BACE

genes in the Drosophila CNS results in biochemical, neuroana-

tomical, neuropathological, and behavioral changes that are

reminiscent of clinical AD. We observe these changes early in

the life of adult flies, and importantly, these changes are prevented

with c-secretase inhibitor treatment. Taken together, these

measures provide a powerful and quick method to assess AD

progression in our fly model, and may be used for the rapid testing

of small molecules for therapeutic intervention.

Materials and Methods

Western Blot Analysis
For Western blot analysis, 15–20 fly heads were collected from

respective genotypes and immediately lysed in RIPA buffer

(50 mM Tris, 150 mM NaCl, 1% SDS, 1% NP-40, 0.5%

deoxycholate, pH 8.0) containing a cocktail of protease inhibitors

[Antipain(100 mM), Aprotinin (2 mg/ml), Benzamide (15 mg/

ml), Chymostatin (100 mM), Leupeptin (100 mM), Pepstatin A

(1 mM), PMSF (1 mM), Sodium Metabisulfite(0.1 nM)]. These

lysates were stored at 280uC. As a control for BACE and APP

expression, cell lysates of HEK293 cells were also prepared. The

protein concentration of these fly head lysates was determined

using the BCA Protein Assay Kit (Pierce, Inc.). According to the

protein concentrations, samples for Western Blot were prepared

using the 46 NuPage LDS sample buffer (Invitrogen, Inc.)

containing 0.2% BME (b-Mercaptoethanol, Sigma Aldrich). Equal

amounts of protein were loaded on to each well of NuPAGE 4–

12% Bis Tris Gel. From the gel the proteins were transferred on to

0.25 mm PVDF (Immobilon FL) membrane (Millipore) using a
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semi-dry transfer apparatus. Blots were probed with the indicated

antibodies and the target protein densitometry was normalized to

b-actin densitometry using Odyssey Infrared Imaging system (LI-

COR Biosciences).

Antibodies
APP C-terminal antibody (A8717; Sigma Aldrich, Inc), BACE

(ab2077, Abcam) monoclonal anti b-Actin (A5441, Sigma Aldrich,

Inc), APP 6E10 (ab10146, Covance), goat anti-Rabbit IR-Dye800

CW (926–3211; LiCor) and/or goat anti-Mouse IR Dye 680 (926–

3200; LiCor) were used as secondary antibodies.

Immunohistochemistry
Adult and larval brains were dissected, fixed and prepared as

described [74]. Adult and larval brains were dissected directly in

fix. Brains were mounted in vectashield (Vector Labs, H-1000). All

fluorescent imaging was done using an Olympus FluoView

FV1000 laser scanning confocal microscope. Secondary antibodies

for immunohistochemistry used were goat anti-mouse TRITC (#
115-116-072, 1:150), goat anti-rabbit TRITC (# 111-116-144,

1:250), goat anti-rabbit Cy5 (#111-176-144, 1:1000), goat anti-

mouse Cy5 (# 115-176-072, 1:500). All secondary antibodies were

from Jackson ImmunoResearch. Thioflavin S staining was

performed as described [22]. X-34 staining was performed as

described [36].

Brain structure/puncta measurements and analysis
To measure the size of soma, calyx, and lobes, a membrane

tagged form of GFP (CD8-GFP) was expressed in the nervous

system under UAS control. Serial confocal microscope sections

were obtained at 2006 magnification, and the appropriate brain

regions (Kenyon Cells, Calyx, Lobes) were stacked and pixels

measured using Image J (http://rsbweb.nih.gov/ij/). Pixel mea-

surements were generated using Image J. Five brains were

analyzed for each genotype.

To count 6E10 positive puncta, 5 brains of each genotype were

fully optically sectioned by confocal microscopy. An observer

blinded to genotype scanned through each brain section and

counted the number of 6E10 immunoreactive puncta in each

section. These numbers were then averaged out for each genotype,

and significance was determined by using an unpaired Student’s t-

test.

To count 6E10 and X-34 colocalization, 4 brains of from elav-

CD8; APP; BACE heterozygous flies were imaged at 6006 in areas

near the mushroom body soma (as determined by GFP

fluorescence). The number of 6E10 puncta were counted and

averaged between each brain, as were the number of X-34 puncta.

