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The origin of unsteady glacier motions, an area to which 

Robert M. McMeeking contributed significantly [1,2], is of 

interest for assessing stability of major ice sheets (Greenland, 

Antarctica).  Meltwater and its pressure p at the bed of glaciers 

are known to have major influence on flow.  Our work [3,4] 

focuses  on outburst under-flooding of an ice sheet, as a means 

of delivering highly pressurized water to its bed, transiently 

with p > o  (= ice overburden pressure).  The process is 

viewed as a turbulently driven hydraulic fracture along the 

ice/bed interface.  Such can result [5] when the glacier dams a 

rising lake, or from geothermal heating of a sub-glacial lake.  

The particular scenario we address is, instead, rapid drainage 

into the ice of a large surficial meltwater lake, like recently 

documented in Greenland [6] during mid-summer.  This first 

involves Weertman gravitationally driven hydraulic cracking 

from the lake to the bed, and then rapid spreading of water 

along the bed, initially as a high-p sheet flow.  We compare 

modeling to results of the Greenland study [6], for which a 

0.043 km
3
 lake disappeared into the ice, mostly within 1.5 hr. 

The lake drainage rate in that case, and the ~3 km length, 

parallel to the glacier surface, of a crevasse/moulin system 

along which drainage apparently occurred, suggest that in the 

rapid early phases of the underflooding the Reynolds number 

(based on basal fracture opening h and thickness-averaged flow 

speed U along it) was of order 10
6
.  Accordingly, we adopted a 

Manning-Strickler-Nikuradse description of wall shear stress in 

the rough turbulent range to relate U(x,t), h(x,t), p(x,t), and the 

wall roughness scale k, where x is the coordinate in the 

direction of fracture propagation.  We further assumed linear 

elastic response of ice and bed, and (for the large fracture 

propagation lengths of interest) negligible KIc .  By extending 

studies like in [7,8] to that rough turbulent flow range, we have 

thus solved approximately the plane strain version of the 

hydraulic fracture problem when the basal crack length 2L is 

modest compared to ice sheet thickness H (i.e., for a crack in an 

unbounded body, subject to crack face pressure p o ). 

We outline those results here and will, in the presentation, 

report some preliminary improvements on them in current work 

to account for the range L/H of order 1 and larger, often a 

practically interesting one [4-6], by explicitly accounting for a 

nearby free surface.  That adopts the approach of [9] to 

numerically relate the h(x,t) and p(x, t ) o  distributions.  To 

fully solve the problem for the rate of fracture propagation, and 

volume storage of meltwater within the fracture, the 

distributions must also be constrained to satisfy the governing 

fluid equations (analogously to [10], but for turbulent rather 

than laminar flow). 

 Those fluid equations, to be solved on  – L(t) < x < + L(t) 

are (on x > 0) 

(hU )

x
+

h

t
= 0   (fluid mass, or volume, conservation), 

=
1
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p

x
 (quasi-static equilibrium for wall shear stress ), 

=
fo

8

k

h

1/3

U 2  (rough turbulent friction; fo 0.143 ). 

Here  is water density and k is the Nikuradse roughness scale 

of the channel walls (e.g., see [11]), appropriately averaged [4] 

for the ice and rock sides of the fracture.  Neglect of fluid 

acceleration in the relation of  to the pressure gradient is post-

justified [4] for our glacial application, based on parameters 

that are inferred from [6]. 

 We relate the  p(x, t ) o  distribution to the quasi-static 

crack opening displacement w(x,t) that would result, according 

to the equations of linear elasticity, if that p(x, t ) o  were 

applied to the faces of a crack in an unbounded homogeneous 

solid with the elastic properties of ice, so that 
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         p(x, t ) o =
E

4 L(t )

+L(t ) w(x , t )

x

dx

x x
 

where E E / (1 2 )  is the plane strain elastic modulus for 

the ice; E = Young's modulus and  = Poisson ratio.  Then, we 

take h(x, t ) = w(x, t )  to account approximately [4] for effects 

of the elastic dissimilarity of the ice and underlying rock, 

giving 0.55  when we assume that the rock has properties 

comparable to those of granite.  The p(x, t ) o  distribution is 

constrained to make KI = 0 .  That is appropriate in view of 

the negligible KIc  of ice (~ 0.1-0.2 MPa m) compared to 

(pin o ) L  for L greater than a few tens of m, at least 

when pin , the inlet pressure to the crack at x = 0, is comparable 

to hydrostatic pressure at the base of a water column of height 

H 1 km [6], extending to the glacier surface.  Thus we 

require that  

                      
L(t )

+L(t ) p(x, t ) o

[L2 (t ) x2 ]1/2
dx = 0 . 

That removes any classical r 1/2
 stress singularity at the crack 

tips, although there will remain a weak r 1/7
 singularity, 

understandable [3,4] by an analysis paralleling that of [7].

 In the particular case when pin  is maintained constant as 

the crack grows from negligible size, this formulation leads 

[3,4] to a self-similar solution with L(t ) t6/5 .  The resulting 

fracture propagation speed in that solution is 

        
dL

dt
= 5.14

pin o
1/2

pin o

E

2/3 L

k

1/6

, 

and the average (over  –L < x < + L) fracture opening is 

                              havg = 1.02
pin o

E
L . 

Assuming that the crack volume may be described 

approximately by using this solution over a width W 

comparable to the ~3 km length of the feeding crevasse/moulin 

system, the volume of water stored in the basal crack is 

2LhavgW and thus the rate Q at which the crack can take in 

meltwater is Q = 4WhavgdL / dt , which scales as L7/6 . 

 Taking W = 3 km, = 103 kg/m
3
, E' = 6.8 GPa [4], and ice 

thickness H = 980 m [6], assuming hydrostatic p is maintained 

from the surface lake to the glacial bed so that 

pin o = 0.87MPa, and guessing k = 1 cm (because of the 

1/6 power, there is weak dependence on k), that predicts Q = 

4,100 m
3
/s when L = 1 km.  Such Q is of comparable order to 

the maximum drainage rate of 8,700 m
3
/s inferred from the data 

of [6], and the predicted Q would slightly exceed that 

maximum rate when L = 2 km.  However, we are on shaky 

ground here, because our solution is only surely correct when 

L/H is small compared to 1.  As remarked, our current work is 

extending the results outlined here to the realistic range of 

larger L/H, possibly of order L/H = 5 based on the Greenland 

field case in [6]. 
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