

Statically Detecting Likely Buffer Overflow Vulnerabilities

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation David Larochelle, David Evans, Statically Detecting Likely Buffer
Overflow Vulnerabilities, 2001 USENIX Security Symposium,
Washington, D.C., August 13-17 2001.

Published Version http://www.usenix.org/events/sec01/larochelle.html

Accessed February 19, 2015 8:39:11 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5027549

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28937564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/5027549&title=Statically+Detecting+Likely+Buffer+Overflow+Vulnerabilities
http://www.usenix.org/events/sec01/larochelle.html
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5027549
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 1

Statically Detecting Likely
Buffer Overflow Vulnerabilities

David Larochelle
David Evans

University of Virginia
Department of Computer Science

Supported by USENIX Student
Grant and NASA LRC

16 August 2001
David Larochelle 2

• 1988: Morris worm exploits buffer overflows in
fingerd to infect 6,000 servers

• 2001: Code Red exploits buffer overflows in
IIS to infect 250,000 servers
– Single largest cause of vulnerabilities in CERT

advisories

– Buffer overflow threatens Internet- WSJ(1/30/01)

16 August 2001
David Larochelle 3

Why aren’t we better off than
we were 13 years ago?

• Ignorance

• C is difficult to use securely
– Unsafe functions

– Confusing APIs

• Even security aware programmers make mistakes.

• Security Knowledge has not been codified into the
development process

16 August 2001
David Larochelle 4

Automated Tools
• Run-time solutions

– StackGuard[USENIX 7], gcc bounds-checking,
libsafe[USENIX 2000]

– Performance penalty

– Turns buffer overflow into a DoS attack

• Compile-time solutions - static analysis
– No run-time performance penalty

– Checks properties of all possible executions

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 2

16 August 2001
David Larochelle 5

Design Goals

• Tool that can be used by typical programmers as
part of the development process
– Fast, Easy to Use

• Tool that can be used to check legacy code
– Handles typical C programs

• Encourage a proactive security methodology
– Document key assumptions

16 August 2001
David Larochelle 6

Our approach
• Document assumptions about buffer sizes

– Semantic comments
– Provide annotated standard library

– Allow user's to annotate their code

• Find inconsistencies between code and
assumptions

• Make compromises to get useful checking
– Use simplifying assumptions to improve efficiency

– Use heuristics to analyze common loop idioms

– Accept some false positives and false negatives
(unsound and incomplete analysis)

16 August 2001
David Larochelle 7

Implementation

• Extended LCLint
– Open source checking tool [FSE ‘94] [PLDI ‘96]

– Uses annotations

– Detects null dereferences, memory leaks, etc.

• Integrated to take advantage of existing
checking and annotations (e.g., modifies)

• Added new annotations and checking for
buffer sizes

16 August 2001
David Larochelle 8

Annotations

• requires, ensures

• maxSet

– highest index that can be safely written to

• maxRead

– highest index that can be safely read

• char buffer[100];

– ensures maxSet(buffer) == 99

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 3

16 August 2001
David Larochelle 9

SecurityFocus.com Example

void func(char *str){
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);
return;

}

char *strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1)

>=maxRead(s1) + n@*/

uninitialized array

Source: Secure Programming working document,
SecurityFocus.com

16 August 2001
David Larochelle 10

strncat.c:4:21: Possible out-of-bounds store:
strncat(buffer, str, sizeof((buffer)) - 1);

Unable to resolve constraint:
requires maxRead (buffer @ strncat.c:4:29) <= 0

needed to satisfy precondition:
requires maxSet (buffer @ strncat.c:4:29)

>= maxRead (buffer @ strncat.c:4:29) + 255
derived from strncat precondition:
requires maxSet (<parameter 1>)

>= maxRead (<parameter1>) + <parameter 3>

Warning Reported
char * strncat (char *s1, char *s2, size_t n)
/*@requires maxSet(s1) >= maxRead(s1) + n @*/
char buffer[256];
strncat(buffer, str, sizeof(buffer) - 1);

16 August 2001
David Larochelle 11

Overview of checking
• Intraprocedural

– But use annotations on called procedures and
global variables to check calls, entry, exit points

• Expressions generate constraints
– C semantics, annotations

• Axiomatic semantics propagates constraints

• Simplifying rules
(e.g. maxRead(str+i) ==> maxRead(str) - i)

• Produce warnings for unresolved constraints

16 August 2001
David Larochelle 12

Loop Heuristics

• Recognize common loop idioms

• Use heuristics to guess number of iterations

• Analyze first and last iterations

Example:
for (init; *buf; buf++)

– Assume maxRead(buf) iterations
– Model first and last iterations

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 4

16 August 2001
David Larochelle 13

Case studies

• wu-ftpd 2.5 and BIND 8.2.2p7

– Detected known buffer overflows

– Unknown buffer overflows exploitable with
write access to config files

• Performance

– wu-ftpd: 7 seconds/ 20,000 lines of code

– BIND: 33 seconds / 40,000 lines

– Athlon 1200 MHz
16 August 2001
David Larochelle 14

Results

95 writes

166 reads

132 writes

220 reads

-Other
Warnings

4

40

19

LCLint
warnings
with no
annotations
added

455strncpy

2197strcpy

1227strcat

LCLint
warning
with
annotations

Instances in
wu-ftpd
(grep)

16 August 2001
David Larochelle 15

int acl_getlimit(char *class, char *msgpathbuf)

{
struct aclmember *entry = NULL;
while (getaclentry("limit", &entry)) {

…
strcpy(msgpathbuf, entry->arg[3]);

LCLint reports a possible buffer overflow for
strcpy(msgpathbuf, entry->arg[3]); LCLint reports an error at a call site of acl_getlimit

wu-ftpd vulnerablity

/*@requires maxSet(msgpathbuf) >= 1023 @*//*@requires maxSet(msgpathbuf) >= 1023 @*/

strncpy(msgpathbuf, entry->arg[3], 1023);
msgpathbuf[1023] = ‘\0’;
strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = ‘\0’;

/*@requires maxSet(msgpathbuf) >= 199 @*//*@requires maxSet(msgpathbuf) >= 199 @*/int access_ok(int msgcode) {
char class[1024], msgfile[200];
int limit;

…

limit = acl_getlimit(class, msgfile);

16 August 2001
David Larochelle 16

Related Work

• Lexical analysis

– grep, its4, RATS, FlawFinder

• Wagner, Foster, Brewer [NDSSS ‘00]
– Integer range constraints

– Flow insensitive analysis

• Dor, Rodeh and Sagiv [SAS ‘01]
– Source-to-source transformation with asserts

and additional variables.

David Larochelle

Statically Detecting Likely Buffer
Overflow Vulnerabilities 5

16 August 2001
David Larochelle 17

Impediments to wide spread
adoption

• People are lazy

• Programmers are especially lazy

• Adding annotations is too much work
(except for security weenies)

• Working on techniques for automating the
annotation process

16 August 2001
David Larochelle 18

Conclusion
• 2014:???

– Will buffer overflows still be common?

– Codify security knowledge in tools real
programmers can use

Beta version now available:
http://lclint.cs.virginia.edu

David Larochelle David Evans
larochelle@cs.virginia.edu evans@cs.virginia.edu