The number of puncta that were positive for both 6E10 and X-24,

was determined by dividing the total number of co-labeled puncta

by either 6E10 or X-34 positive puncta to derive % colocalization.

Pharmacologic reagents used
c-secretase transition state inhibitor, L-685,458, was purchased

from Sigma Aldrich. 100 nM L-685,458 was used for preparing

food vials for AD model flies. Drug or DMSO was added to water

and mixed to homogeneity prior to preparing food. DMSO

concentration was 0.1% in all cases. Flies were raised on food

containing either drug or DMSO alone for their entire

development and adult life (embryogeneis to death). After

hatching, flies were maintained on DMSO or drug food

containing L685, 458 dissolved in DMSO throughout their entire

lifespan. No external yeast was added to this food at any point

during the analysis.

ELISA Analysis
Ab40 and Ab42 levels were determined using commercially

available human Ab specific ELISA kits (BetaMark, Covance,

Dedham, MA) according to the manufacturer’s instructions.

BetaMark ELISA kits are resistant to interference from detergent

and are compatible with tissue extracts containing low levels of

SDS (,0.1%). RIPA buffer homogenates were diluted to a final

SDS concentration of less than 0.1%. Ab standards were assayed

at in homogenization vehicle buffer at the same dilution as test

samples. Lysates from an equal number of fly heads were

compared across treatment or genotype. Lysates from 50 heads

were used for each ELISA well. Two dilutions of each extract were

prepared for assays. A 3:5 dilution sample consisted of: 86 mL

sample+124 mL PBS (0.6 dilution containing 0.06% SDS) further

diluted 1:1 in kit assay buffer (final 0.3 sample dilution containing

0.03% SDS in the well). A 3:25 dilution sample consisted of:

37.2 mL sample+272.8 mL PBS (0.12 dilution containing 0.012%

SDS) further diluted 1:1 in kit assay buffer (final 0.06 dilution

containing 0.006% SDS in the well). Blanks contained BSA

protein in buffer. Fly head were dissected, immediately homog-

enized in RIPA buffer (with protease inhibitors) and then stored at

280uC.

Drosophila Stocks and Genetics
All crosses and stocks were maintained at 25uC. Normal food

consisted of a standard cornmeal, yeast, molasses recipe as follows:

120 g cornmeal (LabScientific FLY-8009-10), 48 g yeast (LabS-

cientific 8030-5), 9 g agar, 120 ml molasses (LabScientific FLY-

8008-4), 24 ml Tegosept (10% w/v methyl p-hydroxybenzoate in

95% ethanol), and 9.5 ml Propionic Acid) with 840 ml of water.

Drug food was prepared adding the indicated drug to 17 ml of

water and mixing thoroughly. Cornmeal, yeast, agar, molasses,

tegosept, and propionic acid were then added to a final volume of

30 ml, and food was prepared as normal. Flies were cultured on

drug food for their entire lifespan from embryogenesis to death.

Drug food was changed every 3–4 days to ensure fresh exposure to

drug.

The GAL4/UAS system was used for the overexpression of

UAS transgenes in Drosophila as described [25]. BL# refers to

Bloomington Stock Center stock number. Bloomington stocks

P{GawB}elavC155, P{UAS-mCD8::GFP.L}LL4, P{hsFLP}1, w*

(BL#5146) and P{GawB}elavC155 (BL#458) were used to drive

transgene expression and are abbreviated in the text as elav and

elav-CD8, respectively. The P{UAS:APP} and the P{UAS:APP};

P{UAS:BACE} [8] stock, referred to in the text as APP and APP;

BACE respectively, were generous gifts from Rita Reifegerste.

w1118; P{UAS-BACE1.L}2 (BL#29877) referred to in the text as

BACEused to examine the effects of the individual transgene.

Bloomington stock w1118 (BL#3605) was used to generate

outcrossed controls and is referred to as w in the text. All

transgenes are examined in the heterozygous state.

