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• 1988: Morris worm exploits buffer overflows in 
fingerd to infect 6,000 servers

• 2001: Code Red exploits buffer overflows in 
IIS to infect 250,000 servers 
– Single largest cause of vulnerabilities in CERT 

advisories

– Buffer overflow threatens Internet- WSJ(1/30/01)
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Why aren’t we better off than 
we were 13 years ago? 

• Ignorance

• C is difficult to use securely
– Unsafe functions

– Confusing APIs

• Even security aware programmers make mistakes.

• Security Knowledge has not been codified into the 
development process
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Automated Tools
• Run-time solutions

– StackGuard[USENIX 7], gcc bounds-checking, 
libsafe[USENIX 2000]

– Performance penalty

– Turns buffer overflow into a DoS attack

• Compile-time solutions - static analysis
– No run-time performance penalty

– Checks properties of all possible executions
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Design Goals

• Tool that can be used by typical programmers as 
part of the development process
– Fast, Easy to Use

• Tool that can be used to check legacy code
– Handles typical C programs

• Encourage a proactive security methodology
– Document key assumptions 
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Our approach
• Document assumptions about buffer sizes

– Semantic comments
– Provide annotated standard library

– Allow user's to annotate their code

• Find inconsistencies between code and 
assumptions 

• Make compromises to get useful checking
– Use simplifying assumptions to improve efficiency

– Use heuristics to analyze common loop idioms

– Accept some false positives and false negatives 
(unsound and incomplete analysis)
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Implementation

• Extended LCLint
– Open source checking tool [FSE ‘94] [PLDI ‘96]

– Uses annotations

– Detects null dereferences, memory leaks, etc.

• Integrated to take advantage of existing 
checking and annotations (e.g., modifies)

• Added new annotations and checking for 
buffer sizes
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Annotations

• requires, ensures

• maxSet

– highest index that can be safely written to

• maxRead

– highest index that can be safely read

• char buffer[100];

– ensures maxSet(buffer) == 99
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SecurityFocus.com Example

void func(char *str){                               
char buffer[256];                            
strncat(buffer, str, sizeof(buffer) - 1); 
return; 

}

char *strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1) 

>=maxRead(s1) + n@*/

uninitialized array

Source: Secure Programming working document,
SecurityFocus.com
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strncat.c:4:21: Possible out-of-bounds store: 
strncat(buffer, str, sizeof((buffer)) - 1); 

Unable to resolve constraint:
requires maxRead (buffer @ strncat.c:4:29)  <= 0 

needed to satisfy precondition:
requires maxSet (buffer @ strncat.c:4:29)  

>= maxRead (buffer @ strncat.c:4:29) + 255
derived from strncat precondition: 
requires maxSet (<parameter 1>) 

>=  maxRead (<parameter1>) + <parameter 3>

Warning Reported
char *  strncat (char *s1, char *s2, size_t n) 
/*@requires maxSet(s1) >= maxRead(s1) + n @*/ 
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1); 

16 August 2001
David Larochelle 11

Overview of checking
• Intraprocedural

– But use annotations on called procedures and 
global variables to check calls, entry, exit points

• Expressions generate constraints
– C semantics, annotations

• Axiomatic semantics propagates constraints

• Simplifying rules                                  
(e.g. maxRead(str+i) ==> maxRead(str) - i)

• Produce warnings for unresolved constraints
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Loop Heuristics

• Recognize common loop idioms

• Use heuristics to guess number of iterations

• Analyze first and last iterations

Example:
for (init; *buf; buf++) 

– Assume maxRead(buf) iterations
– Model first and last iterations
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Case studies

• wu-ftpd 2.5 and BIND 8.2.2p7

– Detected known buffer overflows

– Unknown buffer overflows exploitable with 
write access to config files

• Performance

– wu-ftpd: 7 seconds/ 20,000 lines of code

– BIND: 33 seconds / 40,000 lines

– Athlon 1200 MHz
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Results

95 writes

166 reads

132 writes

220 reads

-Other 
Warnings

4

40

19

LCLint 
warnings 
with no 
annotations 
added

455strncpy

2197strcpy

1227strcat

LCLint 
warning 
with 
annotations

Instances in 
wu-ftpd 
(grep)
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int acl_getlimit(char *class, char *msgpathbuf)

{
struct aclmember *entry = NULL;
while (getaclentry("limit", &entry)) {

…
strcpy(msgpathbuf, entry->arg[3]); 

LCLint reports a possible buffer overflow for 
strcpy(msgpathbuf, entry->arg[3]); LCLint reports an error at a call site of acl_getlimit 

wu-ftpd vulnerablity

/*@requires maxSet(msgpathbuf) >= 1023 @*//*@requires maxSet(msgpathbuf) >= 1023 @*/

strncpy(msgpathbuf, entry->arg[3], 1023);
msgpathbuf[1023] = ‘\0’; 
strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = ‘\0’; 

/*@requires maxSet(msgpathbuf) >= 199  @*//*@requires maxSet(msgpathbuf) >= 199  @*/int access_ok( int msgcode) {
char class[1024], msgfile[200];
int limit;

… 

limit = acl_getlimit(class, msgfile);
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Related Work

• Lexical analysis

– grep, its4, RATS, FlawFinder

• Wagner, Foster, Brewer [NDSSS ‘00]
– Integer range constraints

– Flow insensitive analysis

• Dor, Rodeh and Sagiv [SAS ‘01] 
– Source-to-source transformation with asserts 

and additional variables. 
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Impediments to wide spread 
adoption

• People are lazy

• Programmers are especially lazy

• Adding annotations is too much work 
(except for security weenies)

• Working on techniques for automating the 
annotation process
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Conclusion
• 2014:???

– Will buffer overflows still be common?

– Codify security knowledge in tools real 
programmers can use

Beta version now available: 
http://lclint.cs.virginia.edu

David Larochelle David Evans
larochelle@cs.virginia.edu evans@cs.virginia.edu