Wild type flies used for controls and training during the learning

and memory assays were Canton S. All other controls are the

appropriate transgenic controls, either lacking the GAL4 driver or

UAS-linked transgene, as indicated.

Behavioral testing and training
For all behavioral tests, flies were maintained at 25uC in a 12:12

light:dark cycle at 60% humidity. For longevity studies, flies were

collected between 0–8 hours after eclosion, and were maintained

in vials of 10 or fewer flies for their lifespan. These vials were kept

on their side to minimize flies falling into the food at the bottom of

the vial and perishing due to becoming stuck in the food. Any flies

that died due to these food deaths or that flew away during the
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study were marked as censored from the longevity assay. Flies were

checked every day during the relative light cycle and total number

of living flies were recorded in each vial each day. A total of 50–

140 flies of each genotype were assayed. Each vial maintained and

tested had 10 or fewer flies. Due to certain flies flying away during

the course of the study period and some flies dying in their food,

every fly does not experience the event of interest; therefore, these

flies were deemed censored observations and their observed data

was classified as non-informative censoring. All statistical analyses

for longevity were carried out using the statistical software package

SAS 9.2. The Wilcoxon test of homogeneity (a test statistic that is

often used in survival analysis to compare survival functions,

especially when survivor functions tend to cross each other

throughout points during the follow-up time) was used to

determine statistical significance at the alpha level of 0.05 in all

cases.

For climbing assays, a modified version of Le Bourg and Lints

was used [37]. Flies were collected between 0–8 hours after

eclosion and assayed every two days. Groups of 10 or fewer flies

were maintained in vials kept on their side as above. During the

climbing assay, these flies were transferred to a clean, empty vial

and given 18 seconds to climb 5 cm. The number of flies that

successfully reach the 5 cm line were recorded. Between 50–140

flies of each genotype were assayed for each vial of 10 or fewer

flies. The average climbing success for days 2–10 and 12–20 for

each genotype was binned, and significance was determined

between genotypes by a one-way ANOVA analysis with genotype

as the independent variable.

For courtship behavioral training, virgin male flies of the

appropriate genotype were collected between 0 and 6 hours after

eclosion and transferred to individual food vials. All flies were

maintained at 25uC in a 12:12 light:dark cycle at 60% humidity.

All behavioral tests were performed in a separate room maintained

at 25uC and 60% humidity and illuminated under a constant

130 V white light Kodak Adjustable Safelight Lamp mounted

above the courtship chambers. All behavior was digitally recorded

using a Sony DCR-SR47 Handycam with Carl Zeiss optics.

Subsequent digital video analysis of time spent performing

courtship behavior was quantified using iMovies software (Apple).

The total time that a male performed courtship activity was

measured and scored. The Courtship Index (CI) was calculated as

the total time observed performing courting behavior divided by

the total time assayed, as described [38].

Virgin female wild type (Canton S) flies were collected and kept

in normal food vials in groups of 10. Male flies were aged for 3

days before behavioral training and testing. All tests were

performed during the relative light phase. Mated Cantons S

females used for training were 5 days old, and observed to have

mated with a Canton S male the evening prior to training. Virgin

female Canton S targets used were 4 days old. Male flies were

assigned to random groups the day of training, and assays were set

up and scored blind. Male flies were transferred without anesthesia

to one half of a partitioned mating chambers from Aktogen

(http://www.aktogen.com) that contained a previously mated

Canton S female in the other partitioned half. Males were allowed

to acclimate for 1 minute, then the partition between the male and

female was removed. Male flies were then trained for 60 minutes.

After 60 minutes, male flies were transferred within 2 minutes

without anesthesia to one half of a clean partitioned mating

chamber that contained a virgin Canton S female in the other

partitioned half. The partition was removed and the flies were

recorded for 10 minutes. A total of 18–22 flies were scored for

each genotype, both trained and sham. To determine significance

among the same individuals for the learning phase of this assay, a

two-tailed paired Student’s t-test was performed. To determine

significance among different individuals of the same gentotype a

two-tailed unpaired Student’s t-test was performed.

Statistical Analysis
All statistical analysis was performed on PASWStatistics version

18.0 with the exception of the survival data described above. To

determine significance between multiple different genotypes, a

one-way ANOVA analysis was performed with Tukey posthoc

analysis. Genotype is the independent variable. To determine

significance between different measures of the same genotype, a

two-tailed paired Student’s t-test was performed. An unpaired

Student’s t-test was performed between 2 groups of different

genotypes. To determine significance in phenotypic frequencies

between different genotypes, a G test of goodness-of-fit was

performed. Significance was determined at the 95% confidence

interval.

Supporting Information

Figure S1 Western blot analysis of elav; APP; BACE
heterozygous fly heads. Fly treatments are indicated in figure

for each lane. A) Detection of human APP in elav; APP; BACE

heterozygous fly heads by A8717 anti-APP antibody (Sigma). Lane

1 shows cellular lysates from HEK293 cells stably expressing APP

as a positive control. B) Detection of human CTFs in elav; APP;

BACE heterozygous fly heads by A8717 anti-APP antibody

(Sigma). Note that c-secretase inhibitor, L-685,458 increases

CTF levels. Lane 1 shows cellular lysates from HEK293 cells

stably expressing APP as a positive control. C) Detection of human

Ab by 6E10 (Covance) elav; APP; BACE heterozygous fly head

lysates. D) Detection of BACE (Abcam) in elav; APP; BACE

heterozygote fly head lysates. Lane 1 shows cellular lysates from

HEK293 cells stably expressing APP-Sw as a positive control.

Note no BACE immunoreactivity was observed in elav/w; +; + fly

head lysates, while BACE immunoreactivity was observed in elav;

APP; BACE heterozygousfly head lysates. E) Detection of human

BACE in elav; APP; BACE heterozygous fly heads. Lane 1 shows

cellular lysates from HEK293 cells stably expressing BACE as a

positive control. F) Quantification of panels A, B, C, and E

Western blot signal intensity.

(TIF)

Figure S2 Longevity and mortality analysis. In each

panel, longevity analysis is top chart and mortality chart is

bottom panel. A) Longevity and mortality analysis of flies

expressing human APP and human BACE (elav; APP; BACE

heterozygous flies) compared to genetic background controls that

either lack the driver (w; APP; BACE heterozygous flies) or UAS

transgene (elav; +; + heterozygous flies). B) Longevity and

mortality analysis of flies expressing human APP and human

BACE (elav; APP; BACE heterozygous flies) raised on food

containing DMSO (vehicle) or L-685, 458. C) Longevity and

mortality analysis of flies expressing human APP alone (elav; APP

heterozygous flies) compared to genetic background controls that

either lack the driver (w; APP: + heterozygous flies) or UAS

transgene (elav; +; + heterozygous flies). D) Longevity and

mortality analysis of flies expressing human BACE alone (elav;

BACE; + heterozygous flies) compared to genetic background

controls that either lack the driver (w; BACE; + heterozygous flies)

or UAS transgene (elav; +; + heterozygous flies).

(TIF)

Figure S3 Whole brain neuroanatomy and Thioflavin S
stain. A) Membrane bound GFP fluorescence illuminates whole
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brain morphology in elav-CD8-GFP; +; + heterozygous fly brain

from fly six days after eclosion. B) Dramatic changes in elav-CD8-

GFP; APP; BACE heterozygous brain morphology six days after

eclosion. C) High magnification (6006) of Thioflavin S positive

puncta in cortical region of elav; APP; BACE heterozygous fly brain.

Arrows indicate Thioflavin S positive puncta.

(TIF)

Figure S4 Motor reflex behavior. A) Expression of human

APP alone does not change motor reflex behavior, as measured by

the climbing assay. Parental strains listed. Error bars show

standard error. No significant difference exists between elav; APP;

+ heterozygous flies and elav; +; + heterozygous flies in days 2–10

(ANOVA, p = .601) or in days 12–20 (p = .677). B) Expression of

human BACE alone does not change motor reflex behavior (elav;

BACE; + heterozygous flies). No significant difference was found

between elav; BACE; + heterozygous flies and w; BACE; +

heterozygous flies in days 2–10 (ANOVA, p = .106) or in days

12–20 (p = .066). Error bars represent standard error.

(TIF)
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